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A B S T R A C T   

This study aimed to systematically identify, map out, and describe geographical information systems (GIS)-based 
approaches that have been employed to measure children’s neighborhood geographies for physical activity 
behaviors. Forty studies were included, most were conducted in the USA. Heterogeneity in GIS methods and 
measures was found. The majority of studies estimated children’s environments using Euclidean or network 
buffers ranging from 100 m to 5 km. No singular approach to measuring children’s physical activity geographies 
was identified as optimal. Geographic diversity in studies as well as increased use of measures of actual 
neighborhood exposure are needed. Improved consistency and transparency in reporting research methods is 
urgently required.   

1. Background 

Neighborhood environments are associated with children’s health- 
promoting physical activity (PA) behaviors, including active travel (e. 
g., walking or cycling to destinations), independent mobility (active 
travel and outdoor play that are not supervised by adults), and time 
spent in moderate-to-vigorous PA (MVPA) (Ding et al., 2011; Davison 
and Lawson, 2006; Ferreira et al., 2007; Oliveira et al., 2014; Richter 
et al., 2000; Smith et al., 2017). A 2016 overview of measurement of 
children’s geographies for PA revealed increasing use of geographic 
systems (GIS) to measure settings of importance for children (alongside 
other measures such as audits, wearable cameras, and surveys) (Oliver 
et al., 2016a). At this time, exploring environmental associates of chil-
dren’s active travel was a key area of focus in GIS research, with mea-
sures generally calculated around a child’s residence or route to school. 
The review highlighted the need to also consider the area around schools 
in this context, and reiterated previous recognition of the importance of 

specificity and child-specific measurement approaches. Activity spaces 
were also raised as a useful approach to “provide a more accurate picture 
of children’s movement in the local neighborhood” (p. 5). Homes, 
schools, public open spaces, and streetscapes were recognized as 
important PA locations. When considering PA promotion, children’s “PA 
neighborhoods” or “PA geographies” could thus be contextualized as 
those environments that are in the home vicinity, along the route to 
school, or in the school vicinity, all important geographic PA settings in 
a child’s local neighborhood. In this review, we use these terms inter-
changeably to encapsulate these local places of importance to children’s 
PA promotion. 

It should be noted that in health geography literature, the concept of 
neighborhood is intuitively appealing, yet operationally very chal-
lenging to measure. Neighborhoods in research are traditionally oper-
ationalized as census-defined or other administrative boundaries (Roux, 
2001). However, more recently researchers have argued that such def-
initions are ill-fitting solutions which do not adequately capture the true 
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extents of neighborhoods as experienced by the residents (Perchoux 
et al., 2013). Therefore, a number of studies have used data collected 
through methods such as global positioning systems (GPS) or public 
participation GIS (PPGIS) to map self-identified or actualized neigh-
borhoods for individuals (e.g. (Robinson and Oreskovic, 2013; Hasan-
zadeh et al., 2017). Therefore, the term neighborhood in this paper is 
used to refer to the local space concentrated around an individual’s 
place of residence (which can also include schools) regardless of the 
method that is used for mapping it. 

1.1. Advances in health geography 

Two areas of advancement are relevant in the context of this research 
field. Firstly, the use of GIS has become commonplace. Early work in this 
area focused on ‘walkability’ to characterize an individual’s neighbor-
hood (Leslie et al., 2007; Van Dyck et al., 2009). For the most part, this 
involved using GIS and spatial data to generate measures of residential 
density, land use mix, street connectivity, and retail floor-area ratio 
within an arbitrary neighborhood buffer around the individual’s home 
address, census area unit, or other administrative boundary. Advances 
are being made in terms of understanding other key factors that might 
contribute to walkability of a neighborhood (e.g., through reducing 
distance between destinations, increasing availability of relevant desti-
nations, or making an environment safer, more pleasant, and more 
enjoyable to walk in). Researchers are also continuing to grapple with 
how best to delineate neighborhoods and environments that are 
appropriate and meaningful for understanding children’s PA. 

One area that has received much attention in literature examining 
environmental measures (and delineation) in health geography research 
is the modifiable areal unit problem (MAUP). The MAUP is composed of 
two related problems: scale effect and zoning effect (Openshaw, 1984). 
The former indicates that study areas at different scales/sizes such as 
census area units or regional boundaries will lead to different statistical 
results even using the same data. While the latter indicates that areas at 
the same or similar scale but drawn with different criteria (i.e., with 
alternative boundaries) will result in different statistical results with 
different sensitivity and specificity (Dark and Bram, 2007; Mitra and 
Buliung, 2012). Thus, the MAUP is a key challenge for researchers 
because neighborhood effects on health are partly determined by the 
way neighborhoods are defined (Haynes et al., 2007). One compromise 
is to delineate areas using a set of zone design criteria that are 
customized to match the requirements of different kinds of analyses 
(Manley et al., 2014). The MAUP can also be mitigated by using buffers 
around individual locations (e.g., home addresses) but this is not always 
possible (e.g., due to privacy or lack of granularity in the primary data 
collected). In addition, buffered areas derived from different approaches 
(e.g., crow-fly buffer or network buffer) may cause zoning effect, while 
buffered areas derived from different radii may cause scale effect 
(Mavoa et al., 2019). The Uncertain Geographic Context Problem 
(UGCoP) is an additional limitation in area-based measures where 
spatial and temporal uncertainty exists – that is, the researcher-defined 
area may deviate from the true geographic context of interest (Kwan, 
2012). For example, different individuals may have different “activity 
spaces” (i.e., areas where they spend time and are active) so a fixed 
buffer around a single location is unlikely to reflect the real environ-
mental exposure of every individual when attempting to understand any 
environment-activity relationships (Dark and Bram, 2007; Mitra and 
Buliung, 2012; Haynes et al., 2007). Using individual-based methods of 
delineating actual exposure such as activity spaces can reduce the 
impact of these issues (Hasanzadeh et al., 2018). 

There has been an upsurge in researchers and practitioners recog-
nizing the value of working with individuals and individual data to 
improve spatial certainty. One increasingly common approach is the use 
of GPS data to objectively assess actual exposure (Hurvitz et al., 2014). 
These GPS data can provide information on where people are (via 
location coordinates), time spent at a location, and speed of travel. 

Further information on outdoor locations and mode of travel can also be 
derived. An important strength of GPS data is that it can contextualize 
other information, whereby individual factors can be linked to location 
information by combining it with other technologies (e.g. accelerome-
ters, heart rate monitors, wearable cameras) (Oliver et al., 2010, 2013; 
Fjørtoft et al., 2009) or other data based on date and time. GPS and 
accelerometer data have been linked to assess PA location in an inter-
vention to teach overweight and obese youth aged 10–16 years how to 
be active in their local built environments (Oreskovic et al., 2015). In a 
study with adolescent “citizen scientists”, detailed environmental audits 
were obtained through simultaneous use of GPS (to determine walking 
route/location of additional data), photography, audio narratives, and 
survey responses (Winter et al., 2016). Children’s travel diary data have 
successfully been linked to GPS data using automated sequence align-
ment (Mavoa et al., 2011). These examples demonstrate the varied and 
powerful contribution that GPS can make to gaining an accurate 
portrayal of experienced environments when combined with other 
measures. GPS methods do have limitations, such as dwell time 
impacting accuracy in detecting trip end times, signal drop-out (e.g., in 
urban canyons or inside buildings), issues with battery life, and a reli-
ance on participants wearing the units (Oliver et al., 2010). 

Another increasingly popular approach to improve spatial repre-
sentation is the use of PPGIS. Similar to GPS approaches, PPGIS also 
allows assessment of where people spend time in their neighborhood, 
albeit with self-report locations as opposed to objectively assessed GPS 
locations. Compared to GPS, PPGIS more readily allows for collection of 
information such as how they get there, what they do there, and their 
general perceptions about neighborhood environments and character-
istics (Brown and Kyttä, 2014; Kahila et al., 2009). This relatively new 
method has led to a plethora of new ideas and approaches for developing 
‘individual-centric’ neighborhood delineations. Combining this com-
munity/individual voice by using individual-centric methods has sub-
stantial potential to lead to unique insights that are meaningful and 
relevant to the community of interest. These insights can be used for the 
development of appropriate recommendations for effective in-
terventions for improving children’s PA. 

1.2. Research aim 

Given the rapid escalation of research in this field, the aim of this 
review is to map out and describe GIS-based approaches that have been 
employed to measure children’s neighborhood geographies for under-
standing PA and related behaviors. This information is needed to pro-
vide researchers and practitioners with an up-to-date understanding of 
key approaches in the field, and to encourage consistency and trans-
parency in reporting research methods. 

2. Methods 

2.1. Methodological taxonomy 

The taxonomy used for this research design took into account a range 
of review definitions and characteristics (Mays et al., 2001; Arksey and 
O’Malley, 2005; Grant and Booth, 2009), in light of the research aim and 
scope. Systematic review components (e.g., systematic article searching 
and screening using a-priori protocols and inclusion and exclusion 
criteria, article quality assessment) and elements to reduce or under-
stand bias (e.g., protocol registration, duplication of article screening in 
a subset) are included. In this context, the review has characteristics of 
mapping, scoping, systematic searching, and systematized reviews. Thus 
we have taken the broad approach recommended by Colquohoun et al. 
(Colquhoun et al., 2014) and described this as a “scoping review.” In 
addition, drawing from Grant and Booth (2009), we have included the 
term “systematic search” to the review description. 
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2.2. Protocol 

The review protocol was registered on the Open Science Framework 
on October 28, 2019 (https://osf.io/7wgur/). The Preferred Reporting 
Items for Systematic reviews and Meta-Analyses extension for Scoping 
Reviews (PRISMA-ScR) Checklist (Tricco et al., 2018) has been used to 
structure this review (Supplementary data S1). 

