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The Why, When, What, and How About
Predictive Continuous Integration:
A Simulation-Based Investigation

Bohan Liu , He Zhang , Weigang Ma , Gongyuan Li , Shanshan Li , and Haifeng Shen , Senior Member

Abstract—Continuous Integration (CI) enables developers to
detect defects early and thus reduce lead time. However, the high
frequency and long duration of executing CI have a detrimental
effect on this practice. Existing studies have focused on using
CI outcome predictors to reduce frequency. Since there is no
reported project using predictive CI, it is difficult to evaluate its
economic impact. This research aims to investigate predictive CI
from a process perspective, including why and when to adopt
predictors, what predictors to be used, and how to practice
predictive CI in real projects. We innovatively employ Software
Process Simulation to simulate a predictive CI process with a
Discrete-Event Simulation (DES) model and conduct simulation-
based experiments. We develop the Rollback-based Identification
of Defective Commits (RIDEC) method to account for the
negative effects of false predictions in simulations. Experimental
results show that: 1) using predictive CI generally improves the
effectiveness of CI, reducing time costs by up to 36.8% and
the average waiting time before executing CI by 90.5%; 2) the
time-saving varies across projects, with higher commit frequency
projects benefiting more; and 3) predictor performance does not
strongly correlate with time savings, but the precision of both
failed and passed predictions should be paid more attention.
Simulation-based evaluation helps identify overlooked aspects in
existing research. Predictive CI saves time and resources, but
improved prediction performance has limited cost-saving benefits.
The primary value of predictive CI lies in providing accurate and
quick feedback to developers, aligning with the goal of CI.

Index Terms—Continuous integration, machine learning, soft-
ware process simulation, discrete-event simulation.
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I. INTRODUCTION

CONTINUOUS Integration (CI) is a software development
practice that automates the compilation, building, and

testing of source code on dedicated servers, which makes it
possible to accelerate development whilst securing quality. The
benefits of CI, such as reducing merge conflicts, have been
widely recognized [1], [2], [3], [4]. The annual GitLab Global
Developer Survey1 shows that only 10% respondents did not
use CI tools. The Annual State of DevOps Survey2 also asserts
that “CI is a must-do in the DevOps space, right after version
control becomes ubiquitous”.

Some studies have identified the challenges practitioners are
facing. A systematic literature review [5] suggests that the most
critical testing problem in CI is the excessive consumption of
time. Since developers need to wait for the CI process to com-
plete before engaging in other development activities, a long
duration of CI means not only the consumption of substantial
computing resources, but also human resources [6], [7], [8].
Fowler indicated that every minute of reducing CI execution
time is a minute saved for developers every time they commit
code [9]. Among the 104,442 CI executions over 67 projects in
TravisTorrent, 40% took more than 30 minutes [10], implying
the consumption of tens of thousands of man-hours. Further-
more, the long duration of CI makes it impractical to conduct
frequent CI executions, and developers are reported to often
bypass some CI executions to save time [11].

Therefore, there are clear benefits of predicting the CI out-
comes based on which the frequency of executing CI scripts can
be reduced. Hassan and Zhang [12] pioneered the application
of machine learning techniques to predict a CI outcome, which
can be either passed or failed. A passed result means no defect
found by all the scripts executed, whilst a failed means that
defect(s) exist and need to be located and fixed. Predictive CI
is to forecast the result of the current CI using a predictor
trained with a set of features pertaining to the context of CI. By
skipping the CIs predicted as passed, the code will be merged
directly into shared mainline code repository. This method can
potentially improve efficiency by reducing the number of CI
executions while maintaining the number of test cases in the CI

1https://about.gitlab.com/developer-survey
2https://puppet.com/resources/report/2018-state-devops-report
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script. In other words, the quality standard of each CI execution
is retained at the expense of reduced number of CI executions.

However, since its inception over a decade ago, no attempt
has been reported to adopt predictive CI in real projects. One
possible reason is due to the lack of commonly accepted pre-
dictors or available prediction systems that work in different
projects in practice. Existing research [12], [13], [14], [15],
[16], [17], [18], [19] has focused only on identifying suitable
predictors for different projects in terms of prediction accuracy
using common machine learning performance evaluation met-
rics such as recall, precision, and F measures.

Another possible reason, which is probably more critical, is
that there is no evidence available to support that the prediction
is able to actually improve the efficiency of the CI process
in terms of cost saving. The effectiveness of predictive CI is
subject to a variety of factors and performance of a predictor
is only part of the concern. For example, if a defect-free CI
execution is predicted as passed, the time cost of that CI execu-
tion is saved. However, if a defective CI execution is predicted
passed, it would be mixed with the other future commits for
testing at a later stage, which would likely incur higher costs
to locate defects. Skipping will cause multiple commits to be
tested together, which will undoubtedly cause an extra time cost
for locating defects. A crucial question is how to determine
the performance threshold of a predictor to be economically
effective in predictive CI.

What makes the evaluation even more challenging is that
the proportions of failed and passed in existing projects are
imbalanced [18], [20] and evaluation of imbalanced learning
is a thorny issue. Metrics such as Recall or F-measure tend to
only evaluate the predictive performance of one category whilst
comprehensive indicators such as Accuracy, and Area Under
Curve may also fail [21]. In reality, which metrics should be in-
cluded in the evaluation, and how to understand the levels of the
metrics? To the best of our knowledge, no empirical endeavor
has been reported to evaluate the impact of predictors on the CI
process. Due to the lack of evidence, developers are reluctant to
take the risk of adopting predictive CI in their projects and the
unavailability of empirical data makes it impossible to perform
meaningful evaluation.

This paper reports the first effort that attempts to break this
paradox by proposing a novel approach that harnesses Software
Process Simulation to investigate predictive CI from a process
perspective, including why and when to adopt predictors, what
predictors to be used, and how to practice predictive CI in real
projects, which would provide valuable insights to assisting
developers in making informed decisions on the adoption of
predictive CI. In software process research, simulation is one
of the most effective methods when it is difficult or expensive
to achieve the research purpose through real cases. It can help
researchers in an approximate way to study a software process
without investing considerable effort on experimentation with
actual software projects. Simulation has been widely used since
its introduction into the software process area in the 1980s [22].
In this work, we conduct simulation experiments to evaluate the
impact of predictors on the CI process using a Discrete-Event
Simulation (DES) model calibrated by real CI process data from
projects in GitHub. The DES model is called CISimulator [23],

which specifically simulates the continuous integration process
supported by Travis CI3 with the exception of integrated pre-
dictors. Projects using Travis CI are the usual research subjects
in existing studies [14], [17], [18], [20], [24], [25], [26].

Furthermore, we propose a Rollback-based Identification of
Defective Commits (RIDEC) method to locate one or more
commits that cause the failure from the test results of multiple
commits. This method is a key complement to predictive CI
because it shifts the burden of locating defects caused by false
CI prediction back to servers. Without this method, developers
are likely to be deterred from adopting predictive CI as it saves
server resources at the expense of increasing their workload. In
addition, the simulation of RIDEC is important to evaluate the
effectiveness of predictive CI from a process perspective.

Through a series of simulation experiments, we have in-
vestigated the why, when, what, and how (3W1H) aspects of
predictive CI. For why, our results reveal that predictive CI is
able to save time in most cases, including the time for executing
CI and the waiting time before executing CI. For when, the time
saving resulted from using predictive CI varies across projects,
however, projects with higher commit frequency but not so high
CI failure rate tend to save more time. For what, it is safe to use
predictive CI if predictors can achieve a relatively high level of
comprehensive predictive performance. Specific prediction per-
formance metrics (e.g., accuracy) related to time savings vary
across different projects. In general, while ensuring a similar
level of time cost savings, it is advisable to pursue higher accu-
racy in order to maximize the ability of the predictor to provide
fast feedback. For how, the CISimulator proposed in this study
can provide support for the research and practice of predictive
CI by offering a simulation environment for developers to make
informed decisions, which is publicly available on GitHub [23].

The main contributions of this study are as follows:
• We propose a novel simulation-based approach to system-

atically investigating predictive CI from a process perspec-
tive, including why and when to adopt predictors, what
predictors to be used, and how to practice predictive CI
in real projects.

• We propose the RIDEC method for locating the defective
commits from multiple commits that are tested together to
account for the negative effect of false predictions.

• We build a DES model called CISimulator that can sim-
ulate CI processes with and without predictive CI. The
CISimulator can be used to evaluate the time saving in
the CI process by applying the predictive CI method. We
publicly share the simulation environment together with
relevant instructions to assist developers in making in-
formed decisions on the adoption of predictive CI.

• We conduct simulation-based experiments using the data
collected from real projects to investigate why and when
to use what predictors.

The remainder of this paper is structured as follows. Sec. II
explains the predictive CI method, the problems of its eval-
uation in related work, as well as the motivation of using
simulation. Sec. III discusses the overview of the methodology
and depicts CISimulator. The verification and validation of

3https://www.travis-ci.org/
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Fig. 1. An example of the CI process with predictive CI.

CISimulator are discussed in Sec. IV. Sec. V delineates the
details of our experimental study, and Sec. VI analyzes results.
Sec. VII discusses the practical implications of predictive CI
and the benefits of simulation. Sec. VIII discusses the threats
to validity, followed by the conclusions in Sec. IX.

II. BACKGROUND AND RELATED WORK

This study aims to use a simulation-based approach to in-
vestigating the effectiveness of predictive CI from a process
perspective. This section introduces what predictive CI is, the
existing problems in evaluating predictive CI in related work,
and the related work on software process simulation.

A. What Is Predictive CI?

Predictive CI is a binary classification problem as only passed
and failed results are considered in existing research [12], [13],
[14], [15], [16], [17], [18], [19]. The passed means exit codes

for all steps are zero, while the failed means the script returns
a non-zero exit code. Other results (canceled and errored) are
caused by human operation errors or configuration environment
problems and occur before the execution of the CI script. Hence
they are not considered.

Without predictive CI: the commit will be allocated to
execute the CI, that is to carry out activities such as build, code
scanning and testing. If the CI result is passed, the code change
is merged into the trunk. Otherwise, the developer needs to fix
the defects and re-submit the code change.

With predictive CI: the process varies according to different
application scenarios. For example, to coordinate limited server
resources, CI can be executed preferentially for the commits
that are predicted to be passed. This study discusses a scenario
that is more recommended in existing research, that is, skipping
the execution of CI for commits that are predicted as passed.
Fig. 1 presents an example of eight continuous scenes to illus-
trate the process with predictive CI.

Authorized licensed use limited to: Edith Cowan University. Downloaded on June 11,2024 at 00:47:58 UTC from IEEE Xplore.  Restrictions apply. 
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The 1st scene: before the new commit C5 triggers the CI, the
predictor predicts the result of executing CI for this commit. C3

and C2 are the commits that were predicted as passed before,
which are waiting in the queue Qp for the next execution of CI.
C3 is the commit that was predicted as failed before, which is
waiting in the queue Qf for an available server to execute the
CI. C1 is executing the CI.

The 2nd scene: C5 was predicted as passed and hence entered
Qp. The execution of C1 is finished and the result is passed,
which means a wrong prediction before.

The 3rd scene: the new commit C6 appeared and its result
of CI execution is being predicted. As C1 leaves, C3 which is
waiting in Qf gets an available server. C2, C4, and C5 have
been waiting for this moment, and now they can execute CI
together with the C3 as a batch.

The 4th scene: the new commit C7 appeared and C6 entered
Qf . The execution result of the batch is failed. Since it is not
known which commits caused the failure, it needs to locate the
defect. Repeating CI by rolling back is an effective method,
such as RIDEC proposed in this paper. The specific process of
RIDEC will be introduced in Sec. III-C.

The 5th scene: C7 entered Qp. The batch is executing the CI
for localizing defects.

The 6th scene: The defective and non-defective commits
are identified.

The 7th scene: Since the server was released and the Qp was
empty, C6 is executing the CI alone.

The 8th scene: The execution of C6 is finished and the result
is passed.

Table I summarizes existing research on machine learning-
based predictive CI. TravisTorrent [27] is a build log data set
that has been mainly adopted in recent years. All the latest
studies [18], [20], [24], [25], [26] considered both class imbal-
ance and time-series problems. Class imbalance refers to the
problem that the number of failed is far less than that of passed
in common build log data sets. The class imbalance would sig-
nificantly affect the prediction performance. Time series refers
to the problem that the chronological order of build logs must
be maintained. If the data set is shuffled, the validation results
would deviate from the real situation.

Hassan et al. [12] pioneered the use of machine learning
methods to predict CI results. By analyzing the logs, they
identified social factors, technical factors, coordination fac-
tors, previous authentication factors, and other variables that
affect the CI results. They compared the decision tree built by
different combinations of these features (factors) using large-
scale IBM projects. The shuffle split validation was applied to
the evaluation. The results showed that training with all features
achieved the best performance. However, the Recall of predict-
ing failed (Rf = 0.69) is significantly worse than the Recall of
passed (Rp = 0.95).

