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A B S T R A C T

The extreme learning machine (ELM) is a well-known approach for training single hidden layer feedforward
neural networks (SLFNs) in machine learning. However, ELM is most effective when used for regression on
datasets with simple Gaussian distributed error because it often employs a squared loss in its objective function.
In contrast, real-world data is often collected from unpredictable and diverse contexts, which may contain
complex noise that cannot be characterized by a single distribution. To address this challenge, we propose a
robust mixture ELM algorithm, called Mixture-ELM, that enhances modeling capability and resilience to both
Gaussian and non-Gaussian noise. The Mixture-ELM algorithm uses an adjusted objective function that blends
Gaussian and Laplacian distributions to approximate any continuous distribution and match the noise. The
Gaussian mixture accurately models the residual distribution, while the inclusion of the Laplacian distribution
addresses the limitations of the Gaussian distribution in identifying outliers. We derive a solution to the novel
objective function using the expectation maximization (EM) and iteratively reweighted least squares (IRLS)
algorithms. We evaluate the effectiveness of the algorithm through numerical simulation and experiments on
benchmark datasets, thereby demonstrating its superiority over other state-of-the-art machine learning methods
in terms of robustness and generalization.
1. Introduction

The advancement and refinement of regression techniques have
long been a persistent area of investigation. One such technique is the
extreme learning machine (ELM), which is commonly incorporated in
regression models [1]. Owing to its rapid learning speed, exceptional
generalization performance, and other benefits, ELM models have been
extensively studied in both theoretical and practical domains [2,3].
Nevertheless, the efficacy of ELM predictions is heavily contingent upon
the purity of the training data [4]. Hence, researchers are continuously
exploring the applicability of ELM in uncertain scenarios by employ-
ing various strategies, such as identifying and eliminating outliers,
modifying objective functions, etc.

As the noise in real-world data is complex and always unknown, it
cannot be well characterized by any one distribution. Moreover, in the
mixture of Gaussian distributions (MoG), the noise data is assumed to
be normal, and the Gaussian distribution is sensitive to outliers. Then,
we construct the mixture of Gaussian and Laplace distributions as MoG,
this may be more reasonable for data prediction with outliers. As is well
known, there is an absolute term in the probability density function of
the Laplace distribution and a square term in the Gaussian distribution.
Thus, the cost function of ELM will be a 𝑙1−norm loss function with a
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𝑙2−norm term in it. Experiments in Zhang et al. [5] reveal that when
the data contain numerous outliers, methods with the 𝑙1−norm loss
function perform better than those with the 𝑙2−norm. This implies that
the 𝑙1−norm loss will increase the generalizability and robustness of
the ELM models. If the mixture of Gaussian and Laplace distributions
is used, then the obtained objective function should have the properties
of both the 𝑙1−norm and 𝑙2−norm loss functions, thereby making the
model more robust.

In light of these concepts, a robust ELM, called the Mixture-ELM, is
proposed in this study to enhance the modeling capacity and resilience
of ELM when handling data with complex noise. A new objective func-
tion is created to map the features between input and output by using
a mixture of Gaussian and Laplace distributions. This is different from
existing ELMs, which minimize the output weights and modeling errors
under the assumption that noise follows a Gaussian distribution. To
estimate the parameters in the proposed Mixture-ELM, the expectation
maximization (EM) approach is also used. The following characteristics
can be used to summarize the significant contributions of this study:

(1) In this paper, the Mixture-ELM algorithm is proposed, and a new
loss function is constructed, including a mixture of Gaussian and
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Laplace distributions. The component of Gaussian distributions
is used to deal with the normal data and the component of
Laplace distributions is used to deal with the abnormal data.

(2) In Mixture-ELM, the EM algorithm is applied to identify the
samples adaptively, and different loss functions are applied to
the samples in different clusters to train the model.

(3) Numerical simulation and real-world public datasets are used
to test the proposed Mixture-ELM approach. The EM is used
to accurately estimate the parameters of the noise distributions
accurately.

The remainder of this paper is organized in the following manner:
Section 2 introduces the related literature. Section 3 outlines the tradi-
tional ELM and EM algorithms and presents the proposed Mixture-ELM.
This section includes the modified objective function of Mixture-ELM
and the corresponding solving process. Section 4 presents the numerical
simulation for data with different settings. The section also presents ex-
perimental results and further analysis on selected benchmark datasets.
Section 5 concludes the paper.

2. Related literature

Over the last decade, ELM has been extensively researched in theory
and applications [6] as a generalized single hidden layer feedforward
networks (SLFNs). Unlike most typical gradient-based SLFNs training
approaches, the hidden layer parameters of ELM are randomly assigned
without iterative adjustment [7]. Consequently, ELM has a fast learning
rate and is simple to apply. In theory, Huang et al. [8] established
the universal approximation of ELM. Moreover, ELM has been used in
residual learning [9,10], online learning [11,12], structural optimiza-
tion [13], ensemble learning [14,15], imbalance learning [16,17], etc.
Because of the ease of implementation and great generalization [18],
ELM is extensively utilized in real-world applications, such as load fore-
casting [19], image categorization [20], business management [21],
automatic language identification [22], and COVID-19 detection.

In most of the current extreme learning machines, the data used
for modeling is assumed to be pure and without noise and outliers, or
solely with Gaussian error. However, sampling problems, measurement
flaws, and modeling errors may cause the noise to follow an unknown
distribution, thereby making data uncertainty unavoidable in real ap-
plications. In practical applications, the noises are more complex and
may contain Gaussian distribution, Laplace distribution, or mixed dis-
tributions. Additionally, a data-driven predictor’s effectiveness suffers
greatly from cluttered or very noisy data [23]. Consequently, ELMs that
do not account for the effects of uncertainty may be insufficient.

Therefore, people always search for ways to improve the mod-
eling capability of ELM in uncertain circumstances. Based on the
structural risk minimization principle and the weighted least square
method, a new regularized ELM algorithm, weighted regularized ELM
(WRELM) [24], is proposed. Without increasing the training time, the
generalization performance of the algorithm is significantly improved
in most cases. For example, FIR-ELM [25], was designed to reduce
input disturbance by deleting certain undesirable signal components
by FIR filtering. He et al. [26] created a hierarchical ELM for dealing
with high-dimensional noisy data, in which several subnet groups were
proposed for concurrently reducing data dimension and filtering noise.
However, these improved ELMs based on outlier detection may mistake
pure data for outliers, thereby causing the original data structure to
be broken and information to be lost. Because of the presence of this
flaw, people increase the model’s resilience in another manner—by
modifying the objective function. For example, a robust loss function
is introduced to ELM instead of the 𝑙1-norm loss, and a least-trimmed
square estimator is examined for robust regression instead of the least
square technique [27]. Furthermore, a robust ELM algorithm, known as
outlier-robust ELM (ORELM) [28]—based on the sparsity characteristic
2

of the outlier is proposed. The 𝑙1-norm loss function is introduced to
Fig. 1. ELM model.

enhance the robustness and the fast and accurate augmenting Lagrange
multiplier method is used to ensure the effectiveness and efficiency of
the algorithm. It not only maintains the advantages of ELM but also has
significant and stable accuracy when dealing with abnormal data.

Further, second-order cone programming, which is extensively used
in robust convex optimization problems, was specifically integrated
into ELM [29]. Probabilistic regularized ELM (PRELM) [30], consid-
ering the modeling error distribution, constructed a new objective
function to minimize the mean and variance of the modeling error.
It has good modeling performance for non-Gaussian noise or outlier
problems.

Although ELMs with different goal functions can produce good
results, this cannot be ensured when the noise follows non-Gaussian
distributions. R-ELM was proposed by Zhang et al. [5] to improve
modeling performance and robustness with Gaussian and non-Gaussian
noise. A modified objective function was built in R-ELM to fit the noise
using a mixture of Gaussian distributions (MoG) to approximate any
continuous distribution. The tests on the selected benchmark datasets
and real-world applications revealed that the proposed R-ELM outper-
forms state-of-the-art machine learning techniques in terms of resilience
and generalization. Some algorithms are listed in Table 1.