2.3. Search methods 

2.3.1. Eligibility criteria 
Studies were eligible at the searching stage if they were: (1) peer 

reviewed articles published in academic journals, (2) published in the 
English language, (3) conducted with human populations, and (4) 
published between January 1, 2006 (to align with the emergence of a 
growing body of literature using GIS in PA and child health research) 
and November 15, 2019. 

2.3.2. Information sources 
Databases were identified by screening target journals and identi-

fying indexing to ensure comprehensive coverage across health geog-
raphy, applied geography, children’s geographies, and PA/health 
promotion. The following databases were searched: GEOBASE, Scopus, 
PubMed (includes MEDLINE), and Social Sciences Citation Index. 

2.3.3. Search terms and strategy 
Search terms were identified from MeSH terms, existing literature 

reviews, and the expertise of the research team. Terms were broad and 
fell under three categories: Method (e.g., GIS), Population (e.g., child), 
and Outcome (e.g., neighborhood). Categories, terms, and an example of 
the full electronic search strategy for PubMed is provided in the Sup-
plementary data (S2 and S3). 

2.3.4. Selection of sources of evidence 
Duplicate articles were removed. Thereafter, titles and abstracts of 

all articles retrieved were screened for inclusion by JC. Studies were 
eligible for inclusion at this stage if they: (1) used GIS to measure 
neighborhood environments (broadly conceptualized as environments 
around individual addresses, at the individual or neighborhood-area 
level), and (2) included child populations (defined as aged 5–13 
years). Studies that included children aged 5–13 years as well as other 
age groups (e.g., adolescents) were included. 

All study types were included providing they met other inclusion 
criteria. Studies were excluded if they: (1) did not include a GIS-based 
measure of the neighborhood environment, (2) did not include chil-
dren, or (3) used area-level measures greater than the neighborhood 
scale (e.g., towns, cities, regions; if this information was stipulated in the 
title or abstract). 

Duplicate screening was conducted independently by MS for a 
random 10% selection of all articles identified at the search stage. Dif-
ferences between coding were resolved between the coders, and addi-
tional detail, descriptions, and instructions added to the screening 
instructions where necessary for clarification. Full text articles were 
then sourced for all “eligible” articles and those where it was not clear 
whether they met the inclusion and exclusion criteria. At the full-text 
screening stage, articles were included if they met the criteria above, 
and additionally: (1) described the methods used to generate the GIS- 
based measure of neighborhood environments, (2) included a PA (or 
related) outcome measure, or focused on the PA-environment relation-
ship (3) provided descriptive information about the GIS-based measure 
(e.g., in graphical, narrative, or tabular format). 

2.4. Data charting and synthesis 

A study-specific data chart was developed, drawing from the envi-
ronmental quality measures framework presented in Zhang et al. (Zhang 

et al., 2020) and the Spatial Lifecourse Epidemiology Reporting Stan-
dards (ISLE-ReST) statement (Jia et al., 2019). As well as descriptive 
characteristics of study country, participants, aim and results, GIS 
measurement-related variables were extracted as follows: exposure 
assessment (estimated, e.g., using a defined buffer around residential 
address; or actual, e.g., using GPS, child reports), environmental scale 
(e.g., ego-centric), buffer calculation type (e.g., road network), buffer 
radius, and variables calculated. As the focus of this study was on 
neighborhood built environments, information and results for social 
environmental variables used as covariates or independent variables (e. 
g., crime, socio-economic status) were not extracted unless their findings 
were related to the built environment results (e.g., through an interac-
tion effect). Strengths and limitations related to neighborhood delinea-
tion and use of GIS, GPS, and PPGIS identified by authors of included 
studies and those identified by the researchers during the extraction 
process were also documented. These were then summarized to provide 
a broad overview of factors for researchers to consider when planning 
similar research. The identification of key strengths and limitations 
focused on areas where consistent issues were raised or identified across 
studies, where improvements in reporting would benefit the field, where 
risk to rigor of data was possible, or where factors were important to 
take into account when interpreting results. 

JC undertook preliminary data extraction, and MS cross-checked all 
extracted data and populated the final data chart. Findings were 
described narratively with a focus on the range and prevalence of 
methods used, and findings of relevance when comparing particular 
methods. 

2.5. Quality assessment 

Individual study quality was assessed using the Mixed Methods 
Appraisal Tool (MMAT) (Hong et al., 2018). This tool was deemed 
optimal for the current research due to its flexibility in assessing varying 
research designs (i.e., qualitative, quantitative randomized controlled 
trial, quantitative non-randomised, quantitative descriptive, mixed 
methods). The tool focuses on five core criteria of evaluation relevant to 
each study design, and also assesses whether there are clear research 
questions and whether the collected data allow the researcher to address 
these questions. Evaluation criteria were tabulated and summary scores 
calculated following the MMAT protocol. Quality assessment was 
duplicated by MS for a random 10% subset of articles. 

3. Results 

3.1. Study characteristics 

Of the 495 articles identified, 40 studies were included in this review 
(Fig. 1). Characteristics of articles and participants included are outlined 
in the Supplementary data (S4). A majority of articles were from USA (N 
= 15), followed by Aotearoa New Zealand (N = 5), Canada (N = 5), 
Australia (N = 3), The Netherlands (N = 3), and one article each from 
Norway, Mexico, Bangladesh, Switzerland, Germany, Finland, Israel, 
Belgium, and Scotland. Sample sizes ranged from 71 (Coughenour and 
Burns, 2016) to 21,146 (Nordbø et al., 2019), with a median size of 665 
participants. Six articles had sample sizes over 6,000, all of which were 
from representative surveys (i.e., the Canadian Health Behavior in 
School Children Study (Laxer and Janssen, 2013; Mecredy et al., 2011), 
the US National Longitudinal Study of Adolescent Health (Boone-Hei-
nonen and Gordon-Larsen, 2011; Boone-Heinonen et al., 2010a, 2010b), 
and the Norwegian Mother and Child Cohort Study (Nordbø et al., 
2019)). Participant ages ranged from 2 to 94 years. Six articles were 
from the Teen Environment and Neighborhood study with US youth 
aged 12–16 years (Sallis et al., 2015, 2018; Carlson et al., 2014, 2015, 
2017; Wang et al., 2017), three were from the US National Longitudinal 
Study of Adolescent Health with youth aged 11–22 years (Boone-Hei-
nonen and Gordon-Larsen, 2011; Boone-Heinonen et al., 2010a, 2010b), 
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two were from the Canadian Health Behavior in School-aged Children 
Survey with youth aged 11–15 years (Laxer and Janssen, 2013; Mecredy 
et al., 2011), and there were four individual studies with a range of 
youth aged 11–17 years from Canada (Tucker et al., 2009), Aotearoa 
New Zealand (Hinckson et al., 2017), Belgium (De Meester et al., 2012), 
and the US (Dalton et al., 2011). 

Almost all articles (N = 36) were from cross-sectional studies. The 
remaining four were an intervention introducing neighborhood PA 
spaces (Mölenberg et al., 2019), an article measuring change in PA be-
haviors over time in relation to built environment features (Carver et al., 
2010), and two articles from the US National Longitudinal Study of 
Adolescent Health investigating effects of time-varying built environ-
ment variables on MVPA (Boone-Heinonen and Gordon-Larsen, 2011; 
Boone-Heinonen et al., 2010a). Study quality as assessed using the 
MMAT was moderate to high across all studies (scores ranging from 3 to 
5 of a possible score of 1 and 5), with the exception of one study which 
scored 2 (see Supplementary information). For the most part, scores 
were reduced due to unclear or missing information on study methods, 
reducing the ability to discern whether studies met quality assessment 
criteria. In the case of quantitative studies, lack of clarity on represen-
tativeness was also prevalent. 

Physical activity was the outcome of interest in 38 articles, including 
active travel to school and other destinations or for leisure (N = 16), 
overall/total PA or exercise (N = 7), MVPA (N = 6), outdoor/ 
neighborhood/setting-specific play (N = 6), leisure-time PA (N = 5), 
independent mobility (N = 3), or time spent in PA locations (reported or 

via GPS, N = 2). Body mass index (BMI) was also examined in relation to 
environmental variables in two articles as the outcome of interest 
(Burgoine et al., 2015; Carroll-Scott et al., 2013). One article compared 
built environment characteristics derived from GIS-estimated shortest 
route to school and child-reported route to school between school travel 
modes (and other variables) (Dessing et al., 2016), and another exam-
ined the accuracy of children’s spatial mapping of their home-to-school 
route using child-drawn sketches versus child mapped routes on maps 
and compared accuracy between differing school travel modes (Moran 
et al., 2017). Accelerometry was used to measure PA objectively in 12 
articles including one where GPS was combined with accelerometry to 
estimate travel mode (Carlson et al., 2015). The remaining six articles 
that used GPS measured routes to school (N = 3) (Burgoine et al., 2015; 
Dessing et al., 2016; Helbich et al., 2016), time spent in neighborhood 
locations (N = 2) (Carlson et al., 2017; Olsen et al., 2019), or used GPS 
data to determine residential location (in a subsample of one article) 
(Boone-Heinonen et al., 2010a). 

