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The analysis of large genomic data is hampered by issues such as a small number of

observations and a large number of predictive variables (commonly known as “large

P small N”), high dimensionality or highly correlated data structures. Machine learning

methods are renowned for dealing with these problems. To date machine learning

methods have been applied in Genome-Wide Association Studies for identification of

candidate genes, epistasis detection, gene network pathway analyses and genomic

prediction of phenotypic values. However, the utility of two machine learning methods,

Gradient Boosting Machine (GBM) and Extreme Gradient Boosting Method (XgBoost),

in identifying a subset of SNP makers for genomic prediction of breeding values has

never been explored before. In this study, using 38,082 SNP markers and body weight

phenotypes from 2,093 Brahman cattle (1,097 bulls as a discovery population and 996

cows as a validation population), we examined the efficiency of three machine learning

methods, namely Random Forests (RF), GBM and XgBoost, in (a) the identification of

top 400, 1,000, and 3,000 ranked SNPs; (b) using the subsets of SNPs to construct

genomic relationship matrices (GRMs) for the estimation of genomic breeding values

(GEBVs). For comparison purposes, we also calculated the GEBVs from (1) 400, 1,000,

and 3,000 SNPs that were randomly selected and evenly spaced across the genome,

and (2) from all the SNPs. We found that RF and especially GBM are efficient methods

in identifying a subset of SNPs with direct links to candidate genes affecting the growth

trait. In comparison to the estimate of prediction accuracy of GEBVs from using all SNPs

(0.43), the 3,000 top SNPs identified by RF (0.42) and GBM (0.46) had similar values to

those of the whole SNP panel. The performance of the subsets of SNPs from RF and

GBM was substantially better than that of evenly spaced subsets across the genome

(0.18–0.29). Of the three methods, RF and GBM consistently outperformed the XgBoost

in genomic prediction accuracy.
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INTRODUCTION

High-throughput genomic technologies have created enormous
challenges to researchers with issues such as a small number
of observations and a large number of predictor variables
(commonly known as “large P small N” problem), high
dimensionality or highly correlated SNP data structures (Chen
and Ishwaran, 2012; González-Recio et al., 2014). Conventional
statistical methods focusing on univariate hypothesis and
assuming independent explanatory variables suffer significantly
due to lack of power and accuracy for dealing with the complexity
of multiple interactions or correlations among predictors (e.g.,
SNP-SNP and SNP-covariate interactions) (Lettre et al., 2007;
Zheng et al., 2007; So and Sham, 2011; Adams et al., 2015).

Numerous statistical methods have been developed for
improving predictability of large datasets with the “large P small
N” problems, including parametric models – such as subset
selection (Breiman, 1995; Fan and Li, 2001), LASSO (least
absolute shrinkage and selection operator, Tibshirani, 1996),
and SCAD (smoothly clipped absolute deviation penalty, Fan
and Li, 2001), but they are all computationally demanding.
Although LASSO and SCAD can be solved efficiently, they
are regression-based with strong parametric assumptions and
ignore dependence among explanatory variables. In recent
years, non-parametric machine learning methods have been
proved to be efficient in addressing these problems (Chen and
Ishwaran, 2012; González-Recio et al., 2014). They do not
require any prior knowledge on underlying genetic models (i.e.,
additive, dominance or recessive), and are excellent “black-box”
approaches for pre-screening important predicting variables.
Most importantly, they can detect SNP-SNP or SNP-covariate
interactions (Lubke et al., 2013).

Since Meuwissen et al. (2001) pioneered the genome wide
selection method using high-density SNP markers in breeding
value prediction, there have been a number of studies that
examined the influence of parametric and nonparametric
methods on the predictability of phenotypic values (e.g., de los
Campos et al., 2013; Howard et al., 2014; Okser et al., 2014;
Jacquin et al., 2016; Waldmann, 2016). Using simulated SNP
data with additive or two-way epistatic interactions, Howard
et al. (2014) evaluated the prediction accuracy and mean
squared error (MSE) of phenotypic values of 10 parametric
and four nonparametric methods. These 10 parametric methods
included least squares regression, ridge regression, Bayesian
ridge regression, least absolute shrinkage and selection operator
(LASSO), Bayesian LASSO, best linear unbiased prediction
(BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. The four
non-parametric methods included Nadaraya-Watson estimator,
reproducing kernel Hibert space (RKHS), support vector
machine (SVM) regression and neural networks. While they
found that both genetic architecture and the heritability of the
traits had great impacts on the estimates of accuracy and MSE
(Howard et al., 2014), the non-parametric methods performed
better than the parametric methods when the underlying genetic
architecture was entirely due to epistasis. Recently, using both
simulation data and real pig data, Waldmann (2016) also
confirmed that in the presence of dominance and epistasis,

the non-parametric machine learning method—BART (Bayesian
additive regression trees, Chipman et al., 2010) gave a smaller
genomic prediction error and increased prediction accuracy of
phenotypic values than Random Forests, BLASSO, GBLUP and
RKHS regression methods.

Among machine learning methods, the most popular method
is Random Forests (RF, Breiman, 2001). It is a tree-based
ensemble method for classification or regression of multiple
variables (Chen and Ishwaran, 2012; Alarcon et al., 2015; Li et al.,
2016). The method has been used in genetic association studies
(Brieuc et al., 2015; Everson et al., 2015; Petralia et al., 2015;
Stephan et al., 2015), epistasis detection for cancer identification
and treatment (Pashaei, 2015; Shi and He, 2016), gene network
pathway analysis (Pang et al., 2006; Wang et al., 2010; Chen
and Ishwaran, 2012), prediction of protein DNA-binding sites
from amino acid sequences (Wu et al., 2009) and protein-protein
interaction sites in sequence (Sikic et al., 2009).