However, in real-world applications, samples frequently contain
varying degrees of outliers, whereas noises are constantly susceptible
to uncertain statistical distributions. Furthermore, because the Gaus-
sian distribution is particularly sensitive to outliers, employing MoG
to match noise cannot yield a decent prediction impact for datasets
with outliers. The present techniques are unable to extract the noise,
especially when the data contains a large number of outliers of varying
degrees.

3. Proposed method

In this section, we provide a brief introduction to the classical ELM
and EM algorithms.

3.1. ELM theory

This section begins with a brief overview of the extreme learning
machine (ELM) theory. An ELM is a machine learning algorithm used
to train the single-layer feedforward neural network (SLFN). It was
proposed to train SLFNs with only one hidden layer and the structure
is the same as other neural network algorithms, as in Fig. 1. All
parameters are tuned only once with this method. Iterative training is
not required for the algorithm.



Knowledge-Based Systems 280 (2023) 111033S. Zhao et al.
Table 1
Relative work.

Algorithm Abbreviation Year Limitations Source

Weighted regularized ELM WRELM 2009 Modeling performance is heavily dependent on the accuracy
of weight estimation, especially in complex real-world cases

[24]

ELM with FIR Filtering FIR-ELM 2011 The number of iterations to reach convergence is too many,
and the calculation is too large and might be trapped by
local minima.

[25]

Hierarchical ELM HELM 2013 The improved ELM based on outlier detection may mistake
pure data for outliers, causing the original data structure to
be broken and information lost.

[26]

Outlier-robust ELM ORELM 2014 It creates a heavy computational cost, which often causes
these models to be less effective.

[28]

ELM with second-order cone programming SR-RELM 2016 The computational burden of the novel ELM is relatively
heavy

[29]

Probabilistic regularized ELM PRELM 2018 Its objective function still retains the square loss function
(𝑙2-norm). However, it has been pointed out that the 𝑙2-norm
is prone to be badly affected by outliers. Typically, the ELM
model with 𝑙2-norm loss function tends to be unstable in the
presence of outliers.

[30]

ELM with a mixture of Gaussian R-ELM 2020 A mixture of Gaussian is used to fit the noise, but in the real
environment, the noise follows a variety of distributions,
which may lead to poor noise reduction effect. And its
objective function is still a linear combination of 𝑙2-norm loss
function, which is prone to be badly disturbed by outliers.

[5]

ELM with robust loss function PELM 2022 The hyper-parameters and penalty parameter are obtained by
cross-validation method, which can only obtain a result
attached to the optimal value and require much computing
resources

[27]
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The training sample set 𝑥 = (𝑥1,… , 𝑥𝑁 ) serves as the input of the
neural network in the diagram, from left to right, and there is a hidden
layer in the center with 𝑛 nodes. 𝐻(𝑥) is the hidden layer output, and
there is a complete link between the input and the hidden layer. The
output 𝐻(𝑥) can be rewritten as follows:

𝐻(𝑥) = [ℎ1(𝑥),… , ℎ𝑛(𝑥)]. (1)

The output is obtained by the input multiplied by the corresponding
weight and appropriate bias through a nonlinear function at each node.
Moreover ℎ𝑖(𝑥) is the output of the 𝑖th hidden layer node which can be
treated as a nonlinear function. Different nonlinear functions can be
employed for various hidden layer neurons. In real applications, ℎ𝑖(𝑥)
used to be represented as follows:

ℎ𝑖(𝑥) = 𝑔(𝑤𝑖, 𝑏𝑖, 𝑥) = 𝑔(𝑤𝑖𝑥 + 𝑏𝑖), 𝑤𝑖 ∈ R𝑛, 𝑏𝑖 ∈ R, 𝑖 = 1,… , 𝑛, (2)

where 𝑤𝑖 and 𝑏𝑖 are the weight and bias vectors on the 𝑖th node of
the hidden layer, respectively. Moreover, 𝑔(⋅) is the activation function,
which fulfills the universal approximation ability theorem of the ELM.
It is a nonlinear continuous function and often employed functions in-
cluding the Sigmoid function and the Gaussian function, etc. According
to the above diagram and formula, after passing through the hidden
layer and entering the output layer, the output of ELM is:

𝑓𝑛(𝑥) =
𝑛
∑

𝑖
𝛽𝑖ℎ𝑖(𝑥) = 𝐻(𝑥)𝛽, (3)

where 𝛽 = [𝛽1,… , 𝛽𝑛]𝑇 is the weight between 𝑛 hidden layer nodes and
𝑚 output layer nodes. The preceding equation can be represented as the
following compact matrix:

𝐇𝛽 = 𝐘, (4)

where 𝐇 refers to the hidden layer output matrix:

𝐇 =
⎡

⎢

⎢

⎣

𝐡(𝑥1)
⋮

𝐡(𝑥𝑁 )

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

ℎ1(𝑥1) ⋯ ℎ𝑛(𝑥1)
⋮ ⋱ ⋮

ℎ1(𝑥𝑁 ) ⋯ ℎ𝑛(𝑥𝑁 )

⎤

⎥

⎥

⎦

, (5)

and 𝐘 refers to the training data target matrix:

𝐘 =
⎡

⎢

⎢

𝑦𝑇1
⋮
𝑇

⎤

⎥

⎥

=
⎡

⎢

⎢

𝑦11 ⋯ 𝑦1𝑚
⋮ ⋱ ⋮

⎤

⎥

⎥

. (6)
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⎣𝑦𝑁⎦ ⎣𝑦𝑁1 ⋯ 𝑦𝑁𝑚⎦ l
ELM basically divides the training process for SLFN into two stages:
(1) generating random feature mappings and (2) identifying linear
parameters. The hidden layer parameters are initially set at random.
Thereafter, ELM transfers the input data to a new feature space by
using some nonlinear mapping as an activation function. A nonlinear
piecewise continuous function can be used as the nonlinear mapping
function in ELM and the weights and biases at the hidden layer nodes
of ELM are generated at random. The hidden layer node parameters 𝑤
and 𝑏 are not determined by training but are randomly produced based
on a continuous probability distribution.

After the first stage, 𝑤 and 𝑏 are randomly generated and identified;
thus, the output of the hidden layer can be calculated by Eq. (2). In the
second stage of ELM learning, we only need to find the weight 𝛽 of the
output layer.

The objective function of ELM is to minimize both the norm of the
output weight 𝛽 and the modeling error and it can be written as the
following expression:

Min ∶ 1
2‖𝛽‖

2 + 1
2𝐶

∑𝑛
𝑖=1 𝜉

2
𝑖

s.t. 𝐡(𝑥𝑖)𝛽 = 𝑦𝑖 − 𝜉𝑖, 𝑖 = 1,… , 𝑛,
(7)

where 𝜉𝑖 is the model noise, and 𝐶 is a regularization coefficient for im-
proving generalization performance. For this classic optimal problem,
we can quickly obtain the following solution:

𝛽 =

{

𝐇𝑇 ( 𝐈
𝐶 +𝐇𝐇𝑇 )−1𝐘, 𝑛 < 𝑁

( 𝐈
𝐶 +𝐇𝑇𝐇)−1𝐇𝑇𝐘, 𝑛 > 𝑁

, (8)

where 𝛽 is the estimated value of 𝛽, and 𝐈 is the identity matrix.

.2. EM algorithm

The expectation step (E-Step) and maximization step (M-Step) are
he two basic concepts of the EM algorithm. The E-Step primarily
stimates the parameters by observing the data and the existing model
nd then uses the estimated parameters to calculate the expected value
f the likelihood function. The M-Step is to identify the corresponding
arameters when the likelihood function is maximized. The likelihood
unction will eventually converge because the procedure ensures the
ikelihood function will grow with each iteration. The EM algorithm
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can effectively obtain the information of latent variables only according
to Cappé and Moulines [31]. Therefore, the EM algorithm is frequently
employed in application procedures pertaining to data mining and
machine learning [32].