3.2. GIS methods used to delineate children’s neighborhood environments 

A range of GIS methods were employed to delineate and describe 
children’s PA geographies (Table 1, Fig. 2). Home neighborhoods, 
school neighborhoods, and school routes were conceptualized as envi-
ronments of importance for children. The majority of articles used es-
timates of children’s home and/or school neighborhood environments 
(i.e., delineating areas that children could spend time in, for example by 

Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram for articles identified, screened, and included in the review. 
Note: BMI = body mass index, GIS = geographic information systems. 
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Table 1 
Descriptive information for GIS methods used in studies included in this review.  

Study Exposurea Area applied to measure environmental exposure Buffer calculation Distance to locations 

Lead author (year) 
[reference] 

Estimated Actual Individual/egocentric 
buffered area 

Aggregated administrative area/other 
(specify) 

Euclideanb Networkc Network – 
pedestriand 

Buffer distance Distance 
calculatede 

Destinations for 
shortest distance 

Home School Route 

Boone-Heinonen and 
Gordon-Larsen (2011) 
(Boone-Heinonen and 
Gordon-Larsen, 2011) 

●1  ●   Census tract (socio-economic 
environment) 

●   1 km, 3 km   

Boone-Heinonen et al. 
(2010a) ( 
Boone-Heinonen 
et al., 2010a) 

●2  ●   Census tract (socio-economic 
environment) 

●   1 km, 3 km   

Boone-Heinonen et al. 
(2010b) ( 
Boone-Heinonen 
et al., 2010b) 

●3  ●   Census tract (socio-economic 
environment) 

●   1, 3, 5, and 8 km   

Bringolf-Isler et al. 
(2010) (Bringolf-Isler 
et al., 2010) 

●4  ●    ●   100 m, 200 m, 500 m (street 
density measure); 9ha 
(population and building 
density); 25ha (green space)   

Buck et al. (2015) (Buck 
et al., 2015) 

●5  ●   Simple intensity and kernel intensity 
measures were used to assess three 
point characteristics such as 
intersections, public transit stations, 
and public open spaces  

●  500 m, 750 m, 1 km, 1.25 
km, 1.5 km, 2 km   

Burgoine et al. (2015) ( 
Burgoine et al., 2015) 

●6○7 ●6 ○ ○ ● Inverse distance weighting - all 
discrete food outlets and PA location 
points contribute to exposure, with 
the inverse distance (1/distance) 
between point facilities (i) and homes 
or schools (j) then weighted according 
to a suggested distance decay 
parameter (k) of 2  

○●  100 m (routes); 800 m (home 
and school neighborhoods); 
6 km (inverse distance 
weighting)   

Cain et al. (2014) (Cain 
et al., 2014) 

●8  ●   Census blocks  ●  N/A   

Carlson et al. (2017) ( 
Carlson et al., 2017) 

●9 ●9 ● ●   ● ●  15 m (school parcel); 50 m 
(home setting); 1 km 
(neighborhood variables)   

Carlson et al. (2015) ( 
Carlson et al., 2015) 

●10  ●     ●  1 km   

Carlson et al. (2014) ( 
Carlson et al., 2014) 

●11  ● ●    ●  1 km ● School 

Carroll-Scott et al. 
(2013) (Carroll-Scott 
et al., 2013) 

●12     Census tracts  ●  Used a 20 m buffer around 
census tract boundaries for 
calculation of retailers 
variable (to capture retailers 
on opposite sides of a street) 

● Grocery store; 
Convenience store; 
Fast food 
restaurant; Park 

Carver et al. (2010) ( 
Carver et al., 2010) 

●13  ●    ●   800 m   

Carver et al. (2015) ( 
Carver et al., 2015) 

●14  ●      ● 800 m, 5 km   

Coughenour and Burns 
(2016) (Coughenour 
and Burns, 2016) 

●15  ●    ●   1 mile   

(continued on next page) 
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Table 1 (continued ) 

Study Exposurea Area applied to measure environmental exposure Buffer calculation Distance to locations 

Lead author (year) 
[reference] 

Estimated Actual Individual/egocentric 
buffered area 

Aggregated administrative area/other 
(specify) 

Euclideanb Networkc Network – 
pedestriand 

Buffer distance Distance 
calculatede 

Destinations for 
shortest distance 

Home School Route 

Dalton et al. (2011) ( 
Dalton et al., 2011) 

●16   ●   ●   1 km ● Home 

De Meester et al. (2012) 
(De Meester et al., 
2012) 

●17     Adjacent statistical sectors (smallest 
administrative entities for which 
statistical data are available) with 
comparable walkability and with SES 
in the same decile defined a 
neighborhood.  

●  N/A   

Dessing et al. (2016) ( 
Dessing et al., 2016) 

●18 ●18   ●   ●  25 m ● School 

DeWeese et al. (2018) ( 
DeWeese et al., 2018) 

●19  ●   Census block group (socio-economic 
environment)  

●  0.25 mile   

Helbich et al. (2016) ( 
Helbich et al., 2016)  

●20   ●   ●  100 m ● School (actual 
route); Nearest 
major road/ 
highway 
(Euclidean) 

Hinckson et al. (2017) ( 
Hinckson et al., 2017) 

●21  ●      ● 250 m, 500 m, 1 km, 2 km   

Ikeda et al. (2019) ( 
Ikeda et al., 2019)  

●22   ●   ●  160 m (80 m either side of 
the centerline) 

● School 

Islam et al. (2014) ( 
Islam et al., 2014) 

●23  ●    ●   150 m   

Jauregui et al. (2016) ( 
Jauregui et al., 2016) 

●24   ●   ●   400 m, 800 m   

Kyttä et al. (2012) ( 
Kyttä et al., 2012) 

●25a ●25b ●   Public participation GIS, with 
children marking destinations of 
importance to them 

●   500 m ● All child-defined 
places of 
importance using 
public 
participation GIS 
data 

Laxer and Janssen 
(2013) (Laxer and 
Janssen, 2013) 

●26   ●   ●   1 km   

McGrath et al. (2016) ( 
McGrath et al., 2016) 

●27  ●     ●  800 m ● School 

Mecredy et al. (2011) ( 
Mecredy et al., 2011) 

●28   ●   ●   5 km   

Mitchell et al. (2016) ( 
Mitchell et al., 2016) 

●29  ●    ● ● for 
shortest 
distance  

500 m, 800 m ● Schools; Recreation 
centers 

Mölenberg et al. (2019) 
(Mölenberg et al., 
2019) 

●30  ●    ●   600 m ● New dedicated PA 
space (the 
intervention) 

Moran et al. (2017) ( 
Moran et al., 2017)  

●31   ●    ● 25 m   

Nordbø et al. (2019) ( 
Nordbø et al., 2019) 

●32  ●    ●   800 m, 5 km   

Oliver et al. (2014) ( 
Oliver et al., 2014) 

●33     Meshblock (for walkability 
calculation)  

●  N/A ● School 

●34 ○35 ●   ●○   ○ 

(continued on next page) 
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Table 1 (continued ) 

Study Exposurea Area applied to measure environmental exposure Buffer calculation Distance to locations 

Lead author (year) 
[reference] 

Estimated Actual Individual/egocentric 
buffered area 

Aggregated administrative area/other 
(specify) 

Euclideanb Networkc Network – 
pedestriand 

Buffer distance Distance 
calculatede 

Destinations for 
shortest distance 

Home School Route 

Olsen et al. (2019) ( 
Olsen et al., 2019) 

○ (Grid cells (25m2), identified from 
GPS points of participants) 

25 m (2 grid for GPS data 
points); 800 m (traditional 
neighborhood comparison) 

Grid cells 
(controlled for 
distance to home) 

Sallis et al. (2015) (Sallis 
et al., 2015) 

●36  ●   Census blocks  ●     

Sallis et al. (2018) (Sallis 
et al., 2018) 

●37  ●   Census blocks  ●     

Smith et al. (2019) ( 
Smith et al., 2019) 

●38  ●      ● 800 m   

Tucker et al. (2009) ( 
Tucker et al., 2009) 

●39  ● ●  Postal code ●   500 m (home); 1.6 km 
(school)   

van Loon et al. (2014) ( 
van Loon et al., 2014) 

●40  ●     ●  200 m, 400 m, 800 m, 1.6 km ● School; Park; Other 
recreational area 

Villanueva et al. (2012) 
(Villanueva et al., 
2012) 

●41 ● ●42 ●43  Activity space (minimum convex 
polygon) using children’s home and 
marked destinations visited   

● 2 km (school walkability); 
800 m (destinations); 800 m, 
1600 m (comparison with 
activity space)   

Wang et al. (2017) ( 
Wang et al., 2017) 

●44  ●     ●  1 km   

1-44Detail for GIS characteristics calculated are provided in Table 2. 
a GIS variables calculated. GIS = geographic information system, GPS = global positioning system, N/A = not applicable, PA = physical activity, SES = socio-economic status. 
b Assumed unless network specified. 
c Assumed street network unless specified otherwise. 
d Pedestrian or cyclist network, used when motorways excluded, or trails etc. included. 
e Shortest distance unless specified. 
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creating a buffer around a home address). Other methods used to 
delineate environments varied from child drawings of school routes (i.e., 
self-reported actual exposure) to GPS-defined time measured in neigh-
borhood settings. 

Alternative approaches such as kernel density (Buck et al., 2015), 
inverse distance weighting (Burgoine et al., 2015), and convex polygons 
generated from child maps (Villanueva et al., 2012) were used in three 
articles. Built environment GIS variables varied widely, with many 
focusing on walkability, and some examining alternative variables such 
as vertical urban morphology and new measures of ease of mobility 
(Helbich et al., 2016). Thirty-one articles used estimated environmental 
measures only, six used a combination of estimated and actual exposure, 
and three used actual exposures only. An overview of key strengths and 
limitations of GIS methods of the included studies is outlined in Table 3. 