Wolf et al. [13] were the first to use communication struc-
ture measures to predict CI results. They built a Naive Bayes
classifier using the social network information of collaboration
and interaction between developers and evaluated the predictor
with leave-one-out validation using the data from IBM JazzTM

project. The Rf of the predictor ranged from 0.55 to 0.75.

Schröter [28] extended Wolf et al.’s method with technical rela-
tionships. A support vector machine is trained using the social
networks that depict the coordination behavior of developers
involved in a CI execution as input to predict the CI execution
outcome. Both Rf and Precision of predicting failed (Pf ) have
been significantly improved as the minimum Rf is increased
to 0.65. However, these predictors are difficult to generalize to
other projects since not every project can provide traceability
between communication artifacts and development artifacts.

Finlay et al. [29] applied the Hoeffding Tree classification
method, which uses a set of code metrics as input to predict CI
results. They used the IBM JazzTM project to compare Hoeffd-
ing Tree and C4.5. The results show that the former performs
better, with an overall accuracy rate at 72%, but it is difficult
to accurately predict the failed. They indicated that the projects
they used did not store a complete history record in the software
repository, which may affect the prediction performance. In
addition, they also pointed out that only a few features may
have a significant impact on prediction performance, but the
study did not perform feature selection before training.

TravisTorrent data set has been widely used in CI-related
research in recent years. Two studies [14], [17] used sim-
ilar features but evaluated different classifiers. Their results
showed that prediction performance varied greatly from project
to project and was not good enough. Hassan and Wang [15]
built a predictor using a Random Forest algorithm with the
metrics available in TravisTorrent and Java code metrics as
input. The predictor can predict the failed with an average
F -measure over 0.87. However, the results have not been gen-
eralized to the projects other than large-scale Java projects and
only three projects were used for the evaluation of predictors.
The code metrics they used only apply to Java. They used an
Eclipse plug-in JGit4 to identify code changes, and then obtain
code metrics based on GumTreeDiff [30]. For projects that
use multiple development languages, these code metrics are
not applicable.

Chen et al. [20] and our previous work [18] almost simul-
taneously identified the limitations of existing research on the
training and validation of predictors. We conducted an empirical
study [18] to provide a comprehensive evaluation for predictive
CI in terms of the two data characteristics, i.e. time series
and class imbalance. The experiments indicate that the cross-
validation may not be applicable to the predictive CI due to
the time-series features of the CI process. Furthermore, con-
sidering the higher value of predicting the failed in practice,
F2-Measure was used instead of F1-Measure. These results
indicate that imbalanced learning can significantly improve
the prediction performance, especially for predicting failed.
However, the performance of existing predictors on different
projects was not good enough to provide practitioners with
sufficient confidence in practicing them. Chen et al. [20] used
more features and applied feature selection for training an im-
balanced learning classifier, XGBoost [31]. Instead of using
cross-validation, they split the CI executions into the training
and test sets with a ratio of 3:1 without disturbing the order

4https://eclipse.org/jgit/
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TABLE I
SUMMARY OF EXISTING RESEARCH ON PREDICTIVE CONTINUOUS INTEGRATION

Study Data sets Imbal.1 Validation Time-
series2

Results3

[12] IBM Toronto Labs Shuffle split Rf = 0.69, Rp = 0.95

[13] IBM JazzTM Leave-one-out Rf ∈ [0.55, 0.75], Pf ∈ [0.50, 0.76]

[28] IBM JazzTM Shuffle split Rf ∈ [0.65, 1.00], Pf ∈ [0.90, 0.96]

[29] IBM JazzTM K-fold cross-validation Rf = 0.65, A = 0.72

[15] Ant, Maven, Gradle K-fold cross-validation Rf = 0.82, P = 0.85, F1 = 0.83, Rp = 0.93,
Pp = 0.92, F1p = 0.92

[17] 532 OSS projects available on TravisTorrent Shuffle split Rf = 0.69, A = 0.74

[14] 126 OSS projects available on TravisTorrent K-fold cross-validation,
On-line prediction

� K-fold cross-validation: F1f > 0.6; On-line prediction:
More than 50% projects achieved F1f < 0.3.

[18] 14 OSS projects available on TravisTorrent,
and 4 OSS projects from Gitlab

� Time-series-validation,
K-fold cross-validation

� Time-series-validation: F2f = 0.50; K-fold cross-
validation: F2f = 0.53

[20] 20 OSS projects available on TravisTorrent � Time-series-validation � F1f = 0.47, F1p = 0.91

[24], [25] 359 OSS projects available on TravisTorrent � Quasi-simulation � Save 61% of cost, 73% of failed commits were detected
without delay, 27% of failed commits were delayed
detected within two CI executions on average.

[26] 10 OSS projects available on TravisTorrent � Time-series-validation � AUC = 0.69, balance = 0.66

This work 6 OSS projects on GitHub that using
TravisCI

� Simulation-based valida-
tion

� Ref. VI

1 Whether the study evaluated predictors with imbalanced learning techniques. The symbol �denotes imbalanced learning was used.
2 Whether the study considered the time-series issue in validation. The symbol �denotes the chronological order of the data is maintained in validation.
3 We only present the best performance achieved in each study.

considering the time-series concern. They compared their ap-
proach with existing methods [15], [17], [32] and indicated that
their approach can significantly improve the best of the state-of-
the-art approaches by 47.5% in terms of F1-Measure of failed
(F1f ). However, their approach only achieved an F1f of 0.47 on
average. Converted to F2f , it only reaches 0.448. Of the 67 pre-
dictors evaluated in [18], 13 predictors were able to achieve an
F2-Measure of failed (F2f ) over 0.448. In addition, the best one
can achieve 0.498.

Jin and Servant [24], [25] proposed a novel approach Smart-
BuildSkip, which only predicts when the result of the last CI ex-
ecution is passed. They adopted a quasi-simulation to evaluate
their approach. For the evaluation, they counted the percentage
of skipped CIs as a measurement of the time cost savings; they
also measured the delay length of the failed CI, which is the
number of CIs that were skipped until the predictor decided to
execute CI again for a skipped failed CI.

Saidani et al. [26] took a different approach and pro-
posed a search-based method, i.e. Multi-Objective Genetic
Programming. This method can mitigate the impact of class
imbalance and their experiments show that it is superior to
machine learning predictors that generally do not consider im-
balance. The study used time-series validation.

There is currently no real-world cases of predictive CI being
reported yet, although manual skipping without using predic-
tion is a very common phenomenon. The readiness of pre-
dictive CI remains doubtful based on the experimental results
from existing research. Currently, there are significant vari-
ations in the performance of predictive CI across different
projects, and its performance is also unstable within the same
project. The potential benefits and the amount of benefit that
can be obtained from predictive CI are economically unknown
at present. In other words, from a practical point of view,
in a dynamic development process, what kind of predictor
should be selected (what)? when the prediction could be used

(when)? and what effect would be obtained (why)? have to be
examined. The root of research on these issues lies in effec-
tive evaluation.

B. Problems With Evaluating Predictive CI

All the related work published by 2020 [12], [13], [14], [15],
[17], [28], [29] and [26] used the common metrics in machine
learning for performance evaluation. Our previous experiments
[18] demonstrated that the timing problem cannot be ignored in
predictor evaluation, and recommended the time-series valida-
tion method. However, our previous work also used those com-
mon classifier metrics and did not evaluate the predictor from a
process perspective. In [20] a simple statistical metric, namely
the ratios of CIs would be skipped, was used to evaluate the time
cost savings that can be saved by using predictions. However,
the metric does not reflect the possible negative effects of wrong
predictions. None of the above studies has solved a key issue of
evaluation, a question that practitioners really care about, that
is, what is the impact of CI prediction on a dynamic software
development process, and what benefits can be obtained.

Jin et al. [24], [25] took a step forward. They used a single
time-line quasi-simulation method (the real simulation should
be a computer-executable model, which can be repeatedly con-
figured and repeatedly experimented [33], [34]) for evaluation.
The quasi-simulation simulates real scenarios based on real data
and a time-series validation method. They keep the actual order
of the real data, making predictions one by one for each build.
The quasi-simulation method ignores the complexity of the CI
process and did not consider several issues such as the time
interval between commits, the queuing time, etc. The using of
prediction would change the order and results of CI. The quasi-
simulation cannot effectively simulate these scenarios. Fig. 2
shows an example of a scenario where quasi-simulation can
be problematic. For ease of understanding, we use the same
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Fig. 2. The comparison between the actual situation (can be simulated using process simulation) and the quasi-simulation.

example as in Fig. 1. Assuming that there is only one server,
the completion time of the execution for C3 is later than the
completion time of the prediction for C5. C3 is predicted as
failed and it will trigger the CI execution. The quasi-simulation
does not simulate execution time. Therefore, after the execution
for C1 ends, CI will be executed on a batch that contains C3

and all the commits skipped before C3, namely C2. In fact,
when the execution for C3 starts, C4 and C5 have already been
skipped. That is, C2 is waiting in the queue along with C4 and
C5 for the execution. In quasi-simulation, the next execution
after C3 contains C4, C5 and C6. Actually, C6 should execute
CI alone as C4 and C5 should appear in the previous execution
(together with C3). The introduction of predictive CI would
change the consumption of server resources as well as the order
of executions. Since quasi-simulation does not simulate time,
it cannot accurately simulate the execution sequence and the
commits involved in an execution. Furthermore, it may generate
different execution results. The widely used common simula-
tion paradigms, such as those based on the DES paradigm, can
simulate time to avoid this problem.

Neither the simple statistics [20] nor the quasi-simulation
[24], [25] can accurately simulate the real scenarios and com-
prehensively evaluate the effects of applying predictive CI in
development processes. The use of predictive CI would have
impacts on the dynamic process, and such impacts are not only
caused by the prediction itself, but also by other factors in the
dynamic process, such as the duration of execution and the
availability of server resources, etc.

In general, there are two problems with existing evaluation
methods (including quasi-simulation). First, the dynamic nature
of the process was not considered. The order and results of CI
triggers are no longer the same as they appear in historical data.
As depicted in Fig. 2, the execution time of CI also affects the
order of CI execution and commits involved in a CI, whereas
quasi-simulations consider only one of the most noticeable fac-
tors, namely the commits involved in a CI. Second, the potential

negative impact of the predictive CI has not been effectively
evaluated, and the final effect after combining the gain and loss
has not been effectively measured. If we focus only on CI, it is
easy to conclude that skipping some CI executions would save
time and server resources. However, if the use of predictive CI
increases the workload of developers in locating defects, there
is clearly a possibility that the gains outweigh the losses. Also,
developers are likely reluctant to adopt an approach that would
increase their workload.

The existing problems hinder the wider adoption of predic-
tive CI in practice. They also make it difficult for researchers
to truly understand the directions in which predictive CI can
be optimized. These motivate us to propose a simulation-based
approach to systematically investigating predictive CI from a
process perspective.

C. The Software Process Simulation-Based Evaluation

The Software Process Simulation modeling is to build a
computer-executable model to simulate the real dynamic soft-
ware development process. The most common simulation
paradigms include System Dynamics (SD), Discrete Event Sim-
ulation (DES), and Agent-Based Simulation (ABS). The most
critical shortcoming of the quasi-simulation used in [24] com-
pared with these common simulation paradigms is the lack of
quantification of time.

Since Abdel-Hamid and Madnick [22] introduced Software
Process Simulation to Software Engineering (SE) in the 1980s,
there have been a large number of studies published in the
community. The value of software process simulation in under-
standing the real process and supporting the planning, decision-
making, and optimization of software development has been
widely recognized [35], [36]. With the improvement of automa-
tion and the ability to observe and analyze data, the importance
of simulation as an empirical method in software engineering
is increasing [37].
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Simulation-based evaluation has demonstrated its powerful
capabilities for evaluation in various problems that are dif-
ficult to be directly validated in practice. Baum et al. [38]
simulated the agile development process for comparing pre-
commit reviews and post-commit reviews. Their model can
help researchers analyze the factors influencing the choice of
the two review practices. Garousi and Pfahl [39] evaluated the
performance of different testing processes with different de-
grees of automated testing activities using a simulation model.
The model helped decision-makers determine whether and to
what degree the company should automate its test processes
to achieve a balance of quality and efficiency. Liu et al. [40]
used simulation to compare the proposed Incremental V-model
process and traditional V-model process for automotive devel-
opment since it is almost impossible to experiment a new de-
velopment process in real automotive development without the
validation results of the simulation. However, there is no re-
search on using simulation for the evaluation of machine
learning-based predictors in SE and as such the approach pro-
posed in this work is novel.

In other disciplines, simulation-based evaluation for predic-
tors is also a novel direction. The simulation was suggested as a
trending method for evaluating machine learning predictors in
the research of Industry 4.0. However, real examples are still
lacking [41]. In the context of production planning, simula-
tion was used to generate forecast data and evaluate predictors
for customer orders and demand forecasts [42]. However, the
predictors evaluated in the study are based on the statistical
method instead of machine learning. To our best knowledge,
there is no research on simulating machine learning-based
predictors (which involves how to simulate predictive perfor-
mance) let alone simulating a process that is integrated with
predictors (which involves relationships between the predictor
and the activities around that either have impacts on it or are
influenced by it).

