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Abstract 

Individual-level data require protection from unauthorised access to safeguard confidentiality 

and security of sensitive information. Risks of disclosure are evaluated through privacy risk 

assessments and are controlled or minimised before data sharing and integration. The 

evolution from ‘Micro Data Laboratory’ traditions (i.e. access in controlled physical locations) 

to ‘Open Data’ (i.e. sharing individual-level data) drives the development of efficient 

anonymisation methods and protection controls. Effective anonymisation techniques should 

increase the uncertainty surrounding re-identification while retaining data utility; allowing 

informative data analysis. ‘Probabilistic anonymisation’ is one such technique, which alters 

the data by addition of random noise. In this paper, we describe the implementation of one 

probabilistic anonymisation technique into an operational software written in R and we 

demonstrate its applicability through application to analysis of asthma-related data from the 

ALSPAC cohort study. The software is designed to be used by data managers and users 

without the requirement of advanced statistical knowledge. 
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Introduction 

Data custodians managing longitudinal study data resources use a variety of policies and 

processes to manage risks to participant confidentiality and data security when sharing data. 

This can form a means to help meet legal requirements and also a component of wider 

strategies to retain participant trust and the public acceptability of research (Carter, Laurie, 

& Dixon-Woods, 2015). Approaches range from: 1) removing directly identifiable information 

(see Panel 1 for term definitions); 2) only providing access to accredited users; 3) allocating 

(project specific) pseudo IDs to each subject; 4) making adjustments to outlying values and 

small cell counts; 5) sub-setting datasets to only include data required for specific 

investigations; 6) transforming data through complex statistical processes that mask or block 

access to the underlying individual-level data; and, 7) sharing and using data within secure 

policy and procedural frameworks (Elliot, Mackey, O'Hara, & Tudor, 2016), such as Data Safe 

Havens (Burton et al., 2015). 

 

The EU General Data Protection Regulation (GDPR) (European Parliament, 2018), through 

national implementations such as the Data Protection Act 2018 (DPA) (UK Parliament, 2018), 

distinguishes between personal data and anonymous data. Personal data is defined as 

“information relating to natural persons who: a) can be identified or who are identifiable, 

directly from the information in question; or b) who can be indirectly identified from that 

information in combination with other information”. Therefore, personal information, 

includes data with direct identifier variables or data where identity can be determined 

through linking to other readily available information. This classification is important as the 

safeguards required for the use of personal information are far more stringent than the 

safeguards required for the use of anonymous data. The DPA - even when research 

exemptions apply - requires that individuals are informed of the use of their personal 

information, and that the security of the data is maintained through the research process. 

Furthermore, even when these safeguards are in place, the DPA requires that data are de-

identified as soon in the research process as possible – ideally prior to the point when the 

data are provided to researchers. In contrast, anonymous data do not fall under the scope of 

the DPA (or GDPR) and are therefore exempt from these requirements.  
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Panel 1: Disclosure Control Terminology 

Data Custodians: authorised individuals/entities who manage and share study data. While 
(typically) authorised to view identifiable data, there is a risk they can accidentally disclose 
data through data breaches or accidentally and spontaneously identify a participant. 

Accredited User: a bona-fide professional working for a bona-fide institution for a bona-
fide purpose who can be expected to operate professionally and to not deliberately 
disclose information. The potential for accidental disclosure remains. Similar to the ‘Safe 
Researcher’ concept. 

External Attacker: an individual who will attempt to deliberately disclose participant 
information for malicious means. 

Individual of Interest: the participant(s) targeted by an external attacker. 

Direct Identifier(s): a data item which on its own could identify an individual (e.g. name, 
full date of birth, full address, health or other service ID number). The GDPR/DPA 2018 has 
expanded the legal definition of personal identifiers to include genetic sequence 
information (when used for linkage) as well as digital network identifiers (such as internet 
‘IP’ addresses). 

Indirect-Identifier(s) (aka Quasi-Identifiers): social or health variables with (context 
specific) potential to disclose an individual’s identity (i.e. they are likely to be known or 
discoverable to an external attacker or spontaneously recognisable to someone who 
knows the individual), for example: parity, height, weight, disease status, occupation 
categories. 

Non-Identifier(s): variables with exceptionally limited potential to disclose an individual’s 
identity. These will tend to be transient values (e.g. blood pressure readings). 