3.2.1. Articles examining actual exposure 
GPS or child-mapped routes to school were used in five articles to 

measure routes to school, and GIS subsequently used to generate envi-
ronmental characteristics along routes (Burgoine et al., 2015; Dessing 
et al., 2016; Moran et al., 2017; Helbich et al., 2016; Ikeda et al., 2019). 
Moran et al. (2017) reported that compared with drawing their route on 
a map, children’s sketched routes were more accurate for those residing 
in “traditional” neighborhoods (i.e., high density, street connectivity, 
land use mix, commercial land use) compared with children living in 
suburban neighborhoods (i.e., low density, high land use segregation, 
culs de sac and green open space). Route accuracy was also greater in 
children living in neighborhoods with greater walkability, residential 
density, street connectivity and percentage of retail area. Route accu-
racy was negatively related to route length, and percentage of route 
green space for the full sample, but not among those who were driven to 
school most of the week. Dessing et al. (2016) compared built 

Fig. 2. Illustrative example of methods employed to measure built environment characteristics in articles included in this review. A: Administrative boundaries B: 
Home and school based circular buffers (500 and 1000 m radius respectively) C: Route buffer D: Home based network distance buffer E: Kernel density. 
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Table 2 
Key geographic characteristics calculated in studies included in this review.  

Lead author [reference] Key geographic characteristics calculated* 

Boone-Heinonen and 
Gordon-Larsen (2011) ( 
Boone-Heinonen and 
Gordon-Larsen, 2011) 

1Measures calculated at both time points. 
Street connectivity (ratio of observed to 
maximum possible route alternatives between 
nodes (intersections), 1 km buffer). Paid PA 
facilities (N/10,000 population, e.g., dance 
studios, basketball instruction, martial arts, 
athletic club, gymnasium, tennis club, 
basketball club, physical fitness facilities, 
bicycle rental, public golf courses, 3 km). 
Public PA facilities (N/10,000 population, 3 
km). Landscape diversity (Simpson’s diversity 
index, 1 km). Population density (N; calculated 
by averaging census block-group population 
counts, weighted according to the proportion 
of block-group area captured, 3 km). Area- 
level SES (median household income from 
census tract data in 1990 and 2000). 

Boone-Heinonen et al. (2010a) ( 
Boone-Heinonen et al., 2010a) 

2Measures calculated at both time points. To 
account for slight inaccuracies in geocoded 
locations and inconsequential moves, 
residential relocation (mover vs. non-movers) 
was defined as > 1/4 mile Euclidean distance 
between waves 1 and 3 residential locations. 
Street connectivity (ratio of observed to 
maximum possible route alternatives between 
nodes (intersections), 1 km buffer). Paid PA 
facilities (N/10,000 population, e.g., dance 
studios, basketball instruction, martial arts, 
athletic club, gymnasium, tennis club, 
basketball club, physical fitness facilities, 
bicycle rental, public golf courses, 3 km). 
Public PA facilities (N/10,000 population, 3 
km). Landscape diversity (Simpson’s diversity 
index, 1 km). Population density (N; calculated 
by averaging census block-group population 
counts, weighted according to the proportion 
of block-group area captured, 3 km). Area- 
level SES (median household income from 
census tract data in 1990 and 2000). 

Boone-Heinonen et al. (2010b) ( 
Boone-Heinonen et al., 2010b) 

3PA facility counts (N and N weighted by the 
inverse distance from residential address 
(facilities between 1 and 8 km; facilities within 
1 km received weights of 1)). Two street 
connectivity measures, ‘link:node’ ratio and 
intersection density (3 or more-way 
intersections/km2). Area-level SES (median 
household income from census tract data in 
1990 and 2000). 

Bringolf-Isler et al. (2010) ( 
Bringolf-Isler et al., 2010) 

4Population and building density (N of 
inhabitants and buildings within 9 ha (ha)). 
Street density (total length of each type of 
street segment within varying buffers). Green 
space (N ha out of a square buffer of 25ha 
around residence; ha assigned green space if 
land use at center was park/woods/ 
agriculture). 

Buck et al. (2015) (Buck et al., 
2015) 

5Intersections (N). Public transit stations (N). 
Public open spaces (playgrounds, parks, public 
green spaces) (N). 

Burgoine et al. (2015) (Burgoine 
et al., 2015) 

6Route to school (●) - Takeaway food outlets 
(N). All food outlets (N). PA facilities (N). 
Green space (area/route length). Proportion of 
major roads (% of route that is on major road). 
Effective walkable area (ratio of length of route 
to Euclidean distance to school). Land use mix 
(sum of squares of % of each land use type 
along route). 
7Home and school neighborhoods (○) - 
Takeaway food outlets (inverse distance 
weighting (IDW) sum of distance to all outlets). 
All food outlets (IDW sum of distance to all 
outlets). PA facilities (IDW sum of distance to 
all outlets). Green space (% of area). 
Proportion of major roads (length of major  

Table 2 (continued ) 

Lead author [reference] Key geographic characteristics calculated* 

roads/total length of roads). Effective walkable 
area (ratio of street network area/Euclidean 
radius area). Connected node ratio of junctions 
to junctions and culs-de-sac. Land use mix 
(sum of squares of % of each land use in 
neighborhood). 

Cain et al. (2014) (Cain et al., 
2014) 

8Walkability (index of residential density, 
intersection density, land use mix, retail floor 
area ratio) used as adjustment factor in 
analyses. 

Carlson et al. (2017) (Carlson 
et al., 2017) 

9Time in each of the following locations: home 
(50 m Euclidean buffer); home neighborhood 
(1 km street network buffer, excluding home 
Euclidean buffer); school (15 m around school 
parcel); school neighborhood (1 km street 
network buffer, excluding school parcel 
buffer); and all other locations. 

Carlson et al. (2015) (Carlson 
et al., 2015) 

10Net residential density (housing units per 
residential parcel). Intersection density 
(intersections per square km). Retail density (N 
of retail parcels; e.g., shopping centers, stores, 
banks). Walkability (index of residential 
density, intersection density, land use mix, 
retail floor area ratio). Entertainment density 
(N of entertainment parcels [non PA-related]; 
e.g., theaters, museums, social clubs). 

Carlson et al. (2014) (Carlson 
et al., 2014) 

11Residential density (housing units/ 
residential parcel). Street connectivity 
(intersections/km2). Retail floor area ratio 
(building ft2/parcel ft2). Mixed use (including 
residential, retail, food and entertainment and 
office land use types). Cul-de-sac density (N of 
cul-de-sacs/km2). N parks per km2. 

Carroll-Scott et al. (2013) ( 
Carroll-Scott et al., 2013) 

12Grocery stores (N). Convenience stores (N). 
Fast food restaurants (N). Parks (N; % of area). 

Carver et al. (2010) (Carver et al., 
2010) 

13Local/residential roads (maximum speed of 
50 km/h) (length; ratio to total length of all 
roads). Intersection density. Residing on a cul- 
de-sac (yes/no). Walking tracks (L). Speed 
humps (N). Gates/barriers on roads (N). Slow 
points, chicanes, sections of road narrowing 
(N). Traffic/pedestrian lights (N). 

Carver et al. (2015) (Carver et al., 
2015) 

14Bike paths (N). Sports/recreational facilities 
(basketball court; netball court; tennis court; 
soccer field; sports center; skateboard/BMX 
park; swimming pool) (N). Accessible parks 
(had to at least partially overlap with the 
buffer area) (N; total area). Post offices (used 
as a proxy for shops) (P/A). Bike paths and 
shared walking/cycling paths (length). 

Coughenour and Burns (2016) ( 
Coughenour and Burns, 2016) 

15Parks (N). Trailheads (N). Pay-for use PA 
facilities (N). Grocery stores (N). Fast food 
outlets (N). 

Dalton et al. (2011) (Dalton et al., 
2011) 

16Residential density (N of housing units per 
acre of developed land). Intersection density 
(N of intersections with three or more legs per 
acre of developed land). 

De Meester et al. (2012) (De 
Meester et al., 2012) 

17Walkability index (high/low; land use mix, 
residential density, intersection density). 

Dessing et al. (2016) (Dessing 
et al., 2016) 

18Land use (4 category entropy index). Street 
type (%; residential, pedestrian path, separate 
bicycle path, arterial roads with a bicycle 
lane). Residential density (N of residents/km2). 
Traffic variables (junctions, traffic accidents, 
zebra crossings, street lights, traffic lights, 
speed bumps; all N/km). Water along route 
(average %/km, e.g., ponds, rivers lakes). 
Greenness along route (average %/km, e.g., 
bushes, grass plots, woods). Trees (N). 

DeWeese et al. (2018) (DeWeese 
et al., 2018) 

19Supermarket (P/A). Small grocery store (P/ 
A). Convenience store (P/A). Fast food 
restaurant (P/A). Park (P/A). PA facility (P/A). 
Residential density (N of dwellings, high/low 
using median). Intersection density (N of 
intersections with 3 or more legs, high/low 
using median). Median household income used 

(continued on next page) 
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Table 2 (continued ) 

Lead author [reference] Key geographic characteristics calculated* 

as adjustment factor (at block-level as well as 
individual level). Participants categorized into 
groups using latent class analyses. 

