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Abstract

Skeletal muscle plasticity is reflected by a dynamic balance between protein synthesis and

breakdown, with basal muscle tissue protein synthesis rates ranging between 0.02 and

0.09%/h. Though it is evident that other musculoskeletal tissues should also express some

level of plasticity, data on protein synthesis rates of most of these tissues in vivo in humans

is limited. Six otherwise healthy patients (62±3 y), scheduled to undergo unilateral total knee

arthroplasty, were subjected to primed continuous intravenous infusions with L-[ring-13C6]-

Phenylalanine throughout the surgical procedure. Tissue samples obtained during surgery

included muscle, tendon, cruciate ligaments, cartilage, bone, menisci, fat, and synovium.

Tissue-specific fractional protein synthesis rates (%/h) were assessed by measuring the

incorporation of L-[ring-13C6]-Phenylalanine in tissue protein and were compared with mus-

cle tissue protein synthesis rates using a paired t test. Tendon, bone, cartilage, Hoffa’s fat

pad, anterior and posterior cruciate ligament, and menisci tissue protein synthesis rates

averaged 0.06±0.01, 0.03±0.01, 0.04±0.01, 0.11±0.03, 0.07±0.02, 0.04±0.01, and 0.04

±0.01%/h, respectively, and did not significantly differ from skeletal muscle protein synthesis

rates (0.04±0.01%/h; P>0.05). Synovium derived protein (0.13±0.03%/h) and intercondylar

notch bone tissue protein synthesis rates (0.03±0.01%/h) were respectively higher and

lower compared to skeletal muscle protein synthesis rates (P<0.05 and P<0.01, respec-

tively). Basal protein synthesis rates in various musculoskeletal tissues are within the same

range of skeletal muscle protein synthesis rates, with fractional muscle, tendon, bone, carti-

lage, ligament, menisci, fat, and synovium protein synthesis rates ranging between 0.02 and

0.13% per hour in vivo in humans.

Clinical trial registration: NTR5147

Introduction

Skeletal muscle tissue plasticity is achieved by a dynamic equilibrium between muscle protein

synthesis and breakdown rates. Temporary changes in either protein synthesis and/or protein
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breakdown result in net muscle protein accretion or loss. A routinely applied method to study

skeletal muscle protein metabolism in vivo in humans is the continuous intravenous infusion

of stable isotope labelled amino acids with frequent sampling of blood and skeletal muscle tis-

sue using the percutaneous needle biopsy technique [1, 2]. This contemporary stable isotope

methodology has been applied for several decades to show that skeletal muscle tissue turns

over at a rate of approximately 1–2% per day [3]. Though widely applied in skeletal muscle

research, and to a lesser extent in tendon research [4–13], there are very few data on in vivo
protein synthesis rates of other musculoskeletal tissues in humans.

It is evident that other musculoskeletal tissues such as tendon, ligaments, bone, and

cartilage should also possess a certain degree of plasticity. Damage due to injury or

surgery generally involves much more tissues than merely skeletal muscle. Obviously,

recovery and rehabilitation requires plasticity of all tissues involved. Several studies have

assessed tendon protein synthesis rates in vivo in humans using stable isotope methodology

[4–12, 14, 15]. Furthermore, emerging research is now establishing the relevance of intra-

muscular as well as extramuscular collagen structures being required for the proper trans-

duction of force generated by muscle contraction [16, 17]. Clearly, connective tissue

plasticity plays an important role in determining musculoskeletal strength and functional

capacity [18, 19].

The application of contemporary stable isotope methodology to assess tissue protein syn-

thesis rates in other musculoskeletal tissues such as tendon, ligaments, bone, and cartilage is

restricted due to the obvious logistical and medical ethical restraints of tissue sampling. To

omit these restrictions we selected 6 otherwise healthy male (n = 3) and female (n = 3) adults,

scheduled to undergo unilateral total knee arthroplasty, to participate in a study in which we

applied contemporary stable isotope methodology to assess basal protein synthesis rates of a

wide variety of musculoskeletal tissues including muscle, tendon, ligament, bone, cartilage,

menisci, fat, and synovium. We hypothesized that basal protein synthesis rates of various mus-

culoskeletal tissues are different compared to skeletal muscle tissue.

Materials and methods

Subjects

Six otherwise healthy male (n = 3) and female (n = 3) adults (age: 62±3 y; body weight:

89.8±4.7 kg; body mass index: 28.6±1.1 kg/m2), scheduled to undergo unilateral total knee

arthroplasty, were recruited to participate in the present study. Subjects had no history of par-

ticipating in any stable isotope infusion studies prior to this experiment. Exclusion criteria

included secondary osteoarthritis of the knee, the use of intra-articular corticosteroid injec-

tions or bisphosphonates within 3 months prior to surgery, previous surgical intervention of

the knee, rheumatoid arthritis or other systemic inflammatory diseases, and collagen disorders

(e.g. Marfan and Ehlers-Danlos). All subjects were informed about the nature and possible

risks of the experimental procedures, before their written informed consent was obtained. The

study was approved by the Medical Ethical Committee of Zuyderland Medical Centre, Heer-

len, The Netherlands, and conformed to the principles outlined in the declaration of Helsinki

for use of human subjects and tissue.

Study design

The experimental protocol is outlined in Fig 1. Each subject was diagnosed with knee osteoar-

thritis and, therefore, underwent unilateral total knee arthroplasty at the Department of

Orthopedic Surgery at Maastricht University Medical Centre+, The Netherlands. Before and

during surgery patients were subjected to primed continuous intravenous infusions with L-
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[ring-13C6]-Phenylalanine. Four patients underwent general anesthesia and two patients

underwent spinal anesthesia. Blood and tissue samples were collected throughout the surgical

procedure to assess fractional muscle, tendon, ligament, bone, cartilage, menisci, fat, and syno-

vium protein synthesis rates (FSR; %/h).

Infusion protocol

All patients were fasted for at least 6 h prior to surgery. About 2.5 h before surgery a Teflon

catheter was inserted into an antecubital vein for stable isotope infusion. A second Teflon cath-

eter was inserted into a heated dorsal hand vein of the contralateral arm for perioperative

blood sampling. After taking a baseline blood sample at t = -150 min, the serum phenylalanine

pools were primed with a single dose of L-[ring-13C6]-Phenylalanine (2 μmol/kg), after which

continuous intravenous L-[ring-13C6]-Phenylalanine (0.05 μmol/kg/min) infusion was initi-

ated. Subsequently, blood samples were collected at t = -120, -90, -60, -30, 0 (start of the surgi-

cal procedure), 15, 30, 45, 60, 90, and 120 min (Fig 1).

To determine basal tissue protein synthesis rates, tissue samples of the vastus lateralis mus-

cle, patellar tendon, femur, tibia, cruciate ligaments, femoral cartilage, menisci, synovium, and

Hoffa’s fat pad were obtained throughout the surgical procedure. All tissue samples were col-

lected through surgical excision, except for the vastus lateralis muscle which was collected

from the middle region of the vastus lateralis, approximately 15 cm above the patella and 3 cm

below entry through the fascia, using the standard percutaneous needle biopsy technique [20].

Conventional muscle biopsy samples of the vastus lateralis were collected to assess skeletal

muscle protein synthesis rates as a reference to the synthesis rates of the various musculoskele-

tal tissues obtained during surgery. All tissue samples were obtained directly after opening the

joint and no tourniquet was used. For tissues that were visually affected by the disease process,

such as cartilage and bone, we ensured that only parts of the tissues were sampled which

appeared unaffected and healthy. Since vascularization and nutrient supply may differ substan-

tially between and within tissues [21–26], all tissues were sampled in such a way that the

obtained material was representative for the tissue. For bone tissues a mixture of cortical and

trabecular bone was sampled (except for the predominantly trabecular notch bone tissue), and

for the fibrous and intra-articular soft tissues complete cross sectional samples were obtained.

Hereafter, samples were freed from any visible blood, immediately frozen in liquid nitrogen,

and stored at -80˚C until subsequent analysis. In addition, blood samples were collected at fre-

quent intervals to determine L-[ring-13C6]-Phenylalanine enrichment in serum protein. Blood

samples were collected in serum tubes and centrifuged at 3500g for 15 min at 20˚C to obtain

serum. Aliquots of serum were frozen in liquid nitrogen and stored at -80˚C. For a schematic

representation of the infusion protocol, please see Fig 1.

