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Abstract:

• The traditional Behrens–Fisher (B-F) problem is to test the equality of the means µ1

and µ2 of two normal populations using two independent samples, when the quotient of
the population variances is unknown. Welch [43] developed a frequentist approximate
solution using a fractional number of degrees of freedom t-distribution. We make a
a comprehensive review of the existing procedures, propose new procedures, evaluate
these for size and power, and make recommendation for the B-F and its analogous
problems for non-normal populations. On the other hand, we investigate and answer
a question: does the same size fit all all, i.e. is the t-test with Welch’s degree of
freedom correction robust enough for the B-F problem analogs, and what sample size
is appropriate to use a normal approximation to the Welch statistic.
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1. INTRODUCTION

The traditional Behrens–Fisher (B-F) [5, 20] problem is to test the equal-

ity of the means µ1 and µ2 of two independent normal populations where the

variances σ2
1 and σ2

2 are unknown and unspecified. The problem arises when

the ratio of the population variances is unknown as well. In the case of known

Importance of this problem is well understood and its application is widespread

[1, 12, 14, 15, 16].

Ever since the solution of this problem by [43], many papers have been writ-

ten. See, for example, [7], [19], and [30]. These and similar other papers [9, 39]

have attempted improvement, in terms of level and power, over the Welch proce-

dure. More recently, non-parametric [14, 16, 21] and Bayesian [24, 46] procedures

have also been developed.

However, independent samples from two two-parameter populations (other

than the normal) arise in many situations. The problem then is to test the

equality of two location (or some analogous) parameters when the dispersion (or

some analogous) parameters are unknown and possibly different. These problems

are analogous to the traditional Behrens–Fisher problem. Prior to 2014 not much

have been written on the solution of the Behrens–Fisher analogous problems.

Some (to our knowledge) problems analogous to the B-F problem that have been

dealt with recently are

(i) testing equality of two negative binomial means in presence of unequal

dispersion parameters [31];

(ii) testing equality of scale parameters of two Weibull distributions in

the presence of unequal shape parameters [2], and

(iii) testing equality of two beta binomial proportions in the presence of

unequal dispersion parameters [3].

When the sample sizes are small the two sample t-test (T1) with Welch’s

[43] degree of freedom and for large sample sizes (N = n1 +n2 > 30) the standard

normal statistic (TN ) (see, Section 2) are recommended by standard text books

[23]. Many evidences have been shown in favour of the preference of the Welch T1

over other procedures. See, for example, [7, 12, 30] for the standard BF problem.

More recently [39] developed a jackknife based procedure and [9] developed a

computationally intensive procedure for the BF problem. However, no systematic

study has been conducted so far to determine the overall sample size required

under which the normal approximation of the statistic TN works.

The primary purpose of this paper is to make a comprehensive review of

the existing procedures, evaluate these for size and power, and make recom-

mendations for the standard BF and its analogous problems in some sense.
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For the standard BF and some of its analogous problems we also investigate

performance of a new Monte-Carlo approach, the bootstrap and the rank coun-

terparts. A recent study [31] suggests that the Welch T1 does well in some non-

normal situations, such as for samples from two negative binomial populations.

Along with some other procedures performances of the Welch T1 and the new

Monte-Carlo approach are investigated for samples from normal, two discrete

models (count data and data in the form of proportions) and a survival model for

a wide range of parameter spaces to reflect comparison of the means for variances

which are same to very different.

The secondary purpose is to investigate and answer a question: does the

same size fit all or in other words is the t-test with Welch’s [43] degree of freedom

correction robust enough for the BF problem analogs and what sample sizes are

appropriate for the normal approximation of the statistic TN .

Review, possible new procedures, simulations, and recommendations for

the standard BF problem are given in Section 2. The BF analogues correspond-

ing to the negative binomial, the beta binomial, and the Weibull are dealt with

in Sections 3, 4 and 5 respectively. The concluding section (Section 6) provides

some guide lines as to which procedure(s) to be used in each case. Some recom-

mendations for possible future study are also provided in this section.

2. THE BEHRENS–FISHER PROBLEM:

TWO NORMAL POPULATIONS

2.1. Welch’s t-Statistic

The well-known Behrens–Fisher (B-H) problem is to test the equality of

the means µ1 and µ2 of two independent normal populations where the variances

σ2
1 and σ2

2 are unknown and possibly unequal.

Let Yi1, ..., Yini
be a random sample from a population, i = 1, 2. Now, let

yi1, ..., yini
be a corresponding sample realization with mean ȳi =

∑ni

j=1 yij/ni

and variance s2
i =

∑ni

j=1(yij − ȳi)
2/(ni − 1). If the samples come from normal

populations with means µ1 and µ2 and unknown and possibly unequal variances

σ2
1 and σ2

2, then

TN =
ȳ1 − ȳ2

√

s2

1

n1
+

s2

2

n2

,

is asymptotically normally distributed with mean 0 and variance 1 when both n1

and n2 are sufficiently large. This is stated in many undergraduate text books in

Mathematical Statistics [23].
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However, when the sample sizes n1 and n2 are smaller the distribution of

TN , henceforth denoted by T1, is approximately distributed as Student’s t with

degrees of freedom

f =

(

s2

1

n1
+

s2

2

n2

)2

(

s4

1

n2

1
(n1−1)

+
s4

2

n2

2
(n2−1)

)

[43]. It is shown by [19] and [43] using simulations that the statistic

Z =
ȳ1 − ȳ2

√

(n1−1)s2

1

(n2

1
−3n1)

+
(n2−1)s2

2

(n2

2
−3n2)

might be preferable to the statistic T1 because the former would maintain nominal

level better than the later. However, [19] does not provide a degree of freedom

for the above Z to be used as an approximation to the t-distribution. To this end

[7] derive degrees of freedom and compare performance of T1 with a few other

statistics, such as the Wald, likelihood ratio and score statistics and the statistic

Z, in terms of level and power and find that T1 is still the best. However, there

is an error in the degrees of freedom formula which later was corrected by [30].

After carrying out further simulations [30] finds that in addition to all the reasons

given by [7] to prefer T1 over Z, the former shows better power performance than

the latter. See, [30] for further details.

To the best of our knowledge, to-date, the statistic T1 is the best and is

referred as the statistic to use in recent text books [23]. In this paper we attempt

to do a comprehensive review of all available methods and develop a new Monte

Carlo procedure.

2.2. The Likelihood, Score and Wald Tests [7]

The likelihood ratio statistic (LR), score statistic and Wald statistic, de-

noted by L, S and W, derived by Best and Rayner (1987) are

L = n1log[(n1 − 1)s2
10/((n1 − 1)s2

1)] + n2log[(n2 − 1)s2
20/((n2 − 1)s2

2)],

S = (ȳ1 − ȳ2)
2/((n1 − 1)s2

10/n2
1 + (n2 − 1)s2

20/n2
2),

and

W = (ȳ1 − ȳ2)
2/((n1 − 1)s2

1/n2
1 + (n2 − 1)s2

2/n2
2),

where s2
i0 =

∑ni

j=1(yij −µ0)
2/(ni − 1) and µ0 is the solution to the cubic equation

− (n1 + n2)µ
3
0 + [(n1 + 2n2)ȳ1 + (n2 + 2n1)ȳ2]µ

2
0

− [n1(n2 − 1)s2
2/n2 + n2(n1 − 1)s2

1/n1 + 2(n1 + n2)ȳ1ȳ2 + n2ȳ1
2 + n1ȳ

2
2]µ0

+ [n1ȳ1{(n2 − 1)s2
2/n2 + ȳ2

2} + n2ȳ2{(n1 − 1)s2
1/n1 + ȳ1

2}] = 0.
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[32] give a brief description on the construction mechanism as well as the advan-

tages of the C(α) or score tests over the LR and the Wald tests (see, [30] for

details).