Another tree-based ensemble method, similar to RF but
with a great improvement in the prediction error, is Gradient
BoostingMachine (GBM) (Friedman, 2001, 2002; Schapire, 2003;
Hastie et al., 2009). Walters et al. (2012) developed a sub-setting
algorithm that deals with SNP linkage disequilibrium issue in
GWAS when using RF and GBM, and found that the integrated
approach provided a satisfying improvement in RF results. Lubke
et al. (2013) showed that GBMwas an efficient method in filtering
SNPs and reducing complex models in multivariate phenotype
GWAS analyses, but they did not go further to evaluate the
efficiency of GBM in genomic prediction of breeding values.
Using a trait from a simulated dataset, Ogutu et al. (2011)
compared the prediction accuracy of genomic breeding values
(GEBVs) for the trait from three machine learning methods
(RF, GBM and SVM) and found that GBM performed the best,
followed by SVM and then RF. However, they did not evaluate
the efficiency of these methods in a real dataset, nor in selecting a
subset of SNPs for genomic prediction.

Recently Chen and He (2015) introduced a new machine
learning method - Extreme Gradient Boosting (XgBoost). It is
based on the similar principle as GBM, but applies a more
regularized model than GBM to control over-fitting. XgBoost
runs at least 10 times faster than GBM (Fan and Xu, 2014;
Chen and Guestrin, 2016). The method has been shown to
outperform RF in some problem domains involving difficult
learning tasks (e.g., dynamic music emotion recognition, Fan and
Xu, 2014). Zhou and Troyanskaya (2015) applied XgBoost and a
few other deep-learning based sequence models, and identified
the functional effects of noncoding variants from re-sequencing
data.

Genomic selection (GS) has revolutionized genetic
improvement in dairy cattle (Hayes et al., 2009; Garrick,
2011; Boichard et al., 2016), poultry (WolC, 2014) and crop
species (Crossa et al., 2017) thanks to its unparalleled ability
to predict breeding values of animals and plants even without
phenotypes. However, this benefit of the technology has not been
fully realized in a number of animal species (e.g., meat and dairy
sheep, Raoul et al., 2017; most of aquaculture species, Wang
et al., 2017). The main reasons contributing to a slow adaptation
of the technology in selective breeding programs include: 1)
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non-existence of commercially available large SNP panels due to
the lack of quality reference genome sequences (Xiang, 2015); (2)
the lack of breeding programs in which GS can be implemented
(Xiang, 2015) and (3) the high cost associated with the need to
genotype large numbers of individuals in reference populations
for genomic prediction of target populations. Although rapid
development of high-throughput technologies, commercial costs
of genotyping a high density SNP panel per individual animal
has been reducing at a fast speed, developing cost-effective
methods for applying low-density SNP panels to build breeding
populations for genomic selection still has profound impacts
on many industries. In addition, a large number of SNPs in a
high-density SNP panel that were used for genomic prediction of
future phenotypes of animals had been shown to have very small
or no effects on phenotypes (e.g., MacLeod et al., 2016). This
really raises the question of whether there is merit in using only
a small subset of SNPs that have direct relevance to biological
functions of a trait of interest for genomic prediction of breeding
values.

There have been a number of publications that applied
machine learning methods for high dimension reduction of
SNP datasets for GWAS (Liang and Kelemen, 2008; Walters
et al., 2012; Lubke et al., 2013) and the genomic prediction of
phenotypic traits (Long et al., 2011; Bermingham et al., 2015).
Despite the reported advantages of GBM and XgBoost over
RF, there has been no information available on the application
of GBM and XgBoost in livestock genomic prediction. More
specifically, the utility of these methods in identifying a subset
of SNPs for genomic prediction of breeding values has not been
examined before. The objective of this study was to evaluate the
efficiency of three tree-based ensemble methods (RF, GBM and
XgBoost) in the identification of a subset of SNPs and using them
for genomic prediction of breeding values.

MATERIALS AND METHODS

Beef Cattle Datasets
Animal Care and Use Committee approval was not obtained
for this study because historical data was used and no animals
were handled as part of the study. Analysis was performed
on phenotypic data and DNA samples that had been collected
previously as part of the Australian Cooperative Research Centre
for Beef Genetic Technologies (Beef CRC; http://www.beefcrc.
com/). A SNP dataset consisting of 40,184 SNP markers from
2,093 tropical Brahman cattle was used for the study. The animals
consisted of 1,097 Brahman bulls (called the “bull population”)
and 996 Brahman cows (referred to as “cow population”). The
bull population varying from 373 to 509 days old, came from 57
contemporary groups (defined as the combinations of location,
herd and birth year) and were measured for live weight (the
average weight being 308.64 kg (± 38.85 kg) with the range from
180 to 430 kg, Barwick et al., 2009). The cow population varying
from 323 to 400 days old had a live weight ranging from 115
to 299 kg (average 209.75 kg). A quality check of 40,184 SNP
markers resulted in the removal of 2,102 SNPs havingMAF<0.01
or with missing genotypes due to the full genotype requirement
by RF. A total of 38,082 SNPs with a 100% call rate was used

for the final analysis. In this study, the bull population was used
as a training dataset and the cow population as an independent
validation population.

Unlike a mixed animal model that can accommodate fixed
effects in the model, the machine learning methods are non-
parametric approaches and cannot directly account for any
environmental effects. Therefore, prior to any analysis, a linear
model, in which the response variable was the live weight and the
fixed effects were the contemporary group and age, was used to
correct for environmental and age effects in the bull population.
The new adjusted phenotypes after removing the significant fixed
effects were then combined with the SNP data of the population
for RF, GBM and XgBoost analyses. All analyses were performed
using the R program (version 3.4.4, R Core Team, 2013).

Supervised Learning Methods–RF, GBM,
and XgBoost
All threemachinemethods RF, GBM, and XgBoost are supervised
learning methods in which a training dataset with large number
of predictors (e.g., SNPs, Xi, where X refers to a vector containing
genotypes of all SNPs for ith animal) is used to predict a target
phenotype (yi). The prediction value is a continuous variable.
The fundamental part of a supervised learning method is about
how to make the prediction yi given Xi. Normally it involves
the identification of an objective function and optimizing it.
The objective function usually comprises two parts—training
loss function and regularization term (Friedman, 2002). The
training loss function indicates howwell a model fits on a training
dataset (normally presented as a mean squared error MSE), while
the regularization term measures the complexity of the model.
In general, the more complicated a model becomes, the more
unstable the results will be. Therefore, it requires a bias-variance
trade-off between the two important components of an objective
function.