III. METHODOLOGY

Although common machine learning metrics can objectively
evaluate prediction performance based on a confusion matrix,
it is unknown what they mean to the CI process. Besides, it
is costly and potentially disruptive to evaluate predictors using
real projects, and even more so, it would be impossible to
evaluate and compare multiple predictors using real projects
in a single study as it is too difficult to control variables. If
we use statistical methods to analyze the cost savings of us-
ing predictive CI as in the study [20], the evaluation may not
accurately reflect the impact of dynamic processes. Their work
ignored an important issue, that is, skipping executions of CI
causes multiple commits to be tested together, which incurs ad-
ditional costs of locating bugs, some of which were not recently
introduced. Apart from that, since CI is a continuous process
and predictions have an impact on subsequent commits, it is
also not reasonable to consider each CI execution in isolation
when evaluating the time cost saved by using predictors. In
the CI process with prediction, various dynamic factors are
involved, such as the varying time interval of commit generation

and server resource availability. Process simulation has been
recognized as an affordable means to more accurately analyze
this dynamic process like this. In addition to the above benefits,
simulation also has the advantage of being easy to replicate and
extend. It can be applied to different projects/processes, and it
is easy to implement the Monte Carlo method [43].

A. Methodology Overview

The goal of our research is to build a software process simula-
tion model to investigate the effect of predictors in a CI process.
An overview of our methodology is shown in Fig. 3, which
mainly contains five phases as follows.

First, data acquisition and processing: we selected repre-
sentative GitHub projects. For each project, we obtained logs
related to the continuous integration process, including code
commit logs and build logs recorded in Travis CI, and estab-
lished associations between logs based on commit IDs. These
logs are used to train/test CI predictors and build the process
simulation model of the CI process.

Second, training and testing CI predictors: we replicated our
previous work [18] using the newly acquired data. The results
of the prediction performance of each predictor are used as
calibration variables in the simulation model.

Third, construction and verification of CISimulator: we
adopted the DES paradigm for modeling the CI process (cf.
Sec. III.B) for the reasons. The specific construction process and
introduction of the model are detailed in Sec. III.E. Predictive
CI would cause some builds to be skipped, and wrong predic-
tions may increase the burden of defect location. We proposed
the RIDEC method to identify all the defective commits in a
batch through non-full repeated CIs. That is, if RIDEC is used,
the cost of localizing defects in commits remains unchanged
regardless of whether predictive CI is used or not. We sim-
ulated RIDEC in CISimulator and the details are elaborated
in Sec. III.C. The details of model verification are introduced
in Sec. IV.

Fourth, calibration and validation of the CISimulator: strictly
speaking, the construction, calibration, verification and valida-
tion is an iterative process rather than three independent steps.
The construction and verification are intertwined, whilst valida-
tion relies on calibration. So we group these four steps into the
third and fourth phases. We perform the statistical analysis for
the log data to obtain calibration values for the model variables,
where the calibration variables of CI predictors are derived from
the second phase. The details of calibration and validation are
given in Sec. III-F and Sec. IV respectively.

Last, simulation experiments: we performed simulation ex-
periments to answer our research questions on the why, when,
what, and how aspects of using predictive CI. To obtain enough
samples under a certain degree of variable control, we randomly
sliced the data of each project and used the data of each slice to
calibrate CISimulator to conduct each simulation experiment.
The details are given in Sec. V.

The CISimulator is built to simulate the CI process to val-
idate the effectiveness of the predictor. The dynamic (simu-
lation) process model is the computerized implementation of
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Fig. 3. Overview of the research methodology.

the descriptive (process) model. The descriptive model is an
abstraction of the real world we learned and analyzed from
the official documents of Travis CI. We further analyzed Trav-
isTorrent data to revise and confirm the descriptive model.
We build the model using AnyLogic5 (version 8.7.6) and the
components it provides. Other tools such as ExtendSim6, can
also be used for this purpose. Quantification of the simulation
model is through calibration of variables obtained from real
projects or empirical studies using statistical analysis. We verify
and validate CISimulator from four quality aspects following
existing frameworks [44], [45], [46]. The four quality aspects
include syntactic quality, semantic quality, pragmatic quality,
and performance. The quantitative comparisons with real data
show that the model has a fidelity at 95% in simulating the
number of created commits and a predictor’s prediction results.

B. Selection of Simulation Paradigm

The most widely used paradigms for software process sim-
ulation are System Dynamics (SD), Discrete-Event Simulation
(DES), and Agent-Based Simulation (ABS) [47]. These three
paradigms are adept at different levels of abstraction [48], [49].
SD is mainly used to simulate the process of high abstraction
with complex feedback loops and it simulates the dynamic
process in a continuous-time manner. ABS can be applied to
the process at the finest granularity level, and it is excellent at
simulating the characteristics of individual agents (developers)
and their interactions with each other. DES is applied at low to
middle abstraction levels. DES simulates changes in the state
triggered by discrete events, providing a better simulation of

5https://www.anylogic.com/
6https://extendsim.com/

the step-by-step flow of entities through a system/process. The
main advantage of a DES model is its ability to capture exact
information at the actual process level and its ability to uniquely
represent each work product of the development process by
using attributes (e.g., the commit is a push or pull request) that
are attached to each work product.

The CI process to simulate is one with a moderate level of
abstraction and where state changes are mainly triggered by dis-
crete events. In the CI process, after the developer commits the
code, it is mainly handled by the Travis CI tool according to a
certain workflow, and only the subsequent defect-fixing activity
would involve developers. This process is more likely a business
process and requires less portrayal of individual developers and
their interactions. Besides, the model needs to perform a fine-
grained simulation of the commit, including whether it is a push
or pull request, and whether it is defective. Activities such as
code committing, CI triggering, and execution of the CI are
discrete events. Therefore, DES is more suitable for this study
than both SD and ABS.

C. Rollback-Based Identification of Defective Commits
(RIDEC)

The purpose of using predictive CI is to save time and re-
sources by skipping some CI executions, which would cause
skipped commits (predicted as passed) to be packaged with a
triggering commit (predicted as failed) as a batch to execute
CI. Then a failure means that one or more commit in the batch
are defective. This makes predictive CI an anti-CI practice. The
proposed RIDEC method can identify all the defective commits
in a batch through non-full repeated CIs. Fig. 4 depicts the
RIDEC with an example. For ease of understanding, it depicts
the process of localizing defects of the 5th scene in Fig. 1.
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Fig. 4. The server automatically locates defective commits based on RIDEC.

Suppose Cbatch = {C1,C2,...,Cn}, where Cbatch is the batch
consists of commits from C1 to Cn. The commits are created in
chronological order, and C1 is created earliest. If the execution
result of Cbatch is failed, the code will roll back to its prece-
dent version (i.e. Cbatch = {C1,C2,...,Cn−1}) and execute CI
again but with fewer commits. This process will be repeated
until the result is passed or Cbatch only has one commit. Each
execution (iteration) would return a CI Report (also known as
build log, denoted as Ri), which includes the test results of
each test case. When all iterations are over, we can identify
all defective commits by comparing the reports between the
adjacent iterations.

As shown in Fig. 4, there are a total of four iterations, that
is, the CI is executed 4 times. The results of iteration 1 and
iteration 2 are both failed, which means that there is at least
one defective commit in C2, C3, and C4. By comparing the
test results of each specific test case in R1 and R2, it can be
found that the two are inconsistent, which can deduce that C5

is a defective commit. By comparing the test results of each
specific test case in R2 and R3, it can be found that the two are
consistent, which can deduce that C4 is a non-defective commit.
The result of iteration 4 is passed, which can deduce that C2 is
a non-defective commit and C3 should be a defective commit.

Fig. 4 shows an extreme case, that is, there are 4 commits
in the initial batch, and a total of 3 additional executions (the
first execution is bound to trigger) are required to identify all
the defective commits. At the other extreme, all commits are
non-defective, that is, the result of the first execution is passed.
All batches would be tested only once.

Algorithm 1 shows how to calculate the total time spent
by the server to localize defective commits in Cbatch using
RIDEC. Cbatch is a queue. CI would be repeatedly executed
until the result is passed. After each execution, the commit at

Algorithm 1 Calculation of the time cost for the server to
localize defective commits in Cbatch.
[htb]

Input: Cbatch: an array contains N commits awaiting execu-
tion of CI;

Output: Tfl: time cost for the server to localize the defective
commits in Cbatch;

1: Tfl ← 0
2: i←N
3: repeat
4: t← Max CI execution time of commit in Cbatch[1, i]
5: Tfl ← Tfl + t
6: i= i− 1
7: until i < 1 or Cbatch[1, i] does not contain defective

commits
8: return Tfl;

the head of the queue would be dequeued. Since the execution
duration of CI for different commits in Cbatch may be different,
for simplicity, we take the maximum duration as the execution
duration of Cbatch. The final execution time is the sum of all
individual execution times.

D. Underlying Assumptions

The simulation model is an abstraction of the real world with
assumptions.

The basic assumption here is that the effect on cost can
be tolerated by changing the order of the real and predicted
outcomes in the sequence of commits, that is, the research
conclusion will not be affected by the change. Specifically, it is
based on the following assumptions:

• When the probability distributions of numerical calibration
variables (such as the creation time interval of commits,
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TABLE II
DESCRIPTIONS OF DES MODEL COMPONENTS IN ANYLOGIC

the time taken for a single execution of continuous integra-
tion, etc.) are determined, the randomness will only have
a tolerable impact on research results;

• When the probability of different result types of CI results
(failed and passed) is determined, the change of the re-
sult type sequence will only have a tolerable impact on
research results;

• When the probability of different commit types of commits
(push and pull request) is determined, the change of the
commit type sequence will only have a tolerable impact
on research results;

• When the performance of the predictor in the project is de-
termined, that is, when the confusion matrix is determined,
the change of the prediction result sequence will only have
a tolerable impact on the research results.

In this paper, the defective commit only refers to the commit
that can cause the execution result of CI to be failed. The
RIDEC method proposed in this paper is based on the following
assumption: if executing CI on different defective commits in
the same batch, we would get inconsistent CI reports (also
known as build logs), which is reflected in details that the
specific failed test cases or reported errors are different.

E. Construction of CISimulator

We followed three steps to build the simulation model, in-
cluding analysis of the CI process, construction of the de-
scriptive model, and construction of the simulation model.
We have explained the CI process and predictive CI in Sec.
II-A. Based on the analysis of the official documents of Travis
CI and the data in TravisTorrent, we first built a descriptive
model. We then used the DES paradigm to realize the dynam-
ics of the descriptive model, that is, to construct a simulation
model. The evolution from the descriptive model to the dynamic

(simulation) model is shown in Fig. 5. The static process, which
is a generalized flow-chart of CI process with predictive CI
integrated, contains thirteen Steps (i.e. from S1 to S13). Fig. 1
depicts an example of this process. The order from Step 1
(S1) to Step 13 (S13) is not strictly followed because there are
conditional branches in the process.

We used the simulation tool Anylogic (version 8.7.6) to
implement the computerized (simulation) model. The process
modeling library were used and the detailed description of
them can be referred to the official support document7. The
main computerized components used in the model are shown
in Table II. The model source file is available on GitHub [23].

In short, Fig. 5 shows the descriptive model with 13 Steps
(labeled as S1 to S13 in figures). For each step, a simulation
model snippet discloses its inside implementation in CISimu-
lator, namely the computerized components corresponding to
the descriptive components. All these computerized compo-
nents are connected to form the simulation model. Therefore,
Fig. 5 depicts the descriptive model, the simulation model, and
the mapping between them. The defect fixing stage was not
included in our simulation model for the following two reasons:
1) With RIDEC, defect fixing is no longer affected by using
CI predictions; 2) Defect fixing is an offline human intellec-
tual activity, lacking relevant logging and difficult to measure
accurately, therefore the inclusion of defect fixing may intro-
duce bias in evaluating predictive CI. The simulation model
simulates the event flow of the commit from being submitted
(created) to being merged into the master branch (ended). The
detailed descriptions of CISimulator are as follows:

[S1: Create Commits] As the model starts running, com-
mits will be created by the NewCommit at random intervals.

7https://anylogic.help/library-reference-guides/process-modeling-library/
index.html
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Fig. 5. Mapping of the descriptive model and the simulation model.

When creating a commit, the commit will be set with various
properties, including the commit type (pull request or push), a
branch of commit (master or non-master), whether to skip CI,
the execution time and result of CI. Among these properties, the
commit type and branch of the commit are determined when the
developer submits the commit, so these two attributes can be set
when the commit is created. In addition, a commit can skip the
execution of CI by adding some keyword in the commit mes-
sage, such as “skip ci”, “skip travis”, etc. Therefore, whether to
skip the execution of CI can be determined when the commit is
created. If the small probability event (e.g., flaky test) is not

considered, and the execution result of CI is only related
to whether the current commit contains defects, the exe-
cution result of CI triggered by the commit is also deter-
mined when it is created. In short, it is practical to set the
above properties for the commit when it is created. In ad-
dition, we found that when the execution result of the cur-
rent CI is determined, the execution result of the next CI
has different probabilities. In order to fit the real situation,
we use two conditional probabilities to assign a result type
(passed or failed) to the commit. The details are explained
in Table IV.
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TABLE III
DESCRIPTIONS OF MEASUREMENT VARIABLES OF PREDICTORS USED

IN THE SIMULATION

Var. description

Pf|ff P (A = f |B = f, C = f), which means the probability that the
prediction result of current commit (A) is failed on the premise that
the real result of current commit (B) is failed and the prediction result
of previous commit (C) is failed. Pp|ff = 1 − Pf|ff .