 

Under the new DPA 2018 legislation, longitudinal research studies are required (Article 35 of 

the GDPR) to consider the risks associated with data processing and use. Through conducting 

‘Data Protection Impact Assessments’, data custodians will assess risks (e.g. loss of control of 

data when sharing with external research users) and will have to implement controls to 

mitigate these risks (e.g. effectively anonymising the data). Given the pressures to share data, 

it seems inevitable that DPA 2018 will provide a new impetus for data guardians to explore 

options for effective disclosure control. As a community, the data guardians of longitudinal 

studies should work together to understand the options available, the impact these may have 

on research utility and how to implement anonymisation strategies effectively. The risk of not 

doing this, is that poorly executed anonymisation strategies reveal sensitive information 

about participants and bring the research community into disrepute. While we are fortunate 

that there are no known examples of this within the longitudinal research community, we 



5 
 

should take note of parallel examples of poor practice (e.g., in 2014 the New York Taxi & 

Limousine Commission released data on 173 million individual journey’s, yet a poor 

anonymisation strategy meant that individuals could easily be re-identified and their sensitive 

information breached (Pandurangan, 2014)). 

 

Achieving anonymity in a dataset is challenging and is complicated by the fact that much 

population discovery science, particularly that informed by longitudinal studies, relies on 

broad data sets of granular detailed individual-level data. These data are ideal for assessing 

life-course associations and controlling for socially mediated status, yet are also ideally suited 

– given their rich and typically unique patterns of values – for identifying participants’ real-

world identities. This situation is further complicated by the fact that some indirect identifiers 

have research value (e.g. age, gender), so that the different classes of identifiers (direct, 

indirect, non) often cannot be viewed in isolation and that identification risk is context 

specific. Existing approaches to controlling for this risk, such as k-anonymisation (El Emam & 

Dankar, 2008; Sweeney, 2002), attempt to mask these patterns of uniqueness through 

supressing and aggregating data values. While this technique offers some protection to 

disclosure risk (Domingo-Ferrer, Sebé, & Castellà-Roca, 2004), it also has the potential to 

impact the utility of the data to inform the research question. 

 

Goldstein and Shlomo (2018) suggest the use of a probabilistic anonymisation approach to 

perturb the data through the addition of random noise to some or all variables in the dataset. 

In this approach, the risks posed by an external ‘attacker’ who wished to re-identify an 

individual of interest from a dataset, are assessed. In this risk scenario, it is assumed that the 

attacker independently knows the individual’s data values for some or all the identifying 

variables within the dataset. Using this information, the attacker could ‘link’ to the target 

individual’s record using the unique patterns in their data, and therefore learn new 

information about that person from their associated attribute variables. To avoid such 

identification Goldstein and Shlomo propose that sufficient noise is generated and added to 

the identifying variables to disguise their values as they appear to any attacker. From the 

research perspective, the accredited user is provided with sufficient information to remove 

the effects of the noise during the analysis stage to recover the underlying data structure and 
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therefore to produce consistent parameter estimates. This is done through the use of 

statistical techniques for fitting models with measurement errors (see (Goldstein, Browne, & 

Charlton, 2017)). 

 

This paper, in contrast to Goldstein and Shlomo’s methodological manuscript, presents a 

pragmatic perspective with worked examples. To apply Goldstein and Shlomo’s methodology, 

we have written an operational software package using the open-source statistical 

programming language R. We use data from participants of the Avon Longitudinal Study of 

Parents and Children (ALSPAC) birth cohort study to demonstrate the feasibility and 

practicality of the approach. For illustration of the method, we anonymise asthma-related 

data by adding differing degrees of noise. We then perform three exemplar analyses on the 

differing versions of anonymised data, treating the noise as measurement error. Finally, we 

assess how well the true model parameters are retrieved and we compare the differing risks 

of residual disclosure in the different data sets. 

 

Software package 

We have developed two functions in R (Avraam, 2018); the function probAnon() which adds 

noise to an input dataset, and the function hRanks() which generates a re-identification risk 

measure. Software to carry out the data modelling has been written in MATLAB (Mathworks, 

2016). 

 

The probAnon() function 

The function probAnon(), applies probabilistic anonymisation to an input dataset. The 

algorithm first separates the input data into two subset data frames, one for the continuous 

(numerical) and one for the categorical (integer or factor) variables. Then, normally 

distributed random noise with user-specified variances is added, independently, to the 

continuous and categorical variables. For continuous variables, the variance of noise is 

specified as a percentage of each variable’s observed variance in the argument weights, which 

is a vector (w1, …, ws) of length s, where s is the number of continuous variables in the input 
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dataset. If the user does not specify the vector of weights, each weight is set to 0.1 by default 

which means that the variance of the added noise is equal to the 10% of the observed variance 

of the variable. The random noise added to each binary variable follows a normal distribution 

with zero mean and variance specified by the user. The added noise therefore, converts 

binary data to continuous. For the ‘noisy’ continuous form of 0-1 binary variables, the 

algorithm then truncates any negative values to 0 and any values greater than 1 to 1. This 

step is not strictly necessary particularly since it tends to increase identifiability risk but may 

be convenient for presentational purposes and serves in the present context to present a 

‘worse case’ scenario. The output is then the input dataset plus the added noise. In addition, 

the argument seed, allows the user to set a certain random number generator. If this 

argument is not specified, the function bases the seed parameter on the local time (as 

determined by the computer’s internal clock). 