2.3. A Monte Carlo Procedure developed Using T1

By examining the T1-statistic, it is clear that the denominator is a con-

vex combination of χ2
(n1−1)/(n1 − 1) and χ2

(n2−1)/(n2 − 1), and the combination

proportion depends on the ratio of the two underlying population variances

and the sample sizes. The t-distribution approximation becomes exact when

τ = σ2
2n1/σ2

1n2 = 1, and we expect the Monte Carlo method works better when

τ is very different from 1. Theoretically, the p-value cannot be calculated under

the null unless τ is specified. Under the null, the T1 statistic follows an exact

t distribution with degree of freedom being n1 − 1, n2 − 1 and (n1 + n2 − 2) when

τ takes 0, ∞ and 1. The new statistic, henceforth denoted by T , is

T =

ȳ1−ȳ2√
σ2

1
/n1+σ2

2
/n2

√

s2

1
/n1+s2

2
/n2

σ2

1
/n1+σ2

2
/n2

=
N√
K

.

Here N ∼ N(0, 1). We now study the distribution of K.

K =
s2
1/n1 + s2

2/n2

σ2
1/n1 + σ2

2/n2

∼

χ2
n1−1

n1 − 1

σ2
1

n1
+

χ2
(n2−1)

n2 − 1

σ2
2

n2

σ2
1/n1 + σ2

2/n2

∼ λκ1 + (1 − λ)κ2,

where λ is a proportion parameter, (σ2
1/n1)/(σ2

1/n1+σ2
2/n2), κ1∼χ2

n1−1/(n1−1),

and κ2 ∼ χ2
n2−1/(n2 − 1).

In order to simulate the Monte Carlo numbers from K, we will need to

provide a value for λ. Clearly, we can estimate λ by

λ̂ =
s2
1/n1

s2
1/n1 + s2

2/n2
.

We therefore obtained an approximate distribution for K,

K̃ ∼ λ̂κ1 + (1 − λ̂)κ2,

whose distribution can be easily obtained. The final distribution, using Monte

Carlo procedure, can be approximated by Z/
√

K̃ which is obtained by a random
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number from N(0, 1) and two independent random numbers from χ2
(n1−1) and

χ2
(n2−1). Because κ1 and κ2 are independently simulated from λ̂, we have E(K̃) = 1

and var(K̃) = 2λ̂2/(n1 − 1) + 2(1 − λ̂)2/(n2 − 1).

If the variance ratio σ2
2/σ2

1 is known, the distribution of K above is known as

a mixture of two χ2 distributions and T (§2.3) becomes pivotal but it is generally

not an exact t distribution. However, if the variance ratio is given, one can use

the pooled variance estimator and form a t-statistic with n1 + n2 − 2 degrees of

freedom.

If t-distribution is used to approximate T , i.e., K̃ is approximated by a chi-

square distribution, the “best” degree of freedom by matching the variance (K̃)

to χ2
(d)/d is

d = 2/var(K̃) =
(n1 − 1)(n2 − 1)

(n2 − 1)λ̂2 + (n1 − 1)(1 − λ̂)2
,

which is exactly the same as Welch’s formula!

After developing this procedure we found that [18] also developed the same

statistic. Similar idea has also been explored by [4] and [43]. However, they used

an exact distribution which is complex to use and showed that the Welch approxi-

mation is remarkably accurate, even for small n1 and n2, provided that n1 and n2

are equal or nearly equal. Singh, Saxena, and Srivastava [39] developed a proce-

dure similar to the one given above and [9] developed another Monte Carlo based

procedure “Computational Approach Test” (CAT). Using a simulation study [9]

find that the procedure developed by [39] is not as good as it has been claimed [9].

On the other hand the CAT procedure is quite computationally involved. For

small sample sizes the CAT is quite conservative. In contrast our method, which

is also Monte Carlo, is very easy to use and its performance is much better that

that of CAT. This issue will be dealt with in a separate paper.

2.4. A Bootstrap Procedure [13]

A bootstrap test for the Behrens–Fisher problem is developed by [13].

Among the re-sampling methods, the two sample bootstrap test is the one that

neither assumes equal variances nor does it require any distributional assump-

tions and offer a possible solution to the Behrens–Fisher problem [13]. All we

need is a suitable test statistic and a null distribution under the hypothesis of

equal population means. Manly (1997) recommends to use TN as a test statistic,

where,

TN =
ȳ1 − ȳ2

√

s2

1

n1
+

s2

2

n2

,
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is asymptotically normally distributed with mean 0 and variance 1 when both

n1 and n2 are sufficiently large. The null distribution is approximated by the

distribution of B values of TN evaluated at each of the B bootstrap samples.

The detailed algorithm proceeds as follows:

1. Calculate TN using the observed two sample data.

2. Obtain a bootstrap samples of size ni; say y∗ij , from the adjusted yij ,

that is, from yadj
ij = yij − ȳi + ȳ, where ȳ is the overall mean.

3. Calculate

T ∗

N =
ȳ∗1 − ȳ∗2

√

s2∗
1 /n1 + s2∗

2 /n2

.

4. Repeat step 2 and 3 B times (B = 999); thereby obtaining 999 boot-

strap values of TN∗.
5. For a two sided test, a difference between the means is significant if the

observed value of |TN | > 100(1 − α/2)th values of T ∗

N .

2.5. A Non-Parametric Procedure [21]

To address the Behrens–Fisher problem, the Mann–Whitney–Wilcoxon test

[28, 44] is modified in [21]. Define P1i, the number of y2 observations less than

y1i, for i = 1, ..., n1. Similarly, define P2j , the number of y1 observations less than

y2j , for j = 1, ..., n2. The P1i and P2j are called the placements of y1 and y2,

respectively [21]. Let P̄1 denotes the mean of y1 placements and P̄2 the mean

of y2 placements. Also compute the quantities V1 =
∑n1

i=1(P1i − P̄1)
2 and V2 =

∑n2

j=1(P2j − P̄2)
2, then the Fligner–Policello statistic (modified Mann–Whitney–

Wilcoxon statistic) is given by

Û =

∑n1

i=1 P2i −
∑n2

j=1 P1j

2(V1 + V2 + P̄1P̄2)1/2
.

For a two-sided test the null hypothesis of equal medians is rejected if |Û | ≥ uα/2.

The critical value uα/2 can be calculated exactly or estimated using Monte Carlo

simulation for large n1 and n2. The procedure is also available in contributed

R package NSM3 .

2.6. Simulations

We have conducted a simulation study to compare the performance, in

terms of level and power, of 10 statistics, namely, the statistic TN , the Welch

Statistic T1, the new procedure T , the likelihood ratio statistic L, the Wald
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Test W, the score statistic S, the Fenstad statistic Z, the bootstrap procedure

BT, the Wilcoxon two sample non parametric procedure WC and the recent

non-parametric procedure FP by [21]. To perform WC we used R function

wilcox.test().

To compare the statistics in terms of size, we considered µ1 = µ2 = 1, a

range of values of V R = σ2
1/σ2

2 = 1/25, 2/24, 3/23, ..., 24/2, 25/1, and a nominal

level α = .05. Note that this choice of variance ratios ensures comparison of the

means for variances which are same to very different.

For sample sizes we considered equal and unequal n1 and n2. So, for exam-

ple, n1 was fixed at 5, 10, 15, 20, 25, 30. Then, for each fixed n1, empirical levels

were obtained for n2 = 5, 10, 15, 20, 25, 30. These results are all given as graphs

in Figures 1–6 in Appendix A1 in supplementary material. The graphs are in

terms of size against ρ = log(σ2
1/σ2

2). All simulation results are based on 10,000

samples.

We now discuss the size results of the 10 statistics:

i. The statistics TN and T1: The statistic TN is liberal, highly liberal for

smaller n1 and n2. Even for n1 = n2 = 30, for which basic text books

recommend its use, it is liberal, empirical level ranging, on average,

from 0.0504 (when V R ≈ 1) to 0.0618 (as V R is further and further

away from 1). We then wanted to see what happens for larger n1 and

n2. For this we extended the simulation study for (n1, n2)= (35,35),

(40,40), (50,50), (60,60), (70,70), (80,80). Results are presented as

graphs in Figure 7 in Appendix A1 in supplementary material. For

n1 = n2 = 35, it holds level when −1 < ρ < 1. Otherwise, empirical

level improves as the sample size increases. However, even at n1 =

n2 = 80, this statistic is somewhat liberal, specially near ρ = ±3.