Pf|pf P (A = f |B = p, C = f), which means the probability that the
prediction result of the current commit is failed on the premise that
the real result of current commit is passed and the prediction result
of previous commit is failed. Pp|pf = 1 − Pf|pf .

Pp|fp P (A = p|B = f, C = p), which means the probability that the
prediction result of the current commit is passed on the premise that
the real result of the current commit is failed and the prediction result
of previous commit is passed. Pf|fp = 1 − Pp|fp.

Pp|pp P (A = p|B = p, C = p), which means the probability that the
prediction result of current commit is passed on the premise that the
real result of current commit is passed and the prediction result of
previous commit is passed. Pf|pp = 1 − Pp|pp.

[S2: 8-hours working schedule] In most enterprises, de-
velopers typically work only eight hours a day. Therefore, we
simulated the “8-hours working schedule” in the simulation.
We assume that new code commits are created only during
developers’ working hours. To implement this, we add a round-
time event, which will be triggered every 8 hours. When the
event is triggered, it will determine whether the current time
belongs to the working time. If it does, the current commit is
valid and will enter S3; Otherwise, the current commit is invalid
and will be discarded.

[S3: Integration strategy] We specify different integration
strategies for the commits on master or non-master branches.
For the commits on the master branch, there are two integration
strategies: predictive CI and random skipping. We use IsSkip
to configure which strategy to apply. It should be noted that
random skipping is used as a baseline to study the effectiveness
of predictive CI. For the commits on the non-master branches,
since the proportion of the commits on the non-master branches
is small (less than 10%) and the commit interval is long, these
commits will directly trigger the CI instead of using predictive
CI. Commits from the master branch with predictive CI will en-
ter S4; commits from the master branch with random skipping
will enter S6; commits from non-master branches will enter S5.

[S4: Predict] It is reported in [50] that the prediction result
of the current CI has a high correlation with the execution
result of the previous CI. Therefore, we also use conditional
probability to model the predictor. We use four variables (Pf |ff ,
Pp|fp, Pf |pf , Pp|pp) to describe a predictor. The description
of each variable is shown in Table III. These variables are in
the form of P (A|B,C), where A denotes the prediction result
of the current commit, B denotes the real result of the current
commit, and C denotes the prediction result of the precedent
commit. P (A|B,C) is essentially a conditional probability,
which means the probability of the occurrence of A on the
premise that B and C are satisfied. In our research, A, B, C have
only two results: passed and failed, which are represented by p
and f respectively. Algorithm 2 shows the execution process of
the predictor based on these variables. It assigns a prediction
result based on the real result of the current commit (i.e. its
result type) and the prediction result of the previous commit,

Algorithm 2 Calculation of the prediction results of the current
commit.
Input: Pf |ff , Pf |pf , Pp|fp, Pp|pp; Rcurrent: real result of

current commit; Pprevious: prediction result of previous
commit;

Output: Pcurrent: prediction result of current commit;
1: Generate a random float number N ∈ [0, 1)
2: if Rcurrent == passed then
3: if Pprevious == passed then
4: if N < Pp|pp then
5: Pcurrent ← passed
6: else
7: Pcurrent ← failed
8: end if
9: else

10: if N < Pf |pf then
11: Pcurrent ← failed
12: else
13: Pcurrent ← passed
14: end if
15: end if
16: else
17: if Pprevious == passed then
18: if N < Pp|fp then
19: Pcurrent ← passed
20: else
21: Pcurrent ← failed
22: end if
23: else
24: if N < Pf |ff then
25: Pcurrent ← failed
26: else
27: Pcurrent ← passed
28: end if
29: end if
30: end if
31: return Pcurrent;

with a certain probability. For example, if the real result type
of the current commit is passed and the prediction result of the
previous commit is failed, the probability that the prediction
result of the current commit is failed equals to the calibration
variable Pf |pf . Commits predicted as failed will enter S5, and
commits predicted as passed will enter S6.

[S5: Triggering Commits waiting in Qf ] After using
predictive CI, commits can be divided into two categories: trig-
gering commit and skipped commit. Triggering commit, which
is predicted as failed, will trigger CI immediately after obtain-
ing server resources. If server resources are not available, the
triggering commit will enter Qf and wait for server resources.
Skipped commit, which is predicted as passed, needs to wait
in Qp until a triggering commit appears. Then, all the skipped
commits in the Qp will be packaged with the triggering commit
(at the head of the Qf ) as a batch to execute CI together.

[S6: Skipped Commits waiting in Qp] Skipped commit
will enter Qp and wait for triggering commit.

[S7: Route select] When the server resources are available,
there are three situations: 1) If the triggering commit at the head
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TABLE IV
THE CALIBRATION AND INPUT VARIABLES OF EACH PROJECT

# Variables Type Descriptions

01 InputCommit Cal. The mean of the time interval for generating a new commit. The variable follows the Gamma distribution, and the unit is minute.
02 CommitType Cal. The probability that the commit type is pull request.
03 ResultType Cal. The CI execution result (failed or passed) of the current commit. It consists of two conditional probabilities, denoted as (P (A =

p|B = p) and P (A = f |B = f)). Where P (A = p|B = p) means the probability that the CI execution result current commit (A)
is passed on the premise that the CI execution result of previous commit (B) is passed, P (A = f |B = f) means the probability that
the CI execution result of current commit (A) is failed on the premise that the CI execution result of previous commit (B) is failed.

04 PRPassedDelay Cal. The time cost of a pull request commit to executing CI and the execution result of CI is passed. The variable follows the Gaussian
distribution, and the unit is minute.

05 PRFailedDelay Cal. The time cost of a pull request commit to executing CI and the execution result of CI is failed. The variable follows the Gaussian
distribution, and the unit is minute.

06 PushPassedDelay Cal. The time cost of a push commit to executing CI and the execution result of CI is passed. The variable follows the Gaussian distribution,
and the unit is minute.

07 PushFailedDelay Cal. The time cost of a push commit to executing CI and the execution result of CI is failed. The variable follows the Gaussian distribution,
and the unit is minute.

08 Master Cal. The probability that a commit belongs to the master branch.
09 Skip Inp. The probability that a commit skips the CI execution.
10 Predictor Inp. Quadruple is used to describe the predictor, e.g., (Pf|ff , Pp|fp, Pf|pf , Pp|pp), refer to Table III.
11 ServerResources Inp. The total number of server resources.

of Qf belongs to the master branch and Qp is not empty, all the
skipped commits inQp will be packaged with the head triggering
commit as a batch to execute CI together, that is, enter S8. 2) If
the server is released and there is no triggering commit (Qf is
empty), in order to make full use of the server resources, the
skipped commits in Qp will be packaged as a batch to execute
CI together, that is, enter S9. 3) If the head triggering commit
belongs to the non-master branches or Qp is empty, the head
triggering commit will execute CI alone, that is, enter S10.

[S8: Triggering Commit and Skipped Commits are
batched to execute CI] After execution, the batch will enter
different processes according to the CI execution result. If the
execution result of CI is passed, the batch will enter S12 to
release server resources and be unpacked. Otherwise, the batch
will proceed to S11 to locate the defective commits in the batch
using RIDEC, and the server resources will not be released until
RIDEC is complete.

[S9: Skipped Commits are batched to execute CI] Similar
to S8, the batch will enter different processes according to the
CI execution result.

[S10: Triggering Commit executes CI alone] Different
from S8 and S9, the server does not need to locate defective
commits with RIDEC, because the CI execution result indicates
whether the current commit is defective. After execution, the
server resources will be released and the commit will enter S13
to merge into the master branch.

[S11: Rollback-based Identification of Defective Com-
mits] The RIDEC method automatically locates defective
commits through the server. The details were explained in
Sec. III-C. After finding the defective commits, Cbatch will
enter S12 to release server resources and be unpacked.

[S12: Release & Unbatch] After CI execution, the server re-
sources will be released and the current batch will be unpacked.

[S13: Merge] After CI execution, all commits will be merged
into the master branch and exit the process.

F. Calibration of CISimulator

The simulation uses probabilistic randomness to simulate the
real situation through the distribution presented by the histor-
ical data. Each variable in the simulation model needs to be

calibrated according to the actual project data, so as to reflect
the real situation. We calibrated CISimulator respectively with
the data from each project. The calibration was based on data
obtained from build logs on TravisTorrent and commit logs on
GitHub, which can be associated by “commit_id”. The calibra-
tion variables and input variables of the model are shown in
Table IV. We conducted Kolmogorov-Smirnov test [51] for
testing whether the data conforms to one of the twelve types
of distributions supported by Anylogic, including Gaussian,
Uniform, and Exponential, etc. Unfortunately, some of the real
data set does not follow any of these distributions. There-
fore, we selected the closest standard distribution based on
the Kolmogorov-Smirnov Distance for each variable. Table V
presents the results of the Kolmogorov-Smirnov test. A smaller
distance means that the data are more similar to the hypothe-
sized distribution, e.g., the distribution of InputCommit is closer
to a Gamma distribution than others.

For the variable InputCommit, we sorted all the commits in
ascending order according to the “started_at” in the build log.
Then, we calculated the creation time interval of all adjacent
commits. We found that the creation time interval of adjacent
commits is close to the Gamma distribution. Therefore, we
use exponential distribution to set the creation time interval of
adjacent commits.

For the variable CommitType, we identify the commit type
of each commit according to the “event_type” field in the build
log. Travis CI has four trigger types of CI, including push, pull
request, cron job, and api. Since the sum proportions of cron job
and api are at very small levels in our selected projects (shown
in Table VI), we excluded these two CommitTypes. Hence,
we use the proportion of pull request as the probability that a
newly generated commit is set as pull request in CISimulator,
otherwise it is a push.

For the variable ResultType, we identify the execution result
of each CI according to the “tr_status” field in the build log.
Then, we set the ResultType for commit according to the con-
ditional probability introduced in Sec. III-E.

For the variables PRPassedDelay, PRFailedDelay, Push-
PassedDelay, PushFailedDelay, we extracted the start time and
end time of each CI through “started_at” and “finished_at”
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TABLE V
THE MEAN OF KOLMOGOROV-SMIRNOV DISTANCE BETWEEN THE REAL DATA DISTRIBUTIONS AND THE

HYPOTHESIZED DISTRIBUTIONS ON THE SELECTED PROJECTS

InputCommit PRPassedDelay PRFailedDelay PushPassedDelay PushFailedDelay

Gaussian 0.22 0.24 0.23 0.18 0.29
Uniform 0.54 0.44 0.47 0.36 0.47
Triangular 0.46 0.40 0.41 0.34 0.48
Exponential 0.20 0.49 0.41 0.51 0.42
Gamma 0.10 0.81 0.63 0.95 0.81
Beta 0.96 1.00 1.00 1.00 1.00
Chi2 1.00 1.00 1.00 1.00 0.78
Erlang 0.99 1.00 1.00 0.83 0.83
Logistic 0.40 0.36 0.35 0.35 0.38
Pareto 0.45 0.85 0.74 0.92 0.78
Pert 0.63 0.59 0.56 0.59 0.58
Rayleigh 0.45 0.39 0.34 0.39 0.48

We highlight the selected distribution for each variable with a green background.

TABLE VI
DATA CHARACTERISTICS OF THE SIX PROJECTS

proj.
CI Result Trigger Type

Total Passed Failed Push PR Cron Api

A 23402 19511 676 0 22911 489 2
B 8650 7234 1076 3765 4885 0 0
C 6431 5936 427 1215 5214 0 2
D 5361 3719 1565 783 4138 440 0
E 4225 3518 658 993 3232 0 0
F 4010 1775 1970 1331 2679 0 0

∗ A: python/cpython; B: pypa@warehouse; C: apache/hive; D: pypa/pip;
E: akka/akka; F: opf/openproject.

fields in the build log. Then we use the difference between
these two variables as the execution time of one CI. There
are obvious differences in the execution time of one CI for
different ResultTypes and CommitTypes of commits. Hence, we
measured the distribution of CI execution time for four types
of commit, including passed push, failed push, passed pull
request, and failed pull request. The most similar distribution
is the Gaussian distribution.

For the variable Master, existing studies [14], [15], [17] do
not distinguish the branch of commit when training and vali-
dating the model. However, we observed that the performance
of the predictor on different branches is different. Hence, it is
reasonable to establish prediction models for different branches.
The commit branch can be identified by the “branch” in the
build log. Since the proportion of the commits on the non-
master branches is small (less than 10%), we divided commits
into two categories: commits on the master branch, and com-
mits on non-master branches (non-master). Hence, we use the
proportion of master as the probability that a newly generated
commit belongs to the master branch in CISimulator.