 

The hRanks() function 

The function hRanks() calculates a re-identification risk measure (the h-rank index) of 

anonymised data using the method proposed by Goldstein and Shlomo (2018). The function 

takes as input arguments the original dataset and the anonymised dataset (both having the 

same dimensions). The conceptual basis of the h-rank index is to estimate the probability of 

an attacker being successful in identifying their individual of interest within the anonymised 

dataset. We assume that a potential attacker will have access to some information about an 

individual they are targeting (we note that this assumption is also explicit within Data 

Protection legislation and represents a data guardian’s ‘worst case’ scenario). 

 

We describe the logic of this function here and illustrate this in Panel 2. Initially (step 1), the 

algorithm calculates the Euclidean distances (defined as the square root of the sum of the 

squares of the differences between the corresponding coordinates of two vectors) between 

each row in the true dataset and all rows in the noisy dataset (i.e. a pair-wise comparison that 

ultimately assesses all possible pairs). It then (step 2), ranks the distances to determine how 

close each true record is to every record in the noisy dataset (i.e. a 1 to n comparison where 

n is the total number of records), and identifies the position of the closest record (i.e. the 
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record which corresponds to rank equal to one). We use the standard competition ranking 

method (where ties are allocated the same rank, and the next allocated rank is offset by the 

number of ties, e.g. “1224”), which is performed by the R function rank() with the argument 

ties.method=‘min’. In step 3, the algorithm generates a duplicate copy of the true dataset and 

computes the Euclidean distances between each row in the true dataset with all rows in the 

copy of the true dataset and ranks them in order of distance (i.e. a 1 to n comparison similar 

to step 2). In step 4, the algorithm identifies the ranks of the distances calculated in step 3 at 

the locations specified in step 2. Finally (step 5), the algorithm calculates the difference (h-

rank index) between the ranks located in step 4 and the ranks located in step 2, and returns 

a vector with those differences. Note that the critical observations to identify in step 2 are all 

ranked 1 (or a tied equivalent) as the role of step 2 is to search for the closest noisy record to 

each true record. If h=0 for any one record that an attacker has available (and belongs to the 

dataset), then this implies that the noisy record identified by the attacker as the closest one 

in terms of the distance metric, is in fact the true one. The average value of h-rank indices 

provides a metric of disclosiveness. The larger the average value of h, the greater the level of 

unreliability in any attempt to disclose identity through exploiting a given individual’s known 

pattern of data values. Where the average of h is small (i.e. lower than an acceptable 

threshold pre-specified by the study data custodian), the probAnon() function can be re-used 

to alter the data with a higher level of noise in order to increase the uncertainty of re-

identification. 

 

Some care is needed where there are more than a negligible number of tied distances. This 

will be a particular issue with categorical, including binary, data. For example, where a dataset 

consists of only four binary indicators, there are only 16 possible patterns; meaning that for 

any given record where noise has been added there will be many tied rank distances. For an 

attacker, when estimating h, this will result in additional uncertainty. Thus, for example, if 

there are p tied ranks and the correct true record is among these, the attacker will be 

confronted with p records with h=0, and will be able to choose the correct one only with 

probability 1/p. To reflect this so that we can consistently report our risk measure on the scale 

of h, a very small amount of noise is added to each of the identifiers in order to break the ties 

and so that the true record will therefore be identified as the closest with probability 1/p. In 
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the present implementation (for the case that we have a dataset with only categorical 

variables) we have added, for all categorical (binary) variables, noise following a normal 

distribution with variance 10−8.  
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Examples 

To demonstrate the feasibility of the software we show its applicability to childhood asthma 

data from participants in ALSPAC; a longitudinal birth cohort study collecting information of 

participants’ life-course exposures, and health, social and well-being outcomes (Boyd et al., 

2013). ALSPAC recruited pregnant women living in, and around, the City of Bristol (south west 

UK) – who were due to deliver between 01/04/91 and 31/12/92. An initial total of 14,062 live-

born children were enrolled. By age 18, the enrolled sample had extended to include 14,775 

live-born individuals from 15,247 pregnancies. The assessment in this paper was conducted 

on a sample of 15,211 participants. Data is collected via questionnaires, study assessment 

visits, biological and ’omic characterisations and linkage to routine records (see: 

‘www.bristol.ac.uk/alspac/researchers/access/’ for ALSPAC data dictionary).  

 

Ethical approval for ALSPAC was obtained from the ALSPAC Law & Ethics Committee and the 

NHS Research Ethics Committees. The variables used in this exemplar application (see Table 

1) were selected and then reviewed by an ALSPAC data custodian (author AB) using the 

ALSPAC privacy impact / risk assessment template. This assessment (based on an assumption 

that a potential attacker had some access to real information about their target) noted that 

the dataset contained Direct Identifiers (study ID), Indirect Identifiers, Non-Identifiers and 

Outcome variables (see Table 1). 