Helbich et al. (2016) (Helbich 
et al., 2016) 

20Culs-de-sac (%). 3-way intersections (%). 4- 
way intersections (%). Proportion of >4-way 
intersections (%). Shannon land-use diversity 
index (median (SD)). Shannon building usage 
mix (median (SD), IQR). Building-roughness 
index (normalized, median (SD), IQR, reflects 
height differences between a building and its 
neighbors). Closeness index (median (SD), 
IQR, describes the nearness/farness by 
measuring how difficult it is to go from 
location i to all other locations on the street 
network). Betweenness index (median (SD), 
IQR, quantifies which street segment will be 
busiest to move from location i to all other 
locations along the shortest path). Street 
density (median (SD), IQR). Major road/ 
highway (P/A, Euclidean distance to nearest). 
Cycling path (% of length relative to overall 
street length). Distance to school (derived from 
GPS). Green space (% woods, grasslands, 
parks). 

Hinckson et al. (2017) (Hinckson 
et al., 2017) 

21Residential density (N/km2). Street 
intersection density (N/km2). Culs-de-sac (N/ 
km2). Transit stops (N/km2). Parks (N). Land 
use mix (entropy index). 

Ikeda et al. (2019) (Ikeda et al., 
2019) 

22Distance to school. Active Mobility 
Environment was a first-order factor (latent 
variable), collectively assessed by four 
observed variables: residential density (ratio of 
residential dwellings to the residential land 
area); street connectivity (ratio of number of 
intersections with three or more intersecting 
streets to the land area); high traffic exposure 
(length; weighted by an inverse softGIS route 
distance, using road classification as a proxy 
for traffic volume); and low traffic exposure 
(length; weighted by an inverse softGIS route 
distance, using road classification as a proxy 
for traffic volume). 

Islam et al. (2014) (Islam et al., 
2014) 

23Total building footprint area (sum of 
footprint areas of all buildings within a buffer 
area). Gross building floor area (total of 
footprint areas of all buildings within the 
buffer area, multiplied by the respective 
number of floor levels). Street intersection 
density (N of >2 leg intersections). Street 
pattern (overall pattern in buffer, either: 
colony internal (restricted zone of government 
housing), spontaneous, or gridiron (master 
planned)). 

Jauregui et al. (2016) (Jauregui 
et al., 2016) 

24Street connectivity (>2-way intersection). 
Residential density (households/km2). Area- 
level SES. Walkability index: street 
connectivity, residential density (GIS), and 
land use and commercial mix (generated from 
a pedestrian environment scan). 

Kyttä et al. (2012) (Kyttä et al., 
2012) 

25aResidential density (housing units per 
hectare). Green space (proportion of fields, 
forests, parks, and water area). Child 
population (proportion of birth to 15-year-olds 
within the buffer, calculated from city centroid 
data).25bChild-marked destinations of 
importance using public participation GIS 
methods. 

Laxer and Janssen (2013) (Laxer 
and Janssen, 2013) 

26Intersection density (N/km2). Average block 
length (km). Street connectivity (% of 
intersections >2-way). Low speed roads (% ≤
50 km/h). Sidewalks (% roads covered by 
sidewalks). Mixed land use (% residential). 
Walkability scale developed using principal 
component analysis including land-use mix, 
low speed roads, intersection density, and 
sidewalk coverage. Parks and other public  

Table 2 (continued ) 

Lead author [reference] Key geographic characteristics calculated* 

green space (including national parks, 
provincial parks, territorial parks, and 
municipal parks/sports fields, % of area). Open 
wooded areas (% of area). Culs-de-sac ((N of 
intersections-N of true intersections)/land 
area). Presence of yards at home (sum of scores 
(max 60) from 15 observation points plotted in 
each 1 km buffer in an evenly spaced grid 
(approximately 500 m apart in the X and Y 
directions from the buffer’s center) within 
Google Earth Streetview, a 36- degree 
panoramic view was taken at each of the 15 
points to measure the proportion of houses and 
other buildings that had a yard in front). 

McGrath et al. (2016) (McGrath 
et al., 2016) 

27Recreational amenity index: green space, 
beaches, and sports facilities (N). Food outlets 
(P/A of supermarkets, petrol stations, bakeries, 
greengrocers, butchers, fishmongers, 
convenience stores, and fast food stores). 
Walkability index: retail floor area ratio (retail 
building footprint area by the total retail parcel 
area); road intersection density (N of > 2-way 
intersections/neighborhood area); dwelling 
density (N of occupied private dwellings/ 
residential land area); and land-use mix 
(entropy index). 

Mecredy et al. (2011) (Mecredy 
et al., 2011) 

28Composite street connectivity scale using: 
intersection density (N of nodes/total land 
area); average block length (mean length of 
blocks in the area, calculated as sum of the link 
length per area/N of nodes per area); 
connected node ratio (N of street intersections 
divided by N of intersections plus cul-de-sacs, 
calculated as N of real nodes/total N of nodes). 

Mitchell et al. (2016) (Mitchell 
et al., 2016) 

29Open space parks (N/km2 with no built 
recreational amenities). Parks with at least one 
sports field (N/km2 with at least one sports 
field (defined as tennis courts, soccer fields, 
baseball diamonds, or football fields)). Parks 
with at least one playground (N/km2 with at 
least one playground). Parks with both at least 
one sports field and playground (N/km2 with 
at least one sports field and at least one 
playground). Distance to the nearest school 
(km). Distance to the nearest recreational site 
(km). Land use mix (entropy score). Multi-use 
path space (km2). Intersection count (N of >2- 
way intersections/km2). 

Mölenberg et al. (2019) ( 
Mölenberg et al., 2019) 

30New dedicated PA space (the intervention, 
P/A in buffer, distance to space). 

Moran et al. (2017) (Moran et al., 
2017) 

31Walkability index (land use mix/entropy 
index, residential density, intersection density, 
retail floor area ratio). Residential density (N 
of households/km2). Intersection density (N of 
intersections/km2). Retail area (%; including 
shops, grocery stores, malls). Public institute 
area (%; including community centers, 
recreation facilities). Green open space area 
(%; including parks, playgrounds). 

Nordbø et al. (2019) (Nordbø 
et al., 2019) 

32Population density (N of residents/km2, 800 
m buffer only). PA facilities/amenities (N of 
schools, libraries, churches, cinemas, indoor 
pools, shopping malls, community centers). 
Playgrounds/sports fields (N). Schools (P/A). 
Green space (% area of forests, marshland, 
parks, golf courses; 800 m buffer only). Parks 
(P/A). 

Oliver et al. (2014) (Oliver et al., 
2014) 

33Distance to school. Neighborhood 
walkability measure for self-selection variable 
was calculated using: retail floor area ratio 
(retail building footprint area by the total retail 
parcel area), road intersection density (N of >
2-way intersections/neighborhood area), 
dwelling density (N of occupied private 
dwellings/residential land area), and land-use 
mix (entropy index). 

(continued on next page) 
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environment characteristics derived from GIS-estimated shortest routes 
and GPS-derived routes to school. No significant differences were found 
for actual and estimated route distances, but characteristics of routes 
differed significantly, and different results were observed for walking 
and cycling trips. Burgoine et al. (2015) investigated associations be-
tween children’s BMI and home, school and route environmental ex-
posures measured using GPS-derived route to school and GIS-estimated 
home neighborhood. GPS data were collected over one week, but were 
only used for the route to school and not used to delineate home or 
school neighborhood. 

In studies of home or school neighborhoods, one article used GPS to 
determine time spent in specified locations, but these data were not used 

Table 2 (continued ) 

Lead author [reference] Key geographic characteristics calculated* 

Olsen et al. (2019) (Olsen et al., 
2019) 

34Grid cells (○) and35Home neighborhood (●) - 
Motorway or A (major) road (P/A). B or minor 
road (P/A). Railway stop (P/A). Bus stop (P/ 
A). Food and/or drink retail (P/A). Primary 
school (P/A). Leisure center (P/A). Place of 
worship (P/A). Library (P/A). Derelict land (P/ 
A). Private gardens (P/A). Playing field (P/A). 
Sports club (P/A). Woodland (P/A). Public 
park (P/A). Play park (P/A). Green verge (P/ 
A). Other (P/A). Dense population (P/A). 
Urban (P/A). Income Scottish Index of Multiple 
Deprivation (quintiles of deprivation). 
Walkability score (defined using a composite 
‘walkability score’ based on street/path 
connectivity, and dwelling density). 

Sallis et al. (2015) (Sallis et al., 
2015) 

36Walkability index used as control variable, 
calculated from: net residential density; street 
connectivity; retail floor area ratio; and land 
use mix. 

Sallis et al. (2018) (Sallis et al., 
2018) 

37Walkability index: net residential density; 
street connectivity; retail floor area ratio; and 
land use mix. 

Smith et al. (2019) (Smith et al., 
2019) 

38Traffic speed exposure (ratio of high speed 
(>60 km/h), road length to low speed (<60 
km/h), road length). Signalized crossings (N). 
Cycle paths (ratio of cycle path lengths to road 
lengths). Pedestrian network connectivity 
(PedShed: ratio of reachable pedestrian 
network area (network buffer area) to the 
maximum possible area (Euclidean buffer 
area)). 

Tucker et al. (2009) (Tucker et al., 
2009) 

39Land use mix (entropy index). Recreation 
opportunities (N of publicly funded 
recreational facilities, including soccer fields, 
baseball diamonds, basketball courts, 
community centers, arenas, pools, tennis 
courts, playgrounds and wading pools). Level 
of park coverage (% of public parkland 
divided/total land area). 

van Loon et al. (2014) (van Loon 
et al., 2014) 

40Net commercial density. Net residential 
density. Land use mix. Intersection density in 
neighborhood and en-route to school (N of 4- 
way intersections). Cul-de-sac density. 
Proportion of low speed limit streets (>30 km/ 
h). Parks (N). Population density of children. 
Child population (%). Distance to school, 
parks, other recreation sites. 