For a given dataset, we can assume that the samples are indepen-
dent. The likelihood function is:

𝐿(𝜃) =
𝑛
∑

𝑖=1
log𝑃 (𝑥𝑖|𝜃)

=
𝑛
∑

𝑖=1
log

∑

𝑧
𝑃 (𝑥𝑖, 𝑧|𝜃),

(9)

where 𝑛 is the number of samples taken, 𝜃 is the parameter of samples’
istribution, 𝑃 (𝑥𝑖|𝜃) is the probability of sampling 𝑥𝑖, and 𝑧 is a latent
ariable, denoting the potential category to which each sample might
elong. Let 𝑄𝑖(𝑧) represent the distribution of the latent variable 𝑧

corresponding to sample 𝑥𝑖; thus 𝑄𝑖(𝑧) satisfies the condition ∑

𝑧𝑄𝑖(𝑧) =
, 𝑄𝑖(𝑧) ≥ 0. Then, the likelihood function is modified as follows:

(𝜃) =
𝑛
∑

𝑖
log

∑

𝑧
𝑃 (𝑥𝑖, 𝑧|𝜃)

=
𝑛
∑

𝑖
log

∑

𝑧
𝑄𝑖(𝑧)

𝑃 (𝑥𝑖, 𝑧; 𝜃)
𝑄𝑖(𝑧)

≥
𝑛
∑

𝑖

∑

𝑧
𝑄𝑖(𝑧) log

𝑃 (𝑥𝑖, 𝑧|𝜃)
𝑄𝑖(𝑧)

,

(10)

where the inequality in Eq. (10) is given by Jensen’s inequality.
Jensen’s inequality gives that 𝑋 is a random variable; then, the equal
sign holds if and only if 𝑋 = 𝐸[𝑋]—that is 𝑋 is a constant. Thus,
according to Jensen’s inequality, when the equal sign holds, we have:
𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃)
𝑄𝑖(𝑧)

= 𝑐. (11)

ultiply both sides of the equation with 𝑄𝑖(𝑧) and add up with respect
to latent variables 𝑧, then:
∑

𝑧
𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃) = 𝑐

∑

𝑧
𝑄𝑖(𝑧). (12)

Since ∑

𝑧𝑄𝑖(𝑧) = 1, we have:
∑

𝑧
𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃) = 𝑐, (13)

and

𝑄𝑖(𝑧) =
𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃)

𝑐
=

𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃)
∑

𝑧 𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃)
=
𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃)
𝑃 (𝑥𝑖 ∣ 𝜃)

= 𝑃 (𝑧 ∣ 𝑥𝑖, 𝜃). (14)

rom Eq. (10), it is obvious that when Eq. (14) holds—that is 𝑄𝑖(𝑧) =
(𝑧 ∣ 𝑥𝑖, 𝜃), a lower bound of the logarithmic likelihood containing

atent data is given and the logarithmic likelihood equals the lower
oundary. Maximizing this lower boundary also implies maximizing the
ogarithmic likelihood—that is, to solve the following problem:

(𝜃̂) = max
𝜃

𝑛
∑

𝑖=1

∑

𝑧
𝑄𝑖(𝑧) log

𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃)
𝑄𝑖(𝑧)

= max
𝜃

𝑛
∑

𝑖=1

∑

𝑧
𝑄𝑖(𝑧)

× (log𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃) − 𝑙𝑜𝑔𝑄𝑖(𝑧)). (15)

The EM algorithm to solve Eq. (15) involves first selecting the
distribution 𝑄𝑖(𝑧; 𝜃0) for a given 𝜃0; this is called the E-Step. The next
Step involves obtaining 𝜃̂ by maximizing 𝐿(𝜃) with given 𝑄𝑖(𝑧|𝜃0); this
is called M-Step. In M-step, problem Eq. (15) is equivalent to:

𝜃̂ = argmax
𝜃

𝑛
∑

𝑖=1

∑

𝑧
𝑄𝑖(𝑧; 𝜃0) log𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃). (16)

Thus, the EM algorithm flow can be summed up as follows:

Step 1: Initialize the value of the model parameter 𝜃0.
Step 2: E-Step in 𝑘+1th iteration: calculate the 𝑄−function, 𝑄𝑖(𝑧; 𝜃(𝑘)),

by:

𝑄 (𝑧; 𝜃(𝑘)) = 𝑃 (𝑧 ∣ 𝑥 , 𝜃(𝑘)). (17)
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𝑖 𝑖
Step 3: M-Step: calculate 𝜃(𝑘+1) by:

𝜃(𝑘+1) = argmax
𝜃

𝑛
∑

𝑖=1

∑

𝑧
𝑄𝑖(𝑧; 𝜃(𝑘)) log𝑃 (𝑥𝑖, 𝑧 ∣ 𝜃). (18)

Step 4: Repeat E-Step and M-Step until 𝜃(𝑘) converges.

.3. The mixture of Gaussian and Laplace distributions

As known, a prediction model can be described as:

= 𝑓 (𝑥) + 𝜉,

here 𝑓 (𝑥) is the developed model and 𝜉 is the noise. In accordance
ith the ELM theory, the prediction model should be modified as:

𝜷 + 𝜉 = 𝐘. (19)

or a given training set,
{

(𝐱𝑖, 𝐲𝑖)
}𝑁
𝑖=1 ⊂ 𝑅

𝑛×𝑅𝑚, assume that there are 𝑁
orresponding noises. Among the 𝑁 noises, a few follow the Gaussian
istributions and a few follow the Laplace distributions.

When the noise 𝜉𝑖 ∼  (0, 𝜎2), the probability density function is:

(𝜉𝑖) =
1

√

2𝜋𝜎
exp(−

𝜉2𝑖
2𝜎2

). (20)

imilarly, when 𝜉𝑗 ∼ (0, 𝜆), the probability density function is:

(𝜉𝑗 ) =
1
2𝜆

exp(−
|𝜉𝑗 |
𝜆

). (21)

uppose that there are 𝑄1 Gaussian distributions and 𝑄2 Laplacian dis-
ributions that comprise the data {𝜉𝑖}, then the probability distribution
s:

(𝜉) =
𝑄1
∑

𝑗=1
𝜋𝑗  (𝜉 ∣ 0, 𝜎2𝑗 ) +

𝑄2
∑

𝑘=1
𝜋𝑘 (𝜉 ∣ 0, 𝜆𝑘), (22)

here 𝜋𝑗 and 𝜋𝑘 are the weighting coefficients, and ∑𝑄1
𝑗=1 𝜋


𝑗 +

𝑄2
𝑘=1 𝜋


𝑘 = 1.  (𝜉 ∣ 0, 𝜎2𝑗 ) denotes the Gaussian distribution with

xpectation zero and variance 𝜎2𝑗 , and (𝜉 ∣ 0, 𝜆𝑘) denotes the Laplace
istribution with mean zero and parameter 𝜆𝑘.

The likelihood function of 𝜉 can be expressed as

(𝜉 ∣ 𝜃) =
𝑁
∏

𝑖=1
𝑃 (𝜉𝑖 ∣ 𝜃) =

𝑁
∏

𝑖=1
(
𝑄1
∑

𝑗=1
𝜋𝑗  (𝜉𝑖 ∣ 0, 𝜎2𝑗 ) +

𝑄2
∑

𝑘=1
𝜋𝑘 (𝜉𝑖 ∣ 0, 𝜆𝑘)),

(23)

here 𝜃 = (𝜋1 ,… , 𝜋𝑄1
, 𝜋1 ,… , 𝜋𝑄2

, 𝜎21 ,… , 𝜎2𝑄1
, 𝜆1,… , 𝜆𝑄2

, 𝜷) denotes
he set of parameters that need to be estimated. The corresponding log
tyle is:

log𝑃 (𝜉 ∣ 𝜃) =
𝑁
∑

𝑖=1
log

𝑄1
∑

𝑗=1
(𝜋𝑗 ( 1

√

2𝜋𝜎𝑗
exp(−

𝜉2𝑖
2𝜎2𝑗

)))

+
𝑁
∑

𝑖=1
log

𝑄2
∑

𝑘=1
(𝜋𝑘 (

1
2𝜋𝜆𝑘

exp(−
|

|

𝜉𝑖||
2𝜆𝑘

))). (24)

The expectation maximization (EM) approach is used to estimate the
parameter 𝜃 since the analytical solution cannot be derived directly.