 

Table 1: Asthma-related variables from the ALSPAC birth cohort study.  

Variable 
identification 

Type Identifier/ 
Outcome 

Missing 
values* 

Explanation 

b650 binary Indirect 2009 
ever smoked (completed by mother 
at 18 weeks of gestation) 

kz021 binary Indirect 517 child’s sex 

kc362 binary Indirect 4144 
never exposed to passive smoke 
(completed by mother at 15 months) 

kc401 
multi-
categorical 

Indirect 4231 
ever breast fed (completed by 
mother at 15 months) 

m2110 binary Non 7036 
there is damp/condensation/ 
mould in home (completed by 
mother at 7 years 1 month) 

http://www.bristol.ac.uk/alspac/researchers/access/


12 
 

dda_91 binary Outcome 7053 
doctor ever diagnosed asthma 
(completed by mother at 91 months) 

kv1059 
multi-
categorical 

Outcome 7426 
child had asthma in past 12 months 
(completed by mother at 128 
months) 

height_f8 continuous Indirect 8028 

child's height (cm), (measured by 
fieldworker at ‘focus@8’ clinical 
assessment visit at mean age 103.8 
months) 

weight_f8 continuous Indirect 8249 

child's weight (kg), (measured by 
fieldworker at ‘focus@8’ clinical 
assessment visit at mean age 103.8 
months) 

raw_fev1_f8 continuous Outcome 8301 

forced expiratory volume in 1 
second, (measured by fieldworker at 
‘focus@8’ clinical assessment visit at 
mean age 103.8 months) 

*The number of missing values includes also the ‘not completed’, ‘don’t know’ and ‘no 
response’ answers. 

 

We conducted a complete case analysis that was restricted to participants with non-missing 

data on all relevant variables. We calculated the children’s Body Mass Index (BMI) using the 

relationship BMI = weight ∕ (height/100)2. We then created three separate datasets: 

dataset A with the variables ASTHMA = dda_91, SMOKE = kc362, BREAST FED = kc401 

and MOULD = m2110; dataset B with the variables ASTHMA = dda_91, BMI = weight_f8/

(height_f8)2 and BREAST FED = kc401; dataset C with the variables FEV1 =  raw_fev1_f8, 

BMI = weight_f8 ∕ (height_f8)2, SEX = kz021 and SMOKE = b650. From each of the three 

datasets we removed any rows with missing values. This results in datasets with 6837, 4975 

and 5942 complete records respectively. We then converted the multi-categorical variables 

(see type of each variable in Table 1) to binary data. For the variable kc401 (ever breast fed), 

we combined together the categories “Yes, no longer” and “Yes, still” and replaced their 

values with ones while we replaced the values in the category “No, never” with zeros. For the 

variable kv1059 (child had asthma in past 12 months, completed by mother at 128 months), 

we combined together the categories “Yes, but did not see a doctor” and “Yes, saw a doctor” 

and replaced their values with ones while we replaced the values in the category “No, did not 

have” with zeros. We finally generated ‘noisy’ datasets for each true dataset (A-C) using the 

probAnon() function. For datasets A and B we do not add noise to the ASTHMA variable which 
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is used as the response variable in a probit regression model. For all the other variables we 

add normally distributed noise with zero mean and variance equal to the value shown in Table 

2. We have not considered the case where noise is added to the response variable where this 

is binary. This feature is described in Goldstein and Shlomo (2018) but is not yet been 

implemented in the analysis software. 

 

Table 2: Variances of the added noise. Note that for binary variables we add different levels 
of noise. 

Dataset Variable Type 
True variance of 
variable 

Variance of added 
noise 

A 

ASTHMA binary response 0.160 - 

SMOKE binary covariate 0.231 0.05, 0.1, 0.2, 0.5 

BREAST FED binary covariate 0.171 0.05, 0.1, 0.2, 0.5 

MOULD binary covariate 0.244 0.05, 0.1, 0.2, 0.5 

B 

ASTHMA binary response 0.109 - 

BMI continuous covariate 5.512 0.55 

BREAST FED binary covariate 0.151 0.05, 0.1, 0.2, 0.5 

C 

FEV1 continuous response 0.069 0.0069 

BMI continuous covariate 5.828 0.58 

SEX binary covariate 0.250 0.05, 0.1, 0.2, 0.5 

SMOKE binary covariate 0.248 0.05, 0.1, 0.2, 0.5 

 

Results 

We apply regression models to the true and noisy data of each dataset (A-C) and compare the 

estimated coefficients. Each regression model is applied to the true data using common 

functions for generalised linear models (e.g. glm() function in R) and to the noisy data using a 

Bayesian Markov Chain Monte Carlo (MCMC) algorithm that allows the recovery of the 

original data structure (see description of this procedure in (Goldstein et al., 2017)). We have 

not run full simulations of the data. We note that a true simulation to derive population 

estimates will require both the generation of a model using assumed population parameters 

and for each of these generated datasets the further generation of a set of models where the 

noise is sampled from the assumed noise distribution. Goldstein and Shlomo (2018) ran 
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simulations with both continuous and binary covariates that pointed to negligible bias for the 

general procedure. 