The details of RF can be found in Breiman (2001). It comprises
four main parameters: N – total number of observations, M –
total number of predictor variables (SNPs), mtry – randomly
chosen subset of M for determining a decision tree, normally
mtry << M, and Ntree – total number of decision trees that
form a forest. Briefly, the RF procedure is as follows-: (1)
randomly select a subset of observations (by default two-third
from all animals); (2) randomly select a subset of SNP markers
– mtry (by default the squared root of M); (3) create a single
tree by recursively splitting the subset of SNPs in the subset of
the samples to form tree nodes, with the aim to separate the
subset observation samples into two distinctive groups; During
the splitting of a node in a tree, the SNP with the greatest
ability to decrease the MSE of the child nodes is selected to
split the node; (4) use all “out-of-bag” data (OOB, i.e., the
remaining one-third animals) to determine the prediction MSE
of the tree; For each variable (SNP) in the tree (model), then
conduct random permutation of the SNP order in the tree
and calculate the difference between new tree MSE and the
initial MSE; (5) generate a forest of trees by repeating steps 1–
4; (6) obtain final SNP variable importance values (denoted as
VIM) by averaging prediction error values across all the trees
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in the forest containing that SNP. The process of node splitting
continues until there is no more change of MSE values in all
terminal nodes. For regression, a SNP VIM value is measured as
%IncMse, which is the percentage of increased MSE after a SNP
is randomly permuted in a new sample (Nicodemus and Malley,
2009; Nicodemus et al., 2010a,b). In RF, all SNPs are ranked based
on their VIM values. These VIM values range from negative to
positive values. A large positive value indicates a large increase in
the prediction error (MSE) when the SNP is randomly permuted,
in comparison to the MSE value prior to permutation, hence the
more important the SNP is. On the other hand, negative values
indicate that when these SNPs were randomly permutated, the
prediction models from new SNP orders had a smaller prediction
error than prior to permutation. In other words, these SNPs
would be problematic if they were used for regression analysis
of the live weight phenotype.

GBM builds a predictive model through an iterative way of
assembling “weak learners” together (those regression decision
trees with very small number of splits), then optimizes it
using a cross validation method (Hastie et al., 2009). During
the process, new models are added sequentially to minimize
the prediction error made by a previous model until no
further improvements can be made. At each split, a SNP is
only chosen to split animal observations into two daughter
nodes if the SNP can best increase the homogeneity in the
daughter nodes (Lubke et al., 2013). The fundamental difference
between RF and GBM is that RF applies the bootstrapping
method to generate random samples from all observations with
replacement as training datasets, and uses “out-of-bag” (OOB)
samples as validation datasets. The final prediction of a SNP
VIM value in RF is based on the average of the prediction
errors of the SNP from all OOB datasets. While in GBM,
multiple random samples from all observations are also chosen
as training datasets, but these samples are not independent.
Subsequent samples heavily rely on the weights of previous
samples.

There are four important parameters that need to be
predetermined in a GBM analysis aiming to select an optimal
number of trees that can minimize the validation error.
These include the number of trees (Ntree), learning rate (shr,
determining a step scale in a gradient direction for overall
prediction), maximum tree depth (determining the level of
complex interactions between predictors, normally 1–10) and
minimum samples per leaf. For regression, a SNP VIM value
GBM produces is the relative influence. It is a maximal estimated
improvement in MSE over a constant fit over all iterative trees
(Friedman, 2001). In other words, it is the sum of decreased
MSE values across all individual split points of all the trees
generated by the boosting algorithm. Therefore, the larger
the relative influence value is, the more important a SNP
will be.

The algorithm of XgBoost is very similar to GBM, but much
faster than GBM, since it can employ parallel computation
(GBM is unable to do this). Most importantly, XgBoost can
improve prediction errors by applying a more regularized
model formalization to control over-fitting problems (Chen
and He, 2015; Chen and Guestrin, 2016). In a supervised

machine learning method, a regularization term of an objective
function normally involves adding a penalty term to the loss
function, a norm of weights vector that contains the learned
parameters in the loss function. It penalizes large values
of the weights in the loss function and therefore controls
the overfitting problem of the loss function. The regulation
term is always dependent on the loss function. However,
in XgBoost, the second-order Taylor series is added to the
original loss function used in the GBM method (mean squared
error for regression). The regulation term is independent
to the loss function, therefore, it simplifies and speeds the
process of solving the optimal weights of leaf nodes in the
tree.

There are a large number of parameters (a total of 18) that
need to be predetermined in XgBoost, including 3 general, 12
booster and 3 task parameters. A SNP VIM value that XgBoost
produces is the “Gain” value (Gaink denotes the decrease in the
prediction error of the objective function to split a node in a
tree with the kth SNP). The larger the value, the more important
the SNP is. The detailed description of fundamental differences
between XgBoost and GBM algorithms are given in the guide for
XgBoost (Chen, 2014).

Pre-determination of Minimal Parameter
Values Required for RF, GBM, and XgBoost
Analyses Using the Bull Population
Two crucial parameters impacting the outcome of a RF analysis
include the size of forest trees (Ntree) and the number of
markers at each sampling event (mtry) to form a tree. To
determine the minimum requirement for these parameters, we
systematically examined the impacts of a range of Ntree and
mtry values on the average population MSE value of all SNPs
using the bull population. These included Ntree = 500, 1,000,
1,500, 2,000, 2,500, . . . 5,000 (i.e., interval = 500), and mtry =

1, sqrt(M), 2∗sqrt(M), or 0.1∗M, where M is the total number
of SNPs (38,082). The minimum values of the parameters
were determined when the average MSE value of all SNPs
reached a stable status in which increasing Ntree and other
parameter values no longer changed the averageMSE value. Then
these parameters were used for the subsequent analyses. The
R program library randomForest (Liaw and Wiener, 2002) was
used.