Let us consider each 𝜉𝑖 and the corresponding indicator 𝝎𝒊 =
(𝜔

𝑖1 ,… , 𝜔
𝑖𝑄1
, 𝜔

𝑖1,… , 𝜔
𝑖𝑄2

). If 𝜉𝑖 follows the 𝑗th Gaussian (or Laplace)
distribution, set 𝜔

𝑖𝑗 = 1 (𝜔
𝑖𝑗 = 1) and the rest of 𝝎𝒊 to 0. We can

formulate it as:

𝜔
𝑖𝑗 =

{

1, 𝜉𝑖 ∼  (0, 𝜎2𝑗 )
0, 𝑒𝑙𝑠𝑒

and

𝜔
𝑖𝑘 =

{

1, 𝜉𝑖 ∼ (0, 𝜆𝑘) .

0, 𝑒𝑙𝑠𝑒
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Thus, ∑𝑄1
𝑗=1 𝜔


𝑖𝑗 +

∑𝑄2
𝑘=1 𝜔


𝑖𝑘 = 1, and ∑𝑁

𝑖=1(
∑𝑄1
𝑗=1 𝜔


𝑖𝑗 +

∑𝑄2
𝑘=1 𝜔


𝑖𝑘) = 𝑁 .

In the E-step of the EM algorithm, based on 𝜉 and the estimated 𝜃(𝑡)
fter the 𝑡th iteration, we obtain 𝑄−function:

𝑄(𝜃; 𝜃(𝑡)) =
𝑁
∑

𝑖=1
(
𝑄1
∑

𝑗=1
𝛾𝑖𝑗 (log𝜋


𝑗 − 1

2
log(2𝜋𝜎2𝑗 ) −

𝜉2𝑖
2𝜎2𝑗

)

+
𝑄2
∑

𝑘=1
𝛾𝑖𝑗 (log𝜋


𝑗 − log(2𝜆𝑘) −

|

|

𝜉𝑖||
𝜆𝑘

)), (25)

where 𝛾𝑖𝑗 is the posterior responsibility of the 𝑖th observation 𝜉𝑖
ollowing the 𝑗th Gaussian distribution and 𝛾𝑖𝑘 is that of 𝜉𝑖 following
he 𝑘th Laplace distribution. Thus, it is obvious that:


𝑖𝑗 = 𝐸(𝜔

𝑖𝑗 ) =
𝜋 ,(𝑡)
𝑗  (𝜉𝑖 ∣ 0, (𝜎

(𝑡)
𝑗 )2)

∑𝑄1
𝑗=1 𝜋

 ,(𝑡)
𝑗  (𝜉𝑖 ∣ 0, (𝜎

(𝑡)
𝑗 )2) +

∑𝑄2
𝑘=1 𝜋

,(𝑡)
𝑘 (𝜉𝑖 ∣ 0, 𝛾

(𝑡)
𝑘 )

,

𝛾𝑖𝑗 = 𝐸(𝜔
𝑖𝑗 ) =

𝜋,(𝑡)𝑘 (𝜉𝑖 ∣ 0, 𝛾
(𝑡)
𝑘 )

∑𝑄1
𝑗=1 𝜋

 ,(𝑡)
𝑗  (𝜉𝑖 ∣ 0, (𝜎

(𝑡)
𝑗 )2) +

∑𝑄2
𝑘=1 𝜋

,(𝑡)
𝑘 (𝜉𝑖 ∣ 0, 𝛾

(𝑡)
𝑘 )

.

(26)

In the M-Step, the parameter 𝜃(𝑡+1) is:

𝜃(𝑡+1) = argmax
𝜃
𝑄(𝜃; 𝜃(𝑡)), (27)

which can be obtained by calculating the partial derivatives of Eq. (25).
It should be emphasized that the sum of coefficients equals 1—that is,
∑𝑄1
𝑗=1 𝜋


𝑗 +

∑𝑄2
𝑘=1 𝜋


𝑘 = 1. The solution of 𝜋𝑗 , 𝜋𝑘 , 𝜎2𝑗 , 𝜆𝑘 is:

𝜋 ,(𝑡+1)
𝑗 =

∑𝑁
𝑖=1 𝛾


𝑖𝑗

𝑁
,

𝜋,(𝑡+1)𝑘 =
∑𝑁
𝑖=1 𝛾


𝑖𝑘

𝑁
,

𝜎(𝑡+1)𝑗 )2 =

∑𝑁
𝑖 𝛾


𝑖𝑗 𝜉

2
𝑖

∑𝑁
𝑖 𝛾


𝑖𝑗

,

𝜆(𝑡+1)𝑘 =
∑𝑁
𝑖 𝛾


𝑖𝑘
|

|

𝜉𝑖||
∑𝑁
𝑖 𝛾


𝑖𝑘

.

(28)

3.4. The proposed Mixture-ELM

Recall the ELM theory, and take the noise of Eq. (19) to the
𝑄−function. Then, it can be implied that:

max
𝜃
𝑄(𝜃; 𝜃𝑡) = max

𝜃
𝑓𝛽 ,

here

𝛽 = −
𝑁
∑

𝑖=1

𝑄1
∑

𝑗=1
𝛾𝑖𝑗

𝜉2𝑖
2𝜎2𝑗

−
𝑁
∑

𝑖=1

𝑄2
∑

𝑘=1
𝛾𝑖𝑘

|

|

𝜉𝑖||
2𝜆𝑘

= −
𝑁
∑

𝑖=1
(
𝑄1
∑

𝑗=1

𝛾𝑖𝑗
2𝜎2𝑗

)(𝒚𝒊 − 𝒉(𝒙𝒊)𝜷)2 −
𝑁
∑

𝑖=1
(
𝑄2
∑

𝑘=1

𝛾𝑖𝑘
2𝜆𝑘

) |
|

𝒚𝒊 − 𝒉(𝒙𝒊)𝜷|| .

(29)

Then, its dual optimization problem is:

min 1
2‖𝜷‖

2
2 +

∑𝑁
𝑖=1(

∑𝑄1
𝑗=1

𝛾𝑖𝑗
2𝜎2𝑗

)(𝒚𝒊 − 𝒉(𝒙𝒊)𝜷)2 +
𝑁
∑

𝑖=1
(
𝑄2
∑

𝑘=1

𝛾𝑖𝑘
2𝜆𝑘

) |
|

𝒚𝒊 − 𝒉(𝒙𝒊)𝜷||

s.t. 𝑯𝜷 = 𝒀 − 𝝃.

(30)

his dual problem cannot be analytically resolved because of the 𝑙1-
orm and 𝑙2-norm. However, Yang et al. [27] offers a general solution
o this kind of issue with the following form of objective functions:

𝜎̂2
𝑛
∑

𝛹 (
𝜉𝑖
𝜎̂
) + 1

2

𝑙
∑

𝛽2𝑗 . (31)
5

𝑖=1 𝑗=1
Similarly to the noise scale estimation using M-estimation in Wang et al.
[33], the scale is computed as:

𝜎̂ =
median |

|

𝜉𝑖 − median(𝜉)|
|

0.6745
(32)

where 𝜉𝑖 = 𝑦𝑖−ℎ(𝑥𝑖)𝜷, 𝑖 = 1,… , 𝑁 . The equation is minimized using the
iteratively weighted least squares (IRLS) approach from Holland and
Welsch [34]. Eq. (31) is similar to the dual problem presented by KKT’s
theorem as follows:

𝛤𝑛(𝛽, 𝜉, 𝛼) =𝐶𝜎̂2
𝑛
∑

𝑖=1
𝛹 (
𝜉𝑖
𝜎̂
) + 1

2

𝑙
∑

𝑗=1
𝛽2𝑗

=
𝑛
∑

𝑖=1
𝛼𝑖(ℎ(𝑥𝑖)𝛽 − 𝑦𝑖 + 𝜉𝑖).