For a close comparison between TN and T1 empirical level results for

n1 = n2 = 35, 40, 50, 60, 70, 80 are given as graphs in Figure 1. It shows

that even at n1 = n2 = 80 empirical levels of TN are slightly larger than

those of T1; TN is still slightly liberal.

ii. The statistics T1 and T : For all situations studied, even for n1= n2 = 5,

these two statistics hold level very closely having almost identical em-

pirical levels. For a more close comparison between these two statistics

some graphs containing empirical levels are given in Figure 2. From

these graphs we conclude that T performs better than T1 only

(a) for n1 = n2 and the variance ratio is moderate (−.05 < ρ < .05)

and

(b) for n1 6= n2 and sample size of the sample with larger variance is

larger.

In all other situations, T1, in general, performs better than or same as T.



572 Sudhir Paul, You-Gan Wang and Insha Ullah

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(a) (n1, n2) = (35, 35)

log(σ1
2
/ σ2

2
)

s
iz

e

TN

T1

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(b) (n1, n2) = (40, 40)

log(σ1
2
/ σ2

2
)

s
iz

e

TN

T1

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(c) (n1, n2) = (50, 50)

log(σ1
2
/ σ2

2
)

s
iz

e

TN

T1

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(d) (n1, n2) = (60, 60)

log(σ1
2
/ σ2

2
)

s
iz

e

TN

T1

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(e) (n1, n2) = (70, 70)

log(σ1
2
/ σ2

2
)

s
iz

e

TN

T1

0
.0

4
0

0
.0

4
5

0
.0

5
0

0
.0

5
5

0
.0

6
0

0
.0

6
5

0
.0

7
0

−3 −2 −1 0 1 2 3

(f) (n1, n2) = (80, 80)

log(σ1
2
/ σ2

2
)

s
iz

e

TN

T1

Figure 1: Plots of graphs showing empirical levels of the statistics
TN and T1 for large sample sizes.
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Figure 2: Plots of graphs showing empirical levels of the statistics T1 and T
under certain conditions explained in the text.
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iii. The non-parametric procedures WC and FP: The Wilcoxon test WC,

in general, shows extreme behaviour. It is either conservative or liberal

depending on the value of ρ or whether n1 < n2 or n1 > n2 . The

improved non-parametric procedure that is most recently introduced

and is available in the R package, is substantially better than WC.

The extreme behaviour moderates a lot compared to WC. However,

in general, it also does not hold level. Only for n1 = n2 empirical level

performance of this procedure is very close to that of T1 and T (slightly

better than that of T1 and T when n1 = n2 = 5 and ρ is not too far

from zero).

iv. The bootstrap procedure BT: Only in some instances, for example,

for n1 = 5, n2 = 25 and n1 = 5, n2 = 30 and ρ ≤ 0, level performance

of this statistics is similar to those of T1 and T . However, this is a

computer intensive procedure.

v. The Fenstad Statistic Z: This statistic is conservative for smaller

sample sizes and liberal for larger sample sizes. Its best performance

is for n1 = n2 = 20, even then it is conservative.

vi. The Statistics S, LR and W : The statistics LR and W are in general

liberal and the statistic S is conservative. In a lot of situations, for

example, for larger sample sizes the statistic S holds nominal level

reasonably well (empirical size being very close to those of T1 and T ).

Otherwise it is conservative.

For power comparison we considered all combinations of the sample sizes

n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30. The variance ratios consid-

ered were V R = 1/16, 1/4, 1, 4, 16. As in the study of performance in terms of

size, the power study was done for the nominal level α = 0.05. We use µ1 = 1

and µ2 = µ1 + τ . The shift parameter τ is calculated as τ = δ
√

σ2
1/n1 + σ2

2/n2

(see, [7]), where δ = 1, 2, 3. Departure from equality of means for fixed but un-

equal variance is measured by τ . The power results are given in Tables 1 to 36

in Appendix A2 in supplementary material.

We now discuss the power results.

i. The statistic TN : It shows highest power which is not surprising as it

is also highly liberal. It is interesting to note that, even though TN is

more liberal than T1 and T for n1 = n2 = 30, it is only slightly more

powerful. For large and equal sample sizes (n1 = n2 = 80) in which its

empirical level is close to the nominal level power of this statistic is

similar to that of T1. A Power graph of TN , T1 and T for n1 = n2 = 80

and δ = 2 against V R = 1/16, 1/4, 1, 4, 16 is given in Figure 3(a). The

statistics T1 and T show almost indistinguishable power, where as TN

shows slightly larger power. This is in line with the finding that TN is

slightly liberal.
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Figure 3: Plots of graphs showing empirical power:
(a) of the statistics TN , T1, and T for (n1, n2) = (80, 80) and δ = 2;
(b) of the statistics T1 and T for (n1, n2) = (15, 15) and δ = 1;
(c) of the statistics T1 and T for (n1, n2) = (15, 15) and δ = 2;
(d) of the statistics T1, T , and FP for (n1, n2) = (5, 5) and V R = 1/1.69;
(e) of the statistics T1 and T for (n1, n2) = (5, 5) and V R = 1/4;
(f) of the statistics T1 and T for (n1, n2) = (5, 15) and V R = 25/1.
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ii. The statistics T1 and T : Both these statistics show similar power.

Power increases as δ increases. See, for instance, power graphs of

both these statistics for n1 = n2 = 15, δ = 1 and δ = 2 against V R =

1/16, 1/4, 1, 4, 16 in Figures 3(b, c).

iii. As expected, power of all the other statistics L, W and Z or the

procedures BT, WC and FP is more or less than that of T1 and T

depending on whether they are liberal or conservative.

We now examine a situation n1 = n2 = 5, ρ = 1/1.69 from n1 = n2 in

which empirical level performance of the procedure FP is very close

to that of T1 and T . The power graph is given in Figure 3(d) (power

against δ = 0, 1, 2, 3). It shows that power of all three procedures

increase as δ increases (as expected). However, as δ increases, power

of FP does not increase as fast as the power of T1 and T. In general,

for smaller and equal sample sizes, level performances of the statistics

T1, T , BT , and FP are similar and hold level reasonably close to the

nominal. However, in these situations power of the procedure FP is

similar or somewhat smaller in comparison to that of the other three

statistics or procedures.

iv. The Statistic S: In all those situations in which (for larger sample

sizes and for ρ < 0) this statistic holds nominal level reasonably well

(empirical size being very close to those of T1 and T ) the power of this

statistic is also close to those of T1 and T . Otherwise it is less powerful

as expected.

2.7. An Example

This is a set of data from [26, p. 83]. The data which refer to driving times

from a person’s home to work, measured for two different routes, are 6.5, 6.8, 7.1,

7.3, 10.2 (n1 = 5, x̄1 = 7.58, s2
1 = 2.237) and 5.5, 5.8, 5.9, 6.0, 6.0, 6.0, 6.3, 6.3,

6.4, 6.5, 6.5 (n2 = 11, x̄2 = 6.136, s2
2 = 0.073). The means are different with very

different variances. By examining the overall findings of the simulation results

above, we see that the only statistic that is appropriate here is the statistic T1

as n1 = 5, n2 = 11, s2
1 = 2.237, s2

2 = 0.073 are contrary to the situation in which

the statistic T or the procedure FP is appropriate.

For these data the p-values of the statistics TN , T1, T , L, W, S, Z, BT,

WC, FP are 0.0321, 0.0968, 0.0961, 0.0500, 0.0167, 0.1009, 0.0327, 0.3395, 0.0030,

0.0000 respectively.