For GBM and XgBoost, we applied the R libraries gbm
(Ridgeway with contributions from sothers, 2017) and xgboost
(Chen et al., 2017). The default values were chosen for the
majority of the parameters other than Ntree and the learning
rate (a step size shrinkage for avoiding variable overfitting) shr
(for GBM) and eta (for XgBoost) values, in which we examined
a range of values for Ntree = 500, 1,000, 1,500, 2,000, 2,500,
. . . , 5,000 (i.e., interval = 500) and the learning rate shr for
GBM or eta for XgBoost = 0.01, 0.04, 0.07, or 0.1 respectively.
Again, we used the error rate curve to determine the minimum
parameters required. The minimum parameters were reached
when the average population MSE value reached a consistent
status. That is, the value where increasing input parameters did
not change the MSE trend.
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Genome-Wide Screening for Top Ranking
SNPS With Three Methods Using the Bull
Population
Once the minimal values for the parameters - Ntree, mtry, shr
(a shrinkage, also called learning rate for GBM), or eta (a step
size shrinkage for XgBoost) were determined, they were used
for the final run of individual machine learning methods. Based
on the SNP VIM values from RF (%IncMSE), GBM (relative
importance) and XgBoost (Gain), all SNPs were ranked from the
most important to the least important ones. The top 400, 1,000,
3,000 SNPs as well as all SNPs with the positive VIM values were
then identified from eachmethod. These values are chosen largely
due to the fact that in practice commercial companies for DNA
genotyping are always carried out using the multiplexes of 96 or
384 wells.

Gene Ontology (GO) Enrichment Analysis
To see whether a subset of SNPs identified by each method
has any biological relevance, we performed the GO analysis
on the gene sets that are close to top ranking 1,000, 3,000 or
all SNPs (using 10 kb as a distance limit for the closest gene)
with the positive VIM values, using the program PANTHER
(protein annotation through evolutionary relationship, Mi et al.,
2013). The basic parameters applied included Bos Taurus (for
organism), statistical overrepresentation test (analysis method),
PANTHER GO-Slim biological process (annotation data set) and
Fisher’s Exact with FDR multiple test correction (test type). In
addition, we also applied the UCSC’s liftOver tool (minMatch
= 0.1) (Hinrichs et al., 2006) to translate the bovine SNP
genomic positions to human coordinates (GRC37/19) and used
the GREAT program (v3.0.0, McLean et al., 2010).- GREAT
assigns each gene a regulatory domain, default 5 kb upstream,
1 kb downstream plus distal up to 1,000 kb or until the nearest
gene’s basal domain, which associates with the gene GO term.
As a consequence, GREAT performs a GO enrichment analysis
at the gene-level using the hypergeometric test as well as a
regulatory domain test based on binomial test, where it accounts
for variability in gene regulatory domain size by measuring the
total fraction of the genome annotated for any given ontology
term and counting how many input genomic regions fall into
those areas.

Estimate of Additive Genetic Variance
Using a Genomic Relationship Matrix
(GRM) Constructed From the Subset of
SNPs of the Cow Population
Once the top-ranking SNPs were chosen with three machine
learning methods using the bull population, the utility of
these SNPs in predicting the additive genomic breeding values
(GEBVs) of individual animals was validated with the cow
population. To quantify the effects of the top 400, 1,000 and 3,000
SNPs on the live weight phenotype, we applied a linear mixed
genomicmodel to estimate the genetic variance explained by each
subset of selected SNPs. The model is as follows:

y = 1nµ + Xb + Za + e

where µ is the population mean, X(n x b) refers to a design
matrix, b(b x 1) represents a vector of fixed effects consisting of
contemporary groups and age, and n is the number of animals.
Z(n x n) is an incidence matrix, a(n x 1) refers to a vector of
random SNP additive effects, and e(n x 1) is a vector of errors.
In the model, we assume the random effects a and e follow
a normal distribution, with mean zero and variance σ

2
a
GRM

(where GRM is a genomic relationship matrix with its values
calculated from the subset of SNP information) and I(n x n)

σ
2
e
, respectively. Here, σ

2
a
and σ

2
e
are additive genetic and error

variances. For GRM calculation, we used the same approach as

VanRaden (2008). That is GRM =
WWt

2
∑m

k=1 Pjk(1−Pjk)
, where m

refers to the number of SNPs, W(n x m) is a matrix containing all

additive contributions from m SNPs of n animals. For a given jth

animal at kth SNP locus, the additive contributionWjk of the SNP
with three genotypes AA, AB, and BB, is calculated as 2-2pjk, 1-
2pjk, and -2pjk, respectively. Here, pjk is the allele frequencies for
allele B. The software Remlf90 (Misztal et al., 2002) was used to
estimate variance components and to obtain GEBV from amodel
with a GRM from top 400, 1,000 and 3,000 SNPs, evenly spaced
SNPs and all SNPs separately.

Distribution of Diagonal Elements of GRMs
Constructed From Subsets of SNPs
The quality of genomic data has an impact on the accuracy of
genomic predictions. Simeone et al. (2011) suggested that the
diagonal elements of a genomic relationship matrix (GRM) could
be used for identifying secondary populations or mislabelled
animals if multiple peaks were evident. Therefore, prior to the
validation, we examined the distributions of the diagonal and off-
diagonal elements of all GRMs constructed using the subsets of
SNPs from the Brahman cow population.