Fig 1. Schematic representation of the infusion protocol. t = 0 min represents the start of the surgical procedure.

https://doi.org/10.1371/journal.pone.0224745.g001
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Serum analyses

Serum amino acid concentrations and enrichments were determined by gas chromatography-

mass spectrometry (GC-MS; Agilent 7890A GC/5975C; MSD, Little Falls, DE), as described in

detail previously [27]. To measure concentrations, internal standards were added to the sam-

ples. The serum was deproteinized on ice with dry 5-sulfosalicylic acid. Free amino acids were

purified using cation exchange AG 50W-X8 resin (mesh size: 100–200, ionic form: hydrogen

(Bio-Rad Laboratories, Hercules, CA, USA)) columns. The free amino acids were converted to

their tert-butyl dimethylsilyl (MTBSTFA) derivative before analysis by GC-MS. The amino

acid concentrations were determined using electron impact ionization by monitoring ions at

mass/charge (m/z) 336 and 346 for unlabelled phenylalanine and internal standards, respec-

tively. The serum phenylalanine 13C enrichments were determined using selective ion moni-

toring at m/z 336 and 342 for unlabelled and labelled phenylalanine, respectively. Standard

regression curves were applied from a series of known standard enrichment values against the

measured values to assess the linearity of the mass spectrometer and to account for any isotope

fractionation that may have occurred during the analysis.

Tissue analyses

As described in detail previously [27], all tissues were freeze-dried, weighed and crushed. Sub-

sequently, samples were homogenized in ice-cold 2% perchloric acid (PCA) using ultrasonic

disintegration (Soniprep; MSE, London, UK). Samples were incubated on ice for 10 min. Fol-

lowing centrifugation, the supernatant was collected for determination of L-[ring-13C6]-Phe-

nylalanine enrichments in the tissue free amino acid pool using GC-MS analysis. Therefore,

the supernatant was processed in the same manner as the serum samples. The tissue protein

pellets were washed three times with 1.5 mL of ice-cold 2% PCA and hydrolysed in 3 mL of 6

M HCl overnight at 120˚C. The free amino acids were then dissolved in 50% acetic acid solu-

tion and passed over cation exchange AG 50W-X8 resin (mesh size: 100–200, ionic form:

hydrogen (Bio-Rad Laboratories, Hercules, CA, USA)) columns. The amino acids were eluted

with 2 M NH4OH and dried under a continuous N2-stream for 48 h for measurement of L-

[ring-13C6]-Phenylalanine enrichment in tissue protein. To determine the L-[ring-13C6]-Phe-

nylalanine enrichment of tissue protein, the purified amino acids were derivatized into their N

(O,S)-ethoxycarbonyl ethyl ester derivatives with ethyl chloroformate (ECF). The derivatives

were then measured by GC-combustion-isotope ratio MS (GC-IRMS; MAT 253; Thermo-Sci-

entific, Bremen, Germany) using an Agilent J&W DB-17MS (60 m) GC-column (Agilent

Technologies, Santa Clara, CA, USA), and monitoring of ion masses 44, 45, and 46. Standard

regression curves were applied to assess the linearity of the mass spectrometer and to control

for the loss of tracer.

Amino acid concentrations

Quantification of amino acids in the different tissues was performed using ultra-performance

liquid chromatograph mass spectrometry (UPLC-MS; ACQUITY UPLC H-Class with QDa;

Waters, Saint-Quentin, France), as described in detail previously [27]. At least 5 mg of freeze-

dried tissue was hydrolysed in 3 mL of 6 M HCl for 12 h at 120˚C and dried under a continu-

ous N2-stream. 5 mL of 0.1 M HCl was used to reconstitute the hydrolysates after which 50 μL

of each protein hydrolysate was deproteinized using 100 μL of 10% SSA with 50 μM of

MSK-A2 internal standard (Cambridge Isotope Laboratories, Massachusetts, USA). Subse-

quently, 50 μL of ultra-pure demineralized water was added and samples were centrifuged.

After centrifugation, 10 μL of supernatant was added to 70 μL of Borate reaction buffer

(Waters, Saint-Quentin, France). In addition, 20 μL of AccQ-Tag derivatizing reagent solution
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(Waters, Saint-Quentin, France) was added after which the solution was heated to 55˚C for 10

min. Of this 100 μL derivative 1 μL was injected and measured using UPLC-MS.

Protein identification

As described in detail previously [27], tissue samples were homogenized in 50 mM ammonium

bicarbonate and 5 M urea buffer, freeze-dried in three cycles, vortexed for 1 min and centri-

fuged at 20000g for 30 min at 10˚C. The supernatant was collected and stored at -80˚C until

further analysis. Protein concentrations were determined with the Protein Assay Kit (Bio-Rad,

Veenendaal, the Netherlands). Subsequently, a total of 75 μg protein in 50 μL 50 mM ammo-

nium bicarbonate with 5 M urea was used for further analysis. 5 μL of DTT solution (20 mM

final) was added and incubated at room temperature for 45 min. Proteins were alkylated by

adding 6 μL of IAA solution (40 mM final) and incubated at room temperature for 45 min in

darkness. Alkylation was stopped by adding 10 μL DTT solution (to consume any unreacted

IAA) and incubation at room temperature for 45 min. Subsequently, 3 μg trypsin/lysC was

added to the protein and incubated at 37˚C for 2 h. 200 μL of 50 mM ammonium bicarbonate

was added to dilute the urea concentration and the solution was further incubated at 37˚C for

18 h. The digestion mixture was centrifuged at 2500g for 5 min and the supernatant was col-

lected. The digestion mixture was fourfold diluted for the use of LC-MS/MS analysis. LC-MS/

MS was performed using a nanoflow HPLC instrument (Dionex ultimate 3000) coupled on-

line to a Q Exactive (Thermo Scientific) with a nano-electrospray Flex ion source (Proxeon).

The digest/peptide mixture was loaded onto a C18-reversed phase column (Thermo Scientific

Acclaim PepMap C18 column, 75-μm inner diameter x 15 cm, 2-μm particle size). Peptides

were separated with a 90 min linear gradient of 4–45% buffer (80% acetonitrile and 0.08% for-

mic acid) at a flow rate of 300 nL/min. Proteins were identified using Proteome Discoverer

v2.1 Sequest HT search engine (Thermo Scientific). The false discovery rate (FDR) was set to

0.01 for proteins and peptides.

Calculations

Tissue protein FSRs were calculated using the standard precursor-product equation:

FSR %=hð Þ ¼
Ep2 � Ep1

Eprecursor � t
� 100%

Ep2 and Ep1 are the protein-bound enrichments measured in the tissue samples collected dur-

ing surgery and serum protein at t = -150 min (before the start of the tracer infusion), respec-

tively (Fig 1) [28]. Eprecursor is the average serum free L-[ring-13C6]-Phenylalanine or tissue free

L-[ring-13C6]-Phenylalanine enrichments and t indicates the tracer incorporation time (mea-

sured from the start of the tracer infusion until excision of each specific tissue sample).

Statistics

All data are expressed as means±SEM. Paired t tests were used to compare intracellular free

and tissue protein bound L-[ring-13C6]-Phenylalanine enrichments between vastus lateralis
muscle (as the reference tissue) and each of the different musculoskeletal tissues. Likewise,

fractional synthesis rate of each of the different musculoskeletal tissues was compared with vas-
tus lateralis muscle tissue fractional synthesis rates using paired t tests. For these comparisons,

the 95% confidence interval (95% CI) of the difference, and the effect size (Cohen’s d) were cal-

culated. No statistical analyses were performed between the different musculoskeletal tissues.

Missing data was accounted for using pairwise deletion. Due to the exploratory nature of the
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experiment, multiplicity adjustments were not performed. For all analyses, significance was set

at P<0.05. All calculations were performed using SPSS (version 23.0, IBM Corp., Armonk,

NY, USA).