Now, the value of T1 = 2.1426 with p-value = .0968 indicates that means of

the two groups are not different at 10% level of significance.
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However, note that (from Figure 1(b) of the supplementary material) both

T and T1 hold level for n1 = 5, n2 = 10 and ρ > 3 and their p-values (.0968 and

.0961) are also very similar. The same is more or less true for S whose empirical

level is below 0.05 but not too much (again from Figure 1(b) of the supplementary

material). The p-value of 0.10 for S is also not too different from those of T and T1.

The overall conclusion using the p-values coincide with the findings in Figure 1(b)

of the supplementary material. But, since n1 = 5, n2 = 11 and ρ̂ > 3 for these

data the conclusion is that the the hypothesis of equality of the means can be

accepted at 10% level of significance. However, at 5% level of significance there

is evidence that the two means are different.

3. TWO NEGATIVE BINOMIAL POPULATIONS

3.1. The Negative Binomial Formulation

The most convenient form of the negative binomial distribution, henceforth

denoted by NB(µ, c) is

(3.1) f(y|µ, c) = Pr(Y = y|µ, c) =
Γ(y + c−1)

y!Γ(c−1)

(

cµ

1 + cµ

)y (

1

1 + cµ

)c−1

,

for y = 0, 1, ..., µ > 0 [33, 34]. See, [31] for further details.

Now, let yi1, ..., yini
be a sample realization from NB(µi, ci), i = 1, 2. Our

problem is to test H0 : µ1 = µ2, where c1 and c2 are unspecified. To test this

hypothesis [31] develop a likelihood ratio test L, a likelihood ratio test based

on the bias corrected maximum likelihood estimates of the nuisance parameters

L(bc), a score test T 2
NB (henceforth denoted by S), a score test based on the

bias corrected maximum likelihood estimates of the nuisance parameters S(bc), a

C(α) test based on the method of moments estimates of the nuisance parameters.

[31] show that this later statistic, if Welch’s [43] degree of freedom correction is

applied, becomes identical to Welch’s t-statistic T1.

[31] investigated by simulations, for level and power, the statistics L, L(bc),

S, S(bc), T1, and the statistic TN (pretending that negative binomial data can be

treated as normal N(µ, σ2) data). Their simulation study showed no advantage of

the bias corrected statistics L(bc) and S(bc) over their uncorrected counterparts.

So, here and in subsequent sections any statistic based on bias corrected estimates

of the nuisance parameters will not be discussed. The remaining four statistics

and the new statistic T developed in Section 2 for normal data are given below.
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3.2. The likelihood Ratio Test

The likelihood ratio test is fully described and all necessary results are

developed in [31]. So, to save space we omit this from presentation in this paper

and refer the reader to that paper.

3.3. The Score Test

The score test statistic (for derivation see, [31]) is

S =

2
∑

i=1

ni(ȳi − µ̃0)
2

µ̃0(1 + µ̃0c̃i0)
,

which has an asymptotic χ2(1) as n → ∞, where n = n1 + n2.

3.4. The Other Three Statistics TN , T1 and T

These three statistics are given in Section 2.1 for data that come from

normal distribution. Here the same statistics are used for negative binomial data

as if these are normally distributed data.

Apart from the statistic T , which is newly introduced in Section 2.3, [31]

show by simulations that for moderate to large sample sizes, in general, the

statistic T1 shows best overall performance in terms of size and power and it is

easy to calculate. For large sample sizes, for example, for n1 = n2 = 50, all four

statistics, L, S, T1, TN do well in terms of level and their power performances

are also similar.

3.5. Simulations

We have conducted a simulation study to compare the 5 statistics TN , T1,

T , L, and S, the bootstrap procedure BT and the two non-parametric procedures

WC and FP . The three statistics TN , T1, and T and the three procedures BT ,

WC, and the FP are applied here exactly the same way as in the case of normally

distributed data in Sections 2.4 and 2.5 respectively.

To compare the statistics in terms of size, we considered all combinations of

the sample sizes n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30, µ1 = µ2 = 2,
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c1 = .10, .25, .40, .55, .70, .85, 1, c2 = .10, .25, .40, .55, .70, .85, 1, and a nominal level

α = .05. These results are all given as graphs in Figures 1–6 in Appendix B1 in

Supplementary Material. The graphs are in terms of size against ρ = log(c1/c2).

All simulation results are based on 10,000 samples. A discussion of the size results

is given in what follows.

i. For n1 = n2 = 5, 10, the L statistic holds level most effectively (though

somewhat conservative for n1 = n2 = 5 and somewhat liberal for n1 =

n2 = 10), This finding is in line with Paul and Alam (2014). In these

situations another statistic that is competing with L having very sim-

ilar level is TN .

ii. For the smaller of n1 and n2 equal to 5 and the other equal to 10

to 30, the L statistic performs best, although consistently somewhat

conservative. In these situations, for all other statistics no consistent

pattern emerges. For example, TN is mainly very highly liberal, only

in a very few situations its empirical level is close to the nominal level.

For the smaller of n1 and n2 equal to 10 and the other equal to 10

to 30, the L statistic performs best, although consistently somewhat

liberal. In these situations the other statistics are either liberal or

conservative. For unequal sample sizes, smaller of n1 and n2 less than

20 and the other up to 30 the L statistic seems to perform best.

iii. For the smaller of n1 and n2 equal to or greater than 20 and the

other also equal to or greater than 20, overall, the best performing

procedures are through the use of the statistic T1 or T or the score test

statistic S. At n1 = n2 = 30 empirical level of all these 3 procedures

are very close to the nominal level.

For power comparison we consider all combinations of the sample sizes

n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30. We use µ1 = 1, c1 = .1, c2 =

.10, .25, .40, .55, .70, .85, 1, and µ2 = µ1 + δ, for δ = 1.0, 1.5, 2.0. As in the study

of performance in terms of size, the power study was done for the nominal level

α = 0.05. All simulation results are based on 10,000 samples. A discussion of the

power results is given in what follows.

We first concentrate on the L statistic which seems to be doing better in

terms of size for the smaller of n1 and n2 less than 20 and the other up to 30.

The power results are given in Tables 1 to 27 in Appendix B2 in supplementary

material. In general, the L statistic shows highest power. Only in some situations

the statistic TN or T1 or T show higher power, but in these situations these later

statistics are also liberal.

Now we discuss power performance of the statistics T1, T and S which

perform best in terms of size starting at n1 = 20 and n2 = 20. Here we compare

these only with the L statistic as it is, in general, liberal or conservative but not
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too much. The power results are given in Tables 28 to 36 in Appendix B2 in

supplementary material. The L statistic, in general, is somewhat more powerful

than the other three statistics, but it is also slightly liberal in comparison to the

other three statistics. The other 3 statistic show similar power. For example, for

n1 = n2 = 20 and c2 = .7 empirical level of L is close to 0.06 and those of the

other three are close 0.05 (see, graph for n1 = n2 = 20 in Figure 4). The powers

for L, T1, T and S, δ = 2, are 0.694, 0.554, 0.555 and 0.572 respectively (see,

Table 22).

In general, power decreases as the value of c2 goes further away from c1 =

.10 and increases as the sample size increases.
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Figure 4: Plots of graphs showing empirical levels of all the statistics
for (n1, n2) = (20, 20).

3.6. An Example

[37] presents a set of data, originally given by [6], to see the effectiveness of

a treatment (Cholestyramin), in comparison to a placebo, in reducing the number

of vascular lesions. The data are given in Table 1, which refer to the observed

number of vascular lesions on each patient’s angiogram in the treatment group

as well as in the control group (placebo).
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Table 1: Frequency of patients by number of lesions
on each patient’s angiogram [6].