Villanueva et al. (2012) ( 
Villanueva et al., 2012) 

41School neighborhood (2 km) - Walkability 
index: network connectivity and road traffic 
volume exposure. Home neighborhood (800 
m) - Parks/greenspace (N). Utilitarian 
destinations (N). Recreation destinations 
(N).42Destinations43Walkability, SES 

Wang et al. (2017) (Wang et al., 
2017) 

44Walkability index: net residential density; 
street connectivity; retail floor area ratio; land 
use mix. Parks (N). Recreation facilities (N). 

1-44Detail for other GIS methods employed are provided in Table 1. 
GIS = geographic information system, GPS = global positioning system, IQR =
interquartile range, L = length, N = number, PA = physical activity, P/A =
presence or absence, SD = standard deviation, SES = socio-economic status. 

Table 3 
Overview of key strengths and limitations related to neighborhood delineation 
and use of GIS, GPS, and PPGIS in articles included and examples of literature 
identified.  

Topic/issue Strengths (with examples of 
studies) 

Limitations (with 
examples of studies) 

Neighborhood 
delineation 

Multiple buffer distances 
explored (Boone-Heinonen 
et al., 2010a; Carlson et al., 
2017; Buck et al., 2015;  
Carver et al., 2015; van Loon 
et al., 2014) 
Multiple neighborhood 
delineations explored (e.g., 
use of multiple buffer 
distances and both simple and 
kernel intensity approaches ( 
Buck et al., 2015)), 
child-reported destinations of 
importance, objective 
GIS-estimated measures, and 
shortest distances to 
destinations (Kyttä et al., 
2012), simultaneous 
consideration of activity 
spaces and traditional 
neighborhood buffer 
boundaries, school-specific 
walkability measure ( 
Villanueva et al., 2012) 

Inconsistent use of 
multiple buffer distances 
did not allow for 
comparability (Nordbø 
et al., 2019;  
Boone-Heinonen and 
Gordon-Larsen, 2011;  
Boone-Heinonen et al., 
2010a, 2010b) 
Issues with studies 
examining both home and 
school environments (e. 
g., unclear how school 
and home neighborhoods 
were combined, and 
whether there was any 
consideration of overlap 
between home and school 
neighborhoods (Tucker 
et al., 2009)), some 
crossover (6%) in school 
buffers when using an 
800 m buffer (Jauregui 
et al., 2016), and 
potential overlap and 
collinearity between 
home and school 
neighborhood exposures 
for children who lived 
close to school (Burgoine 
et al., 2015) 
Activity space calculation 
did not account for trip 
frequency and/or 
duration (Villanueva 
et al., 2012) 
Minimum convex 
polygons used for activity 
space calculation do not 
use pedestrian network 
measures (Villanueva 
et al., 2012) 

Temporal alignment 
of data 

GIS environmental measures 
calculated at each time point ( 
Boone-Heinonen and 
Gordon-Larsen, 2011;  
Boone-Heinonen et al., 
2010a) 

Temporal mismatch 
between interview/ 
survey/outcome data and 
GIS data (Nordbø et al., 
2019; Boone-Heinonen 
and Gordon-Larsen, 2011; 
Boone-Heinonen et al., 
2010a; Carroll-Scott 
et al., 2013) 
Longitudinal outcome 
data but GIS variables at 
baseline only (unclear if 
participants had moved) ( 
Carver et al., 2010) 

GIS databases Verified food outlet type 
where necessary by phoning 
businesses and conducting 
store visits (Burgoine et al., 
2015) 

Limited access to detailed 
green space GIS data ( 
Bringolf-Isler et al., 2010) 
Spatial differences 
between time points (e.g., 
shifts in census 
boundaries over study 
measurement periods ( 
Boone-Heinonen and 
Gordon-Larsen, 2011;  
Boone-Heinonen et al., 
2010a)) 

GPS studies Sensitive and accurate data 
collected on individual routes 
to school (Burgoine et al., 

Although GPS used to 
measure time in locations, 
buffer distances were 

(continued on next page) 
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to generate egocentric home or school neighborhood boundaries (Carl-
son et al., 2017). Olsen et al. (2019) used a combination of 25 m2 grid 
cells identified from GPS points of participants and GIS-estimated home 
neighborhood to assess environmental characteristics associated with 
time spent in specific locations. Kyttä et al. (2012) generated measures 
for children’s places of importance using PPGIS, but did not use these 
places to delineate neighborhood boundaries, instead using a 500 m 
network buffer. Over half (53%) of meaningful places marked by chil-
dren were within 500 m from home. Villanueva et al. (2012) used actual 
exposure data to generate egocentric neighborhood delineations by 
making a minimum convex polygon from children’s home and marked 
destinations visited (only for those reporting active travel to local 
destinations). 

3.2.2. Articles estimating neighborhood exposure 
Twenty-three articles estimated the home neighborhood using indi-

vidual participant addresses and Euclidean or network buffers only, four 
measured the school neighborhood environment only (Laxer and Jans-
sen, 2013; Mecredy et al., 2011; Dalton et al., 2011; Jauregui et al., 
2016), and five (Carlson et al., 2014, 2017; Tucker et al., 2009; Burgoine 
et al., 2015; Villanueva et al., 2012) generated measures for both the 
home and school neighborhood (albeit these were not always consis-
tent). Area-level measures were used to define neighborhoods in six 
articles (e.g., Census tracts (Carroll-Scott et al., 2013), statistical sectors 
(De Meester et al., 2012), post code (Tucker et al., 2009), or meshblocks 
(Oliver et al., 2014)). Five articles estimated the route to school using 
GIS-estimated shortest route methods (Burgoine et al., 2015; Dessing 
et al., 2016; Moran et al., 2017; Helbich et al., 2016; Ikeda et al., 2019). 
The article of Burgoine et al. (2015) was the only to measure home 
neighborhood, school neighborhood, and school route. 

Two articles used intensity measures that were not reliant on arbi-
trary neighborhood buffer delineations. Buck et al. (2015) applied both 
simple intensity and kernel intensity approaches to measure in-
tersections, public transit stations, and public open spaces. Sex-specific 
and age-specific differences were observed, whereby MVPA was asso-
ciated with availability of public open spaces in school-aged girls and 
pre-school children (but not school-aged boys), and for school-aged girls 
only significant associations were observed with public transit and 
higher street connectivity. Burgione et al. (Burgoine et al., 2015) used 
inverse distance weighting for neighborhood measures of food outlets 
and PA locations within 6 km from the home and school address 
(combined with walkability measures and exposure to green space using 
800 m network buffers around home and school addresses). In the in-
verse distance weighting, all discrete outlets and PA location points 

Table 3 (continued ) 

Topic/issue Strengths (with examples of 
studies) 

Limitations (with 
examples of studies) 

2015; Dessing et al., 2016;  
Helbich et al., 2016) or 
neighborhood locations 
visited (and time spent in 
these) (Carlson et al., 2017;  
Olsen et al., 2019) 

estimated rather than 
actual exposure (Carlson 
et al., 2015, 2017;  
Burgoine et al., 2015) 
Multi-destination tracks 
were not accounted for in 
analyses (Dessing et al., 
2016) 

Data analyses 
(relevant to GIS/ 
neighborhood 
environment 
measures) 

Neighborhood exposure 
considered (e.g., length of 
residence in the 
neighborhood included as a 
covariate (Hinckson et al., 
2017); child needed to have 
lived in the study area for at 
least 1 year in order 
to-participate (Moran et al., 
2017; Islam et al., 2014), 
authors measured duration of 
residence in 
the-neighborhood, with 
approximately 70% having 
lived in the neighborhood for 
5 years or more (DeWeese 
et al., 2018)) 
Neighborhood self-selection 
considered (Boone-Heinonen 
et al., 2010a; Oliver et al., 
2014) 
Statistical adjustment for 
macrolevel walkability (Sallis 
et al., 2015; Cain et al., 2014) 
Stratification of analyses by 
socio-demographic factors ( 
Boone-Heinonen and 
Gordon-Larsen, 2011; Carver 
et al., 2010; Olsen et al., 
2019; Buck et al., 2015; van 
Loon et al., 2014)  

Study design 
(relevant to GIS/ 
neighborhood 
environment 
measures) 

Heterogeneity in 
environmental characteristics 
likely due to stratified 
recruitment of households ( 
Carlson et al., 2014, 2015, 
2017) (albeit noting that in 
one study although stratified 
recruitment in higher and 
lower-socio-economic status 
neighborhoods occurred, 
education levels of parents 
were generally high, likely 
reflecting education levels of 
the university city (De 
Meester et al., 2012)) 
Environmental variability 
including low density, single 
family housing 
neighborhoods to mixed use 
and medium-high density 
neighborhoods characterized 
by a range of apartment type 
housing (van Loon et al., 
2014) 
Inclusion of urban and rural 
areas (Carver et al., 2015)  

Specificity of 
measures/methods 

Separate analyses conducted 
by transport mode (Dessing 
et al., 2016). 
Cyclist and 
pedestrian-specific variables 
calculated (but did not 
analyze separately by travel 
mode due to low cycling 
numbers) (Smith et al., 2019) 
Multiple addresses: Excluded 

Walkability index of the 
school neighborhood used 
as a proxy for 
neighborhood walkability 
(Laxer and Janssen, 2013; 
Villanueva et al., 2012)  

Table 3 (continued ) 

Topic/issue Strengths (with examples of 
studies) 

Limitations (with 
examples of studies) 

children living in 
postseparation families to 
make certain that the child 
lived at the actual address 
used for the calculation 
(although this would have 
increased specificity it may 
introduce unanticipated bias 
through excluding a 
participant group) (Nordbø 
et al., 2019) 
Participants living further 
than 2 miles (Carlson et al., 
2014) or 2 km (Villanueva 
et al., 2012) from their school 
were excluded (albeit this will 
produced biased results 
towards those living close to 
school) 

GIS = geographic information system, GPS = global positioning system. 
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contributed to neighborhood exposure. 