Results

Serum enrichments

As shown in Fig 2, serum L-[ring-13C6]-Phenylalanine enrichments did not change signifi-

cantly throughout the infusion period, despite the surgical setting of the experiment. Through-

out the surgical procedure, serum L-[ring-13C6]-Phenylalanine enrichments averaged 6.53

±0.20 MPE.

Tissue free and protein bound enrichments

Tissue free L-[ring-13C6]-Phenylalanine enrichments in skeletal muscle tissue averaged 4.74

±0.39 MPE. The majority of musculoskeletal tissues did not significantly differ in their tissue

free L-[ring-13C6]-Phenylalanine enrichments when compared to skeletal muscle tissue, except

for femoral bone, tibial bone, and Hoffa’s fat pad which all possessed lower tissue free L-

[ring-13C6]-Phenylalanine enrichments (4.14±0.39, 4.19±0.35, and 4.32±0.41 MPE, respec-

tively; P< 0.05; Table 1).

Protein bound L-[ring-13C6]-Phenylalanine enrichments in skeletal muscle tissue averaged

0.010±0.002 MPE. The highest enrichment levels were found in synovium and Hoffa’s fat pad

(0.029±0.008 and 0.023±0.007 MPE, respectively), whereas the lowest L-[ring-13C6]-Phenylala-

nine enrichments were observed in patellar bone (0.005±0.002 MPE). The various musculo-

skeletal tissues did not significantly differ in their observed L-[ring-13C6]-Phenylalanine

Fig 2. Serum L-[ring-13C6]-Phenylalanine enrichments. Serum L-[ring-13C6]-Phenylalanine enrichments are

expressed as mole percent excess (MPE). t = 0 min represents the start of the surgical procedure. Values represent

means+SEM. Serum L-[ring-13C6]-Phenylalanine enrichments did not change significantly throughout the

experiments.

https://doi.org/10.1371/journal.pone.0224745.g002
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enrichments when compared to skeletal muscle, except for intercondylar notch bone tissue

(i.e. the deep groove or notch between the two femoral condyles) that did have a lower L-

[ring-13C6]-Phenylalanine enrichment level (0.010±0.002 vs 0.008±0.001, respectively; P<0.01;

Table 1).

Tissue protein synthesis rates

Tissue-specific protein synthesis rates, using serum L-[ring-13C6]-Phenylalanine enrichments

as the precursor pool, are shown in Figs 3 and 4. In line with previous data, basal protein syn-

thesis rates averaged 0.04±0.01%/h in skeletal muscle tissue. Synovium protein synthesis rates

were significantly higher when compared to skeletal muscle protein synthesis rates (0.13

±0.03%/h; P<0.05), whereas intercondylar notch bone tissue protein synthesis rates were sig-

nificantly lower when compared to muscle tissue protein synthesis rates (0.03±0.01%/h;

P<0.01). Fractional synthesis rates of other musculoskeletal tissues varied between 0.02 and

0.11%/h and did not significantly differ from skeletal muscle tissue. Please see Table 2 for the

mean±SD of the difference, 95% CI of the difference, effect size (Cohen’s d), and P-value for

the comparison of each musculoskeletal tissue with vastus lateralis muscle tissue protein syn-

thesis rates. Similar tissue-specific protein synthesis rates were observed when using tissue free

precursor enrichments, though significant differences were no longer present (S1 Fig).

Tissue protein content and amino acid composition

Tissue protein contents ranged between 16 and 98% of the raw (dry) material (S1 Table). Pro-

tein contents of skeletal muscle averaged 74% and were higher when compared to the various

bone tissue samples, which ranged between 16 and 31% of dry tissue weight. Compared to

skeletal muscle tissue, protein contents of tendon, ligaments, cartilage, and menisci were

higher and ranged between 79 and 98% of dry tissue weight. Protein content of synovium and

Table 1. Protein bound and tissue free L-[ring-13C6]-Phenylalanine enrichments.

Tissue L-[ring-13C6]-Phenylalanine enrichment (MPE)

Protein bound Tissue free

Vastus lateralis 0.010±0.002 4.74±0.39

Patellar bone 0.005±0.002 4.55±0.38

Femoral bone 0.006±0.002 4.14±0.39�

Tibial bone 0.006±0.002 4.19±0.35�

Notch 0.008±0.001� 4.72±0.47

Trochlea 0.007±0.002 4.59±0.48

Cartilage 0.009±0.002 4.86±0.35

Medial meniscus 0.009±0.002 5.19±0.31

Lateral meniscus 0.009±0.002 5.00±0.36

Patellar tendon 0.013±0.003 4.46±0.38

Anterior cruciate ligament 0.015±0.004 5.13±0.51

Posterior cruciate ligament 0.008±0.002 5.03±0.61

Hoffa’s fat pad 0.023±0.007 4.32±0.41�

Synovium 0.029±0.008 5.21±0.66

Values represent means±SEM. The number of pairs included in each comparison for both protein bound and tissue

free L-[ring-13C6]-Phenylalanine enrichments is n = 6, except for tibial bone, trochlea, notch, and patellar bone tissue

(all n = 5).

� significantly different from vastus lateralis muscle, P<0.01.

https://doi.org/10.1371/journal.pone.0224745.t001
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Hoffa’s fat pad were lower compared to skeletal muscle tissue protein content (23±7 and

29±19% of dry tissue weight, respectively).

Essential amino acid contents of all musculoskeletal tissues ranged between 15 and 25% of

total amino acid content and were considerably lower when compared to skeletal muscle tissue

(43% of total amino acids). Non-essential amino acid contents of the different musculoskeletal

tissues ranged between 75 and 85% of total amino acids, were substantially higher compared to

skeletal muscle (57% of total amino acids), and were mainly attributed to the high alanine, gly-

cine, and proline contents (S1 Table). Amino acid profiles of tendon, cartilage, and bone differed

substantially from skeletal muscle, with glycine contents as high as 42% of total amino acid con-

tent in patellar tendon, 39% in cartilage, and 40% in femoral bone tissue and as low as 9% in

skeletal muscle tissue. In addition, proline contents appeared to be higher in all musculoskeletal

tissues as well, with 14% of total amino acid content in patellar tendon and cartilage, 13.5% in

femoral bone tissue, and 6% in skeletal muscle tissue. An overview of amino acid profile and

amino acid composition, i.e. essential vs non-essential amino acid ratios, is provided in Fig 5.

Protein identification

Supplemental S2 Table provides a list of all identified proteins and their corresponding esti-

mated abundances. In total 1374 different proteins have been identified in the different muscu-

loskeletal tissues of one subject (n = 1).

Discussion

The current study provides insight into tissue protein metabolism of a wide variety of muscu-

loskeletal tissues in vivo in humans. Using stable isotope methodology, we showed that average

Fig 3. Anatomical illustration of musculoskeletal tissues and corresponding tissue protein synthesis rates. Tissue protein

synthesis rates (FSR) based on incorporation of L-[ring-13C6]-Phenylalanine in human musculoskeletal tissue protein with serum L-

[ring-13C6]-Phenylalanine enrichments used as precursor pool. Values represent means±SEM.

https://doi.org/10.1371/journal.pone.0224745.g003
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Fig 4. Musculoskeletal tissue protein synthesis rates. Fractional tissue protein synthesis rates (FSR) based on incorporation of L-

[ring-13C6]-Phenylalanine in human musculoskeletal tissue protein with serum L-[ring-13C6]-Phenylalanine enrichments used as

precursor pool. Values represent means+SEM. The number of pairs included in each comparison for both protein bound and tissue

free L-[ring-13C6]-Phenylalanine enrichments is n = 6, except for tibial bone, trochlea, notch, and patellar bone tissue (all n = 5). The

right-hand section x-axis represents averaged individual fractional synthesis rates per tissue class. � Significantly different from

vastus lateralis muscle, P<0.05.

https://doi.org/10.1371/journal.pone.0224745.g004

Table 2. Musculoskeletal tissue protein synthesis rates compared to vastus lateralis protein synthesis rates.