IV. VERIFICATION & VALIDATION OF CISIMULATOR

The purpose of our establishment of the CISimulator is to
provide a simulation environment for the evaluation of the
application effects of predictors in continuous integration. The
verification and validation of the CISimulator itself is cru-
cial as it is the premise of implementing effective simula-
tion experiments.

Gong et al. [52] summarized the Verification and Validation
(VV) frameworks for software process simulation modeling
[44], [45], [46] and conducted a mapping study to investigate
the V&V methods used in existing studies. They identified five
quality aspects including syntactic quality, semantic quality,
pragmatic quality, performance, and value. The goal of value
is to validate the practical utility of the model, which is beyond
the scope of this research. Therefore, we verify and validate
CISimulator from the first four quality aspects.

A. Syntactic Quality

The goal of syntactic quality is syntactic correctness. To
achieve this, two researchers independently checked the pa-
rameters of each block and checked the links between blocks
to ensure the model meet the syntax defined in AnyLogic. No
errors or warnings were reported during the running of the
simulation.

Qualitative evaluation results: The syntax of CISimulator
conforms to the requirements of AnyLogic 8.7.6.

B. Semantic Quality

Semantic quality contains two goals, i.e. feasible validity and
feasible completeness. To achieve the goals, we verified and val-
idated the model from three aspects, including model structure,
variables, and simulation results. We established the mapping
shown in Fig. 5 to check the structural consistency between the
simulation model and the descriptive model. To verify variables,
we first performed a dimensional consistency test. In this model,
the only unit of measurement is time. We manually checked
the time dimension of all blocks in minutes. Then we manually
checked the distribution functions of all input variables. After
the verification of the structure and variables of the model, we
ran the model with variables calibrated from projects shown
in Table VI. We performed extreme condition tests as well as
used the slow animation function built-in AnyLogic to observe
the flow of commits. For each branch in the model, we set 0%,
50%, and 100% probabilities respectively. We ran 10 trials for
each setting. In running, we validated that the flow of commits
is in line with expectations. After executing the simulation, we
validated that the outputs are in line with expectations. By the
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extreme condition tests, we determined that the proportion of
commits in the model entering different workflows conforms to
the set probabilities, that is, the operation of the model conforms
to the expected design.

Qualitative evaluation results: The structure of the CISim-
ulator is consistent with the descriptive model. The units of
each variable are consistent. The extreme condition tests show
that CISimulator conforms to the context of the CI processes
(including with and without the predictive CI method).

C. Pragmatic Quality

Pragmatic quality consists of two goals, i.e. understandability
and comprehension. In other words, the model needs to be easy
to understand and easy to use. The common methods for val-
idating pragmatic quality are survey and face validity (present
the model to users or experts). In another work in our lab [53],
a third-year academic master student planned to build a CI
process simulation model that integrates security vulnerability
predictors based on CISimulator. This master student had never
participated in this research and had not learned software pro-
cess simulation before. He first spent 3 days learning how to use
AnyLogic to build a DES model. After a half-hour discussion
with him, he fully understood CISimulator and was able to use it
for simulation experiments. Two weeks later, he completed the
simulation model for another work (security-oriented commits
priority in CI) alone based on CISimulator. This case illustrates
the understandability and the usability of CISimulator.

Qualitative evaluation results: CISimulator shows good
quality in terms of understandability and comprehension.
In addition, it exhibits good scalability and multi-scenario
applicability.

D. Performance

The goal of performance aspects is to validate the fidelity
of the DES model. There are a variety of methods that can be
used to validate performance, and one of the most effective is
to conduct experimental case studies. Since there are no open
source projects applying continuous integration result predic-
tion in reality, we compared ours with the quasi-simulation
method [24]. As we discussed in Sec. II-B, although quasi-
simulation has obvious limitations, it can reflect reality under
limited conditions, that is, it can be regarded as approximate
reality. Therefore, we compare the results of our simulation and
quasi-simulation under limited conditions. Although this is an
incomplete validation, it is sufficient to validate the correctness
and fidelity of our simulation model.

Projects: We used Travis CI API to crawl the CI history
data of 1738 open-source projects on GitHub that use Travis
CI for continuous integration. Considering the timeliness of
the data, each project only retains the CI data of 2020 and
2021 for experiments. In order to ensure the amount of data
and reflect the differences between experimental projects, we
sorted all projects according to the number of CI executions,
and selected 6 projects based on two rules: 1) projects with more
than 4,000 CI executions; 2) among the retained projects, we
selected 6 representative projects according to the number of CI

executions, of which two projects involve the highest number
of executions, two with the median number, and two with the
least number. Table VI shows the details of them. There are
clear differences among these projects, which can well validate
the universality of the simulation model.

Predictors: Based on new data, we repeated the experiments
in study [18]. We evaluated the performance of 67 predictors
using a time series validation and selected five representative
predictors. The performance of these predictors is generally in
five positions in the distribution of performance (indicated by
F2f ) of all predictors, corresponding to the upper limit (100%),
75%, 50%, 25%, and the lower limit (0%) respectively.

The five predictors are the combination of Instance Hard-
ness Threshold [54] sampling algorithm and Random Forest
[55] (IHT+RF), Balanced Bagging (BB) [56] without sampling,
Cost Sensitive Pasting (CSP) [57] without sampling, the com-
bination of Neighbourhood Cleaning Rule [58] sampling algo-
rithm and Decision Tree [59] (NCR+DT), LocalOutlierFactor
(LOF) [60] without sampling. It should be noted that in this
step, we only sort and select the predictors, and do not directly
use the obtained evaluation results as the input of the simulation.

Experimental settings: Due to a series of problems such
as cross-time zone collaboration and the unknown number of
servers, we limit the comparative experiments to scenarios
where quasi-simulation can be performed. Therefore, we made
the following three settings for the experiment: 1) The 8-hour
work schedule is not considered, that is, S1 will continuously
create commits; 2) the server resources are unlimited, that is,
there will be no waiting phenomenon in S5 and S6; 3) the
skipped commits can only execute CI together with the trig-
gering commit, even if the server resources are available, that
is, S10 will not be selected.

Quasi-simulation: Quasi-simulation essentially performs
and records the prediction process of each commit in the test
set in a more fine-grained way, and finally reinterprets the
prediction results. The quasi-simulation input history commits
in the order in which they were actually built. The details were
discussed in Sec. II-B, and please refer to the study [24] for
more details. We divide the data set into a training set and test
set according to 8:2.

Simulation: The simulation used the same training and
test sets as the quasi-simulation. The difference is that in-
stead of directly using them as simulation inputs, we use them
as data sources for input variables and calibration variables.
We computed calibration variables for the simulation model on
the test set. The calibration variables and input variables for
each project are shown in Table VII and Table VIII respec-
tively. For each scenario, we performed 100 runs to mitigate
accidental errors.

Validation metrics: We used eight metrics to validate the
correctness and fidelity of the simulation model, including the
number of True Failed commits produced by the predictor
(# TF), the number of False Failed commits produced by the
predictor (# FF), the number of True Passed commits produced
by the predictor (# TP), the number of False Passed commits
produced by the predictor (# FP), Time cost for executing
CI without RIDEC on the Master branch (Tci_m), Time cost
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TABLE VII
CALIBRATION VARIABLES FOR EACH PROJECT

# Variables Projects

A B C D E F

01 InputCommit 19.88 18.88 47.12 41.08 43.18 33.19
02 CommitType 1 0.9 0.87 0.85 0.77 0.65
03 ResultType (0.97,0.30) (0.93,0.54) (0.92,0.24) (0.82,0.49) (0.91,0.40) (0.67.0.61)
04 SkipPR 0 0 0 0 0 0
05 SkipPush 0 0.02 0.19 0 0 0.37
06 PRPassedDelay (13.95, 3.46) (8.90, 5.03) (13.43, 1.40) (36.69, 8.76) (18.89, 3.53) (38.45, 16.08)
07 PRFailedDelay (5.03, 0.71) (12.10, 7.95) (8.18, 4.18) (15.47, 15.74) (12.11, 3.62) (33.33, 12.57)
08 PushPassedDelay (0,0) (10.74, 7.12) (12.66, 1.58) (40.38, 4.45) (23.84, 3.74) (42.00, 19.45)
09 PushFailedDelay (0,0) (12.66, 10.30) (9.65, 11.50) (30.63, 1.79) (16.28, 13.44) (38.35, 11.96)
10 Master 0.88 0.98 0.95 0.97 0.93 0.72
11 ServerResources 1 1 1 1 1 1

TABLE VIII
MEAN PERFORMANCE OF PREDICTORS ON EACH PROJECT

Predictor Projects

A B C D E F

IHT+RF (0.91, 0.72, 0.58, 0.96) (0.96, 0.24, 0.76, 0.87) (0.89, 0.65, 0.74, 0.71) (0.87, 0.45, 0.62, 0.81) (0.88, 0.34, 0.66, 0.64) (0.85, 0.66, 0.42, 0.88)
BB (0.75, 0.64, 0.37, 0.87) (0.84, 0.43, 0.63, 0.88) (0.63, 0.55, 0.55, 0.68) (0.69, 0.51, 0.42, 0.70) (0.72, 0.45, 0.53, 0.69) (0.81, 0.42, 0.59, 0.48)
CSP (0.62, 0.89, 0.14, 0.99) (0.89, 0.50, 0.36, 0.92) (0.00, 1.00, 0.00, 1.00) (0.81, 0.58, 0.43, 0.82) (0.58, 0.92, 0.17, 0.98) (1.00, 0.00, 0.99, 0.00)
NCR+DT (0.38, 0.83, 0.27, 0.95) (0.68, 0.52, 0.40, 0.87) (0.33, 0.89, 0.35, 0.89) (0.65, 0.44, 0.39, 0.73) (0.51, 0.66, 0.43, 0.81) (0.62, 0.72, 0.20, 0.81)
LOF (0.00, 0.94, 0.21, 0.98) (0.09, 0.92, 0.56, 0.95) (0.47, 0.91, 0.30, 0.95) (0.64, 0.97, 0.42, 0.98) (0.33, 0.92, 0.35, 0.93) (0.20, 0.95, 0.22, 0.93)

∗ Quadruple are used to describe the predictor, e.g., (Pf|ff , Pp|fp, Pf|pf , Pp|pp).

for executing CI without RIDEC on the Other branches (non-
master) (Tci_o), Time cost for locating defective commits using
RIDEC (Tfl), the Number of commits to Wait from creation to
execution of CI (Nw_ci). We measure the relative Error (Er)
between simulation results (Rs) and quasi-simulation results
(regarded as approximate actual values, Ra) for each variable
as follows:

Er = (Rs −Ra)/Ra (1)

Quantitative evaluation results: The validation results are
shown in Table IX. For each predictor, we present the mean
value of Er of all the simulation runs for each variable. The
results show that the relative errors of # TF, # FF, # TP, and # FP
are at a low level (less than 10% on average). Although the mean
relative errors of Tci_m,Tci_o, Tfl, and Nw_ci are more than
10%, the approximate actual values are within the distribution
range of 100 runs of simulation results. Quasi-simulation is
an approximation of actual values obtained directly using real
data, which reflects what would have happened if the prediction
were used in the past depicted by the historical data. How-
ever, simulation is based on the statistical distribution of real
data, which reflects what the prediction would be like if the
future data distribution is consistent with the historical data.
The result of the simulation is represented by a probability
distribution, whilst the result of the quasi-simulation is repre-
sented by a specific value (a definite outcome of all possible
outcomes that follow the distribution). If the result of quasi-
simulation is within the distribution obtained by the simulation,
we can infer that the simulation can cover the real situation.
Hence, the validation results indicate that CISimulator can

accurately simulate the generation of commits and the predic-
tion performance of predictors.

V. SIMULATION EXPERIMENTS

We conduct simulation experiments using six popular OSS
projects in Table VI as empirical cases to study the effectiveness
of predictive CI using simulation. At this stage, we consider
effectiveness from two aspects: 1) the relative cost savings of
the time cost for executing CI, that is, the sum of the time
cost for executing CI triggered by the commit on the master
branch; 2) the relative cost savings of the average waiting
time before executing CI, that is, the ratio between the sum
of the waiting time before executing CI and the total number
of commit.