3.3. Buffer distances used in neighborhood delineations 

For home neighborhood delineations, buffer distances of between 
100 m (Euclidean) (Bringolf-Isler et al., 2010) and 5 km (Euclidean, 
pedestrian network) (Nordbø et al., 2019; Carver et al., 2015) around 
the home were observed. This range for school neighborhoods was be-
tween 400 m (Jauregui et al., 2016) to 5 km (Mecredy et al., 2011) 
Euclidean buffers from the school. Sixteen articles used more than one 
neighborhood buffer distance. The most common buffer distances used 
were 800 m and 1 km (both N = 11 studies). One article measured time 
spent within the home parcel (using a 50 m Euclidean buffer), the school 
parcel (15 m buffer), and the home and school neighborhoods (1 km 
street network buffer excluding the home and school parcel, respec-
tively) (Carlson et al., 2017). Five used multiple buffers that were 
inconsistent across variables (Nordbø et al., 2019; Boone-Heinonen and 
Gordon-Larsen, 2011; Boone-Heinonen et al., 2010a, 2010b; Tucker 
et al., 2009), and two used multiple buffer distances that were incon-
sistent due to use of differing methods. For example, Olsen et al. (2019) 
developed 25 m2 grid cells based on GPS data points, and estimated 
children’s home neighborhoods using an 800 m Euclidean buffer. Re-
sults showed that children often used specific amenities outside the 800 
m buffer, even if these amenities were also available close to home. 
Burgoine et al. (2015) stipulated an 800 m network buffer to charac-
terize home and school environments, and employed inverse distance 
weighting using a 6 km maximum distance threshold. 

Less than a quarter of articles used at least some consistent measures, 
enabling comparison of the utility of differing buffer calculations. Most 
of the articles that enabled comparison included children aged between 
6 and 14 years and all used estimated measures of neighborhoods. There 
was some indication that larger buffer sizes may capture activity 
neighborhoods better in this age group. For example, van Loon et al. 
(van Loon et al., 2014) reported that larger buffer sizes (i.e., 800 m, 1.6 
km), and predominantly the largest buffer size (1.6 km), best explained 
the associations between MVPA and environments (compared with 
smaller street network buffer sizes of 200 m and 400 m). Buck et al. 
(2015) found stronger effects in environmental associations with MVPA 
when using larger network distances (~1–2 km). Villanueva et al. 
(2012) determined that the amount of neighborhood area overlap with 
GPS-derived activity spaces was greater when using 1.6 km street 
network buffers compared with an 800 m buffer. In a study of children’s 
odds of cycling, significant results were only observed in the 5 km home 
neighborhood buffer (using a pedestrian network buffer including 
cycling infrastructure) and not for an 800 m buffer. Although Mitchell 
et al. (2016) found comparable results between 500 m and 800 m home 
neighborhood buffers (Euclidean) for children’s MVPA, sex differences 
were observed, whereby the 800 m buffer only was important for fe-
males. Conversely when examining active school travel and school 
neighborhood walkability (Euclidean), Jauregui et al. (2016) observed a 
significant negative relationship at 400 m and no significant relationship 
was found for the 800 m buffer. 

In age-stratified analyses, Bringolf-Isler et al. (2010) noted signifi-
cant and comparable results in relationships between 100 m, 200 m, or 
500 m home neighborhood environments (Euclidean) and vigorous 
outdoor play in children aged 6–10 years. For adolescents aged 13–14 
years, no significant associations were observed at any of these buffer 
sizes. One article examined a range of distances from home (500 m, 750 
m, 1 km, 1.25 km, 1.5 km, 2 km) with younger children aged 2–9 years 
(Buck et al., 2015). Findings showed consistent associations for MVPA 
and environmental characteristics between 750 m and 1.5 km for 
school-aged children, and between 500 m and 1 km for preschool-aged 
children in studies in this review, but only when using a kernel density 
approach, rather than simple network buffer. Conversely, the single 
study with adolescents (aged 12–18 years) that had comparable envi-
ronmental variables (pedestrian network buffers around homes of 250 

m, 500 m, 1 km, and 2 km) showed MVPA was only associated with 
residential density and number of parks within 2 km from home, and 
also when this was combined into an objective environmental index of 
activity-friendliness (Hinckson et al., 2017). For routes travelled, buffers 
of 25 m (Dessing et al., 2016; Moran et al., 2017), 100 m (Burgoine et al., 
2015; Helbich et al., 2016), and 160 m (80 m either side of the center-
line) (Ikeda et al., 2019) were used. No studies compared the utility of 
differing route buffer distances. 

4. Discussion 

The aim of this review was to map out and describe GIS-based ap-
proaches that have been employed to measure children’s neighborhood 
geographies for understanding PA and related outcomes. Forty articles 
were included in this review, the GIS methods of which are explored and 
contextualized within the extant evidence base here. Studies were pre-
dominantly conducted in the USA and in non-rural neighborhoods. A 
plethora of GIS methods and variables were used in the literature 
identified, with the majority obtaining estimates of children’s home 
environments using Euclidean or network buffers ranging from 100 m to 
5 km. Reporting of methods was reporting of methods was inconsistent 
across studies and sometimes incomplete meaning not all data could be 
extracted. 

Comparison of PA neighborhood buffer distances used suggested 
distances of around 800m-1.6 km may be optimal (dependent on 
context, type of environment being measured, and age group), with 
greater distances for older youth, and shorter distances for younger 
children. To some extent, the finding that larger distances performed 
better in identifying relationships is unsurprising. This is particularly 
relevant when considering destinations - as boundaries are increased, so 
too should the volume of possible relevant destinations. The trade-off of 
using larger buffer sizes is reduced specificity and subsequent impacts on 
utility for informing urban planning. Larger buffer sizes can also limit 
geographic variability between individuals living within the same area. 
Overall, findings reveal the value of measuring actual exposure, and 
where this is not possible, using multiple buffer sizes as well as strati-
fication of analyses by socio-demographic characteristics (e.g., age) and 
behaviors (e.g., walking, cycling). 

A small number of studies stratified by socio-demographic factors, 
and where this occurred, studies showed important differences in re-
lationships between activity and environments by age group, sex, socio- 
economic status, and geography (particularly with regard to urbanicity). 
Additionally, differing results were found by population groups by 
stages of the day (e.g., before school and after school) (Carver et al., 
2010), and other studies supported the value of focusing on out of school 
hours (Mitchell et al., 2016). These differences signal the importance of 
considering how children’s relationships with their neighborhood can 
differ within-individual (e.g., over time, in different contexts), within 
population groups or neighborhood environments, and between popu-
lation groups or geographic contexts. Consistent approaches to 
measuring environments by spatial (e.g., school neighborhood, home 
neighborhood, routes; rural, urban; etc.) and temporal (e.g., time of day) 
factors are needed to understand the relationship between environments 
and children’s PA behaviors. 

These issues also speak to the need for conceptual matching of 
dependent and independent variables for improved specificity in this 
field (Giles-Corti et al., 2009). For example, while pedestrian network 
buffer calculations conceptually align with understanding active travel, 
these buffers were only used in a small number of articles. There is a 
need to understand associates of walking and cycling behaviors better 
through (1) examining these behaviors independently, and (2) 
measuring specific infrastructure hypothesized to support the behaviors 
(e.g., cycle lane size, proportion of footpaths). Where PA is the outcome 
of interest, multiple approaches may be required that measure charac-
teristics within home and school “neighborhoods”, as well as charac-
teristics along routes of importance (e.g., between home and school). 
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Only one study in this review characterized children’s environments 
using all three approaches (Burgoine et al., 2015). Care must be taken to 
ensure there is no overlap in areas, for example where home and school 
neighborhoods are simultaneously taken into account (particularly for 
children who live close to school). To overcome this issue, one study 
removed 20% of their sample who had overlap in their home and school 
neighborhood buffers (Carlson et al., 2017). Alternative approaches that 
do not exclude participants are warranted, for example, identifying, 
clipping and removing overlap (Egli et al., 2020). Temporal matching of 
GIS datasets with outcomes is also an area for improvement, with some 
studies having using historical datasets that were nearly a decade apart 
from the behavioral data being collected, and longitudinal studies using 
baseline addresses only to generate environmental measures for 
analyses. 

Findings from one article suggested intensity measures (i.e., exam-
ining intensity of environmental characteristics within specified dis-
tances from a location) performed more consistently than using 
neighborhood buffers (Buck et al., 2015). However, intensity ap-
proaches remain only estimates of specific settings and overall neigh-
borhood environments that children spend their time in. Moreover, 
while neighborhood buffer distances do not need to be specified, in-
tensity methods such as kernel density estimation do require specifica-
tion of bandwidth distances, which are still generally relatively 
arbitrary. Choice of destinations for examination must be carefully 
considered and may still only be estimates of actual exposure. For 
example, use of GPS and accelerometry (Badland et al., 2015) and PPGIS 
(Egli et al., 2020; Kyttä et al., 2018) in earlier research has highlighted 
unique patterns in children’s neighborhood use, including identifying 
the importance of school settings, shopping destinations, and large, 
multipurpose outdoor settings. 