Number of
lesions (yij)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 µ̂ ĉ

Cholestyramine 5 4 6 5 7 7 6 6 7 2 2 1 0 0 1 4.932 0.250
Placebo 2 4 6 4 6 9 7 5 2 4 4 2 0 2 0 5.509 0.185

The maximum likelihood estimates of µ and c based on a negative binomial

model for the two groups are given in this table as well. The µ̂’s and the ĉ’s

both differ. We now apply the statistics T1, T and T 2
NB to test the equality of

the two means. The values of T1, T and S with p-value in the parenthesis are

−0.379(.705), −0.379(.704), and 0.146(.702) respectively. Based of the p-values

which are very close the difference is not significant.

We now show how to apply the bootstrap critical value method using the

likelihood ratio statistic L for small sample sizes. For this we take a sample of

size n1 = 15 with replacement from the treatment group and a sample of size

n1 = 10 with replacement from the control group which are given below

Treatment group: 8 8 10 5 2 0 0 7 3 1 1 3 8 6 0 ;

Placebo group: 1 1 2 9 13 4 6 9 10 6 .

Suppose these are the observed data for the two groups. For these data the value

of L is 1.26 and the bootstrap 95% critical value is 5.16 which indicates that the

difference between the two means is not significant.

The bootstrap critical value is obtained as: from the sampled data of

n1 = 15 and n2 = 10 above we take 10000 pairs of samples (one sample of size

15 from the treatment group and one sample of size 10 from the control group)

with replacement. For each pair of samples we obtain the value of L. Then

the bootstrap critical value is the 9500th value of the ordered (from smallest)

L values.

4. TWO BETA-BINOMIAL POPULATIONS

4.1. The Beta-Binomial Formulation

For modelling data in the form of proportions with extra-dispersion the

most popular model is the extended beta-binomial distribution of [35]. Let y|p ∼
binomial(m, p), where p is a beta random variable with mean π and variance
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π(1 − π)φ, where φ is an extra dispersion parameter. Then the unconditional

distribution of y is the extended beta-binomial distribution of [35] for which the

pmf is given in what follows.

(4.1) Pr(y|π, φ) =

(

m

y

)

y−1
∏

r=0
[π(1 − φ) + rφ]

m−y−1
∏

r=0
[(1 − π)(1 − φ) + rφ]

m−1
∏

r=0
[(1 − φ) + rφ]

with mean mπ and variance mπ(1 − π)(1 + (m − 1)φ), where 0 ≤ π ≤ 1, and

φ ≥ max [−π/(m − 1),−(1 − π)/(m − 1)].

Denote this probability mass function by BB(m, π, φ). Now, let yi1/mi1,

..., yini
/mini

be a sample realization from BB(mij , πi, φi), i = 1, 2, j = 1, ..., mini
.

Our purpose is to test H0 : π1 = π2 with φ1 and φ2 being unspecified. [3] develop

eight tests, namely, a likelihood ratio test, a C(α) (score) test based on the

maximum likelihood estimates of nuisance parameters, a C(α) test based on the

[25] method of moments estimates of the nuisance parameters, a C (α) test based

on the quasi-likelihood and the method of moments estimates of the nuisance

parameters by [8], a C(α) test based on the quasi-likelihood and the method

of moments estimates of the nuisance parameters by [40], a C(α) test based on

extended quasi-likelihood estimates of the nuisance parameters, and two non-

parametric tests by [36]. See, [3] for further details.

By doing an extensive simulation study [3] show that none of the statistics,

except the C(α) statistic CBB, does well in terms of level and power. The statistic

CBB holds nominal level most effectively (close to the nominal level) and it is at

least as powerful as any other statistic which is not liberal. It has the simplest

formula, is based on estimates of the nuisance parameters only under the null

hypothesis and is easiest to calculate. Also, it is robust in the sense that no

distributional assumption is required to develop this statistic.

In this paper we compare the performance CBB with the statistics TN , T1

and T , the bootstrap procedure BT and the two non-parametric procedures WC

and FP . These are described below for the application to data in the form of

proportions.

4.2. The Statistic CBB

The statistic CBB is (detailed derivation is given in [3] CBB = C2/(A−A2/B),

which is distributed as chi-squared, asymptotically, as n → ∞ (n = n1 +n2), with
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1 degree of freedom, where

C =

n1
∑

j=1

[

1

1 + (m1j − 1)φ1

{

y1j

π
− m1j − y1j

1 − π

}]

,

A =

n1
∑

j=1

[

1

1 + (m1j − 1)φ1

{

m1j

π(1 − π)

}]

and

B =
2

∑

i=1

ni
∑

j=1

[

1

1 + (mij − 1)φi

{

mij

π(1 − π)

}

]

.

The parameters π, φ1 and φ2 in C, A and B are replaced by the maximum

extended quasi-likelihood estimates π̂, φ̂1 and φ̂2 obtained by solving

2
∑

i=1

ni
∑

j=1

[

1

1 + (mij − 1)φi

{

yij

π
− mij − yij

1 − π

}]

= 0,

n1
∑

j=1

[

m1j − 1

{1 + (m1j − 1)φ1}2

{

y1j log
(z1j

π

)

+ (m1j − y1j) log

(

1 − z1j

1 − π

)

− 1 + (m1j − 1)φ1

2

}

]

= 0

and

n2
∑

j=1

[

m2j − 1

{1 + (m2j − 1)φ2}2

{

y2j log
(z2j

π

)

+ (m2j − y2j) log

(

1 − z2j

1 − π

)

− 1 + (m2j − 1)φ2

2

}

]

= 0

simultaneously.

4.3. The Bootstrap Procedure

The bootstrap procedure is developed here for data in the form of propor-

tions (e.g. x/n) as follows:

1. Calculate the continuous data in the form of proportions for the two

samples as pij = yij/mij , i = 1, 2, j = 1, ..., mini
. Let p̄i =

∑ni

j=1 pij/ni

and s2
iP =

∑ni

j=1(pij − p̄i)
2/(ni − 1). Then, define a statistic TP , anal-

ogous to TN , as

TP =
p̄1 − p̄2

√

s2

1P

n1
+

s2

2P

n2

.
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2. Obtain a bootstrap sample of size ni; say p∗ij , from the adjusted pij ,

that is, from padj
ij = pij − p̄i + p̄, where p̄ is the overall mean of pij .

3. Calculate

T ∗

P =
p̄∗1 − p̄∗2

√

s2∗
1P /n1 + s2∗

2P /n2

.

4. Repeat step 2 and 3 B times (B = 999); thereby obtaining 999 boot-

strap values of TP ∗.
5. For a two sided test, a difference between the means is significant if the

observed value of |TP | > (100(1 − α/2)th values of T ∗

P .

4.4. The Other Three Statistics TN , T1, and T and the Three Proce-

dures BT , WC, and FP

Calculation of the three statistics TN , T1, and T and the three procedures

BT , WC, and FP proceed by considering the pij , as yij in Section 2.

4.5. Simulations

We have conducted a simulation study to compare, in terms of level and

power, the statistics CBB, TN , T1 and T , the bootstrap procedure BT and the

two non-parametric procedures WC and FP .

To generate data yij from BB(mij , πi, φi), we take random samples with re-

placement of n1 = 5, 10, 15, 20, 25, 30 litters with the litter sizes m1j , j = 1, ..., 27

of the control group (Group 1) and n2 = 5, 10, 15, 20, 25, 30 litters with the litter

sizes m2j , j = 1, ..., 21 of the medium group (Group 2) of Paul (1982). The m1j ,

j = 1, ..., 27 of group 1 were 12, 7, 6, 6, 7, 8, 10, 7, 8, 6, 11, 7, 8, 9, 2, 7, 9, 7,

11, 10, 4, 8, 10, 12, 8, 7, 8 and m2j of group 2 were 4, 4, 9, 8, 9, 7, 8, 9, 6, 4,

6, 7, 3, 13, 6, 8, 11, 7, 6, 10, 6. Note that our simulation study is much more

extensive in comparison to [3]. Where as [3] consider fixed sample sizes (n1 = 27

and n1 = 21), we consider random samples of different sizes given above. The

different combinations of parameter values are also much more extensive in our

study.