(33)

et the derivatives of Eq. (33) to 0 in accordance with the IRLS
lgorithm:

𝜕𝛤𝑛
𝜕𝛽 → 𝛽 =

∑𝑛
𝑖=1 𝛼𝑖ℎ(𝑥𝑖)

𝑇

𝜕𝛤𝑛
𝜕𝑥𝑖

→ 𝛼𝑖 = 𝐶𝜎̂2
𝜕𝛹 (𝜉𝑖∕𝜎̂)
𝜕𝜉𝑖

= 𝐶𝑤(
𝜉𝑖
𝜎̂
)𝜉𝑖

𝜕𝛤𝑛
𝜕𝛼𝑖

→ ℎ(𝑥𝑖)𝛽 − 𝑦𝑖 + 𝜉𝑖 = 0

,

here the weight function for the matching loss function is 𝑤(𝜉) =
1∕𝜉)(𝜕𝛹 (𝜉)∕𝜕𝜉). Then, the output weights 𝛽 can be solved as follows:

=

{

( 𝐼𝐶 +𝐻𝑇𝑊𝑛𝐻)−1𝐻𝑇𝑊𝑛𝑌 , 𝑛 ⩾ 𝑙
𝐻𝑇 ( 𝐼𝐶 +𝑊𝑛𝐻𝐻𝑇 )−1𝑊𝑛𝑌 , 𝑛 < 𝑙

, (34)

here sample weight 𝑊𝑛 = diag(𝑤( 𝜉1𝜎̂ ),… , 𝜔( 𝜉𝑛𝜎̂ )) and 𝐼 is the identity
matrix.

By this approach, we can rewrite our objective function Eq. (30) as
follows:

min𝐶𝜎̂2
𝑁
∑

𝑖=1
(
𝑄1
∑

𝑗=1

𝛾𝑖𝑗
2𝜎2𝑗

𝛹2(
𝜉𝑖
𝜎̂
) + 1

2|𝜎̂|

𝑄2
∑

𝑘=1

𝛾𝑖𝑘
2𝜆𝑘

𝛹1(
𝜉𝑖
𝜎̂
)) + 1

2

𝑁
∑

𝑖=1
𝛽2𝑖 . (35)

Now, the 𝛹 ( 𝜉𝑖𝜎̂ ) in Eq. (31) can be represented as a linear combination
of 𝛹1(

𝜉𝑖
𝜎̂ ) and 𝛹2(

𝜉𝑖
𝜎̂ ):

𝛹 (
𝜉𝑖
𝜎̂
) =

𝑄1
∑

𝑗=1

𝛾𝑖𝑗
2𝜎2𝑗

𝛹2(
𝜉𝑖
𝜎̂
) + 1

2|𝜎̂|

𝑄2
∑

𝑘=1

𝛾𝑖𝑘
2𝜆𝑘

𝛹1(
𝜉𝑖
𝜎̂
), (36)

here the loss function 𝛹2(
𝜉𝑖
𝜎̂ ) represents the 𝑙2-norm loss, 𝛹2(

𝜉𝑖
𝜎̂ ) =

1
2 (

𝜉𝑖
𝜎̂ )

2. The gradient of 𝛹2 is 𝜓2 = 𝜉𝑖
𝜎̂ , and the weight function is

𝑤( 𝜉𝑖𝜎̂ ) =
𝜓2(

𝜉𝑖
𝜎̂ )

𝜉𝑖
𝜎̂

= 1. Similarly, the loss function 𝛹1(
𝜉𝑖
𝜎̂ ) represents the

1-norm loss, 𝛹1(
𝜉𝑖
𝜎̂ ) = |

𝜉𝑖
𝜎̂ |. The gradient is 𝜓1 = 𝑠𝑖𝑔𝑛( 𝜉𝑖𝜎̂ ), and the weight

function is 𝑤( 𝜉𝑖𝜎̂ ) = 1∕max(| 𝜉𝑖𝜎̂ |, 𝜖), where 𝜖 = 10−6 is a small value. Now,
the sample weight 𝑊𝑛 = diag(𝑤( 𝜉1𝜎̂ ),… , 𝜔( 𝜉𝑛𝜎̂ )) in Eq. (34) can be written
s follows:

𝑛 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜇11 + 𝜇21
1

max(| 𝜉1
𝜎̂
|, 𝜖)

0 … 0

0 𝜇12 + 𝜇22
1

max(| 𝜉2
𝜎̂
|, 𝜖)

… 0

⋮ ⋮ ⋱ ⋮

0 0 … 𝜇1𝑁 + 𝜇2𝑁
1

max(| 𝜉𝑁
𝜎̂

|,𝜖)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

here:

1𝑖 =
𝑄1
∑

𝑗=1

𝛾𝑖𝑗
2𝜎2𝑗

, (37)

and

𝜇2𝑖 =
1

2|𝜎̂|

𝑄2
∑

𝑘=1

𝛾𝑖𝑘
2𝜆𝑘

. (38)

Finally, the output weights 𝛽 can be solved through Eq. (34).
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The algorithm flow of finding the weight 𝛽 corresponding to the
aximum value of the objective function is given below:

ep 1: Initialize the original ELM without regularization term to obtain
a rough initial residual 𝜉.

ep 2: Calculate the scale 𝜎̂ by Eq. (32).
ep 3: Update 𝛽 by Eq. (34).
ep 4: Update 𝜉 = 𝑌 −𝐻𝑇 𝛽, and 𝑊𝑛(𝑖, 𝑖) = 𝜔(𝜉𝑖∕𝜎̂).
ep 5: Repeat Step 2 to Step 4 until 𝛽 converges.

Through this flow, we can update 𝛽 and the residuals 𝜉 iteratively,
nd obtain the solution to the problem of Eq. (30).

emark 1. There are many parameters in the Mixture-ELM framework,
uch as the number of hidden node layers 𝐿, the initial parameters

required in the EM algorithm like 𝜎(0), 𝜆(0), 𝜋 ,(0), 𝜋,(0) and the regular-
zation coefficient 𝐶. The following contents detail the setting of these
arameters. In ELM, using too few nodes in the hidden layer will result
n underfitting. Conversely, using too many neurons can also lead to
verfitting. Since the EM algorithm has local convergence, if the initial
arameters are not selected appropriately, the algorithm will fall into
he local optimum. Therefore, the EM algorithm is extremely sensitive
o initial parameters, and appropriate initial parameter selection is a
ecessary prerequisite for good regression results. On the other side, the
alue of 𝐶 controls the deviation between the structural and empirical
isk terms. A large 𝐶 may result in minimal errors between predictions
nd actual observations, but can promote overfitting and produce
odels of great complexity. A small 𝐶 efficiently reduces the difficulty

f training the model and prevents overfitting. Consequently, selecting
n acceptable 𝐶 to make a trade-off between prediction inaccuracy and
odel complexity is critical. Lastly, the cross-validation method is used

o establish the parameters of all machine learning algorithms.

. Experimental setup and discussion of results

.1. Numerical simulation

In this section, we will verify the effectiveness of the proposed
ixture-ELM by comparing it with other robust ELM algorithms, such

s WRELM [24], PRELM [30], ORELM [28], and R-ELM [5].
A classical nonlinear function approximation problem ‘‘SinC’’ is

hosen as the regression function. In the numerical simulation, we
ill perform regression on data with different types and degrees of
oise, respectively, and use different evaluation criteria to measure the
egree of regression. Note that all models select the sigmoid function
(𝑥) = 1∕(1+exp(−𝑥)) as the activation function. Parameters in WRELM,
RELM, and ORELM are selected as the recommendations in references
f Martínez-Martínez et al. [24], Zhang and Luo [28] and Lou et al.
30], and the parameters of R-ELM and Mixture-ELM are selected by
ross-validation. All experiments were run on the AMD3600 processor
nd compiled using PyCharm in the Python 3.10 environment.