Five-Fold Cross-Validation for Determining
Accuracy of GEBVs Using a Subset of SNP
Markers
A five-fold cross-validation scheme was used to determine the
accuracy of genomic prediction of a selected subset of SNPs
in the cow population. The animals (996) were randomly split
into 5 equal-size groups and each group with about 199 animals
(20% of the population) was in turn assigned with missing
phenotypic values and used as the validation set. The accuracy
of genomic prediction was calculated as the correlation between
the predicted GEBVs of the animals with no phenotypic values
and the corrected phenotypes of the animals, divided by a square
root of the heritability value. The corrected phenotypes were
derived after adjusting the original phenotypes for the fixed
effects of contemporary group and age (i.e., = phenotype–fixed
effects). The accuracy reported in the study was the average of
the accuracies of genomic prediction from 5-fold groups.

For comparison purposes, we also calculated the accuracies of
genomic prediction from all the SNPs (38,083), the SNPs with
positive VIM values from each machine learning method, as well
as 400, 1,000, and 3,000 SNPs that were selected to be evenly
spaced across the genome.
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RESULTS

Minimal Parameter Determination for
Individual Machine Learning Methods
The results from an initial examination of the combination
of various parameters in individual methods using the bull
population are shown in Figure 1.

For RF analyses, when comparing the average MSE values
from four different sized markers (mtry), as expected, single
marker (mtry = 1) analysis (Figure 1A) produced the highest
MSE values, this then followed by sqrt(M) (M is total number of
SNPs, sqrt(M) being the default value suggested by RF method)
or 2∗sqrt(M). Using 10% of total markers (0.1 × M, Figure 1A)
had the lowest MSE values. Therefore, 10% of total markers was
an obvious choice. In addition, it seems that RF analysis reached a
stable status with the forest tree size Ntree≥ 2,500. This suggests
that the RF analysis with Ntree ≥ 2,500 and mtry= 0.1 × M
should produce precise estimates of SNP VIM values.

For GBM (Figure 1B) and XgBoost (Figure 1C), it can be
seen that when Ntree ≥ 2,000, regardless of learning rate value
shr (GBM) or eta (XgBoost), the MSE value became very stable.
Therefore, we chose Ntree= 2,000 and shr= 0.1 and eta= 0.1 for
subsequent GBM and XgBoost analyses respectively. The reason
for choosing the learning rate of 0.1 for shr and eta, instead of a
much smaller value, is that the smaller the value the longer the
program takes to run. In addition, Friedman (2002) suggested
that a learning rate of ≤0.1 would lead to better generalization.

Genome-Wide Identification of Important
SNPs
Unlike parametric models (e.g., a linear mixed model) for
GWAS in which the analysis generally provides the parameter
estimates such as individual SNP allele substitution effect and a
corresponding significance P value, the non-parametric models
provide SNP VIM values to indicate the contributions of
individual SNPs to the MSE. Figure 2 shows the distribution
profiles of the VIM values of the ranked SNPs (from the most
important to the least important ones) for RF, GBM and XgBoost
analyses respectively. The larger the SNP VIM value, the more
important a SNP is. As expected, the majority of the SNPs
were found to either have very small positive influence or no
effect on the VIM values (%IncMse) in RF. In both GBM and
XgBoost, there were the SNPs either with very small positive
effects or no effect at all. Across three methods, there were 18,453
(48.5%), 16,600 (43.6%), and 9,122 (24%) SNPs identified with
positive importance values on the predicted MSE for RF, GBM
and XgBoost respectively (Figure 2). In RF, a total of 16,660
SNPs (43.7%) were also found to have negative %InMSE values,
corresponding to the lower end of the distribution (Figure 2).

The Venn diagram (Figure 3) generated with the SNPs with
positive VIM values in either one of the three methods revealed a
total of 3,281 SNPs as common markers across three methods.
The pair-wise comparison reveals that there were 5,516, 2,797
and 1,591 common SNPs between RF and GBM, between GBM
and XgBoost, and between RF and XgBoost, respectively.

When the genome locations of the SNPs with positive VIM
values (see Figure 4) were examined, we found that although
the three machine learning methods had different SNP VIM

profiles and the top ranking SNPs were scattered across the
whole genomes rather than at particular chromosomes, all three
methods identified the same SNP with the highest VIM value.
It was ARS-BFGL-NGS-1712 mapped to gene BMPER (BMP
binding Endothelial Regulator) on BTA4. A literature search
found that BMPER played vital roles in adipocyte differentiation,
fat development and energy balance in humans and mice (Zhao
et al., 2015). The SNP was a very good candidate for selecting
increased body weight and rump length in cattle (Zhao et al.,
2015).

When comparing the top 20 SNPs from each of the three
methods (Table 1), it was found that other than the SNP
mentioned above (ARS-BFGL-NGS-1712 on BTA4), the SNP
Hapmap25906-BTA-159707 on BTA8 was also identified in
all three methods. There was one SNP Hapmap39284-BTA-
70361 (SNP_ID 7315) on BTA4 identified with both RF and
GBM, and five SNPs (Hapmap35781-SCAFFOLD166430_3864
on chromosome 6, ARS-BFGL-NGS-85521 on Chromosome
11, Hapmap43561-BTA-36544 on Chromosome 15, ARS-BFGL-
NGS-84222 on Chromosome 22 and ARS-BFGL-NGS-86109 on
Chromosome 23) in GBM and XgBoost. The results indicate
that the similarity was higher between GBM and XgBoost than
between RF and GBM.

Gene Ontology (GO) Enrichment Analysis
Tables 2, 3 present the results from the GO Enrichment analyses
of top 3,000 SNPs or all SNPs with positive VIM values
from each method, using the Bos taurus Reference from the
PANTHER program. When the biological functions of the genes
closest to the top 3,000 SNPs (Table 2) or the SNPs with the
positive VIM values (Table 3) were examined, we found that
these genes were primarily involved in the development, system
development, visual perception, nervous system development
and cellular activity (Table 2, P < 0.0001). The evidence was
much stronger for the genes near all the SNPs with positive VIM
values, involving the growth pathways of development process
(Table 3, RF: P=1.54∗10−7; GBM: P= 2.09∗10−8) and system
development (RF: P = 5.38∗10−7; GBM: P= 2.05∗10−7).