Use of GPS to measure actual exposure can overcome some of these 
limitations (Hurvitz et al., 2014; Jankowska et al., 2015) and was 
employed in a number of articles to assess routes travelled thus 
improving precision in behavioral measurement (e.g., when combined 
with accelerometry as in Carlson et al. (2017)) and environmental 
exposure. Combination with accelerometry can also mitigate issues with 
non-activity/environmental exposure time being inaccurately coded (e. 
g., while in a stationary car). In articles included in this review, GPS was 
used in to identify places of importance to children within their neigh-
borhood and where physical activities actually occurred (Carlson et al., 
2017; Olsen et al., 2019). Multi-destination tracks (e.g., trip-chaining) 
were not considered in GPS-derived route studies (Dessing et al., 
2016). Future studies should consider this issue in order to fully un-
derstand route characteristics and destinations of importance in relation 
to children’s PA. For example, for the home-school trip, a route will look 
different if a child was picked up en-route (potentially requiring diver-
gence from the home-school journey) compared with a direct 
home-school journey. GPS approaches themselves are not without lim-
itations, including varying model validity (Duncan et al., 2013) issues 
with data quality, battery life, unit failure, signal drop out, increased 
participant burden through having to wear the unit, and participant 
non-compliance in free-living activities (Oliver et al., 2010). The 
resourcing required for units and data processing also means studies are 
generally limited to small sample sizes. No studies cited applying min-
imum GPS inclusion criteria or potential issues with bias in data inclu-
sion, an important consideration considering the potential for 
inequitable exclusion of participants with increasingly stringent criteria 
(Mavoa et al., 2018). Disagreement was found in terms of whether 
constraining GPS paths to street networks for routes is appropriate or 
not. In comparisons of approaches, Burgoine et al. (2015) proposed 
snapping to the street network resulted in a more accurate estimation of 
the route travelled (but acknowledged this could also miss through-ways 
between street networks), while Dessing et al. (2016) reflected on the 
value of buffering ‘raw’ GPS signals of the route travelled to resemble 
the actual routes as closely as possible. Specification of shorter GPS 
sampling epochs is intrinsically related to this challenge, whereby 

shorter epochs may allow for greater spatial accuracy (negating the need 
to “snap” to the network), and overcome issues with signal drop-out (e. 
g., due to being in an urban jungle). 

Several types of spatial data, such as GPS and PPGIS, provide the 
functionality to map activity spaces and define individualized neigh-
borhood areas (Perchoux et al., 2013; Hasanzadeh et al., 2017, 2018). 
Individual activity spaces are increasingly gaining interest as spatial 
units in empirical research. Activity spaces have been recognized for 
their value in understanding relationships between human behavior and 
the built environment (Sherman et al., 2005). However, studies 
reviewed in this paper have rarely used such data to define children’s 
neighborhood areas or their activity spaces. In one study, child-mapped 
destinations were used to generate individual activity space maps using 
minimum convex polygons (Olsen et al., 2019). However, there are 
limitations associated with minimum convex polygons, or the so-called 
“container” approaches in general. Such approaches do not use pedes-
trian network measures and hence do not adequately account for the 
variability of accessibility and exposure within their boundaries 
(Hasanzadeh et al., 2018). There is also a need to consider the varied 
exposure within these polygons, for example by taking into account the 
frequency of visitation to key destinations (Hasanzadeh et al., 2018). 

Child-mapped destinations were used in one article to examine 
children’s perceptions and use of neighborhood destinations (Kyttä 
et al., 2012), but these data were not used to generate a neighborhood 
area of interest. These approaches rely on children’s ability to accurately 
recall and report destinations of importance. Evidence suggests that for 
younger children (i.e., aged 8–13 years) undertaking PPGIS surveys 
one-to-one researcher support may be necessary to ensure children are 
able to complete mapping activities (Oliver et al., 2016b). It is also 
possible that differences in accuracy of maps and routes will exist by 
geography (e.g., traditional vs. suburban neighborhood), and by usual 
mode of travel (Moran et al., 2017; Oliver et al., 2016b; Stewart et al., 
2017). While involving children in determining neighborhood envi-
ronment measures through mapping activities can be time consuming, 
and longer non-active routes may be more susceptible to self-report 
error (Stewart et al., 2017), these approaches can provide detailed in-
sights in ways that estimated measures cannot. There is a need to 
advance these techniques and the evidence base through considering 
relative importance and role of key destinations in children’s lives. 

Ethical issues exist with regard to ensuring participant anonymity. In 
one study, spatial blurring of children’s addresses was undertaken, and 
minor effects on assessment of urban measures was observed (Buck 
et al., 2015). This issue is not restricted to home addresses – in earlier 
work exploring neighborhood destinations, Egli et al. (2019) geomasked 
neighborhood destinations where children reported spending time when 
presenting maps of child marked locations, schools, and outdoor 
advertising. Improved reporting of consideration for protecting child 
participants and their anonymity is needed, alongside implications for 
interpreting research results. 

A large body of GIS literature has explored measurement issues in 
environments and health research with a focus on mobility of adult or 
general populations, or access to health services. For example, Páez et al. 
(2012) highlighted important distinctions in accessibility measurement, 
reflecting on the utility of using measures of normative accessibility 
(how far is it reasonable to travel) and positive accessibility (how far 
people actually travel) in tandem using access to childcare as a useful 
case study. Langford et al. (2018) also examined issues related to access 
to formal childcare provision, calling for “a more integrated and 
consistent approach to collating data that enables both spatial and 
temporal patterns in provision to be elucidated” (p. 663). The review of 
Yi et al. (2019) summarized geospatial methods used to measure built 
environments in PA research using three main categories. Of the 79 
articles, most used domain-based approaches (i.e., aligning GPS accel-
erometry with environmental context to identify levels of PA in partic-
ular domains), 22% used buffer-based methods, and 11% activity-space 
approaches. Numerous technical limitations were identified, including 
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issues related to temporal dimension and selective daily mobility bias 
with specific regard to understanding the environment-activity rela-
tionship. A number of studies call for improved reporting of GIS methods 
in health geography research, with proposed reporting checklists 
including Geo-FERN for food environments (Wilkins et al., 2017), and 
the ISLE-ReST for use in spatial lifecourse epidemiology research (Jia 
et al., 2019). The quality assessment results in this research further 
demonstrate the need for improved clarity in reporting across all 
methods. Overall, the clear and consistent messages are that no one 
approach is optimal, careful consideration of the limitations of ap-
proaches is necessary, as is an understanding of the impacts that 
decision-making in GIS analyses can have on variable calculation and 
subsequent identification of relationships. Here, the focus on children as 
a population group and physical activity behaviors as an outcome pro-
vides a unique contribution to the predominantly adult-centric evidence 
base. Child-specific insights and recommendations have been provided 
regarding buffer distances, socio-demographic considerations, and 
pragmatic considerations about conducting mapping research with 
children. 

Finally, the value of GPS and child-mapping methods to better 
elucidate children’s physical activity geographies remains underex-
plored. In addition to specific suggestions for future research identified 
above, it will be useful to consider how Chaix’s (Chaix, 2018) recom-
mendations for future ‘mobile sensing’ research - development of 
theoretical models and a priori hypotheses, improved data collectio-
n/analysis, and development of interventions that take advantage of 
mobility data – apply (or not) to research with children. 

4.1. Review strengths and limitations 

Strengths of the review are the systematic approach to identifying, 
screening, and including literature with random duplication across all 
activities, however a number of limitations should be considered. The 
review took a narrow approach to focusing on built environment aspects 
only, and in doing so did not include studies that focused on factors that 
fit more broadly under the social environment (e.g., crime, socio- 
economic status). It is recognized that the relationship between the 
built environment and these factors is complex. For example, socio- 
economic factors can drive environmental design and subsequently 
impact health outcomes in children, potentially exacerbating inequities 
(Egli et al., 2020). Considering these factors together requires an 
in-depth and comprehensive approach to understand the multiple re-
lationships and pathways between factors, which was beyond the scope 
of this study. 

Because the focus was on GIS analyses, the review has not reported 
on other environment-PA relationships observed in the literature 
included. In some cases, additional variables were important contribu-
tors to understanding the environment-PA relationship (e.g., perceived 
environmental features (Hinckson et al., 2017; Ikeda et al., 2019), 
weather (Helbich et al., 2016; Oliver et al., 2014), and environmental 
quality (Cain et al., 2014; Islam et al., 2014)), however these were not 
explored in the current review. Broader study design issues such as 
sample size, representativeness, seasonality, and reliability and validity 
of outcome measures have not been systematically examined in this 
review (but are reported briefly in this discussion). The heterogeneity in 
methods, combined with the fact most of the evidence arose from the 
USA, also limited any comparison in utility of GIS approaches by 
geographic context. Finally, while the value of including grey literature 
(Gebel et al., 2015) is acknowledged, this review was delimited to 
published academic literature only, primarily in the interest of main-
taining feasibility. It is likely a number of relevant studies were missed 
through this decision, however the diversity in methods presented from 
literature sourced likely mean that methods currently employed in the 
field have been covered. 

5. Conclusion 

A heterogeneous body of literature was identified and reporting of 
methods was inconsistent. It is likely that no singular existing approach 
to measuring geographies for children’s PA is optimal, and instead 
triangulation of a range of approaches is needed, with methods deter-
mined taking population, geography, and study context into consider-
ation. Greater geographic diversity in international evidence is needed. 
Improved consistency and transparency in reporting research methods is 
urgently required to enable comparability across socio-demographic 
groups and geographic regions. 
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