.1.1. Evaluation criteria
Several evaluation criteria were used to evaluate these ELMs with

hese robust ELM algorithms. Eqs. (39)–(41) present the formulas for
he adopted evaluation criteria.

(1) Root Mean Square Error (RMSE):

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝜇𝑖 − 𝑦̂𝑖)2. (39)

The root mean square error is the square root of the ratio
between the projected value’s squared departure from the real
value and the number of observations 𝑛. It calculates the differ-
ence between the expected and true values and is sensitive to
data that contains outliers.
6

(2) Mean Absolute Error (MAE):

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝜇𝑖 − 𝑦̂𝑖|| . (40)

Another frequent assessment criterion in regression issues is the
MAE. It is frequently used to calculate the difference between
forecasts and actual observations. Compared with MSE, MAE is
less sensitive to outliers. Because MAE calculates the absolute
value of the error, the penalty is fixed for any difference of any
size.

(3) Mean Absolute Percentage Error (MAPE):

MAPE = 100%
n

n
∑

i=1

|

|

|

|

ŷi − yi
yi

|

|

|

|

. (41)

MAPE is often used to calculate the difference between expected
and actual observed values. Because MAPE is more unbiased
and equitable in comparison to the raw data, it is frequently
employed as an assessment metric in algorithmic competitions.

In specific experiments, the smaller the RMSE or MAE value is, the
etter the forecasting model is. In most cases, RMSE and MAE have
imilar trends, but they measure the degree of regression in different
eanings.

.1.2. Experimental settings
We evaluate the performance using the following ‘‘SinC’’ function:

(𝑥) =
{

sin(𝑥)∕𝑥, 𝑥 ≠ 0
1, 𝑥 = 0

. (42)

Following the experimental settings in Martínez-Martínez et al.
[24], Lou et al. [30], Zhang and Luo [28] and Zhang et al. [5], the
number of training samples and test samples is 5000, and they are uni-
formly and randomly distributed in the interval (−10, 10) respectively.
The following four types of noise are added to the training sample for
training the model, while the test sample is kept noiseless to check
the experimental effect. In addition, since the hidden layer parameters
are randomly generated in the first stage of the ELM algorithm, each
experiment is repeated 50 times to prove the average performance of
the model.

• Case 1. Mixed noise: noise includes 50% noise following Gaussian
distribution 𝑁(0, 1), and 50% noise following Laplace distribution
𝐿(0, 0.1).

• Case 2. Mixed noise: noise includes 30% noise following Gaussian
distribution 𝑁(0, 1), 30% noise following Gaussian distribution
𝑁(0, 0.52), and 40% noise following Laplace distribution 𝐿(0, 0.1).

• Case 3. Mixed noise: noise includes 40% following Gaussian
distribution 𝑁(0, 1), 30% following Laplace distribution 𝐿(0, 0.5),
and 30% following Laplace distribution 𝐿(0, 0.1).

• Case 4. Mixed noise: noise includes 30% following Gaussian dis-
tribution 𝑁(0, 1), 30% following Laplace distribution 𝑁(0, 0.52),
30% following Laplace distribution 𝐿(0, 0.1), and 10% following
Laplace distribution 𝐿(0, 0.5).

4.1.3. Simulation results and analysis
Fig. 2 show the performance of five different algorithms on training

data contaminated with different types of noise. The average fitting
effect of different algorithms under the three valuation criteria is
PRELM > WRELM > R-ELM > ORELM > Mixture-ELM. In a few cases,
the results of ORELM and the Mixture-ELM are rather close—such as in
the test set of Case 4, the MAE of the former is 3.66, and the latter is
3.61. Moreover, in the test set of Case 2, the RMSE of the former is 5.31
and that of the latter is 5.23. However, the stability of the Mixture-ELM
results is much stronger than that of ORELM, and the corresponding
standard deviations of the results are all smaller than that of ORELM.
Based on the stability of the result – that is, the standard deviation
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Fig. 2. Comparison results of ‘SinC’ with different kinds of noise.
Table 2
Comparison of testing MAE by WRELM, PRELM, ORELM, R-ELM, and Mixture-ELM.

Algorithms MAE (×10−2) ± standard deviation (×10−2)

Case 1 Case 2 Case 3 Case 4

Training Testing Training Testing Training Testing Training Testing

WRELM 5.23 ± 0.91 5.26 ± 0.94 5.25 ± 0.74 5.30 ± 0.78 5.13 ± 1.26 5.20 ± 1.31 4.80 ± 0.87 4.86 ± 0.89
PRELM 31.78 ± 0.32 12.13 ± 0.70 12.33 ± 0.77 12.50 ± 0.74 12.19 ± 0.93 12.35 ± 0.89 12.23 ± 0.78 12.40 ± 0.76
ORELM 3.66 ± 1.14 3.71 ± 1.19 4.23 ± 0.84 4.29 ± 0.89 4.54 ± 1.43 4.51 ± 1.49 3.61 ± 1.03 3.66 ± 1.06
R-ELM 4.47 ± 0.43 4.47 ± 0.41 4.24 ± 0.48 4.23 ± 0.47 4.53 ± 0.60 4.50 ± 0.59 3.99 ± 0.37 3.97 ± 0.36
Mixture-ELM 3.51 ± 0.91 3.52 ± 0.94 4.05 ± 0.71 4.07 ± 0.73 3.92 ± 0.89 3.95 ± 0.92 3.60 ± 0.80 3.61 ± 0.80
m
a
p
t
a
𝜋
E

of the result – ORELM > WRELM > Mixture-ELM > R-ELM > PRELM
nder MAE and RMSE, OREML > R-ELM > Mixture-ELM > WRELM >
RELM under MAPE. Despite the average performance of the Mixture-
LM in terms of stability, its average effect is substantially lower than
hat of algorithms with greater stability. To summarize, the Mixture-
LM algorithm achieves the best performance among these algorithms.
etailed comparisons of different methods with different additional
oise are provided in Tables 2–4.
7

The above results reveal that although the noise distribution is
ore complex in all cases, our model can still extract the noise to

chieve good results. The reason for this is that each noise distribution
arameter can be precisely identified by the Mixture-ELM algorithm
hat we proposed. For example, in Case 4, the preset noise parameters
re 𝜎1 = 1, 𝜎2 = 0.52, 𝜆1 = 0.1, 𝜆2 = 0.5, 𝜋𝜎1 = 0.3, 𝜋𝜎2 = 0.3, 𝜋𝜆1 = 0.3, and
𝜆2 = 0.1. The noise distribution parameters obtained by the Mixture-
LM algorithm in the experiment are 𝜎1 = 1.016, 𝜎2 = 0.284, 𝜆1 =
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Table 3
Comparison of testing RMSE by WRELM, PRELM, ORELM, R-ELM, and Mixture-ELM.

Algorithms RMSE (×10−2) ± standard deviation (×10−2)

Case 1 Case 2 Case 3 Case 4

Training Testing Training Testing Training Testing Training Testing

WRELM 6.53 ± 1.03 6.58 ± 1.09 6.77 ± 0.83 6.82 ± 0.89 6.73 ± 1.39 6.73 ± 1.44 6.21 ± 1.04 6.29 ± 1.07
PRELM 43.95 ± 0.47 14.70 ± 1.03 14.85 ± 1.95 15.02 ± 1.01 14.71 ± 1.36 14.89 ± 1.32 14.77 ± 1.08 14.95 ± 1.05
ORELM 4.71 ± 1.46 4.75 ± 1.51 5.25 ± 1.04 5.31 ± 1.10 6.14 ± 1.77 6.08 ± 1.82 4.71 ± 1.33 4.77 ± 1.36
R-ELM 6.15 ± 0.45 6.16 ± 0.45 6.22 ± 0.41 6.26 ± 0.40 6.96 ± 0.53 6.92 ± 0.54 5.36 ± 0.37 5.36 ± 0.36
Mixture-ELM 4.25 ± 1.09 4.26 ± 1.13 5.21 ± 0.78 5.23 ± 0.81 5.10 ± 0.90 5.12 ± 0.91 4.56 ± 0.91 4.59 ± 0.91
Table 4
Comparison of testing MAPE by WRELM, PRELM, ORELM, R-ELM, and Mixture-ELM.