When converting the genome positions of all of the positive
SNPs identified by RF to the human coordinates and checking
these against known human biological processes using the
GREAT program, we found that there were 16 association terms
in our SNP dataset, including AMP catabolic process (P-value =
1.22∗10−4), canonical Wnt receptor signaling pathway involved
in positive regulation of endothelial cell migration (P-value =

1.75∗10−4), positive regulation of cell-cell adhesion (P-value =

1.75∗10−4), low density lipoprotein particle mediated signaling
(P-value = 4.64∗10−4) and cellular response to lipoprotein
particle stimulus (P-value= 0.0011).

Distribution of Diagonal Elements of
Genomic Relationship Matrix (GRM) for
Different Subset of SNPs From the Cow
Population
Figure 5 presents the distributions of the diagonal (a) and off-
diagonal (b) elements of GRMs constructed using the subsets of
SNPs from the Brahman cow population. From Figure 5A it can
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FIGURE 1 | The relationship between different combinations of parameters and mean squared error for (A) Random Forest (RF), (B) Gradient Boost Machine (GBM)

and (C) Extreme Gradient Boosting machine (XgBoost). M, total number of SNPs; mtry, number of markers chosen to form a tree, shr for GBM, eta for XgBoost).

X-axis refers to the forest tree size (NTree).

be seen that the diagonal elements of all GRMs followed a normal
distribution, regardless of the sources of the subsets came from,
all centered at 1. In fact all GRMs had no distinct multiple peaks
suggesting no evidence of hidden sub-population structures in
the cow population. In general the off-diagonal elements of
all GRMs (Figure 5B) were centered at 0, with a much wider
distribution range for the subsets of SNPs either 400 or 1,000.

When investigating the diagonal elements of inversed GRMs
(Figure 6A), we found that the distributions of diagonal elements
from the subsets of SNPs with <3,000 had significantly larger
ranges than those of all SNPs (see the graph named “ALLSNPs”
in Figure 6). For example, the average of diagonal elements of the
inversed GRM from RF400 (Figure 6) was 12.62 (with a standard
deviation STD = 0.698), with a range from 9.89 to 14.55. The
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FIGURE 2 | The distribution profiles of ranked SNP variable importance (VIM) values from RF (%IncMSE), GBM (Relative Influence) and XgBoost (Gain).

average of inversed GRM from RF1000 was 5.90 (STD = 0.61)
with a range from 4.05 to 7.70, while the corresponding value
from all SNPs was 1.79 (STD = 0.25) with a range of 1.12–2.73.
The deflation was even larger for the evenly spaced markers, e.g.,
Even400 and Even1000.

Validation of a Subset of SNPs Using the
Cow Population–Estimates of Genetic
Variance
Table 4 shows the REML estimates of additive genetic variances
(σ2a), residual variances (σ

2
e), total phenotypic variances (σ

2
p) and

heritability (h2) of live weight in the cow population for a subset
of 400, 1,000, 3,000 SNPs and the SNPs with positive VIM
values identified by RF, GBM or XgBoost respectively. The same
estimates are also given for the evenly spaced 400, 1,000, 3,000
and all the 38,082 SNPs in Table 4.

It is clear that in comparison to the estimates from all SNPs
(last row in Table 4), the h2 estimates (0.11–0.14 with standard
error of 0.046–0.053) from the top 3,000 and the SNPs with
positive VIM values from RF (18,453 SNPs) and GBM (16,600
SNPs) were very close to the value of using all SNPs (0.125 ±

0.054, Table 4). Across all three machine learning methods, the
genetic variances explained by the top 3,000 SNPs or the SNPs
with positive VIM values from RF and GBM were more than
89% of the total genetic variance explained by all 38,082 SNPs
(see the last column ofTable 4). Surprisingly, the top 400 or 1,000
SNPs from RF and GBM also contributed to a substantial amount
of genetic variance in the trait, e.g., 48.47% (RF400), 53.29%
(GBM400), 61.29% (RF1000), and 82.45% (GNM1000). Of the
three methods, the GBM performed particularly well in the cases
of 1,000 or 3,000 or the SNPs with positive VIM values, where
the genetic variance estimates (σ2a) were > 82% that of using all
38,082 SNPs (Table 4).
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FIGURE 3 | Venn Diagram showing the number of SNPs with non-zero

variable importance values for RF, GBM, and XgBoost. Each area of the circle

represents the number of SNPs identified by the methods. The areas of

intersection of circles represent the number of overlapping SNPs of two or

three methods.

When examining the results from 400, 1,000, or 3,000 SNPs
that were randomly chosen but evenly spaced across the genome
(Table 4, with the prefix “Even”), the heritability and genetic
variances explained by these SNPs were significantly less than (<
71.76%) of those from all SNPs. When comparing these results
of evenly spaced SNPs with those top ranking SNPs (400, 1,000,
or 3,000) from RF, GBM and XgBoost, the estimates of genetic
variance explained by the evenly spaced SNPs were markedly
smaller than those from RF and GBM (Table 4). However, the
performance of the subsets of SNPs from Xgboost was similar to
those of evenly spaced marker sets.

Accuracy of Prediction of GEBVs
Table 5 shows the average estimated prediction accuracy of
GEBVs when using a subset of SNPs in an additive genomic
model and a random split five-fold cross-validation scheme in the
cow population. In comparison to the results from an additive
genomic model using all 38,082 SNPs (last row in Table 5,
named All SNPs), the prediction accuracies of the subsets of SNP
markers (3,000 or all positive VIM SNPs) chosen by RF or GBM
had similar values to that of the whole SNP panel. Of all three
methods, GBM had the most superior performance and was then
followed by RF and XgBoost. The average prediction accuracy
values across 400, 1,000 and 3,000 SNPs were 0.38 (±0.0268)
for RF, 0.42 (±0.040) for GBM, and 0.26 (±0.051) for XgBoost.
Remarkably, the prediction accuracies from 1,000 (0.42 ± 0.14)

and 3,000 (0.46 ± 0.072) SNPs from GBM were the same or
slightly better than that of 16,600 SNPs (0.42 ± 0.11), although
not significantly.