Tissue Mean±SD of the difference with vastus lateralis muscle (%/h) 95% CI of the difference (%/h) Effect size (Cohen’s d) P-value

Patellar bone -0.02±0.02 -0.05–0.00 -1.07 0.08

Femoral bone -0.02±0.03 -0.04–0.01 -0.67 0.16

Tibial bone -0.02±0.03 -0.06–0.02 -0.62 0.24

Notch -0.02±0.01 -0.03 –-0.01 -2.47 0.01

Trochlea -0.02±0.02 -0.05–0.01 -0.83 0.14

Cartilage -0.01±0.03 -0.03–0.02 -0.22 0.61

Medial meniscus -0.01±0.03 -0.03–0.02 -0.26 0.56

Lateral meniscus -0.01±0.03 -0.03–0.02 -0.25 0.57

Patellar tendon 0.02±0.03 -0.02–0.05 0.55 0.24

Anterior cruciate ligament 0.03±0.05 -0.03–0.08 0.54 0.24

Posterior cruciate ligament -0.01±0.02 -0.03–0.01 -0.35 0.43

Hoffa’s fat pad 0.06±0.08 -0.02–0.14 0.80 0.11

Synovium 0.09±0.08 0.00–0.17 1.05 0.05

Values represent means±SEM. The number of pairs included in each comparison is n = 6, except for tibial bone, trochlea, notch, and patellar bone tissue (all n = 5).

https://doi.org/10.1371/journal.pone.0224745.t002
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Fig 5. Amino acid content of muscle, tendon, cartilage, and bone tissue. Amino acid content is presented in % of total

AA content. Note: Tryptophan, Asparagine, and Glutamine were not measured. SEAA, sum of all essential amino acids;

SNEAA, sum of all non-essential amino acids.

https://doi.org/10.1371/journal.pone.0224745.g005
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basal protein synthesis rates of various musculoskeletal tissues are within the same range of

skeletal muscle protein synthesis rates, with fractional muscle, tendon, bone, cartilage, liga-

ment, menisci, fat, and synovium protein synthesis rates ranging between 0.02 and 0.13% per

hour in vivo in humans.

Skeletal muscle protein synthesis rates observed in the present study averaged 0.04±0.01%/

h (Fig 3). These rates are similar to muscle protein synthesis rates assessed previously in an

overnight fasted state in a wide variety of subjects studied in our lab [1, 29–34] as well as in

many other laboratories [3, 35–37]. With protein synthesis rates ranging between 1–2% per 24

h, skeletal muscle tissue shows extensive remodeling within a matter of weeks to months [3].

These protein synthesis rates allow skeletal muscle tissue to adapt to changes in habitual use,

with muscle hypertrophy following increased levels of physical activity [38–40] or muscle atro-

phy developing during periods of reduced physical activity or disuse [41–43]. Though a certain

level of plasticity has been well established for skeletal muscle tissue, there is less data on in
vivo tissue protein synthesis rates of most other musculoskeletal tissues in humans.

Tendon and ligaments play an important role in the force-transmitting function of the

musculoskeletal system [18, 44]. Tendon protein synthesis rates in this study averaged

0.06±0.01%/h (Fig 3), which is in line with previous literature describing patellar tendon pro-

tein synthesis rates ranging between 0.01 and 0.07%/h [4–13, 15]. These data suggest that ten-

don tissue possesses similar protein synthesis characteristics as skeletal muscle tissue and may,

therefore, also express some level of plasticity to external stimuli. In agreement, exercise has

been reported to increase tendon protein synthesis rates [9, 13]. In addition to tendon tissue,

total knee arthroplasty provided us with the unique opportunity to sample both anterior

and posterior cruciate ligaments. With fractional synthetic rates averaging 0.07±0.02 and

0.04±0.01%/h for the anterior and posterior cruciate ligaments, respectively, we observed that

both cruciate ligaments turn over at similar rates compared to skeletal muscle tissue (Fig 3).

Interestingly, protein synthesis rates of patellar tendon tissue appeared to be similar to anterior

cruciate ligament protein synthesis rates. Though not statistically tested, from a clinical per-

spective this may be relevant since patellar tendon tissue is often used in the surgical recon-

struction of anterior cruciate ligament injuries [45]. In addition, protein synthesis rates of the

anterior cruciate ligament tended to be higher compared to the posterior cruciate ligament

(Fig 4). Whether this difference in protein synthesis rates between cruciate ligaments is reflec-

tive of differences in incidence of injuries [46] or the tissue’s capacity to repair, remains to be

established.

Bone tissue quality is determined by multiple mechanical properties such as elasticity, resis-

tance to bending, and toughness on impact [47, 48]. Though bone tissue has always been con-

sidered to possess limited remodeling capacity, few studies have actually investigated this.

Previous studies have provided semi-quantitative estimates on adult bone remodeling of

3–25% per year [49], and on bone calcium turnover of ~8–15% per year [50, 51]. Here, we

assessed bone tissue protein synthesis rates directly by measuring the incorporation of infused

L-[ring-13C6]-Phenylalanine in the bone tissue protein pool of a variety of bone tissue samples.

Bone tissue protein synthesis rates ranged between 0.02 and 0.03%/h (Fig 3). These data

indicate that bone tissue may possess a much greater remodeling capacity than previously

assumed. Though in this study most of the bone tissue samples showed protein synthesis rates

similar to skeletal muscle tissue, much higher bone collagen synthesis rates (0.06±0.01%/h)

have been observed previously by Babraj et al. using stable isotope methodology [52]. This dis-

crepancy in synthesis rates may be caused by the type of protein studied. Babraj et al. [52] have

measured bone collagen synthesis rates, whereas we have assessed mixed bone tissue protein

synthesis rates. Obviously, protein synthetic rates may differ substantially between different

proteins and protein fractions.
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To our knowledge, no previous study has applied stable isotope methodology to assess frac-

tional protein synthesis rates of cartilage and menisci in vivo in humans. These structures have

always been suggested to turn over slowly. Especially human cartilage has been considered an

essentially permanent structure with little to no ability to remodel after a certain age [53]. Our

data, however, show that cartilage tissue protein synthesis rates average 0.04±0.01%/h. In

addition, we observed that both medial and lateral menisci have a protein synthesis rate of

0.04±0.01 and 0.04±0.01%/h, respectively as well (Fig 3). Since cartilage tissue is avascular [25]

and menisci tissue’s vascularization differs substantially within the tissue [21], tissue-specific

protein synthesis rates were also calculated based on tissue free L-[ring-13C6]-Phenylalanine

enrichments. However, a similar pattern of tissue-specific protein synthesis rates was observed

when using tissue free precursor enrichments.

Our assessment of musculoskeletal tissue protein synthesis rates represents the integrated

synthesis rates of all available proteins in the musculoskeletal tissues that were sampled. How-

ever, different proteins or protein fractions within a tissue likely possess different turnover

rates. Indeed, others have shown that protein turnover of the collagen matrix of human articu-

lar cartilage is negligible whereas turnover rates of the cartilage glycosaminoglycan matrix are

substantially higher [53]. Hence, it seems that differences between proteins and protein frac-

tions within different musculoskeletal tissues may be important in interpreting these data. To

obtain more insight into the contribution of individual proteins and/or protein fractions to the

mixed tissue protein synthesis rates we report here, we additionally applied liquid chromatog-

raphy/mass spectrometry (LC-MS/MS) in all tissue samples of a single subject to identify the

proteins present and their (semi-quantitative) abundance in the tissues. Supplementary S2

Table provides a list of 1374 identified proteins and their estimated abundances in each of the

musculoskeletal tissues. Though such data provide more in-depth insight, they do not show

which proteins or protein fractions are synthesized more or less rapidly. The combination of

contemporary stable isotope methodology and proteomics analyses methods do not yet allow

us to detect fractional protein synthesis rates at the level of individual proteins in tissues in
vivo in humans. Limitations are present in the ability to identify all proteins present, their (rel-

ative) abundances in the tissues, as well as their degree of label enrichments.