A. Research Questions

It is difficult to know the effect of using machine learning-
based predictors without evaluating it from the perspective of
the software process. The need to use simulation rather than
common prediction evaluation metrics stems from the com-
plexity of the software development process. The process may
change due to the use of predictions, especially considering
that the order of commits for executing CI can be optimized
and that the gains of successful predictions and the losses
of incorrect predictions are not equal. To evaluate machine
learning-based CI predictors, we simulate a new CI process
that includes predictive CI. To investigate why and when CI
prediction should be used, and what type of predictors should be
selected from the process perspective, we derive the following
Research Questions (RQs).
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TABLE IX
RELATIVE ERROR BETWEEN SIMULATION RESULTS AND ACTUAL VALUE

Proj. Predictors Er for Each Variable

# TF # FF # TP # FP Tci_m Tci_o Tfl Nw_ci

A

IHT+RF 1.26% -28.57% -9.23% -3.58% 67.48% 3.46% 118.96% -34.66%
BB 3.66% -7.59% -14.82% -12.19% 34.27% 3.35% 65.00% -15.49%
CSP 1.01% -17.84% -7.45% -6.13% 15.87% 2.22% 15.52% 52.41%
NCR+DT 2.44% -13.80% -18.03% -20.00% 10.93% 2.84% 12.48% 0.27%
LOF 0.39% -17.15% 0.22% 14.25% 13.56% 3.51% 12.07% -8.01%

B

IHT+RF -9.56% 10.79% -4.60% 4.31% 29.18% -23.49% 108.56% -52.87%
BB -6.96% -10.71% 1.57% 2.09% 45.19% -20.16% 105.98% -19.28%
CSP -6.18% 9.05% -9.40% 11.44% 75.81% -21.61% 136.27% -40.24%
NCR+DT -5.01% -3.72% -3.07% -1.51% 76.70% -25.61% 134.37% -1.30%
LOF -6.87% -12.17% 22.22% 16.67% -29.70% -19.43% -35.50% -57.45%

C

IHT+RF -7.34% 9.23% 10.63% 5.24% 14.03% 17.45% 76.45% -52.26%
BB -3.84% 4.89% 13.98% 3.79% 8.47% 18.60% 6.71% -25.36%
CSP -4.73% 15.13% 0.00% 0.00% 0.00% 23.87% 0.00% 0.00%
NCR+DT -2.00% 21.56% -0.20% 0.49% 18.87% 21.23% 22.57% -26.57%
LOF -1.64% 3.91% 16.70% 4.36% -1.11% 37.09% -8.62% -18.58%

D

IHT+RF -3.54% 5.58% -1.95% 1.40% 27.19% 9.97% 57.91% -36.28%
BB -2.15% 3.38% -1.43% -1.63% 16.47% 10.40% 17.03% -12.02%
CSP -4.98% 7.03% -6.14% 9.57% 51.15% 10.83% 75.77% -27.31%
NCR+DT -1.50% 3.26% 0.50% -4.19% 23.13% 12.69% 32.78% -4.28%
LOF -1.70% -1.93% 10.87% 8.99% 8.18% 12.65% 6.63% 2.67%

E

IHT+RF -3.30% 9.79% 9.04% 0.94% 12.36% 0.20% 23.98% -24.46%
BB -0.25% 7.83% -1.77% 0.09% 14.35% 1.99% 19.58% -16.08%
CSP -2.14% 10.80% 12.50% 16.67% -5.53% 6.73% -6.33% -25.59%
NCR+DT 0.53% 4.83% 12.21% -5.89% 28.60% 3.52% 44.13% 37.36%
LOF -1.81% 6.35% 21.06% 3.11% -4.60% 5.37% -8.50% -35.91%

F

IHT+RF -8.94% 4.79% -24.37% -19.65% 2.87% -16.43% 28.53% -35.30%
BB 2.91% -11.87% -25.85% -9.29% 1.76% -18.42% 50.65% 1.45%
CSP 0.00% 0.00% -23.63% -6.85% -7.34% -18.66% 0.00% 0.00%
NCR+DT -5.03% -25.42% -19.10% 2.62% 16.06% -18.85% 18.40% -9.12%
LOF -5.91% -23.01% 6.61% -4.60% -13.68% -17.01% -16.50% -20.97%

∗ A: python/cpython; B: pypa@warehouse; C: apache/hive; D: pypa/pip; E: akka/akka; F: opf/openproject.

RQ1: Why should predictive CI be used?
Saving time is the main purpose and motivation of using

predictive CI. Therefore, RQ1 aims to evaluate the perfor-
mance of existing predictors in terms of their ability to save
time in executing CI and the average waiting time before ex-
ecuting CI. Hence, RQ1 specifically includes the following
two sub-questions:

RQ1.1: How much time can the existing predictors save for
executing CI?
RQ1.2: How much time can the existing predictors save for
waiting before executing CI?
We do not distinguish information such as the number

and configuration of servers in different case projects but
regard the processing power provided by all servers currently
in the case project as a unit of the server. Therefore, the
time cost of executing CI is equivalent to the overhead of
server resources.

RQ2: When should predictive CI be used?
Not all projects are suitable for adopting predictive CI, and

the effectiveness of using predictive CI can also vary greatly
at different stages of a project. RQ2 aims to investigate the
relationship between project features and the amount of time
that can be saved through predictive CI. Specifically, we analyze
the relationship between three simulated project features in
CISimulator and time-saving. These features include the av-
erage time interval between adjacent commits (referred to as

commit interval), the failure rate of CI executions (referred to
as failure rate), and average execution duration of CI (referred
to as execution duration). Hence, RQ2 specifically includes the
following two sub-questions:

RQ2.1: What are the impacts of different project features on
the time cost for executing CI?
RQ2.2: What are the impacts of different project features on
the time cost for waiting before executing CI?
RQ3: What type of predictors should be used?
In the case that predictive CI is suitable to a project, it

is important to choose a good predictor for maximizing the
returns. RQ3 aims to investigate the relationship between com-
mon machine learning performance metrics and time saving,
that is, to analyze what kind of performance we should prioritize
when choosing a predictor. Hence, RQ3 specifically includes
the following two sub-questions:

RQ3.1: What are the impacts of different prediction perfor-
mance on the time cost for executing CI?
RQ3.2: What are the impacts of different prediction perfor-
mance on the time cost for waiting before executing CI?

B. Evaluation Metrics

We measure the time cost for the server to execute CI on the
master branch with RIDEC (Tci_m), and the average waiting
time before executing CI (Twait) respectively.
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Tci_m represents the total server resource consumption, that
is, the sum of the time consumed by all commits on the master
branch to execute CI, and the time consumed for the server to
locate defective commits based on RIDEC. We denote the Tci_m

of the predictor M as Tci_m(M).
Twait represents the average waiting time before executing

CI, that is, the ratio between the sum of the waiting time
before executing CI and the total number of commits during
the simulation. Due to limited server resources, if develop-
ers frequently commit to the code warehouse, these commits
need to wait for server resources in the queue according to
FIFO. That is, the following commit can only be integrated
after the previous commit completes the CI and releases the
server resources.

We evaluate the effectiveness of predictors from two as-
pects, namely the time cost of executing CI and the aver-
age waiting time before executing CI. We define Sci_m(M,N)

(Equation 2) and Swait(M,N) (Equation 3) to respectively
measure the relative savings of the time cost for executing
CI (with RIDEC) and relative savings of the average wait-
ing time before executing CI between the predictor M and
the predictor N .

Sci_m(M,N) = (Tci_m(M) − Tci_m(N))/Tci_m(M) (2)

Swait(M,N) = (Twait(M) − Twait(N))/Twait(M) (3)

C. Design of Experiments

Samples. We use the six projects presented in Table VI as the
experimental cases. The projects were also used for the V&V
of CISimulator as explained in Sec. IV-D. In the V&V experi-
ments, we directly use the entire dataset of a project for training
and testing of predictors, as well as the calibration of the CISim-
ulator. While in simulation experiments, we randomly sample
the data for each project to obtain a sufficient number of samples
for statistical analysis. We do not collect more projects because
there are significant contextual differences between them, and
sampling multiple times from the same project helps control un-
measurable variables effectively. Specifically, for each project,
while preserving the time sequence, we randomly slice the data
30 times. Each slice (i.e., one sample) contains 100 consecutive
CI executions. We employ a sampling method with replace-
ment, which means that there might be some overlapping data
points between two samples (the probability of obtaining two
identical samples is very low). We calibrated the model for
each sample.

Control group. We take the scenario that does not use
predictive CI and does not skip executions as the control group.
We denote it as skip-0.

Treatment groups (predictors). We select five representa-
tive predictors as explained in Sec. IV-D. The five predictors
are {IHT+RF, BB, CSP, NCR+DT, LOF}. For RQ1, we add
an ideal predictor (accuracy equals 1) to explore the maximum
effect that can be achieved using predictive CI.

Comparison groups (random skipping). For comparison,
we introduce five control groups as baselines, namely random
skipping 20%, 40%, 60%, 80%, and 100% of the commits

respectively. We denote them as skip-20, skip-40, skip-60, skip-
80, skip-100.

Number of servers: Changes in the number of servers will
eventually be reflected in changes in server utilization and the
wait time of commits before executing CI. To evaluate the
effectiveness of prediction through a unified dimension for RQs,
we set the number of servers as 1.

Simulation setup. We performed the simulation experiments
for the 6 projects (30 samples for each) with 5 predictors, 5 ran-
dom skipping strategies, and the control group. Hence, a total
of 1980 (30× 6× (5 + 5 + 1)) cases were simulated. For the
statistics of contingency, we executed 100 runs for each case,
which is much more than the number of simulations in most
related studies [61], [62], [63]. Each run will continue until the
life-cycle of the 100th commit is completed, during which new
commits will be continuously created, that is, typically more
than 100 commits will be created, but the simulation will end
before their lifetime ends. As we introduced in Sec. III-E, we
have simulated the 8-hour work schedule. Therefore, commits
will only be created continuously for 8 hours in a day, and no
commits will be created at other times.

VI. RESULTS AND ANALYSIS

This section presents and analyzes the simulation results to
answer each research question.

A. Effectiveness of Existing Predictors (Why)

Figs. 6 and 7 respectively show the relative time savings of
executing CI (Sci_m(M,O)), and the average waiting time before
executing CI (Swait(M,O)), where M indicates the predictor
used, and O indicates that no predictor is used. In order to
determine whether the five predictors are better than random
skipping, we simulated five additional scenarios: skip-20, skip-
40, skip-60, skip-80, skip-100, which denotes randomly skip
20%, 40%, 60%, 80%, 100% of the commits respectively. Fur-
thermore, we simulated an ideal predictor to investigate the best
effect that predictive CI can possibly achieve. For each project,
we randomly sampled 30 times. Each box plot in the two figures
represents the simulation results of a strategy (predictive or
random skipping) on 30 samples of a project.

In our simulation, no matter what strategy is adopted, CI
will be executed as long as there are idle server resources and
execution demand. Fully utilizing resources in this way is more
practical, and not doing so may exaggerate the effectiveness of
CI predictions.

1) Effectiveness of Existing Predictors in Terms of Saving
Time for Executing CI (RQ1.1): All predictors can save time
for executing CI in most cases. As shown in Fig. 6, savings
of over 30% can be achieved in some samples. On average,
predictive CI can save time. However, except for project A,
there are cases in every other project where using predictions
instead leads to increased time costs.

The effectiveness of predictive CI varies greatly across
different projects, and there is also substantial varia-
tion within different samples of the same project. Project
F is an extreme example where there are cases in which
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Fig. 6. Relative cost savings of the time cost for executing CI.

Fig. 7. Relative cost savings of the average waiting time before executing CI.

the predictive CI can save more than 10% time, as well as
cases in which predictive CI causes more than 10% additional
cost. The main reason for this phenomenon is that the overall
failure rate of project F is high and the failure rate of
different time segments (samples) has a large variation (ranging
from 0.23 to 0.82).

The difference between different predictors and random
skipping strategies is relatively small. The LOF predic-
tor, which performs poorly in terms of prediction performance
metrics, excels in saving time for executing CI. Skip-100
performs best on average across four projects among the

random skipping strategies and it is a special case that all of the
commits waiting in the queue will execute CI together once the
server resources are available. LOF tends to predict most CIs as
passed, in other words, it tends to skip the execution for the vast
majority of commits. From this point of view, LOF is similar to
skip-100, so it is understandable that they have similar results.
However, on average, skip-100 has a negative impact on both
Project B and Project F, whilst LOF can achieve savings. This
is the advantage of predictors over random skipping strategies.
In addition, the average results of all projects indicate that CSP
and LOF perform better than all random strategies.
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TABLE X
RESULTS OF PEARSON CORRELATION ANALYSIS BETWEEN THE THREE PROJECT FEATURES AND Sci_m(M,N)

Features
A B C D E F

r p r p r p r p r p r p

Commit inteval -0.86 0.00* -0.67 0.00* -0.80 0.00* -0.47 0.01 -0.47 0.01 0.25 0.19
Failure rate -0.42 0.00* -0.32 0.00* 0.36 0.00* -0.16 0.01 -0.31 0.01 -0.66 0.19
Execution duration -0.51 0.00* 0.10 0.60 -0.30 0.11 -0.42 0.02 -0.07 0.71 0.11 0.57

* Means close to but not equal to zero.

The improvement of prediction performance can indeed
improve the confidence of using predictive CI. Although the
difference in time-saving between existing predictors and the
ideal predictor is very small, only the ideal predictor can obtain
a positive effect in every sample (those values slightly less than
0 are caused by random errors). Existing predictors and ran-
dom skipping strategies demonstrate insufficient effectiveness
on project F and both present potential negative consequences.
In contrast, an ideal predictor not only carries no risk but also
offers considerable time savings.