Using all SNPs with positive VIM values achieved similar
prediction accuracy (e.g., 0.42–RF, 0.42–GBM, 0.39–XgBoost,
Table 5) when compared with 0.43 from the whole panel. The
results suggest that when it comes to the genomic prediction
of breeding values, more SNPs in a model do not necessarily
translate to a better accuracy. In fact, they may have added more
background noises and created more prediction errors than a
small number of SNPs that capture the main effects of individual
SNPs, SNP-SNP interactions and non-linear relationships.

When comparing the accuracies of the evenly spaced SNP
subsets (400, 1,000, and 3,000) with those from three machine
learning methods (Table 5), all subsets of SNPs from RF,
GBM and Xgboost outperformed those of evenly chosen SNPs,
especially RF and GBM. It can be seen that the accuracy values
from GBM, 0.36 (GBM400) and 0.42 (GBM1000), were almost
double the amount of the evenly spaced SNPs.

Efficiency of Computational Time of RF,
GBM, and XgBoost
When comparing the computational time (in terms of seconds)
each method had taken to complete an analysis (Figure 7), it is
obvious that it depends on the input parameters. For a given
discovery population size of 1,097 animals and the total number
of SNPs of 38,082, the size of forest trees (Ntree) had the largest
impact on the computational time (Figure 7). This is specially the
case for the GBM. For example, when the Ntree = 5,000, GBM
used about 45,000 s (12.5 h) to finish, while RF took less than
an hour and XgBoost less than 2. This is expected as the GBM
proceeds through a step-wise of assemblingmany “weak learners”
to build a predictive model and it does not permit parallel
computations, while both RF and XgBoost can build decision
trees via parallel processes. Therefore the superior performance
of GBM was at the cost of an extensive computational time.

DISCUSSION

Genomic prediction and selection is one of post-genome-era
applications that revolutionize genetic improvement programs.
Low-density SNP panels can offer a cost effective solution for
broad spectra applications of genomic selection programs if
subsets of SNPs with biological relevance can be effectively
identified to provide high accuracy of genomic prediction of
breeding values. While the concept of using low density SNP
panels associated with a phenotype as a cost-effective solution
for genomic selection has been explored in a number of studies
(e.g., Habier et al., 2009; Ogawa et al., 2014), one common
recommendation was to select subsets of themarkers (e.g., 3,000–
6,000) evenly-spaced across the genome for genomic prediction.
One of the reasons for selecting equally-spaced markers across
traits was to overcome the issue with a subset of SNPs specific
to the trait of interest only (Habier et al., 2009; Ogawa et al.,
2014). In our study, for a given size of SNP panel (38,082),
we found that using the subset of 3,000 SNPs evenly spaced
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FIGURE 4 | Genome-wide profile of SNP variable importance values for RF, GBM and XgBoost analyses (VIM = %IncMse for RF, Relative Influence for GBM, Gain for

XgBoost).

in number across the genome only explained about 71.8% of
total additive genetic variance of all the SNPs. This was in vast
contrast to the additive genetic variances explained by the 3,000
SNPs selected by themachine learningmethods—RF (89.3%) and
GBM (109.4%). Moreover, the accuracy of genomic prediction
using 3,000 SNPs from RF (0.413) or GBM (0.461) was similar
to the value of using whole panel (0.425), while the value being
0.29 for 3,000 evenly spaced SNPs. These results indicate that
unless the number of the randomly selected but evenly spaced
SNPs is very large, the genomic prediction of low density panel
could suffer significant loss of power. This is largely due to the
fact that some of the randomly selected but evenly spaced SNPs
had small or no effects on the live weight, therefore did not

contribute much to the additive genetic variance. In contrast, the
top ranking SNPs identified by the machine learning methods
had significant influences on the phenotype and hence explained
the large proportion of the additive genetic variance. In addition,
one of the most important features RF produces is the list of
SNPs with negative VIM values indicating the problematic SNPs
and highlighting the need of pre-screening to remove these SNPs
from the genomic prediction.

Our results from the gene ontology (GO) enrichment analysis
clearly indicate that the machine learning methods are efficient
methods in identifying a subset of SNPs (e.g., 3,000) with
direct links to candidate genes affecting the growth trait. These
results could largely contribute to the fact that the machine
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TABLE 1 | The list of top 20 ranking SNPs from Random Forests (RF), Gradient Boosting Machine (GBM) and Extreme Boosting Method (XgBoost).

Method Rank Chr SNPid Marker name Position (bp) %IncMse Distance to gene Gene name

RF 1 4 7574 ARS-BFGL-NGS-1712 63,120,929 0.79 0 BMPER

2 7 13739 ARS-BFGL-NGS-59783 101,669,109 0.44 558,040 TMEM157

3 21 32659 BTA-119902-no-rs 63,088,634 0.3943 56,593 PAPOLA

4 13 22207 ARS-BFGL-NGS-10111 15,828,258 0.39 156,328 GATA3

5 29 38788 Hapmap60043-rs29009948 11,619,866 0.37 0 DLG2

6 30 39467 BTA-24571-no-rs 4,845,661 0.35 1,117 LAMP2

7 13 22149 Hapmap54284-ss46526494 10,747,684 0.35 0 SNRPB2

8 4 7512 ARS-BFGL-NGS-42679 60,157,977 0.35 126,961 GPR141

9 24 34777 BTA-18966-no-rs 10,631,945 0.34 116,602 CDH19

10 8 15621 ARS-BFGL-NGS-2393 105,195,851 0.34 0 COL27A1

11 2 2752 BTA-48707-no-rs 12,087,975 0.32 147,733 LOC787276

12 30 39466 Hapmap49542-BTA-24574 4,821,238 0.31 25,540 LAMP2

13 20 31115 Hapmap57531-rs29013890 34,817,221 0.31 201,791 Drosophila

14 4 7152 ARS-BFGL-NGS-119322 38,573,157 0.31 0 CACNA2D1

15 8 14488 Hapmap25906-BTA-159707 37,471,009 0.30 178,230 MGC127919

16 4 7315 Hapmap39284-BTA-70361 48,408,626 0.29 26,562 PRKAR2B

17 1 309 BTB-01668820 22,590,942 0.28 38,032 LOC788801

18 2 4080 BTA-48498-no-rs 1.03E+08 0.27 18,075 LOC782360

19 4 7537 BTB-00192005 61,542,387 0.26 65,408 EEPD1

20 5 8940 ARS-BFGL-NGS-12166 32,310,418 0.25 0 ASB8

Method Rank Chr SNPid Marker name Position (bp) Relative influence Distance to gene Gene name