To obtain some insight into the differences in amino acid composition between the

different tissues, we applied ultra-performance liquid chromatography mass spectrometry

(UPLC-MS) to assess tissue-specific amino acid composition of all musculoskeletal tissues

(S1 Table). Fig 5 presents a selection of 4 different musculoskeletal tissues and their amino

acid composition. Essential amino acid contents of patellar tendon, cartilage, and femoral

bone are much lower when compared to skeletal muscle tissue, whereas the amino acids gly-

cine and proline are substantially more abundant in patellar tendon, cartilage, and femoral

bone when compared to skeletal muscle tissue. Proline and glycine are both amino acids

known to be important in musculoskeletal collagen metabolism [54–56]. Future research

should evaluate the impact of such differences in amino acid content on basal and, more

importantly, post-prandial tissue protein synthesis rates under various conditions.

Apart from musculoskeletal tissues that allow for adequate movement and power transfer,

the human knee joint also contains metabolically active intra-articular soft tissues such as Hof-

fa’s fat pad and synovium. Hoffa’s fat pad is known to share morphological similarities with

subcutaneous fat [57], possess an abundant peripheral anastomotic blood supply [58], and has

been suggested to play a modulatory role in the inflammatory pathways in osteoarthritis [59].

Synovium tissue lines the inner surface of the knee joint and primarily produces synovial fluid

to lubricate the joint. However, it is also known to become inflamed in patients with different

stages of knee osteoarthritis [60]. In the present study Hoffa’s fat pad and synovium tissue pro-

tein synthesis rates averaged 0.11±0.03 and 0.13±0.03%/h, respectively (Fig 3), which are
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substantially higher when compared to skeletal muscle tissue protein synthesis rates (Fig 4).

These higher tissue protein synthesis rates of Hoffa’s fat pad and synovium tissue might be

reflective of the metabolic active nature of these tissues or their suggested role in disease

dependent pathways. For all tissues we ensured that only visually unaffected parts of the tissue

were sampled, thereby ensuring that we were sampling only healthy tissue. However, the

potential influence of disease dependent processes on our measurement of tissue protein syn-

thesis rates in Hoffa’s fat pad and synovium should not be ignored. Nevertheless, these obser-

vations for the first time show tissue protein synthesis rates of intra-articular soft tissues when

compared to other musculoskeletal tissues in vivo in humans.

From a research perspective, the present study provides interesting data on protein metabo-

lism of a wide variety of musculoskeletal tissues of the human knee. Whereas protein synthesis

rates have been assessed in some of the referred tissues, no study has directly assessed in vivo
protein synthesis rates of all of these musculoskeletal tissues in a single study in humans.

Knowledge of basal musculoskeletal tissue protein synthesis rates enables us to further explore

the capacity of these tissues to regenerate. Skeletal muscle plasticity is well appreciated since

muscle tissue has shown to be highly responsive to both anabolic and catabolic stimuli. To

assess whether other musculoskeletal tissues are capable of displaying some degree of plasticity,

more work is required to address the impact of various factors on tissue protein synthesis

rates. It has previously been observed that gelatin supplementation can stimulate collagen syn-

thesis following exercise [55], and collagen hydrolysate supplementation has been reported to

increase collagen content in the knee of osteoarthritis patients [61], and may decrease knee

pain in athletes with activity-related joint pain [62]. From a clinical perspective this is more

than interesting, because identifying which specific proteins or protein fractions are responsive

to external stimuli may enable us to develop more effective therapies in treating and/or pre-

venting injuries.

In conclusion, basal fractional muscle, tendon, bone, cartilage, ligament and menisci pro-

tein synthesis rates range between 0.02 and 0.13% per hour in vivo in humans. Fractional tissue

protein synthesis rates of tendon, bone, cartilage, ligament and menisci do not differ substan-

tially from muscle tissue protein synthesis rates, suggesting that these musculoskeletal tissues

may express a greater level of tissue plasticity than generally believed.

Supporting information

S1 Fig. Musculoskeletal tissue protein synthesis rates. Fractional tissue protein synthesis

rates (FSR) based on incorporation of L-[ring-13C6]-Phenylalanine in human musculoskeletal

tissue protein with tissue free L-[ring-13C6]-Phenylalanine enrichments used as precursor

pool. Values represent means+SEM. The number of pairs included in each comparison for

both protein bound and tissue free L-[ring-13C6]-Phenylalanine enrichments is n = 6, except

for tibial bone, trochlea, notch, and patellar bone tissue (all n = 5). � Significantly different

from vastus lateralis muscle, P<0.05.

(TIF)

S1 Table. Protein and amino acid content of various musculoskeletal tissues. Protein con-

tent is presented in % of raw material based on the determined nitrogen content multiplied by

6.25 as the standard conversion factor. Amino acid content is presented in % of total AA con-

tent. Note: Tryptophan, Asparagine, and Glutamine were not measured. SEAA, sum of all

essential amino acids; SNEAA, sum of all non-essential amino acids. URL: https://osf.io/

z7bgk/?view_only=9400d38f9c0749599a64cbf4e5682f91.

(DOCX)
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S2 Table. Protein identification. Protein identification and semi-quantitative analyses of rela-

tive abundances were performed by LC-MS/MS. URL: https://osf.io/z7bgk/?view_only=

9400d38f9c0749599a64cbf4e5682f91.

(XLSX)

Acknowledgments

The authors greatly acknowledge the enthusiasm and dedication of the participants in this

study.

Author Contributions

Conceptualization: Joey S. J. Smeets, Astrid M. H. Horstman, Luc J. C. van Loon.

Data curation: Joey S. J. Smeets, Luc J. C. van Loon.

Formal analysis: Joey S. J. Smeets, Astrid M. H. Horstman, Joy P. B. Goessens, Annemie P.

Gijsen, Janneau M. X. van Kranenburg.

Investigation: Joey S. J. Smeets, Astrid M. H. Horstman, Georges F. Vles, Pieter J. Emans, Luc

J. C. van Loon.

Methodology: Joey S. J. Smeets, Astrid M. H. Horstman, Joy P. B. Goessens, Annemie P. Gij-

sen, Janneau M. X. van Kranenburg, Luc J. C. van Loon.

Project administration: Joey S. J. Smeets.

Resources: Joey S. J. Smeets, Astrid M. H. Horstman, Georges F. Vles, Pieter J. Emans.

Software: Joey S. J. Smeets, Joy P. B. Goessens, Annemie P. Gijsen, Janneau M. X. van

Kranenburg.

Supervision: Astrid M. H. Horstman, Luc J. C. van Loon.

Validation: Joey S. J. Smeets, Joy P. B. Goessens, Annemie P. Gijsen, Luc J. C. van Loon.

Visualization: Joey S. J. Smeets, Luc J. C. van Loon.

Writing – original draft: Joey S. J. Smeets.

Writing – review & editing: Joey S. J. Smeets, Astrid M. H. Horstman, Georges F. Vles, Pieter

J. Emans, Joy P. B. Goessens, Annemie P. Gijsen, Janneau M. X. van Kranenburg, Luc J. C.

van Loon.

References
1. Burd NA, Groen BB, Beelen M, Senden JM, Gijsen AP, van Loon LJ. The reliability of using the single-

biopsy approach to assess basal muscle protein synthesis rates in vivo in humans. Metabolism. 2012;

61(7):931–6. https://doi.org/10.1016/j.metabol.2011.11.004 PMID: 22209666.

2. Rennie MJ, Smith K, Watt PW. Measurement of human tissue protein synthesis: an optimal approach.

Am J Physiol. 1994; 266(3 Pt 1):E298–307. https://doi.org/10.1152/ajpendo.1994.266.3.E298 PMID:

8166250.

3. Waterlow JC. Protein turnover. Oxfordshire: CABI; 2006.

4. Babraj JA, Cuthbertson DJ, Smith K, Langberg H, Miller B, Krogsgaard MR, et al. Collagen synthesis in

human musculoskeletal tissues and skin. Am J Physiol Endocrinol Metab. 2005; 289(5):E864–9.

https://doi.org/10.1152/ajpendo.00243.2005 PMID: 15972270.

5. Dideriksen K, Sindby AK, Krogsgaard M, Schjerling P, Holm L, Langberg H. Effect of acute exercise on

patella tendon protein synthesis and gene expression. Springerplus. 2013; 2(1):109. https://doi.org/10.

1186/2193-1801-2-109 PMID: 23586004.