Algorithms MAPE ± standard deviation

Case 1 Case 2 Case 3 Case 4

Training Testing Training Testing Training Testing Training Testing

WRELM 1.49 ± 0.32 1.29 ± 0.29 1.34 ± 0.25 1.19 ± 0.20 1.54 ± 0.30 1.42 ± 0.25 1.53 ± 0.30 1.34 ± 0.26
PRELM 6.14 ± 0.18 2.01 ± 0.26 2.07 ± 0.19 2.05 ± 0.20 2.12 ± 0.31 2.07 ± 0.29 2.13 ± 0.23 2.09 ± 0.23
ORELM 1.23 ± 0.50 1.10 ± 0.43 1.14 ± 0.30 1.09 ± 0.27 1.18 ± 0.40 1.16 ± 0.34 1.19 ± 0.38 1.09 ± 0.33
R-ELM 1.17 ± 0.39 0.96 ± 0.32 0.99 ± 0.28 0.96 ± 0.27 1.36 ± 0.39 1.20 ± 0.35 1.18 ± 0.31 1.08 ± 0.26
Mixture-ELM 0.91 ± 0.34 0.85 ± 0.29 0.98 ± 0.23 0.87 ± 0.20 0.99 ± 0.34 0.91 ± 0.32 0.98 ± 0.31 0.90 ± 0.26
Fig. 3. Iteration diagram of each parameter.
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.125, 𝜆2 = 0.493, 𝜋𝜎1 = 0.288, 𝜋𝜎2 = 0.264, 𝜋𝜆1 = 0.352, and 𝜋𝜆2 = 0.096,
hich is rather close to the actual value. This is sufficient proof of

he validity of our suggested approach. Fig. 3 presents the matching
arameter iteration diagram.

.2. Case study

We conducted tests on selected benchmark datasets in the preceding
ection to illustrate the performance of the proposed Mixture-ELM
lgorithm. In this section, the validity of Mixture-ELM is then tested
urther using a real-world application—geothermal heat flux (GHF)
rediction.

Rising sea levels will directly lead to the inundation of lowlands
n coastal areas and the loss of land resources as a result of global
arming, thereby exacerbating the extent of marine disasters; thus, it

s critical to predict future sea level rise in advance and use it as the
asis for the best protective measures. Glaciers, ice caps, and ice sheets
rom Greenland and Antarctica melt and flow into the oceans, thereby
8

t

ausing sea levels to increase. Therefore, being able to appropriately
stimate ice sheet mass loss enhances the accuracy of projecting future
ea level rise.

GHF is expected to be the least limited by observations among the
arious input parameters necessary for ice sheet models. However, the
ack of access to bedrock makes it impossible to measure this heat
irectly in the ice sheet. GHF impacts ice temperature and viscosity,
hich can alter ice sheet shape and speed. Moreover, the genesis of

ce flows in Greenland and Antarctica is frequently linked to regionally
nhanced heat fluxes in the underlying bedrock. Furthermore, the heat
reated by the Earth’s core (GHF) may be sufficient to melt the under-
ying layers of the ice sheet, reduce friction between ice and bedrock,
nd accelerate ice emissions to the ocean. In conclusion, because GHF
s a critical boundary condition for accurately predicting ice sheet mass
oss, it is critical to accurately quantify the geographical distribution of
HF in the underlying bedrock.

We use the Mixture-ELM algorithm proposed in this paper to obtain
he statistical relationship between geological features and GHF by
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Table 5
Statistical properties of the feature variable for predicting GHF.

No. Variable type Variable name Max Min Mean SD

1 Continuous Global surface topography 5297.490 −1262.612 578.635 692.341
2 Depth to Moho −14.983 −94.077 −36.914 8.217
3 Lithosphere asthenosphere boundary 309 971.000 13 886.500 143 214.645 76 716.825
4 Age 3.958 0.0713 1.640 0.684
5 Bougeur gravity anomaly 302.627 −454.792 60.820 77.307
6 Crustal thickness 76.710 11.660 38.797 6.571
7 Upper mantle density anomaly 0.072 −0.113 −0.00075 0.0257
8 Magnetic anomaly 3728.720 −9999.000 −302.952 1726.449
9 Thickness of upper crust 25.003 1.700 13.328 3.387
10 Thickness of Middle crust 25.000 2.300 13.163 3.136
11 Lat 79.500 −53.500 35.671 26.657
12 Lon 178.667 −165.333 4.340 85.643
13 Heat production provinces 2.920 0.400 1.470 0.443
14 Classification Upper Mantle velocity structure 12 1 3.507 1.875
15 Rock type 3 1 2.664 0.698
16 thermo_tecto_age 6 1 2.260 1.649
17 Proximity Distance to trench 5904.010 3.810 1709.269 1063.930
18 Distance to transform ridge 5476.730 3.110 2002.000 1144.039
19 Distance to young rft 3525.550 −59.10 746.851 683.103
20 Distance to volcano (5 nearest) 2914.140 23.420 1063.211 694.271
21 Distance to ridge 3446.920 6.960 1597.268 798.481
22 Distance to hot spot 86.617 0.707 25.649 20.732
Table 6
Statistical properties of training data and testing data of GHF.

Data Max Min Mean SD

Training 60.825 18.209 17.463 198.951
Testing 60.704 18.217 16.951 156.497

assuming that GHF is a complex function of geological and tectonic
features. We utilized a collection of globally available geological char-
acteristics and information from the continental crust, as in Table 5.
These geological characteristics are divided into three categories:

1. Continuous data such as gravity anomalies and crust thickness.
2. Categorical data such as rock types and upper mantle velocity

structure categories.
3. Proximity variables describe the distance from each point to

thermally active geological features such as hot spots, ridges,
and volcanoes.

First, the maximum, minimum, mean, and standard deviation (SD)
f the aforementioned variables of the experimental data are computed,
nd shown in Table 6. Consequently, both the training data and the
esting data display various statistical features, thereby revealing the
haracteristics of violent fluctuation of the experimental data. This
mplies that the data can more effectively confirm the generalization
apability of the Mixture-ELM algorithm.

.2.1. Evaluation criteria
In Section 4.1.1, Evaluation criteria, the definitions of RMSE

q. (39), MAE Eq. (40) and MAPE Eq. (41) are given; meanings of
he three evaluation criteria are expounded; and the three evaluation
riteria are selected to measure the model fitting effect. Similarly, we
lso choose MAE, RMSE, and MAPE as evaluation criteria.

.2.2. Experimental configuration and parameter selection
In this paper, apart from the proposed Mixture-ELM, a few other

LM models are also used in predicting GHF—that is, ELM, ELM with
-norm loss function (𝑙 -ELM), ELM with Huber-ELM loss function
9

1 1
(Huber-ELM), ELM with Bisquare loss function (Bisquare-ELM), and R-
ELM. Moreover, these models are used to reveal the performance of the
proposed models in comparison with the proposed models in this work.

In specific experiments, in order to eliminate the influence of di-
mension among variables, all experimental data are standardized into
(0, 1) with the same magnitude because it is known that variables with
a big magnitude should have larger effects on modeling than variables
with magnitude. The dataset was randomly divided into two groups:
the training set (80% of each dataset) and the test set (the remaining
data from each set). For the purpose of simplicity and fairness, we
employ the ‘‘Sigmoid’’ as the activation function of each model. Then,
since the first step of M theory is randomly generating the hidden
layer parameters, to avoid randomness, each experiment is repeated 50
times to reveal the average performance of the model. Furthermore, all
experiments are performed with PyCharm on an AMD 3600X CPU with
a 16 GB RAM, and the experiment code is compiled with Python 3.10.

The initial parameters required to enter the EM algorithm are 𝜉,
𝜎, 𝜆, 𝜋𝜎 , and 𝜋𝜆 due to the Mixture-ELM in the EM algorithm. The
EM method is sensitive to the initial settings since it theoretically
may provide local optimum solutions. However, it is discovered in
the experiment that almost any parameter can eventually cause the
EM algorithm to find the global optimal solution as long as the order
of magnitude initial parameters is adjusted to an adequate value.
Consequently, the choice of these parameters is not the main emphasis
of this paper.