 

Dataset A 

Dataset A consists only of binary data and without special care will give many tied rank 

distances. To illustrate this, we present the frequencies of all possible combinations for the 

true values of Dataset A in table 3. 

 

Table 3. Frequencies for all possible combinations of values for dataset A. 

ASTHMA SMOKE BREAST FED MOULD Frequency 

0 0 0 0 380 

0 0 0 1 181 

0 0 1 0 1691 

0 0 1 1 1308 

0 1 0 0 357 

0 1 0 1 227 

0 1 1 0 758 

0 1 1 1 567 

1 0 0 0 91 

1 0 0 1 61 

1 0 1 0 348 

1 0 1 1 310 

1 1 0 0 133 

 

We see from table 3 that the smallest set of identical combinations of identifiers confronting 

an attacker is 61, and the largest 1691. We have therefore used the procedure of adding 

additional ‘tie-breaking’ noise and see that the probabilities for a successful attack are still 

acceptably small. Table 4 gives the estimates of disclosiveness as expressed in terms of ℎ 

based on 100 simulations. The big number of simulations is used to demonstrate stable 

estimates.  
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Table 4: Cumulative probabilities of h for noisy dataset A, at 10th, 50th and 90th percentiles. 
No noise is added to the response variable. Noise with variance 0.05 (scenario 1), 0.1 (scenario 
2), 0.2 (scenario 3) and 0.5 (scenario 4) is added to all predictors. 100 simulated noise 
additions used. 

Scenario Percentile P(ℎ = 0) P(ℎ ≤ 1) P(ℎ ≤ 2) P(ℎ ≤ 3) P(ℎ ≤ 4) P(ℎ ≤ 5) 

1 
10% 0.0265 0.0286 0.0307 0.0327 0.0343 0.0369 
50% 0.0105 0.0128 0.0155 0.0177 0.0200 0.0219 
90% 0.0088 0.0112 0.0139 0.0162 0.0185 0.0208 

2 
10% 0.0230 0.0250 0.0275 0.0301 0.0326 0.0340 
50% 0.0091 0.0116 0.0141 0.0167 0.0191 0.0213 
90% 0.0069 0.0094 0.0119 0.0143 0.0167 0.0191 

3 
10% 0.0221 0.0239 0.0253 0.0273 0.0281 0.0300 
50% 0.0084 0.0109 0.0129 0.0150 0.0169 0.0193 
90% 0.0063 0.0087 0.0110 0.0132 0.0151 0.0174 

4 
10% 0.0143 0.0156 0.0165 0.0175 0.0182 0.0189 
50% 0.0048 0.0063 0.0076 0.0088 0.0102 0.0113 
90% 0.0034 0.0049 0.0063 0.0078 0.0092 0.0104 

 

To analyse the data from Dataset A, we apply a probit regression model where the asthma 

indicator is regressed on smoking, breast feeding and presence of mould 

probit(𝐴𝑆𝑇𝐻𝑀𝐴) = 𝛽0 + 𝛽1(𝑆𝑀𝑂𝐾𝐸) + 𝛽2(𝐵𝑅𝐸𝐴𝑆𝑇 𝐹𝐸𝐷) + 𝛽3(𝑀𝑂𝑈𝐿𝐷).                    (1) 

The estimated coefficients from the analysis, and their standard errors, are shown in Table 5. 

We observe that the estimates of the model applied to noisy data using the procedure that 

removes the noise are close to the estimates of the model applied to the true data (i.e. an 

overlap between their confidence intervals).  

 

Table 5: Estimated parameters and their standard errors for dataset A. The first row shows 
the estimated coefficients of the model applied to the true records and scenarios 1-4 show 
the estimated coefficients of the model applied to noisy data using procedures to recover the 
data structure. Note that the response variable was without noise and noise with variance 
0.05 (scenario 1), 0.1 (scenario 2), 0.2 (scenario 3) and 0.5 (scenario 4) was added to all 
predictors. The results in scenarios 1-4 show the means of 50 MCMC simulations. 