Protein synthesis of musculoskeletal tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0224745 November 7, 2019 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224745.s003
https://osf.io/z7bgk/?view_only=9400d38f9c0749599a64cbf4e5682f91
https://osf.io/z7bgk/?view_only=9400d38f9c0749599a64cbf4e5682f91
https://doi.org/10.1016/j.metabol.2011.11.004
http://www.ncbi.nlm.nih.gov/pubmed/22209666
https://doi.org/10.1152/ajpendo.1994.266.3.E298
http://www.ncbi.nlm.nih.gov/pubmed/8166250
https://doi.org/10.1152/ajpendo.00243.2005
http://www.ncbi.nlm.nih.gov/pubmed/15972270
https://doi.org/10.1186/2193-1801-2-109
https://doi.org/10.1186/2193-1801-2-109
http://www.ncbi.nlm.nih.gov/pubmed/23586004
https://doi.org/10.1371/journal.pone.0224745


6. Hansen M, Boesen A, Holm L, Flyvbjerg A, Langberg H, Kjaer M. Local administration of insulin-like

growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand J Med Sci Sports. 2013;

23(5):614–9. https://doi.org/10.1111/j.1600-0838.2011.01431.x PMID: 22288768.

7. Hansen M, Miller BF, Holm L, Doessing S, Petersen SG, Skovgaard D, et al. Effect of administration of

oral contraceptives in vivo on collagen synthesis in tendon and muscle connective tissue in young

women. J Appl Physiol (1985). 2009; 106(4):1435–43. https://doi.org/10.1152/japplphysiol.90933.2008

PMID: 18845777.

8. Miller BF, Hansen M, Olesen JL, Schwarz P, Babraj JA, Smith K, et al. Tendon collagen synthesis at

rest and after exercise in women. J Appl Physiol (1985). 2007; 102(2):541–6. https://doi.org/10.1152/

japplphysiol.00797.2006 PMID: 16990502.

9. Miller BF, Olesen JL, Hansen M, Dossing S, Crameri RM, Welling RJ, et al. Coordinated collagen and

muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol.

2005; 567(Pt 3):1021–33. https://doi.org/10.1113/jphysiol.2005.093690 PMID: 16002437.

10. Nielsen RH, Doessing S, Goto K, Holm L, Reitelseder S, Agergaard J, et al. GH receptor blocker admin-

istration and muscle-tendon collagen synthesis in humans. Growth Horm IGF Res. 2011; 21(3):140–5.

https://doi.org/10.1016/j.ghir.2011.03.006 PMID: 21498100.

11. Nielsen RH, Holm L, Jensen JK, Heinemeier KM, Remvig L, Kjaer M. Tendon protein synthesis rate in

classic Ehlers-Danlos patients can be stimulated with insulin-like growth factor-I. J Appl Physiol (1985).

2014; 117(7):694–8. https://doi.org/10.1152/japplphysiol.00157.2014 PMID: 25103963.

12. Nielsen RH, Holm L, Malmgaard-Clausen NM, Reitelseder S, Heinemeier KM, Kjaer M. Increase in ten-

don protein synthesis in response to insulin-like growth factor-I is preserved in elderly men. J Appl Phy-

siol (1985). 2014; 116(1):42–6. https://doi.org/10.1152/japplphysiol.01084.2013 PMID: 24265284.

13. Petersen SG, Miller BF, Hansen M, Kjaer M, Holm L. Exercise and NSAIDs: effect on muscle protein

synthesis in patients with knee osteoarthritis. Med Sci Sports Exerc. 2011; 43(3):425–31. https://doi.

org/10.1249/MSS.0b013e3181f27375 PMID: 20689451.

14. Dideriksen K, Boesen AP, Reitelseder S, Couppe C, Svensson R, Schjerling P, et al. Tendon collagen

synthesis declines with immobilization in elderly humans: no effect of anti-inflammatory medication. J

Appl Physiol (1985). 2017; 122(2):273–82. https://doi.org/10.1152/japplphysiol.00809.2015 PMID:

27932679.

15. Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, Rennie M, et al. Growth hormone stimu-

lates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein

synthesis. J Physiol. 2010; 588(Pt 2):341–51. https://doi.org/10.1113/jphysiol.2009.179325 PMID:

19933753.

16. Magnusson SP, Heinemeier KM, Kjaer M. Collagen Homeostasis and Metabolism. Adv Exp Med Biol.

2016; 920:11–25. Epub 2016/08/19. https://doi.org/10.1007/978-3-319-33943-6_2 PMID: 27535245.

17. Baar K. Minimizing Injury and Maximizing Return to Play: Lessons from Engineered Ligaments. Sports

Med. 2017; 47(Suppl 1):5–11. Epub 2017/03/24. https://doi.org/10.1007/s40279-017-0719-x PMID:

28332110.

18. Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical

loading. Physiol Rev. 2004; 84(2):649–98. https://doi.org/10.1152/physrev.00031.2003 PMID:

15044685.

19. Kjaer M, Langberg H, Heinemeier K, Bayer ML, Hansen M, Holm L, et al. From mechanical loading to

collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports. 2009;

19(4):500–10. https://doi.org/10.1111/j.1600-0838.2009.00986.x PMID: 19706001.

20. Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research.

Scand J Clin Lab Invest. 1975; 35(7):609–16. PMID: 1108172.

21. Bryceland JK, Powell AJ, Nunn T. Knee Menisci. Cartilage. 2017; 8(2):99–104. Epub 2017/03/28.

https://doi.org/10.1177/1947603516654945 PMID: 28345407.

22. Marenzana M, Arnett TR. The Key Role of the Blood Supply to Bone. Bone Res. 2013; 1(3):203–15.

Epub 2013/09/01. https://doi.org/10.4248/BR201303001 PMID: 26273504.

23. Nemschak G, Pretterklieber ML. The Patellar Arterial Supply via the Infrapatellar Fat Pad (of Hoffa): A

Combined Anatomical and Angiographical Analysis. Anat Res Int. 2012; 2012:713838. Epub 2012/06/

22. https://doi.org/10.1155/2012/713838 PMID: 22720162.

24. Smith MD. The normal synovium. Open Rheumatol J. 2011; 5:100–6. Epub 2012/01/27. https://doi.org/

10.2174/1874312901105010100 PMID: 22279508.

25. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and

function. Sports Health. 2009; 1(6):461–8. Epub 2009/11/01. https://doi.org/10.1177/

1941738109350438 PMID: 23015907.

Protein synthesis of musculoskeletal tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0224745 November 7, 2019 15 / 17

https://doi.org/10.1111/j.1600-0838.2011.01431.x
http://www.ncbi.nlm.nih.gov/pubmed/22288768
https://doi.org/10.1152/japplphysiol.90933.2008
http://www.ncbi.nlm.nih.gov/pubmed/18845777
https://doi.org/10.1152/japplphysiol.00797.2006
https://doi.org/10.1152/japplphysiol.00797.2006
http://www.ncbi.nlm.nih.gov/pubmed/16990502
https://doi.org/10.1113/jphysiol.2005.093690
http://www.ncbi.nlm.nih.gov/pubmed/16002437
https://doi.org/10.1016/j.ghir.2011.03.006
http://www.ncbi.nlm.nih.gov/pubmed/21498100
https://doi.org/10.1152/japplphysiol.00157.2014
http://www.ncbi.nlm.nih.gov/pubmed/25103963
https://doi.org/10.1152/japplphysiol.01084.2013
http://www.ncbi.nlm.nih.gov/pubmed/24265284
https://doi.org/10.1249/MSS.0b013e3181f27375
https://doi.org/10.1249/MSS.0b013e3181f27375
http://www.ncbi.nlm.nih.gov/pubmed/20689451
https://doi.org/10.1152/japplphysiol.00809.2015
http://www.ncbi.nlm.nih.gov/pubmed/27932679
https://doi.org/10.1113/jphysiol.2009.179325
http://www.ncbi.nlm.nih.gov/pubmed/19933753
https://doi.org/10.1007/978-3-319-33943-6_2
http://www.ncbi.nlm.nih.gov/pubmed/27535245
https://doi.org/10.1007/s40279-017-0719-x
http://www.ncbi.nlm.nih.gov/pubmed/28332110
https://doi.org/10.1152/physrev.00031.2003
http://www.ncbi.nlm.nih.gov/pubmed/15044685
https://doi.org/10.1111/j.1600-0838.2009.00986.x
http://www.ncbi.nlm.nih.gov/pubmed/19706001
http://www.ncbi.nlm.nih.gov/pubmed/1108172
https://doi.org/10.1177/1947603516654945
http://www.ncbi.nlm.nih.gov/pubmed/28345407
https://doi.org/10.4248/BR201303001
http://www.ncbi.nlm.nih.gov/pubmed/26273504
https://doi.org/10.1155/2012/713838
http://www.ncbi.nlm.nih.gov/pubmed/22720162
https://doi.org/10.2174/1874312901105010100
https://doi.org/10.2174/1874312901105010100
http://www.ncbi.nlm.nih.gov/pubmed/22279508
https://doi.org/10.1177/1941738109350438
https://doi.org/10.1177/1941738109350438
http://www.ncbi.nlm.nih.gov/pubmed/23015907
https://doi.org/10.1371/journal.pone.0224745