2) Effectiveness of Existing Predictors in Terms of Saving
Time for Waiting Before Executing CI (RQ1.2): All predictors
can save the average waiting time before executing CI.
As shown in Fig. 7, every predictor has achieved savings of
over 30% in some samples in each of the six projects. In certain
samples, savings even exceed 80%.

The effectiveness of predictive CI varies greatly across
different projects, and there is also substantial variation
within different samples of the same project. For the time
savings for waiting before executing CI, we also see large
variations in how well the predictors perform across samples.
But even in project F, predictive CI can play a clearly positive
role in most cases.

Random skipping strategies might be better than ex-
isting predictors. Overall, when considering all the projects,
NCR+DT is the best-performing predictor with an average cost
savings of 30.47%. It outperforms skip-80 (29.71%) but is
weaker than skip-100 (32.44%).

An ideal predictor is not necessarily better than ex-
isting predictors in terms of Swait(M,N). The NCR+DT,
which performs best in terms of the mean of Swait(M,N)

over all projects, is slightly better than the ideal predic-
tor. However, the ideal predictor is significantly better than
NCR+DT in terms of Sci_m(M,O). It is still meaningful to
improve prediction performance with the ideal predictor as the
ultimate goal.

Main findings for RQ1: existing predictors can save consider-
able time, but the effectiveness varies across projects. There
is little difference between existing predictors and random
strategies in terms of saving time in most cases. However, for
projects with a high failure rate, the random strategy will have
a negative impact, whilst a good predictor can still effectively
save time.

B. The Impacts of Project Features (When)

An imperfect predictor works most of the time, but not al-
ways. Hence, we investigate the relationship between project
features and the time savings a predictor is able to achieve.
We respectively performed Pearson Correlation Analysis be-
tween the three project features (i.e. commit interval, failure
rate, and execution duration) and the two metrics of relative
savings (i.e. Sci_m(M,N) and Swait(M,N)). For each sample,
we took the best result of the 5 predictors as the value of
the Sci_m(M,N) and Swait(M,N). The results are shown in
Tables X and XI. There are noticeable differences in the degree
and polarity of the correlations in different projects. The key
reason for this phenomenon is that time savings are influenced
by multiple variables, and there are also correlations among
these variables.

1) The Impacts of Project Features on the Time Cost for
Executing CI (RQ2.1): As shown in Table X, none of the three
project features have a significant correlation with Sci_m(M,N)

in project F (p < 0.1). The major reason is that the performance
of predictors on project F is heavily affected by the changes in
project features and the predictor performs significantly worse
in project F than in other projects.

The commit interval has a significant negative corre-
lation with Sci_m(M,N). A smaller commit interval means
that there is a higher likelihood of queuing, and queuing is the
premise for predictive CI to work because it will execute CI re-
gardless of the predicted result when the server is idle. In project
A, where the degree of correlation is highest, increasing the
commit interval from about 15 minutes to 30 minutes results
in a decrease in the Sci_m(M,N) from about 30% to 10%.

The failure rate has a significant negative correla-
tion with Sci_m(M,N) in most cases. A lower failure
rate means there is a greater likelihood of executing fewer
times CIs during defect localization in RIDEC, that is, to
obtain a larger Sci_m(M,N). However, we observe the oppo-
site correlation in project C, which is mainly due to two rea-
sons. Firstly, the commit interval in project C is significantly
longer compared to other projects, resulting in a less queu-
ing phenomenon. Secondly, the execution duration of failed
CIs is noticeably lower than that of passed CIs. Therefore,
in project C, a higher failure rate implies more instances
where individual commits are executed separately with a result
of failed.

There is uncertainty regarding the correlation between
execution duration and Sci_m(M,N). Since the execution
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TABLE XI
RESULTS OF PEARSON CORRELATION ANALYSIS BETWEEN THE THREE PROJECT FEATURES AND Swait(M,N)

Features
A B C D E F

r p r p r p r p r p r p

Commit interval -0.76 0.00* -0.37 0.05 -0.72 0.00* -0.21 0.26 -0.44 0.01 0.57 0.00*
Failure rate -0.48 0.00* -0.40 0.05 0.39 0.00* -0.56 0.26 -0.31 0.01 -0.53 0.00*
Execution duration -0.28 0.14 -0.16 0.40 -0.34 0.06 -0.41 0.02 -0.20 0.28 -0.17 0.38

* Means close to but not equal to zero.

duration of failed and passed executions is different, the average
execution duration is affected by the failure rate. Furthermore,
the occurrence frequency and severity of queuing phenomena
are determined by both commit interval and execution duration.
Therefore, not all projects show a correlation between execution
duration and Sci_m(M,N).

2) The Impacts of Project Features on the Time Cost for
Waiting Before Executing CI (RQ2.2): As shown in Table XI,
the relationships between project features and Swait(M,N) are
similar to their relationships with Sci_m(M,N).

The commit interval has a significant negative correla-
tion with Swait(M,N) in most cases. On project D, we do not
observe a significant correlation. The range of commit interval
in Project D varies from 23 to 92. When the commit interval is
greater than 60, we observe that Swait(M,N) is less than 22.2%.
However, when the commit interval is less than 60, the mean
value of Swait(M,N) is 37.4%. Therefore, although the commit
interval and Swait(M,N) do not show a linear correlation, there
may be a negative correlation between the two. We observe a
positive correlation on project F. The failure rate of Project F is
very high. A lower commit interval will increase the probability
that multiple commits being executed as a batch. However, a
high failure rate means that more cost is required to locate
defects by RIDEC.

The failure rate has a significant negative correlation
with Swait(M,N) in most cases. We observe no signifi-
cant correlation on Project D, whilst we observe a positive
correlation on Project C. For project C, even in samples with
smaller commit intervals, the frequency of queuing is at a
low level. As the execution duration of failed is shorter than
that of passed, a high failure rate would lead to an increase
in Swait(M,N).

There is uncertainty regarding the correlation between
execution duration and Swait(M,N). It is similar to the
results we observe regarding the correlation between execution
duration and Sci_m(M,N).

Existing predictors can guarantee that both Sci_m(M,N)

and Swait(M,N) are greater than 0 in most cases.
We analyzed the results of 180 samples and found for 93%
of them, at least one predictor out of the five predictors did
not produce negative effects. When the commit interval is
less than 20.59 minutes or the failure rate is less than 0.61,
there is a 95% possibility that at least one of the five predic-
tors can save time costs (Sci_m(M,N) > 0 and Swait(M,N) >
0). When the commit interval is less than 16.48 minutes or

the failure rate is less than 0.1, the probability will increase
to 100%.

Main findings for RQ2: both commit interval and failure rate
are important to project features that at least significantly neg-
atively correlate with either Sci_m(M,N) or Swait(M,N), while
the effect of execution duration is unclear and requires further
investigation. Among our experimental samples, when the
commit interval is less than 20.59 minutes or the failure rate
is less than 0.61, there is a 95% possibility that at least one of
the five predictors can save time costs (Sci_m(M,N) > 0 and
Swait(M,N) > 0).

C. The Impacts of Predictors’ Performance (What)

Currently, in the problem of predictive CI, it is almost im-
possible to obtain an ideal predictor with an accuracy close
to 1. Therefore, one has to choose a relatively better predictor
among multiple predictors with different performance. One key
issue in selecting a predictor is the trade-off between different
prediction performances such as precision and recall. The trade-
off should be based on maximizing time savings as much as
possible. Hence, we performed the Pearson Correlation Tests
on common prediction performance metrics and two metrics of
relative savings (i.e. Sci_m(M,N) and Swait(M,N)). The predic-
tion performance metrics we analyzed include Accuracy (Acc.),
Precision of failed (Pre.), Precision of passed (Pre.′), Recall
of failed (Rec.), Recall of passed (Rec.′), F-measure of failed
(F1), and F-measure of passed (F ′

1). More importantly than
choosing a predictor, this correlation analysis will help provide
optimization directions for designing new algorithms.

We grouped the samples of all projects according to project
features. For each project feature, we divided the samples into
two groups based on the values of the feature. One group con-
sists of samples with feature values greater than the median, and
the other group consists of remaining samples. Therefore, we
obtained a total of eight groups of samples. For each group, we
performed Pearson Correlation Analysis between the prediction
performance metrics and time savings. The results are shown
in Tables XII and XIII. We use “l,h,h” to represent a group of
samples with low commit interval, high failure rate, and high
execution duration, and the same for others.

1) The Impacts of Prediction Performance on the Time Cost
for Executing CI (RQ3.1): For different groups, perfor-
mance metrics related to Sci_m(M,N) vary. This suggests
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TABLE XII
RESULTS OF PEARSON CORRELATION ANALYSIS BETWEEN THE PREDICTION PERFORMANCE METRICS AND Sci_m(M,N)

Metrics
l,l,l l, l, h l, h, l l, h, h h, l, l h, l, h h, h, l h, h, h

r p r p r p r p r p r p r p r p

Acc. 0.13 0.13 -0.11 0.31 -0.05 0.63 0.03 0.72 -0.03 0.66 0.23 0.08 -0.07 0.63 0.15 0.05
Pre. -0.23 0.01 -0.06 0.55 -0.44 0.00* -0.48 0.00* 0.07 0.39 0.29 0.02 -0.11 0.41 -0.21 0.01
Pre.′ 0.24 0.01 0.24 0.02 0.34 0.00* 0.36 0.00* -0.32 0.00* -0.16 0.21 -0.17 0.23 0.29 0.00*
Rec. -0.17 0.04 -0.02 0.82 -0.14 0.17 -0.01 0.90 -0.06 0.41 -0.19 0.14 0.01 0.93 0.00* 0.98
Rec.′ 0.08 0.33 -0.12 0.24 0.04 0.67 0.04 0.64 0.01 0.93 0.23 0.07 -0.04 0.75 0.10 0.19
F1 -0.25 0.00* -0.11 0.29 -0.29 0.00* -0.25 0.00* 0.05 0.49 0.20 0.12 0.02 0.91 -0.08 0.31
F ′
1 0.12 0.17 -0.10 0.34 0.23 0.02 0.21 0.02 -0.01 0.86 0.24 0.06 -0.07 0.61 0.26 0.00*

* Means close to but not equal to zero.
h,l,l denotes the sample set with high commit interval, low failure rate, and low execution duration, others similarly.

TABLE XIII
RESULTS OF PEARSON CORRELATION ANALYSIS BETWEEN THE PREDICTION PERFORMANCE METRICS AND Swait(M,N)

Metrics
l,l,l l, l, h l, h, l l, h, h h, l, l h, l, h h, h, l h, h, h

r p r p r p r p r p r p r p r p

Acc. 0.19 0.02 0.01 0.96 0.09 0.37 0.22 0.02 0.04 0.65 0.34 0.01 0.05 0.72 0.16 0.03
Pre. -0.29 0.00* -0.19 0.06 -0.50 0.00* -0.39 0.00* 0.22 0.00* 0.21 0.10 -0.15 0.28 -0.21 0.01
Pre.′ 0.34 0.00* 0.42 0.00* 0.39 0.00* 0.58 0.00* -0.32 0.00* -0.05 0.69 -0.27 0.05 0.22 0.00*
Rec. -0.05 0.59 -0.09 0.37 -0.26 0.01 0.10 0.27 0.00* 0.95 -0.22 0.09 -0.15 0.29 -0.07 0.37
Rec.′ 0.13 0.13 -0.04 0.69 0.23 0.03 0.06 0.51 0.07 0.35 0.33 0.01 0.09 0.50 0.14 0.08
F1 -0.29 0.00* -0.26 0.01 -0.37 0.00* -0.02 0.85 0.23 0.00* 0.25 0.06 -0.08 0.54 -0.07 0.38
F ′
1 0.19 0.03 0.02 0.83 0.43 0.00* 0.35 0.00* 0.06 0.43 0.37 0.00* 0.06 0.68 0.27 0.00*

* Means close to but not equal to zero.
h,l,l denotes the sample set with high commit interval, low failure rate, and low execution duration, others similarly.

that it is difficult to draw conclusions about what kind of predic-
tors can save more time for executing CI regardless of project
features. For samples with high commit interval and low exe-
cution duration, almost all the prediction performance metrics
have no significant correlation with Sci_m(M,N), because it is
difficult for predictions to be effective in the situation where
the frequency of queuing is at a low level. When the commit
interval is low and the execution duration is high, the frequency
of queuing would be high and in this case, predictive CI would
play a more significant role in time saving. Furthermore, if the
failure rate is also at a low level, Sci_m(M,N) would only be
positively correlated to the precision of passed. However, other
scenarios are more complex as Sci_m(M,N) is related to multiple
performance metrics.

Accuracy, recall of passed, and recall of failed do
not correlate with the effectiveness of predictors. In
most groups, none of them showed a significant correlation
with Sci_m(M,N).

2) The Impacts of Prediction Performance on the Time
Cost for Waiting Before Executing CI (RQ3.2): For different
groups, performance metrics related to Swait(M,N) vary.
Overall, the results of the correlation test are similar to those
of RQ3.1. None of the prediction performance metrics signif-
icantly correlate with Swait(M,N) across all groups. However
none of the metrics are completely unrelated to Swait(M,N)

across all groups either.
Both precision of passed and precision of failed appear

to be the metrics that should be given more attention.
These two measures show correlation with Swait(M,N) in more
groups, although the polarity of the correlation is uncertain.