For empirical levels we considered π1 = π2 = π = 0.05, 0.10, 0.20, 0.40, 0.50

and (φ1, φ2) = (0.05, 0.50), (0.10, 0.40), (0.15, 0.30), (0.20, 0.20), (0.30, 0.15),

(0.40, 0.10), (0.50, 0.05).
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For power comparison the values of π1 and π2 considered were according to

the formula π2 = π1 + δ with π1 = 0.05, 0.10, 0.20, 0.40 and δ = 0.05, 0.10, 0.20.

That is, for each value of π1 power has been simulated for three increments

0.05, 0.10, 0.20. The same combination of values (φ1, φ2) were chosen as in the

study of level performance.

All simulation results are based on 10,000 good samples. The definition of

good samples here is “those samples for which the estimating equations converged

within the permitted range ∩j (−1/(nij − 1)) < φi < 1, i = 1, 2. For more details

see [3].

The empirical level results are summarized in Figures 1–36 in Appendix C1

and empirical power results are summarized in Tables 1–36 in Appendix C2 in

Supplementary Material. The Level results are graphed against log(φ1/φ2) and

power tables are in terms of VR = (φ1/φ2).

We now discuss the size results of the 7 statistics:

(i) The statistics TN : In general, the statistic TN does not show any

consistent behaviour, although shows mostly highly liberal behaviour.

(ii) The statistics T1 and T : In general, level performance of these two

statistics are similar. These two statistics hold level reasonably well

when n1, n2 and π are all large, for example, for n1 ≥ 20 and n2 ≥ 20

and π (≥ .2). See Figures 22, 23, 24, 28, 29, 30, 34, 35 and 36 in Ap-

pendix C1 of the supplementary material. For some other situations,

for example for n1 = n2 = 10, 15 and π ≥ .20, performance of these

two statistics are also the best and hold nominal level reasonably well.

See Figures 8 and 15 in Appendix C1 of the supplementary material.

(iii) The statistic CBB, recommended by Alam and Paul (2017): In some

small sample size situations this statistic holds level reasonably well.

See, for example, the situations in which one of the sample size is

large and π is not too large (π = .20) (graphs (c) in figures 8–13, 15–

18, 21–24, 28–36 in Appendix C of the supplementary material). For

small π (in case of some of π=.05, .10, and .20) CBB performs best

(see Figures 8(a,b,c), 9(c), 10(c), 11(c), 14(c), 15(c), 16(c), 17(c),

21(c) in Appendix C1 of the supplementary material).

For large sample sizes (n1 ≥ 20 and n2 ≥ 20) level performance of

CBB is close to those of T1 and T for π = .2. However, as π increases

from .2 it shows conservative behaviour (see Figures 22, 23, 24, 28,

29, 30, 34, 35 and 36 in Appendix C1 of the supplementary material).

(iv) Performance of all other statistics are erratic at the best.
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Next we discuss power performance.

(i) Since level performance of the statistic TN , the bootstrap procedure

BT and the two non-parametric procedures WC and FP are, in gen-

eral, not satisfactory, we do not discuss their power performances,

although power results are given in the supplementary material.

(ii) Power of T1 and T are similar in all situations studied. Note from

the level results that for large sample sizes (n1 ≥ 20 and n2 ≥ 20)

level performance of CBB is close to those of T1 and T for π = .2 and

as π increases from .2 it shows conservative behaviour. In all these

situations power of CBB is the best. That means, CBB shows higher

power even in situations where it is conservative but T1 and T hold

level. So, in these situations, unless CBB can be adjusted to hold level

we can not recommend its use. Power of CBB, in most small sample

sizes and small π (< .2) situations in which it holds level, in general,

is larger or similar to those of T1 and T .

4.6. Two Examples

Example 1. Here, for illustrative purposes, we use data from an experi-

ment, given in [41], to identify in utero damage in laboratory rodents after exposer

to boric acid. The study design involved four doses of boric acid. The compound

was administered to pregnant female mice during the first 17 days of gestation,

after which the dams were sacrificed and their litters examined. Table 2 lists

the number of dead embryos and total number of implants at each of the four

exposure doses: d1 = 0 (control), d2 = 0.1, d3 = 0.2, and d4 = 0.4 (as percent

boric acid in feed).

The maximum likelihood estimates of the parameters (π, φ) for the four

dose groups are also given in Table 2. It shows that the estimates of the π̂’s are

different and also the estimates of the φ̂’s are different. Now, suppose we want to

compare π of the control group (d1 = 0) with that of the dose group 4 (d4 = .4).

That is, we want to test H0 : π1 = π4.

Now, the maximum likelihood estimate of π1 is 0.069. If we assume that

0.069 is the true value of π1 and H0 : π1 = π4 is true, then, under the null hy-

pothesis, the value of the common π is 0.069. Further, the sample sizes in the

two groups are 27 and 26 which are between (25,25) and (30,30). Now, looking

at Figures 29, 30, 35 and 36 in Appendix C1 of the supplementary material we

see that none of the statistics hold nominal level for π = 0.069 and sample sizes

n1 = 27 and n2 = 26. So, we apply a Monte Carlo Procedure (MCP) similar to



The Behrens–Fisher Problem and Some of Its Analogs 587

the parametric bootstrap. For this we consider

t =
ȳ1 − ȳ2

√

s2

1

n1
+

s2

2

n2

Note that if we apply a t-test with Welch’s degree of freedom, it becomes the

procedure T1. We now do the test by obtaining approximate critical values, for a

two sided test, of the exact distribution of t which are calculated as what is given

below.

Table 2: Per-litter data from Teratological study of boric acid (Stalon, et al. (2000).
(i) Number of dead embryos. (ii) Total number of implants. Doses d1 = 0
(control), d2 = 0.1, d3 = 0.2, d4 = 0.4.

Dose Group π̂ φ̂

d1 = 0

(i) 0 0 1 1 1 2 0 0 1 2 0 0 3

.0692 .0219
1 0 0 2 3 0 2 0 0 2 1 1 0 0

(ii) 15 3 9 12 13 13 16 11 11 8 14 13 14
13 8 13 14 14 11 12 15 15 14 11 16 12 14

d2 = 0.1

(i) 0 1 1 0 2 0 0 3 0 2 3 1 1

.0968 .0058
0 0 0 1 0 2 2 2 3 1 0 1 1 1

(ii) 6 14 12 10 14 12 14 14 10 12 13 11 11
11 13 10 12 11 10 12 15 12 12 12 12 13 15

d3 = 0.2

(i) 1 0 0 0 0 0 4 0 0 1 2 0 1

.0521 .0245
1 0 0 1 0 1 0 0 1 2 1 0 0 1

(ii) 12 12 11 13 12 14 15 14 12 6 13 10 14
12 10 9 12 13 14 13 14 13 12 14 13 12 7

d4 = 0.4

(i) 12 1 0 2 2 4 0 1 0 1 3 0 1

.2234 .2497
0 3 2 3 3 1 1 8 0 2 8 4 2

(ii) 12 12 13 8 12 13 13 13 12 9 9 11 14
10 12 21 10 11 11 11 14 15 13 11 12 12

Keep mij fixed as given in the two groups, j = 1, ..., 27 for i = 1 and j =

1, ..., 26 for i = 2. Now, generate random numbers from BB(m1j , 0.069, 0.0218)

for j = 1, ..., 27 and random numbers from BB(m2j , 0.069, 0.2496) for j = 1, ..., 26.

This gives one sample for which calculate the value of t. Repeat this proce-

dure and generate 100,000 samples and thereby 100,000 values of t. Order these

100,000 values from the smallest to the largest. The 2500th and the 97500th values

are the 2.5% and the 97.5% critical values.

Now, the value of t from the data in the dose groups d1 = 0 and d4 = .4

is −2.8182. If −2.8182 does not fall between the 2.5% and the 97.5% critical

values reject the null hypothesis of equality of the two proportions at 5% level of

significance.
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Following the procedure described above, the 2.5% and the 97.5% critical

values obtained are −1.673003 and 2.637581 respectively. Since T1 = −2.8182

falls in the rejection region the null hypothesis H0 : π1 = π4 is rejected.