26. Travascio F, Jackson AR. The nutrition of the human meniscus: A computational analysis investigating

the effect of vascular recession on tissue homeostasis. J Biomech. 2017; 61:151–9. Epub 2017/08/06.

https://doi.org/10.1016/j.jbiomech.2017.07.019 PMID: 28778387.

27. Smeets JSJ, Horstman AMH, Schijns O, Dings JTA, Hoogland G, Gijsen AP, et al. Brain tissue plastic-

ity: protein synthesis rates of the human brain. Brain. 2018; 141(4):1122–9. Epub 2018/02/13. https://

doi.org/10.1093/brain/awy015 PMID: 29432531.

28. Burd NA, West DW, Rerecich T, Prior T, Baker SK, Phillips SM. Validation of a single biopsy approach

and bolus protein feeding to determine myofibrillar protein synthesis in stable isotope tracer studies in

humans. Nutr Metab (Lond). 2011; 8:15. Epub 2011/03/11. https://doi.org/10.1186/1743-7075-8-15

PMID: 21388545.

29. Gorissen SH, Horstman AM, Franssen R, Crombag JJ, Langer H, Bierau J, et al. Ingestion of Wheat

Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial.

J Nutr. 2016; 146(9):1651–9. https://doi.org/10.3945/jn.116.231340 PMID: 27440260.

30. Gorissen SH, Horstman AM, Franssen R, Kouw IW, Wall BT, Burd NA, et al. Habituation to low or high

protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized

trial. Am J Clin Nutr. 2017; 105(2):332–42. https://doi.org/10.3945/ajcn.115.129924 PMID: 27903518.

31. Hursel R, Martens EA, Gonnissen HK, Hamer HM, Senden JM, van Loon LJ, et al. Prolonged Adapta-

tion to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates—A Sub-

study. PLoS One. 2015; 10(9):e0137183. https://doi.org/10.1371/journal.pone.0137183 PMID:

26367529.

32. Kouw IW, Gorissen SH, Burd NA, Cermak NM, Gijsen AP, van Kranenburg J, et al. Postprandial Protein

Handling Is Not Impaired in Type 2 Diabetes Patients When Compared With Normoglycemic Controls.

J Clin Endocrinol Metab. 2015; 100(8):3103–11. https://doi.org/10.1210/jc.2015-1234 PMID:

26037513.

33. Kramer IF, Verdijk LB, Hamer HM, Verlaan S, Luiking YC, Kouw IW, et al. Both basal and post-prandial

muscle protein synthesis rates, following the ingestion of a leucine-enriched whey protein supplement,

are not impaired in sarcopenic older males. Clin Nutr. 2016. https://doi.org/10.1016/j.clnu.2016.09.023

PMID: 27743615.

34. Wall BT, Gorissen SH, Pennings B, Koopman R, Groen BB, Verdijk LB, et al. Aging Is Accompanied by

a Blunted Muscle Protein Synthetic Response to Protein Ingestion. PLoS One. 2015; 10(11):e0140903.

https://doi.org/10.1371/journal.pone.0140903 PMID: 26536130.

35. Volpi E, Sheffield-Moore M, Rasmussen BB, Wolfe RR. Basal muscle amino acid kinetics and protein

synthesis in healthy young and older men. JAMA. 2001; 286(10):1206–12. https://doi.org/10.1001/

jama.286.10.1206 PMID: 11559266.

36. Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, et al. Resistance exercise

enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr.

2012; 108(10):1780–8. https://doi.org/10.1017/S0007114511007422 PMID: 22313809.

37. Yang Y, Churchward-Venne TA, Burd NA, Breen L, Tarnopolsky MA, Phillips SM. Myofibrillar protein

synthesis following ingestion of soy protein isolate at rest and after resistance exercise in elderly men.

Nutr Metab (Lond). 2012; 9(1):57. https://doi.org/10.1186/1743-7075-9-57 PMID: 22698458.

38. Cermak NM, Res PT, de Groot LC, Saris WH, van Loon LJ. Protein supplementation augments the

adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin

Nutr. 2012; 96(6):1454–64. https://doi.org/10.3945/ajcn.112.037556 PMID: 23134885.

39. Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K. Changes in human muscle protein

synthesis after resistance exercise. J Appl Physiol (1985). 1992; 73(4):1383–8. https://doi.org/10.1152/

jappl.1992.73.4.1383 PMID: 1280254.

40. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown

after resistance exercise in humans. Am J Physiol. 1997; 273(1 Pt 1):E99–107. https://doi.org/10.1152/

ajpendo.1997.273.1.E99 PMID: 9252485.

41. Deitrick JE. The effect of immobilization on metabolic and physiological functions of normal men. Bull N

Y Acad Med. 1948; 24(6):364–75. PMID: 18860463.

42. Gibson JN, Halliday D, Morrison WL, Stoward PJ, Hornsby GA, Watt PW, et al. Decrease in human

quadriceps muscle protein turnover consequent upon leg immobilization. Clin Sci (Lond). 1987;

72(4):503–9. https://doi.org/10.1042/cs0720503 PMID: 2435445.

43. Ingemann-Hansen T, Halkjaer-Kristensen J. Computerized tomographic determination of human thigh

components. The effects of immobilization in plaster and subsequent physical training. Scand J Rehabil

Med. 1980; 12(1):27–31. PMID: 7384763.

44. Finni T, Komi PV, Lepola V. In vivo human triceps surae and quadriceps femoris muscle function in a

squat jump and counter movement jump. Eur J Appl Physiol. 2000; 83(4–5):416–26. https://doi.org/10.

1007/s004210000289 PMID: 11138584.

Protein synthesis of musculoskeletal tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0224745 November 7, 2019 16 / 17

https://doi.org/10.1016/j.jbiomech.2017.07.019
http://www.ncbi.nlm.nih.gov/pubmed/28778387
https://doi.org/10.1093/brain/awy015
https://doi.org/10.1093/brain/awy015
http://www.ncbi.nlm.nih.gov/pubmed/29432531
https://doi.org/10.1186/1743-7075-8-15
http://www.ncbi.nlm.nih.gov/pubmed/21388545
https://doi.org/10.3945/jn.116.231340
http://www.ncbi.nlm.nih.gov/pubmed/27440260
https://doi.org/10.3945/ajcn.115.129924
http://www.ncbi.nlm.nih.gov/pubmed/27903518
https://doi.org/10.1371/journal.pone.0137183
http://www.ncbi.nlm.nih.gov/pubmed/26367529
https://doi.org/10.1210/jc.2015-1234
http://www.ncbi.nlm.nih.gov/pubmed/26037513
https://doi.org/10.1016/j.clnu.2016.09.023
http://www.ncbi.nlm.nih.gov/pubmed/27743615
https://doi.org/10.1371/journal.pone.0140903
http://www.ncbi.nlm.nih.gov/pubmed/26536130
https://doi.org/10.1001/jama.286.10.1206
https://doi.org/10.1001/jama.286.10.1206
http://www.ncbi.nlm.nih.gov/pubmed/11559266
https://doi.org/10.1017/S0007114511007422
http://www.ncbi.nlm.nih.gov/pubmed/22313809
https://doi.org/10.1186/1743-7075-9-57
http://www.ncbi.nlm.nih.gov/pubmed/22698458
https://doi.org/10.3945/ajcn.112.037556
http://www.ncbi.nlm.nih.gov/pubmed/23134885
https://doi.org/10.1152/jappl.1992.73.4.1383
https://doi.org/10.1152/jappl.1992.73.4.1383
http://www.ncbi.nlm.nih.gov/pubmed/1280254
https://doi.org/10.1152/ajpendo.1997.273.1.E99
https://doi.org/10.1152/ajpendo.1997.273.1.E99
http://www.ncbi.nlm.nih.gov/pubmed/9252485
http://www.ncbi.nlm.nih.gov/pubmed/18860463
https://doi.org/10.1042/cs0720503
http://www.ncbi.nlm.nih.gov/pubmed/2435445
http://www.ncbi.nlm.nih.gov/pubmed/7384763
https://doi.org/10.1007/s004210000289
https://doi.org/10.1007/s004210000289
http://www.ncbi.nlm.nih.gov/pubmed/11138584
https://doi.org/10.1371/journal.pone.0224745