Comprehensive metrics such as accuracy and F-measure cannot
effectively indicate the effectiveness of predictive CI though.

Main findings for RQ3: the correlations between predictors’
performance metrics and time savings are not strong, and the
strength of correlations can be affected by project features.
Overall, both the precision of failed and the precision of
passed should be given more attention.

VII. DISCUSSION

This section discusses the practical and research implications
of predictive CI and the benefits of simulation-based evaluation.

A. Practical and Research Implications (How)

Replication package. We share the replication package of
this work on GitHub [23], which contains the data we used,
the scripts for processing the data, and the source files of the
CISimulator. CISimulator can be run with AnyLogic (version
8.7.6), the detailed instructions are also included in the package.

Suggestions to practitioners. We recommend using CISim-
ulator to develop a configuration plan for the CI process. As we
discussed in Sec. VI-A, the effectiveness of predictors varies
across projects. It is not practical to provide a definite threshold
for each project feature as a watershed for determining whether
CI prediction should be used. The CISimulator can help with
decision-making. Furthermore, the result of RQ2 suggests that
commit interval and failure rate have significant negative im-
pacts on the effectiveness of CI. For those projects with low
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failure rates and high code submission frequencies that lead to
obvious queuing phenomena, we suggest trying predictive CI
with RIDEC.

Instructions to practitioners. We have the following in-
structions for practitioners who want to use the simulation-
based approach to evaluating predictive CI.

First, improving the precision of prediction remains very
valuable, but mainly for the purpose of enhancing the value
of fast feedback. As discussed in Sec. VI-C, the correlations be-
tween prediction performance and time savings are not strong.
The improvement in prediction performance has limited ben-
efits to increasing cost savings in many projects, especially
those with a very low failure rate. That is, the main value of
improving prediction performance lies in being able to provide
developers with more accurate feedback, rather than more cost
savings. Compared with strategies such as random skipping or
other similar approaches, providing immediate feedback is the
greatest advantage of predictive CI, and this advantage aligns
with the goals of CI. Nevertheless, when we have to make trade-
offs on different prediction performance metrics, the ability to
achieve higher cost savings would be an important considera-
tion. For example, if we want to save the average waiting time
before CI, we may need to pay more attention to the precision
of prediction.

Second, predictive CI should be used in conjunction with
RIDEC. Whether using random skipping or a predictive CI
method, the resulting increase in the difficulty of defect fixing
should be considered. Our proposed RIDEC can identify de-
fective commits from multiple commits, making defect fixing
with and without prediction equally difficult. In the future, the
combination of RIDEC and more fine-grained defect localiza-
tion methods and the evaluation of the effect of the combination
of multiple support methods that can be used in the CI pipeline
are issues worth investigating.

Third, nightly execution of RIDEC may be a better option.
The benefits of predictive CI can be maximized if the RIDEC is
performed at night. This delays feedback on defective commits
but can speed up the frequency of code integration. Predictive
CI is suitable for scenarios with insufficient server resources.
In the case of insufficient resources due to frequent pull re-
quests by developers during the day, predictive CI actually plays
the role of prioritization. Nightly execution of RIDEC is a
reasonable resource prioritization strategy in conjunction with
predictive CI.

Fourth, the value of the server varies from project to
project, and the evaluation results may change accordingly. To
facilitate the unification of the dimensions, we only configured
one server in all simulation experiments for three RQs so that
the influence of the number of servers is reflected in the resource
queuing time. In fact, different projects vary in the degree of
restriction of server resources. Only by configuring experiments
based on the actual number of servers can more accurately
evaluate the effectiveness of the predictive CI method. In the
case that the number of servers is unlimited (in this case, the
effectiveness improvement of CI may become a false proposi-
tion), the resource queuing time will be significantly reduced,
and the proportion of each component of the time cost will also
change significantly. Therefore, some of the conclusions of this

study may only be applicable to scenarios under the current
definition of resource value.

Last, CISimulator constructed in this research is not the
only implementation. We select the discrete event simulation
paradigm based on the available data and target modeling gran-
ularity. We chose the AnyLogic simulation tool based on our
expertise. These are not the only options. Even with AnyLogic,
the same function can be achieved through different model
blocks. The fundamental purpose of simulation modeling is to
quantify the real world as accurately as possible. This is the
basic principle that needs to be followed.

Suggestions to researchers. Research of predictive CI
should probably focus more on the class-balanced scenario.
For projects with extremely unbalanced ratio of passed and
failed (very low failure rate), e.g., project A (mean failure rate
is 4%) and C (mean failure rate is 5%), we found that even if
the prediction performance reaches a very high level (e.g., the
ideal predictor), the gap between random skipping (e.g., skip-
100) and the predictor is still very small (referring to Figs. 6
and 7). It indicates that a simple random skipping strategy may
be good enough when the failure rate is at a low level. As we
discussed in Sec. VI-A, for one of our selected projects with the
most balanced ratio of passed and failed, i.e. project F, random
skipping may have negative effects whilst an ideal predictor can
significantly save time. However, none of the real predictors
we evaluated provided satisfactory results. For most projects,
predictive CI is a class-imbalance prediction problem, therefore
our past research [18] and other related research [20] were
primarily focused on the class-imbalance problem. We suggest
that future research focus more on improving the prediction
performance for projects with high failure rates.

For further research on predictive CI, we suggest researchers
use CISimulator to evaluate and compare other novel predictors.
It is also possible to further expand on the basis of our model,
such as designing and simulating other CI strategies; model-
ing other stages related to CI, such as defect fixing. We also
encourage researchers to apply simulation-based evaluation to
other machine-learning problems in software engineering.

B. Benefits of Simulation-Based Evaluation

Simulation can be specially designed to evaluate predic-
tors based on process concerns, such as cost. It is true that
predictors that perform better on various metrics mean higher
performance. However, in practice, we are unlikely to find a
predictor that performs the best on all metrics. To deal with this
problem, researchers usually use some comprehensive metrics,
such as F-measure and accuracy. However, this still resides
in the performance of the predictor itself, rather than looking
holistically at the prediction problem from the perspective of
the overall CI process. Our simulation experiment for RQ3
indicates that the prediction performance metrics do not have a
strong correlation to the cost savings. Furthermore, evaluation
metrics are susceptible to class imbalance [64], whilst simula-
tions are not.

Simulation provides the possibility to compare the pres-
ence/absence of predictions. Software projects are constantly
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evolving, and we have no chance to compare the processes with
and without predictions under the premise of fully controlling
variables. Even if the uncontrolled comparison is acceptable,
the cost of simulation is much lower and more affordable. The
machine learning metrics cannot be used for such compari-
son, since these metrics will not exist for a process without
prediction. Simulation can indicate whether the prediction is
effective for the process, which is not possible with machine
learning metrics.

Simulation can be used to analyze the process and has
less dependence on data. Our research shows that the features
of the project and the performance of the predictor will signif-
icantly affect the choice of predictors (referring to Sec. VI-C).
We can carry out more simulation experiments without collect-
ing more data and identify the objective laws between various
factors and the effectiveness of the predictor, which can neither
be directly revealed through machine learning metrics.

VIII. THREATS TO VALIDITY

A. External Validity

Referring to our previous work [18], we selected six rep-
resentative GitHub projects as data sources and conducted a
comparison of five different performance predictors. To make
the results more generalizable within a limited selection, we
did not follow the principle of randomness in the selection of
projects and predictors but rather chose samples at different po-
sitions based on their rankings. For the data in each project, we
performed random sampling by time segment multiple times, so
as to obtain a richer sample set from the same project (which can
control for a large number of unknown variables, such as project
context). We provide a replication package, so researchers can
try our method on more data.

The investigation of predictive CI is one of our research pur-
poses. More importantly, we aim to present a simulation-based
approach for evaluating the use of machine learning in software
processes. From this point of view, we only used predictive CI
as a single case to illustrate the value of simulation-based evalu-
ation. It remains to be studied in the future whether the approach
can be applied to more software engineering problems.

The continuous integration process we simulated is mainly
referred to descriptions in the official documents of Travis CI.
Although Travis CI is a popular tool and related work is usually
focused on open-source projects using Travis CI, the general
significance of our study is limited. Some large-scale commer-
cial projects may contain multiple levels of integration tests
with different granularity. Such scenarios are more complex and
project-specific than our simulated process. These deserve more
in-depth study but are beyond the scope of this work.

B. Construct Validity

We applied a simulation-based approach to evaluating the
effectiveness of predictive CI. We adopt time cost metrics that
are concerned in practice, and at the same time, we proposed
and simulated the RIDEC method to account for the poten-
tial negative impacts of predictions. Although we verified and

validated CISimulator, the simulation itself has certain limita-
tions. CISimulator is designed at the granularity of commit,
which assumes that all commits only occupy one server and
complete one time of CI. In practice, a commit triggering a
CI may generate multiple jobs, each of which corresponds to a
server environment and requires the CI to be executed on the
corresponding server. Since each type of job corresponds to a
specific server, it is reasonable to take multiple jobs as a whole,
and meanwhile, take the corresponding servers as a whole. The
granularity of the simulation in this study is appropriate since
our research was designed towards commits. Besides, more
fine-grained simulation has higher requirements for data.

In the process of model calibration, we conducted the
Kolmogorov-Smirnov test and selected an appropriate distri-
bution for each variable based on the Kolmogorov-Smirnov
Distance. However, we can only obtain a close approximation
rather than simulate a distribution that is completely identical
to the true one. We performed model validation and the results
showed that the differences in distributions and other factors
combined resulted in acceptable relative errors.

Simulation depicts real-world dynamic processes using lim-
ited, known variables. Hence, simulation models are inevitably
based on some assumptions, as we explained in Sec. III-D. Every
run of simulation will not be a true reproduction of history, that
is, it will not get 100% the same results as history. Rather, it
is a re-creation based on actual historical distributions. What
our assumptions describe is a combination of several possible
influencing factors that underlie the actual data. We used the
Monte Carlo method [43] to reflect the possible distribution of
the results and mitigate the bias caused by randomness in the
simulation. We validated CISimulator to confirm that the actual
results are within the distribution range of simulation results,
which indicates that our assumptions are acceptable (the impacts
are tolerable). The gap between reality and simulation is man-
ifested as the distance between such uncertainty and determin-
ism, which arises from unknown variables in the real world. In
the simulation, we attempt to describe them using assumptions.

C. Internal Validity

We sampled enough of each project to run simulation ex-
periments. When analyzing, we grouped according to variable
features to obtain some degree of variable control. We did not
conduct a simulation experiment with fully controlled variables,
even though it is easy to do so in simulations. Because there may
be correlations between variables, for example, the failure rate
of CI may be related to commit frequency. We performed Pear-
son Correlation Analysis to illustrate the relationship between
time cost savings and predictor features, and project features.

D. Conclusion Validity

In the experiment, we compared three scenarios, i.e. not using
any strategy, using random skipping strategy, and using predic-
tive CI strategy. We can compare the results before and after
using the strategy while controlling for all other variables. In
statistical tests, we ensured that the sample size was greater than
30 and set the significance level to 0.05. However, there are still
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some threats to the conclusion validity. The use of predictive
CI will inevitably change the feedback efficiency and feedback
mechanism of CI. Developers in the process may respond to this
change, such as increasing the frequency of code submission, as
well as exploring some means to make code submission easier
to be predicted as passed. The possibility, extent, and potential
impact of such reactions are unknown.

IX. CONCLUSION

This study presents a novel approach to evaluating the im-
pact of predictors on the CI process using process simulation
techniques. We develop a DES model (CISimulator) to simulate
the CI process with and without predictive CI, which can help
researchers holistically evaluate the value of predictive CI more
practically from a process perspective. We find that although the
existing predictors do not perform well on common evaluation
metrics of machine learning predictors, simulations suggest that
they are still able to save the time cost for executing CI as well
as the average waiting time before executing CI. The simulation
results indicate that their deviation from the ideal predictor
is also limited. The value of prediction is far more than the
reduction of the executions of CI that existing studies [20], [24]
focused on, and the value in reducing queue time for waiting
servers is even greater. Predictive CI also has limitations, in
the cases of very small proportions of failed, predictive CI
may not be significantly better than random skipping. Future
research should pay more attention to prediction performance in
scenarios with high failure rates. The effectiveness of predictors
is influenced by multiple factors, including project features and
the prediction performance of the predictors themselves, but
the project features generally have a more decisive impact than
prediction performance.

This research demonstrates the value of using simulation to
evaluate machine learning-based predictors. The simulation-
based evaluation approach has the following advantages:
1) it solves the issue of insufficient indication of common
metrics in imbalanced learning problems; 2) it solves the
issue that common metrics cannot directly measure the prac-
tical value of predictors in software processes; 3) it provides
the ability to analyze dynamic processes compared with sta-
tistical analysis; and 4) its cost is significantly lower than
that of carrying out experiments with the actual projects
(it might be the only feasible means of such evaluation in
many cases).
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