To check whether this procedure works we did some further simulations. For

empirical level we again obtained 100,000 values of t as above with π = 0.069. We

then calculated the proportion of t values that fall outside (−1.673003, 2.637581).

When this proportion is multiplied by 100 we obtain the empirical level. For

power we do exactly the same as above but now take π = 0.069 + δ, where δ =

0.02, .04, ..., .14. The power results are given in Table 3.

Table 3: Power Table of T1 and MCP, π = 0.069 + δ, δ = 0, 02, .04, ..., .14.

δ 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

T1 0.068 0.054 0.119 0.248 0.424 0.604 0.756 0.866
MCP 0.052 0.100 0.227 0.406 0.599 0.757 0.868 0.938

To compare the performance of the above Monte Carlo method with that of

T1 we extended the simulation study by obtaining the proportion of the 100,000

samples for which |t| > the critical value of T1 with Welch’s degree of freedom.

Results are also given in Table 3, which show that the new Monte Carlo procedure

holds level almost exactly, the Welch T1-test is somewhat liberal and yet the new

procedure shows higher power compared to T1.

Example 2. A data set from [45] of an in vivo cytogenetic assay is given

Table 4. In this example, the sample sizes n1 = n2 = 10 are small in which the

extended quasi-likelihood based score test CBB does well (see Figure 8(a,b,c) in

Appendix C1 of the supplementary material). For illustrative purpose, we test the

equality of proportions in the first two groups. For this the value of CBB = 0.0171

with p-value = 0.8660 showing strong support for the null hypothesis of the two

proportions.

Table 4: Data from an in vivo cytogenetic assay [45].

Dose Group No. of aberrant cells in 50 cells per animal π̂ φ̂

Negative control 0 4 0 0 4 0 1 1 0 0 0.0199 0.0447
Low Dose 1 0 3 0 1 0 3 0 0 1 0.0180 0.0125
Medium Dose 6 5 0 3 7 1 1 0 0 0 0.0454 0.0690
High Dose 3 2 1 6 4 0 0 0 0 5 0.0417 0.0476
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5. TWO WEIBULL POPULATIONS

5.1. The Weibull Formulation

Data in the form of survival times arise in many fields of studies such as

engineering, manufacturing, aeronautics and bio-medical sciences. See [29] for

a recent review. The two parameter Weibull random variable Y with shape

parameter β and scale parameter α has the probability density function

(5.1) f(y; α, β) =
β

α

( y

α

)(β−1)
exp

[

−
( y

α

)β
]

; y ≥ 0; β, α > 0.

The mean and variance of Y are µ = αΓ(1+1/β) and σ2 = α2[Γ(1+2/β)−{Γ(1+

1/β)}2] respectively.

In some practical data analytic problems lifetimes or survival times data

arise in the form of two samples following two independent Weibull populations

with different shape and scale parameters. Let y11, ..., y1n1
and y21, ..., y2n2

be

samples from two independent Weibull populations with parameters (α1, β1) and

(α2, β2) respectively. In such a situation it may be of interest to test the equality

of the scale parameters with the shape parameters being unspecified. That is to

test the null hypothesis H0 : α1 = α2, where β1 and β2 are unspecified.

For this problem [2] develop four test statistics, namely, a likelihood ratio

statistic, a score statistic, and two C(α) statistics; one of which is based on the

method of moments estimates of the nuisance parameters by [11] and the other

is based on the method of moments estimates of the nuisance parameters by [42].

However, through a simulation study they show that the two statistics based on

the method of moments estimates of the nuisance parameters perform best.

However, the actual analog of the Behrens–Fisher problem is to test H0 :

µ1 = µ2 with σ2
1 and σ2

2 being unspecified. To deal with this problem we develop

a score test in Section 5.2. In Section 5.3 we conduct a simulation study to

compare this statistic for level and power with the statistics TN , T1 and T , and

the procedures BT , WC and the FP .

5.2. The Score Test

A score test statistic (derivation is given in Appendix E of the supple-

mentary material) for testing H0 : µ1 = µ2, where σ2
1 and σ2

2 are unknown and
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unspecified is given by Sw = S2/I, where

S =
1

Γ(1 + β−1
1 )



−n1β1

µ
+

β1{Γ(1 + β−1
1 )}β1

µβ1+1

n1
∑

j=1

yβ1

1j





+
1

Γ(1 + β−1
2 )





n2β2

µ
− β2{Γ(1 + β−1

2 )}β2

µβ2+1

n2
∑

j=1

yβ2

2j





and

I =
1

Γ(1 + β−1
1 )







n1β1

µ2
− β1(β1 + 1){Γ(1 + β−1

1 )}β1

µβ1+2

n1
∑

j=1

E(yβ1

1j )







− 1

Γ(1 + β−1
2 )







n2β2

µ2
− β2(β2 + 1){Γ(1 + β−1

2 )}β2

µβ2+2

n2
∑

j=1

E(yβ2

2j )







.

In S and I the quantity, such as E(yβi) is calculated as E(yβi) =
∫

∞

0 yβ
i f(y, µ, βi)dy.

Of course, the parameters µ, β1 and β2 in S and I are to be replaced by their

maximum likelihood estimates µ̂, β̂1 and β̂2 which are obtained by maximizing

the log-likelihood function

l =
2

∑

i=1

[

1

Γ(1 + β−1
i )

{

nilog

(

βiΓ(1 + β−1
i )

µ

)

+ (βi − 1)

{

ni
∑

j=1

log(yij)

− nilog

(

µ

Γ(1 + β−1
i )

)

}}]

−
2

∑

i=1

{

Γ(1 + β−1
i )

}βi−1

µβi

ni
∑

j=1

yβi

ij

with respect to the parameters µ, β1 and β2. The distribution of Sw is asymp-

totically distributed as chi-square with one degrees of freedom.

5.3. Simulations

We have conducted a simulation study to compare the statistic Sw, in

terms of level and power, with the three statistics TN , T1 and T , and the three

procedures BT , WC, and FP . These statistics are applied here exactly the same

way as in the case of normally distributed data studied in Sections 2.4 and 2.5.

As in the two previous sections we use the Weibull data as if the data come from

two normal populations.

To compare the statistics in terms of size and power, we considered the sam-

ple sizes n1 = 5, 10, 15, 20, 25, 30 and n2 = 5, 10, 15, 20, 25, 30. We generate data

from the Weibull (α1, β1) and Weibull (α2, β2) populations. For size comparison,

in order to comply with equal means condition, we fix the values of α1, β1, and β2;
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and evaluate the expression {α1Γ(1 + 1/β1)}/{α2Γ(1 + 1/β2)} = 1 to obtain the

value of α2. For power comparison, we again fix the values of α1, β1, and β2;

but evaluate the expression {α1Γ(1 + 1/β1)}/{α2Γ(1 + 1/β2)} = 1/(1 + δ) with

δ = .1, .2, .3, to obtain the value of α2. Both the size and power are calculated

for all combinations of β1 = 1, 2, 3, 4, 5 and β2 = 2, 3, 4 while fixing α1 = 1 and

determining α2 from the expressions given above.

The size results are all given as graphs in Figures 1–36 and the power

results are all given in Tables 1–36 in Appendix D2 in supplementary material.

The graphs are in terms of size against ρ = log(σ2
1/σ2

2). All simulation results are

based on 10,000 samples.

We now discuss the size results, of the 7 statistics, given in Figures 1–36 in

Appendix D1 in the supplementary material:

(i) The statistic TN : The statistic TN is liberal, highly liberal for smaller

n1 and n2. Even for n1 = n2 = 30 it is liberal, empirical level ranging,

on average, from 0.0525 (when V R ≈ 1) to 0.0781 (as V R is further

and further away from 1).