45. Shelbourne KD, Beck MB, Gray T. Anterior cruciate ligament reconstruction with contralateral autoge-

nous patellar tendon graft: evaluation of donor site strength and subjective results. Am J Sports Med.

2015; 43(3):648–53. Epub 2014/12/19. https://doi.org/10.1177/0363546514560877 PMID: 25520302.

46. Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: A 10-year study. Knee. 2006;

13(3):184–8. Epub 2006/04/11. https://doi.org/10.1016/j.knee.2006.01.005 PMID: 16603363.

47. Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde L. Age-related changes in the

biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue

Int. 1999; 65(3):203–10. https://doi.org/10.1007/s002239900683 PMID: 10441651.

48. Zioupos P. Ageing human bone: factors affecting its biomechanical properties and the role of collagen.

J Biomater Appl. 2001; 15(3):187–229. https://doi.org/10.1106/5JUJ-TFJ3-JVVA-3RJ0 PMID:

11261600.

49. Mundy GR. Bone resorption and turnover in health and disease. Bone. 1987; 8 Suppl 1:S9–16. PMID:

3318891.

50. Abrams SA. Normal acquisition and loss of bone mass. Horm Res. 2003; 60 Suppl 3:71–6. https://doi.

org/10.1159/000074505 PMID: 14671401.

51. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, et al. Peak bone mass.

Osteoporos Int. 2000; 11(12):985–1009. https://doi.org/10.1007/s001980070020 PMID: 11256898.

52. Babraj JA, Smith K, Cuthbertson DJ, Rickhuss P, Dorling JS, Rennie MJ. Human bone collagen synthe-

sis is a rapid, nutritionally modulated process. J Bone Miner Res. 2005; 20(6):930–7. https://doi.org/10.

1359/JBMR.050201 PMID: 15883632.

53. Heinemeier KM, Schjerling P, Heinemeier J, Moller MB, Krogsgaard MR, Grum-Schwensen T, et al.

Radiocarbon dating reveals minimal collagen turnover in both healthy and osteoarthritic human carti-

lage. Sci Transl Med. 2016; 8(346):346ra90. https://doi.org/10.1126/scitranslmed.aad8335 PMID:

27384346.

54. Paxton JZ, Grover LM, Baar K. Engineering an in vitro model of a functional ligament from bone to

bone. Tissue Eng Part A. 2010; 16(11):3515–25. https://doi.org/10.1089/ten.TEA.2010.0039 PMID:

20593972.

55. Shaw G, Lee-Barthel A, Ross ML, Wang B, Baar K. Vitamin C-enriched gelatin supplementation before

intermittent activity augments collagen synthesis. Am J Clin Nutr. 2017; 105(1):136–43. https://doi.org/

10.3945/ajcn.116.138594 PMID: 27852613.

56. Vieira CP, De Oliveira LP, Da Re Guerra F, Dos Santos De Almeida M, Marcondes MC, Pimentel ER.

Glycine improves biochemical and biomechanical properties following inflammation of the achilles ten-

don. Anat Rec (Hoboken). 2015; 298(3):538–45. https://doi.org/10.1002/ar.23041 PMID: 25156668.

57. Saddik D, McNally EG, Richardson M. MRI of Hoffa’s fat pad. Skeletal Radiol. 2004; 33(8):433–44.

https://doi.org/10.1007/s00256-003-0724-z PMID: 15221217.

58. Kohn D, Deiler S, Rudert M. Arterial blood supply of the infrapatellar fat pad. Anatomy and clinical con-

sequences. Arch Orthop Trauma Surg. 1995; 114(2):72–5. https://doi.org/10.1007/bf00422828 PMID:

7734236.

59. Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J, Van Osch GJ, Van Offel JF, Verhaar JA, et al.

The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review.

Osteoarthritis Cartilage. 2010; 18(7):876–82. https://doi.org/10.1016/j.joca.2010.03.014 PMID:

20417297.

60. Ene R, Sinescu RD, Ene P, Cirstoiu MM, Cirstoiu FC. Synovial inflammation in patients with different

stages of knee osteoarthritis. Rom J Morphol Embryol. 2015; 56(1):169–73. PMID: 25826502.

61. McAlindon TE, Nuite M, Krishnan N, Ruthazer R, Price LL, Burstein D, et al. Change in knee osteoarthri-

tis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment

with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthritis Cartilage. 2011; 19(4):399–

405. https://doi.org/10.1016/j.joca.2011.01.001 PMID: 21251991.

62. Clark KL, Sebastianelli W, Flechsenhar KR, Aukermann DF, Meza F, Millard RL, et al. 24-Week study

on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain.

Curr Med Res Opin. 2008; 24(5):1485–96. https://doi.org/10.1185/030079908X291967 PMID:

18416885.

Protein synthesis of musculoskeletal tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0224745 November 7, 2019 17 / 17

https://doi.org/10.1177/0363546514560877
http://www.ncbi.nlm.nih.gov/pubmed/25520302
https://doi.org/10.1016/j.knee.2006.01.005
http://www.ncbi.nlm.nih.gov/pubmed/16603363
https://doi.org/10.1007/s002239900683
http://www.ncbi.nlm.nih.gov/pubmed/10441651
https://doi.org/10.1106/5JUJ-TFJ3-JVVA-3RJ0
http://www.ncbi.nlm.nih.gov/pubmed/11261600
http://www.ncbi.nlm.nih.gov/pubmed/3318891
https://doi.org/10.1159/000074505
https://doi.org/10.1159/000074505
http://www.ncbi.nlm.nih.gov/pubmed/14671401
https://doi.org/10.1007/s001980070020
http://www.ncbi.nlm.nih.gov/pubmed/11256898
https://doi.org/10.1359/JBMR.050201
https://doi.org/10.1359/JBMR.050201
http://www.ncbi.nlm.nih.gov/pubmed/15883632
https://doi.org/10.1126/scitranslmed.aad8335
http://www.ncbi.nlm.nih.gov/pubmed/27384346
https://doi.org/10.1089/ten.TEA.2010.0039
http://www.ncbi.nlm.nih.gov/pubmed/20593972
https://doi.org/10.3945/ajcn.116.138594
https://doi.org/10.3945/ajcn.116.138594
http://www.ncbi.nlm.nih.gov/pubmed/27852613
https://doi.org/10.1002/ar.23041
http://www.ncbi.nlm.nih.gov/pubmed/25156668
https://doi.org/10.1007/s00256-003-0724-z
http://www.ncbi.nlm.nih.gov/pubmed/15221217
https://doi.org/10.1007/bf00422828
http://www.ncbi.nlm.nih.gov/pubmed/7734236
https://doi.org/10.1016/j.joca.2010.03.014
http://www.ncbi.nlm.nih.gov/pubmed/20417297
http://www.ncbi.nlm.nih.gov/pubmed/25826502
https://doi.org/10.1016/j.joca.2011.01.001
http://www.ncbi.nlm.nih.gov/pubmed/21251991
https://doi.org/10.1185/030079908X291967
http://www.ncbi.nlm.nih.gov/pubmed/18416885
https://doi.org/10.1371/journal.pone.0224745