Scenario Data 𝛽0 (SE) 𝛽1 (SE) 𝛽2 (SE) 𝛽3 (SE) 

 True data -0.809 (0.043) 0.124 (0.036) -0.131 (0.042) 0.053 (0.035) 

1 Noisy data -0.817 (0.018) 0.115 (0.032) -0.114 (0.038) 0.048 (0.031) 

2 Noisy data -0.777 (0.042) 0.115 (0.043) -0.167 (0.044) 0.048 (0.036) 

3 Noisy data -0.828 (0.031) 0.062 (0.027) -0.063 (0.026) 0.027 (0.026) 
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4 Noisy data -0.842 (0.024) 0.040 (0.019) -0.027 (0.020) 0.016 (0.019) 

 

Dataset B 

Dataset B includes both binary and continuous covariates. We add noise with variance equal 

to 10% of the true variance to BMI variable and noise with variance 0.05, 0.1, 0.2 and 0.5 to 

the breast feeding variable. The cumulative probabilities of h based on 100 simulations are 

shown in Table 6. We observe that probabilities of h to be less than a certain value are 

increasing with the increase of noise added to the binary variable (i.e. comparing the values 

between scenario 1 which refers to noise with variance 0.05 and scenario 4 which refers to 

noise with variance 0.5 added to the binary breast feeding variable). We also observe higher 

values of probabilities at the 10th and 90th percentiles in contrast with the lower values at the 

median (50th percentile). In addition, the probabilities at the 10th percentile are systematically 

higher than the probabilities at the 90th percentile which is related to the slightly right-skewed 

actual distribution of the continuous BMI.  

 

Table 6: Cumulative probabilities of h for noisy dataset B, at 10th, 50th and 90th percentiles. 
No noise is added to the response variable. Noise with variance 0.55 was added to BMI and 
noise with variance 0.05 (scenario 1), 0.1 (scenario 2), 0.2 (scenario 3) and 0.5 (scenario 4) 
was added to breast feeding variable. 100 simulated noise additions used in computations. 

Scenario Percentile P(ℎ = 0) P(ℎ ≤ 1) P(ℎ ≤ 2) P(ℎ ≤ 3) P(ℎ ≤ 4) P(ℎ ≤ 5) 

1 
10% 0.0071 0.0136 0.0191 0.0246 0.0299 0.0356 
50% 0.0060 0.0115 0.0168 0.0219 0.0269 0.0319 
90% 0.0070 0.0128 0.0183 0.0234 0.0285 0.0336 

2 
10% 0.0071 0.0136 0.0191 0.0247 0.0300 0.0358 
50% 0.0059 0.0113 0.0167 0.0217 0.0267 0.0316 
90% 0.0069 0.0126 0.0181 0.0232 0.0283 0.0333 

3 
10% 0.0066 0.0127 0.0178 0.0232 0.0282 0.0335 
50% 0.0055 0.0106 0.0156 0.0203 0.0249 0.0296 
90% 0.0065 0.0118 0.0170 0.0218 0.0266 0.0314 

4 
10% 0.0056 0.0106 0.0149 0.0196 0.0237 0.0283 
50% 0.0047 0.0089 0.0131 0.0171 0.0210 0.0250 
90% 0.0055 0.0101 0.0145 0.0186 0.0227 0.0268 

 

For dataset B, we apply a probit regression model where the asthma indicator is regressed on 

BMI and breast feeding 
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probit(𝐴𝑆𝑇𝐻𝑀𝐴) = 𝛽0 + 𝛽1(𝐵𝑀𝐼) + 𝛽2(𝐵𝑅𝐸𝐴𝑆𝑇 𝐹𝐸𝐷).                                                        (2) 

A comparison of the results derived from the model applied to the true and the noisy data 

are shown in Table 7. Similarly to the results obtained from Dataset A, we observe a highly 

accurate estimation of the model parameters by fitting the model to the noisy data and 

removing the noise using MCMC procedures.  

 

Table 7: Estimated parameters and their standard errors for dataset B. The first row shows 
the estimated coefficients of the model applied to the true records and scenarios 1-4 show 
the estimated coefficients of the model applied to noisy data where noise with variance 0.55 
was added to BMI and noise with variance 0.05 (scenario 1), 0.1 (scenario 2), 0.2 (scenario 3) 
and 0.5 (scenario 4) was added to the breast feeding variable. Note that the response variable 
is without noise. The results in scenarios 1-4 show the means of 50 MCMC simulations. 

Scenario Data 𝛽0 (SE) 𝛽1 (SE) 𝛽2 (SE) 

 True data -1.261 (0.174) 0.010 (0.010) -0.078 (0.058) 

1 Noisy data -1.256 (0.174) 0.009 (0.010) -0.072 (0.054) 

2 Noisy data -1.250 (0.170) 0.008 (0.011) -0.065 (0.070) 

3 Noisy data -1.325 (0.176) 0.011 (0.010) -0.027 (0.036) 

4 Noisy data -1.330 (0.167) 0.011 (0.010) -0.014 (0.026) 

 

Dataset C 

Probabilistic anonymisation has been also applied to Dataset C and the cumulative 

probabilities for h at different percentiles based on 100 simulations are shown in Table 8. The 

difference in Dataset C (in contrast with datasets A-B) is the outcome variable which is 

continuous instead of binary and therefore noise is added to the outcome in the same way as 

the noise is added to any continuous explanatory variables. 