(ii) The statistics T1 and T : Overall, these two statistics perform best,

even for smaller sample sizes, holding empirical levels closer to the

nominal. Only exceptions are when the sample size differences are

large as well as when the differences between the variances are large,

also when n2 > n1 as well as σ2
2 > σ2

1. In these situations both of

these statistics can be quite liberal, although T1 is slightly better

than T . See, for example, Figures 4, 5, 11, 12, 25 of Appendix D1 of

the the supplementary material.

(iii) Behaviour of the remaining four statistics or procedures are inconsis-

tent, sometimes very liberal and sometimes very conservative. The

exceptions are for

(a) FP for n1 = n2 which does as well as T1 and T in some cases

(see, for example, Figure 1),

(b) BT , irrespective of sample sizes, which does as well or better

than T1 and T (see, for example, Figure 5).

Next we discuss power performance using the power results given Tables

1–36 in Appendix D2 in the supplementary material.

Since the procedures TN , WC, and Sw have highly inconsistent behaviour

in terms of level, we omit these from power discussion. Power of T1 and T are

similar. However, T shows some edge over T1. In general, these show higher

power than FP and BT . Even in the situations in which FP and BT have slight

advantage in terms level, T1 and T maintain higher power.
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5.4. An Example

[17] give data on survival times (in weeks) for two groups of patients who

died of acute myelogenous leukemia. Patients were classified into the two groups

according to the presence or absence of a morphologic characteristic of white cells.

Patients termed AG positive were identified by the presence of Auer rods and/or

significant granulature of the leukemic cells in the bone marrow at diagnosis.

For the AG negative patients these factors were absent. The survival times for

17 patients in the AG positive group were: 65, 156, 100, 134, 16, 108, 121, 4, 39,

143, 56, 26, 22, 1, 1, 5, 65 and those for 16 patients in the AG negative group

were: 56, 65, 17, 17, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43.

We now test the equality of the mean survival times in the two groups.

As the performance of the five statistics or procedures TN , WC, BT , FP and

CW are far less than satisfactory we do not consider them any further. The values

of T1 and T with corresponding p-values in the parenthesis are 3.1124 (0.0054)

and 3.1124 (0.0047) respectively leading the conclusion that the two means are

not the same.

6. DISCUSSION

We do a comprehensive review of the standard Behrens–Fisher (BF) prob-

lem and some of its analogs. Among the B-F analogous problems we deal with

the two parameters negative binomial, the Beta-binomial, and the two parameter

Weibull. In each case a number of procedures are either reviewed or developed

and extensive simulation studies are conducted to study the properties of the

procedures in terms of size and power. Some new results and findings are shown

and examples of application are given in all cases.

If the variance ratio is known, the mixing parameter λ in K is then known, so

the distribution of T (§2.3) becomes pivotal, which is not an exact t-distribution.

In fact, if the variance ratio is given, one should use the pooled variance esti-

mator which can lead to a t-statistic. For other distributions other than the

normal cases, it is the same story but in an asymptotical sense. The tests based

on t-distributions or chi-square distributions or any other derived from “normal”

distributions all become asymptotical approximations. Therefore, if there is some

reason to specify the variance ratio σ2/σ1, the traditional two independent sam-

ples Student t-test or Welch test are usable but both are approximations.

A review paper can possibly be never complete given that a vast literature

is available. Here also we do not make such a claim. For example, we do not

consider the Bayesian methods [24, 46] to the solve Behrens–Fisher problem.
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For the standard Behrens–Fisher problem we studied 10 procedures TN , T1,

T , L, W , S, Z, BT , WC and FP including a new procedure T . Based on the

finding through extensive simulation study we recommend that the statistic TN

be used only when the two means are visibly different or if the sample sizes are

large, such as, min(n1, n2) ≥ 80 (only at this sample size level the Central Limit

Theorem reasonably takes hold); otherwise use T1 except for

(i) (a) n1 = n2 and the variance ratio is not extreme (close to 1/25 or

25/1 limits),

(b) for n1 6= n2 and sample size of the sample with larger variance

is larger, in which case use T ;

(ii) for smaller and equal sample sizes use the procedure FP .

For the negative binomial BF Problem we studied five statistics TN , T1, T ,

LRNB and T 2
NB and the bootstrap procedure BT and two non-parametric proce-

dures WC and FP . Note that six of these TN , T1, T , BT , WC and FP are the

same as those used for the standardBFproblem. We recommend that for the smaller

of n1 and n2 less than 20 and the other up to 30 the LR statistic, although some-

what liberal or conservative, beused. In these situations, in general, it ismost power-

ful. However, for some extra effort, it would be advisable to use the bootstrap

p-value based on this statistic. For the sample sizes stating at n1 = 20 and n2 = 20

(n1 equal to or not equal to n2) the statistics T1, T and S all hold level reasonably

well and at n1 = n2 = 30 empirical level of all these 3 procedures are very close

to the nominal level. In these situations these statistics are also, in general, most

powerful and therefore recommended. The practitioner can use any one of them.

For the beta-binomial BF problem we have studied seven statistics or pro-

cedures CBB, TN , T1, T , BT , WC, and FP . For larger sample sizes (n1 or n2

≥ 20) and for large π (≥ .2) the statistics T1 and T are the best and therefore

recommended. For small sample sizes and small π (< .2) we recommend to use

the statistic CBB. In all other situations we recommend a procedure similar to

the parametric bootstrap given in example 1 in Section 4.5.

The results of the statistics T1 and T are interesting. Even though here

we are not dealing with normal data, the level properties, for large sample sizes

and large π (n1, n2 ≥ 20, and ≥ .2), show to be similar to those for normally

distributed data. The reason, in our opinion, is that the transformation of the

discrete (binomial) data yij to continuous (proportions) data pij = nij/yij does

the trick in this situation.

For the Weibull BF problem also we have studied seven statistics Sw, TN ,

T1, T , BT , WC and FP . Based on extensive simulation studies we recommend

that the statistic T1 or T be used for larger sample sizes (n1 and n2 both larger

than 25), otherwise use the bootstrap p-value or the approximate critical value

of the exact distribution of the statistic based on T1 or T .
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The interesting overall finding is that the statistic T1 or T can be used for

all the cases studied here for sample sizes larger than 25 except for the beta-

binomial samples in which the additional requirement is that π be large (≥ .2).

For smaller sample sizes, specific recommendations given above, on a case by case

basis, should be followed. The statistic TN should never be used in the BF or BF

analogous problems unless the two sample sizes are very large.

It will be interesting to find through further studies whether these rec-

ommendations are applicable in other BF analogous problems, such as, testing

equality of means of two gamma, extreme value and log-normal or other similar

survival populations having possibly different variances. In some large sample

size situations or in sparse (beta-binomial with π ≤ .1) situations for data in the

form of proportions we recommended using a parametric bootstrap type proce-

dure. Further research in this area should focus on improvements in performance,

specially in terms of levels, of some of the statistics, such as the statistic CBB.

For testing the equality of the scale parameters with the shape parameters

being unspecified of two Weibull populations [2] develop four test statistics of

which they recommend the statistics based on two different method of moments

estimates of the nuisance parameters. It will be of interest to develop these

later two statistics for testing H0 : µ1 = µ2 with σ2
1 and σ2

2 being unspecified and

compare with the statistics recommended in this paper.

SUPPLEMENTARY MATERIAL

Supplementary material for“Empirical level and Power”that includes graphs

of empirical levels and tables of empirical power referred to in Sections 2, 3, 4

and 5 and derivation of the score test referred to in Section 5.2 are available

as Appendix A, Appendix B, Appendix C, Appendix D, and Appendix E in

https://dataverse.scholarsportal.info/dataverse/sudhirpaul. Empirical level

graphs and empirical power tables for the normal BF problem are in Appendix

A1 and Appendix A2 respectively. The (level graphs, power tables) for the neg-

ative binomial, beta-binomial, and the Weibull BF analogous problems are in

Appendices (B1, B2), (C1, C2) and, (D1, D2) respectively.
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