The number of hidden layer nodes 𝐿 of ELM greatly influences
prediction accuracy. If the value of 𝐿 is too small, the network cannot
learn well and need to increase the number of training, and training
accuracy is also affected. If 𝐿 is too large, the training time increases
and the network is easy to overfit. For the penalty item in the objective
function Eq. (30), there is a regularization coefficient 𝐶. The value of
𝐶 controls the bias between the structure risk and empirical risk term.
A large value of 𝐶 may cause a small error between predictions and
real observations but would cause an overfitting problem and generate
a high-complexity model. However, a small value of 𝐶 can effectively
reduce the complexity of the trained model and prevent the overfitting
problem. Therefore, it is important to select appropriate values of 𝐿
and 𝐶 that can make a trade-off between forecasting error and model

complexity. Similarly, we use the time-series cross-validation method
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Fig. 4. Results box plots of six models with different error indexes.
to determine the appropriate values of 𝐿 and 𝐶 and the search set is
[10, 15, 20, 25, 30] and [10−3, 10−2, 10−1, 1, 101, 102, 103], respectively. The
time-series cross-validation method is realized by the ‘‘TimeSeriesSplit’’
package in Python Sklearn.

4.2.3. Experimental results
The anticipated result of the Mixture-ELM model is superior to

other models under MAE and MAPE evaluation criteria, whereas the
predicted result of ELM has the lowest agreement with the actual GHF
values. After 50 replications, the mean MAE and MAPE for Mixture-
ELM were 10.709 and 0.187. Additionally, the Mixture-ELM MAPE
values for the 50 trials had the lowest maximum and minimum values,
0.201 and 0.175, respectively. Under the RMSE evaluation criteria, the
prediction accuracy of Mixture-ELM is second only to that of R-ELM,
where the former is 14.689 and the latter is 14.668.

It is proven that the suggested Mixture-ELM models perform con-
sistently better than others. We produce a box figure for the 50 trial
results of each model in order to assess more precisely if there is a
significant difference among the results of these models. The top and
lower margins and quartile of boxes for the Mixture-ELM are smaller
than others in the six sets of tests, as illustrated in Fig. 4. Therefore,
a preliminary finding may be produced that mixed-performance is
steadier than the others. However, it is evident from Table 7 that under
different indicators, the prediction accuracy of the best model and
the second-best model appears to have little difference. For example,
under the MAPE evaluation criteria, the average MAPE of R-ELM
attained the best value of 0.187; however, in addition, both 𝑙1-ELM and
Bisquare-ELM attained a value of 0.191.
10
Table 7
Detailed comparison of GHF predictions under the MAPE indicator on the test set.

Approach RMSE MAE MAPE

ELM 14.862 11.111 0.193
𝑙1-ELM 15.001 10.935 0.191
Huber-ELM 14.806 10.903 0192
Biquare-ELM 14.990 11.008 0.191
R-ELM 14.668 10.886 0.194
Mixture-ELM 14.689 10.709 0.187

To more rigorously confirm the effects of the proposed Mixture-
ELM, we also take the t-test to test the difference between different
models under different evaluation criteria. Under the RMSE evaluation
criterion, although the average value of Mixture-ELM is 14.689, second
only to 14.668 (R-ELM), there is no significant difference between
the results obtained by the two models after 50 experiments through
the t-test. In addition, the results of Mixture-ELM are significantly
better than those of the other four models. Therefore, under the RMSE
evaluation criterion, the basic performance of the proposed Mixture-
ELM is consistent with that of R-ELM, which is significantly better than
the other four comparison models. Under the MAE evaluation criterion,
through an independent sample t-test, the proposed Mixture-ELM is
significantly better than the other five comparison models. Under the
MAPE evaluation criterion, although the average MAPE of the proposed
Mixture-ELM is 0.187, the second-best Bisquare-ELM and 𝑙1-ELM are
both 0.191, with a gap of only 0.004. However, through the indepen-
dent sample t-test in Table 8, the experimental results of Mixture-ELM
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Table 8
Statistical test results with investigated benchmark models under MAPE indexes.

Algorithms Mean Standard deviation t 𝑝-value Average difference from Mixture-ELM Cohen’s d value

ELM 0.193 0.006 4.924 0.000*** 0.006 0.990
𝑙1-ELM 0.191 0.008 2.641 0.010*** 0.004 0.531
Huber-ELM 0.192 0.006 4.435 0.000*** 0.005 0.869
Bisquare-ELM 0.191 0.006 3.105 0.002*** 0.004 0.624
R-ELM 0.194 0.007 5.474 0.000*** 0.007 1.100

1 The mean and standard deviation of the Mixture-ELM results were 0.187 and 0.006.
2 The number of tests for all models is 50, that is, the sample size is 50.
3 The experimental parameters of the results in this table have hidden nodes of 30 and regularization coefficients of 100.
4 ***, ** and * represent the significance level of 1%, 5% and 10% respectively.
5 Cohen’s d of 0.20, 0.50, and 0.80 correspond to small, medium, and large critical points respectively.
are significantly better than those of the other five models, although
the mean value difference is small. For example, the mean values of
R-ELM and Mixture-ELM in MAPE were 0.194 and 0.187, respectively.
The 𝑝-value of the F test result is 0.00***; thus the statistical result is
ignificant, thereby indicating that R-ELM, and Mixture-ELM showed
ignificant differences in MAPE. In conclusion, Mixture-ELM is signifi-
antly better than other models under each evaluation criterion, and
here is no significant difference between Mixture-ELM and R-ELM
nder the RMSE index.

. Conclusions

In practical applications, existing ELMs can yield suboptimal solu-
ions due to the presence of noise that often follows unknown distribu-
ions – including Gaussian, non-Gaussian, and mixed dist-
ibutions – and may contain outliers. These conditions contradict the
heoretical assumptions made during the ELM derivation process. To
ddress this issue, this paper proposes a new ELM method called
ixture-ELM that enhances the modeling performance of classical ELM

nder unknown noise. To achieve this, we propose a superior objective
unction that employs mixed Gaussian and mixed Laplace distributions
o describe the noise. This approach benefits from the good approx-
mation properties of the mixture of Gaussian distribution for any
ontinuous noise distribution. Additionally, the inclusion of a mixture
aplace distribution enhances the model’s stability for anomalies and
ignificantly reduces the sensitivity of the mixed Gaussian distribution
o outliers, thereby resulting in a stronger model with no loss in perfor-
ance. The modified objective function of the Mixture-ELM is resolved
sing the EM algorithm. In the numerical simulation, compared with
ther robust ELM algorithms, our proposed Mixture-ELM performs
est. Moreover, in our application of forecasting GHF, we utilized
he proposed model, and the results demonstrate its effectiveness in
andling outlier distributions and avoiding overfitting for inaccurate
orecasting. The three error indicators of RMSE, MAPE, and MAE reveal
hat the prediction outcomes of the Mixture-ELM model are superior
o those of the comparison model, with the MAPE index performing
articularly well, attaining a value of 0.187.

One limitation of this study is that the model’s hyperparameters
nclude those from the ELM model and the EM method, and cross-
alidation is utilized to identify the optimal hyperparameters for the
xperimental dataset, thereby enabling the model to make the best
redictions. However, this method is not universal and consumes a
ignificant amount of computational power, thereby necessitating the
iscovery of multiple ideal parameters for various data types. There-
ore, in the future, adaptive methods will be sought to identify suitable
yperparameter techniques for use in this study. Moreover, in this
aper, the dependent variable has only one dimension in both the nu-
erical simulation and the actual prediction. However, the ELM theory

uggests that the model is suitable for predicting high-dimensional data,
hereby making it possible to extend future research to multiple depen-
ent variable prediction tasks. Additionally, this study employs ridge
egression as the regularization method. In future research, alternative
11

egularization terms – such as lasso regression – could be explored.
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