 

Table 8: Cumulative probabilities of h for noisy dataset C, at 10th, 50th and 90th percentiles. 
Noise with variance 0.0069 was added to the outcome FEV1 variable, noise with variance 0.58 
was added to BMI and noise with variance 0.05 (scenario 1), 0.1 (scenario 2), 0.2 (scenario 3) 
and 0.5 (scenario 4) was added to sex and smoke indicators. 100 simulations used. 

Scenario Percentile P(ℎ = 0) P(ℎ ≤ 1) P(ℎ ≤ 2) P(ℎ ≤ 3) P(ℎ ≤ 4) P(ℎ ≤ 5) 

1 
10% 0.0204 0.0377 0.0522 0.0661 0.0785 0.0896 
50% 0.0206 0.0371 0.0514 0.0644 0.0761 0.0866 
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90% 0.0209 0.0375 0.0522 0.0650 0.0768 0.0874 

2 
10% 0.0194 0.0365 0.0505 0.0648 0.0772 0.0878 
50% 0.0196 0.0356 0.0496 0.0625 0.0741 0.0845 
90% 0.0200 0.0361 0.0505 0.0631 0.0748 0.0852 

3 
10% 0.0179 0.0332 0.0463 0.0591 0.0708 0.0807 
50% 0.0180 0.0327 0.0457 0.0575 0.0685 0.0782 
90% 0.0183 0.0332 0.0465 0.0582 0.0691 0.0789 

4 
10% 0.0140 0.0264 0.0365 0.0465 0.0561 0.0641 
50% 0.0143 0.0258 0.0359 0.0453 0.0540 0.0615 
90% 0.0146 0.0264 0.0369 0.0461 0.0548 0.0625 

 

For dataset C, the force expiratory volume in 1 second is regressed on BMI, sex and smoking 

𝐹𝐸𝑉1 = 𝛽0 + 𝛽1(𝐵𝑀𝐼) + 𝛽2(𝑆𝐸𝑋) + 𝛽3(𝑆𝑀𝑂𝐾𝐸).                                                                    (3) 

The estimated coefficients with their standard errors are shown in Table 9. 

  

Table 9: Estimated parameters and their standard errors for dataset C. The first row shows 
the estimated coefficients of the model applied to the true records and scenarios 1-4 show 
the estimated coefficients estimated from the model applied to noisy data. Noise with 
variance 0.0069 was added to the outcome FEV1 variable, noise with variance 0.58 was added 
to BMI and noise with variance 0.05 (scenario 1), 0.1 (scenario 2), 0.2 (scenario 3) and 0.5 
(scenario 4) was added to sex and smoking indicators. The results in scenarios 1-4 show the 
means of 50 MCMC simulations. 

Scenario Data 𝛽0 (SE) 𝛽1 (SE) 𝛽2 (SE) 𝛽3 (SE) 

 True data 1.139 (0.024) 0.029 (0.001) 0.105 (0.007) -0.005 (0.007) 

1 Noisy data 1.145 (0.025) 0.029 (0.001) 0.096 (0.006) -0.004 (0.006) 

2 Noisy data 1.140 (0.026) 0.029 (0.001) 0.051 (0.032) -0.005 (0.006) 

3 Noisy data 1.182 (0.025) 0.028 (0.001) 0.051 (0.005) -0.004 (0.005) 

4 Noisy data 1.194 (0.025) 0.028 (0.001) 0.031 (0.004) -0.001 (0.004) 

 

We see from these example analyses that the disclosure risk increases with the number of 

identifying variables used, but remains acceptable. These results suggest that for similar 

datasets the amount of noise added could safely be reduced. Nevertheless, when a large 

number of variables is involved in a dataset, the values of h-rank index will be expected to 

increase and this is clearly an area for further exploration. We also note that, especially for 

binary variables, estimates derived from the noisy data can have large standard errors and 
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the true estimates from the real data can be very different. The amount of noise added to the 

binary variables in scenario 4 has a standard deviation √0.5 = 0.71 which is very large 

compared to the range (0,1) of the true data and therefore we get a lot of instability (as 25% 

of observed zeros get wrongly defined to their true category). This suggests that further work 

is needed for such cases and Table 8 suggests that smaller values should produce acceptable 

values for h. We conclude that for even low levels of noise the method is sufficient to 

effectively anonymise the records, but we show the example of noise added to the binary 

with variance 0.5 as a warning to data managers on the increase in the loss of utility. 

 

Discussion 

We have shown how a probabilistic anonymisation procedure can be applied to data 

management procedures in such a way that disclosure risk is reduced to acceptable levels 

while retaining the ability to carry out statistical analysis. The analysis conducted on the noisy, 

anonymous, data suffered some loss of statistical efficiency when compared with analysis on 

the true data; a consequence of which is enlarged confidence intervals and fewer significant 

inferences. Where the variance of noise added to the binary covariates is large (i.e. > 0.2), 

there is likely to be unacceptably high loss of statistical efficiency and for binary data biases 

may also be introduced. This example illustrates the challenge in balancing disclosure control 

with retaining data utility. 

 

When considering disclosure risk, data custodians should consider the risk of motivated 

external attackers, accidental disclosure to authorised users and also the possible 

consequences of human error. In the first scenario (external attacker) the attacker may be 

motivated to identify a given individual due to their notoriety (for example an investigative 

journalist following a story – or a researcher illustrating the fallacy of supposed ‘anonymity’ 

(Sweeney, 2002)) or out of personal interest. In the second, an accredited user or data 

custodian may recognise an individual during their legitimate work, and in the third an 

authorised user may inadvertently release a dataset to a wider than authorised audience 

through a data breach. In all these scenarios identification of a given data subject is likely to 

occur through matching known ‘real world’ information about an individual to equivalent 
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information about the same individual within a dataset. Probabilistic anonymisation helps 

control for these risks by removing certainty about whether the values being considered in 

the noisy data are true ‘real world’ values. The h-rank index disclosure measure proposed by 

Goldstein and Shlomo (2018), adopts this perspective by seeking to establish how well any 

single individual is ‘hidden amongst the crowd’ of the other individuals in the dataset. While 

this approach seems conceptually appropriate – it has some limitations. We found that, in its 

current state of development, the h-rank index was unable to adequately account for 

disclosure risk of outliers (this was acknowledged by Goldstein and Shlomo (2018) but this 

can be addressed through suitable pre-processing techniques such as truncating them. It was 

also unable to account for the disclosure risk of clusters of individuals who all have the same 

outcome value, i.e. that it is not necessary to identify the Individual of Interest within the 

cluster if they all have the same outcome of interest. This phenomenon is known elsewhere 

in the privacy literature (Machanavajjhala, Gehrke, Kifer, & Venkitasubramaniam, 2006) and 

could be quantified by including l-diversity metrics to assess outcome value diversity. Finally 

we found that the h-rank index was also unable to account for the protective benefits of the 

sample being selected from a wider population (again a point noted by Goldstein and Shlomo 

(2018)). While this last point would be difficult to accommodate in a metric, it could be 

incorporated into the Data Custodians risk assessment process. 

 

In practice, a data custodian, in conjunction with potential accredited users would need to 

evaluate the risks associated with applying any given amount of noise related to the potential 

loss of analysis efficiency. In some cases, it may not be desirable to release data into the public 

domain. We suggest that there are few, if any, situations where some variables of interest 

would need to be excluded; though this remains an area for further study. However, our 

findings that large amounts of noise impact model estimates suggest this may limit the 

application for data sets treated with large amounts of noise, e.g. they may be suitable only 

for training or data exploration rather than applied research. A more realistic application 

would be the use of probabilistic anonymisation to applying limited amounts of noise (to 

protect against spontaneous recognition or contained (i.e. not public) data breaches) and to 

supply accredited users with these noisy data under controlled ‘safe haven’ conditions. As 

such, probabilistic anonymisation will add to the range of tools available to data managers 
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that include manual data transformations (such as outlier suppression), statistical approaches 

(e.g. synthetic data and k-anonymisation) and distributed ‘black box’ computing approaches 

(e.g. DataSHIELD (Wilson et al., 2017)). All such approaches involve trade-offs between 

disclosure control, impact on utility and impact on usability. Probabilistic anonymisation has 

one clear advantage over some of these approaches (e.g. k-anonymisation and synthetic data) 

in that it allows efficient and accurate data linkage to additional datasets, given that the noisy 

data can contain ID numbers and the noise can be applied over multiple datasets 

independently. Further work is needed to assess the extent to which these trade-offs apply 

in order to help inform the Data Custodian community as to which approach may best fit any 

given situation. 

 

The software functions developed here are proof of principle rather than fully developed 

‘commercial grade’ software. We have identified that improvements would be needed in the 

following areas before wider adoption: 1) the code needs to accommodate multi-category 

categorical variables; 2) missing values are not currently supported, we need to allow for 

these or to develop alternative approaches (e.g. imputation); 3) the h-rank index needs 

developing (as described above) and further consideration given to accommodating outlying 

values in a flexible manner.  

 

We have demonstrated that probabilistic anonymisation can be effectively deployed to help 

control for disclosure risk while producing accurate estimates We have assumed that the data 

to be used is for bona-fide research scenarios (i.e. not for releasing data into the public 

domain) where responsible and verifiable data security measures are in place. Additionally, 

this concept would be novel to many data custodians who may not have advanced statistical 

expertise, so that determining the appropriate balance between disclosure risk control and 

retaining data utility would require training. With the enhancements we have identified the 

software assessed here could be developed into a fully functional tool for Data Custodians. 

This software would be a useful tool to help longitudinal studies maintain participant trust 

and to share data securely and effectively while meeting ever more stringent data protection 

requirements. 
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