GBM 1 4 7574 ARS-BFGL-NGS-1712 63,120,929 74352.15 0 BMPER

2 6 11006 BTB-01845289 53,099,102 29492.17 1,089,822 PCDH7

3 8 14488 Hapmap25906-BTA-159707 37,471,009 23355.83 178,230 MGC127919

4 13 22769 BTB-01497093 51,254,301 21264.61 0 LOC529535

5 17 27548 BTB-00674231 14,814,012 20067.43 60,421 GAB1

6 23 34003 ARS-BFGL-NGS-86109 16,086,032 17149.69 97,957 TRERF1

7 11 20254 ARS-BFGL-NGS-85521 78,708,174 16709.08 0 SDC1

8 19 29905 ARS-BFGL-NGS-31311 26,881,051 16680.46 10,528 RABEP1

9 4 7315 Hapmap39284-BTA-70361 48,408,626 15590.51 26,562 PRKAR2B

10 8 15289 ARS-BFGL-NGS-116926 85,880,449 15358.83 0 SUSD3

11 14 23795 ARS-BFGL-NGS-43648 22,610,144 15084.98 59,217 PCMTD1

12 22 32802 ARS-BFGL-NGS-84222 531,301 14695.74 0 ECOP

13 15 25294 Hapmap43561-BTA-36544 36,755,580 14383.39 0 SOX6

14 10 18018 Hapmap32096-BTA-150413 46,199,529 13796.55 42,360 HERC1

15 11 19437 BTB-00466621 23,200,575 13183.37 310,170 SLC8A1

17 18 28553 BTB-01040984 3,080,400 12577.42 97,205 TERF2IP

18 8 14076 BTA-44195-no-rs 9,448,959 12473.5 0 KIF13B

19 25 35880 ARS-BFGL-NGS-102269 17,222,665 11622.23 0 GDE1

20 6 11003 Hapmap35781-SCAFFOLD166430_3864 53,022,829 11552.02 1,013,549 PCDH7

30 16 39548 ARS-BFGL-NGS-114986 18,377,697 13034.04 28,006 FAM122B

Method Rank Chr SNPid Marker name Position (bp) Gain Distance to gene Gene name

Xgboost 1 4 7574 ARS-BFGL-NGS-1712 63,120,929 0.0314 0 BMPER

2 22 32802 ARS-BFGL-NGS-84222 531,301 0.0137 0 ECOP

3 18 28525 ARS-BFGL-NGS-21711 1,137,609 0.0124 111,580 UQCRFS1

4 23 34003 ARS-BFGL-NGS-86109 16,086,032 0.0122 97,957 TRERF1

5 6 11003 Hapmap35781-SCAFFOLD166430_3864 53,022,829 0.0115 1,013,549 PCDH7

6 12 21836 BTA-31284-no-rs 83,024,081 0.0107 7,854 KDELC1

(Continued)
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TABLE 1 | Continued

Method Rank Chr SNPid Marker name Position (bp) Gain Distance to gene Gene name

7 5 8919 Hapmap47089-BTA-73292 30,114,907 0.0087 11,765 AQP2

8 11 20254 ARS-BFGL-NGS-85521 78,708,174 0.0085 0 SDC1

9 13 23245 ARS-BFGL-NGS-115682 78,901,415 0.0083 0 TMEM189

10 1 1165 Hapmap38109-BTA-36588 74,581,903 0.0077 0 ATP13A4

11 1 1088 ARS-BFGL-NGS-118306 69,244,252 0.0076 0 LOC540675

12 17 28137 Hapmap56365-rs29022398 55,884,612 0.0072 10,824 ORAI1

13 6 10851 Hapmap43677-BTA-76003 43,772,388 0.0068 0 LOC539625

14 2 4626 ARS-BFGL-NGS-102755 135,347,580 0.0067 71,006 ACTL8

15 2 4390 ARS-BFGL-NGS-84506 121,476,153 0.0066 10,154 AK2

16 9 16165 ARS-BFGL-NGS-58796 28,400,169 0.0066 143,926 LOC785633

17 25 36203 ARS-BFGL-NGS-10694 36,067,715 0.0066 2,310 PLOD3

18 15 25294 Hapmap43561-BTA-36544 36,755,580 0.0059 0 SOX6

19 8 14488 Hapmap25906-BTA-159707 37,471,009 0.0057 178,230 MGC127919

20 5 9476 BTB-01456593 76,691,828 0.0048 770 SYT10

Chr, chromosome Number; SNPid, SNP identification number; Marker name, SNP name; Rank, SNP ranking; Distance to gene, Distance to the nearest gene.

TABLE 2 | Gene enrichment analysis for top 3,000 SNPs with positive variable importance values from RF, GBM, and XgBoost methods (P-value < 0.001 and Fold

Enrichment >1).

Method GO-Slim biological process Reference Uploaded Expected Fold enrichment P-value

RF System development 1013 142 82.71 1.72 1.54E-07

Developmental process 1835 223 149.82 1.49 5.38E-07

Heart development 149 37 12.16 3.04 1.56E-06

Visual perception 185 42 15.1 2.78 1.93E-06

Nervous system development 619 94 50.54 1.86 3.96E-06

Sensory perception of sound 70 23 5.72 4.02 9.48E-06

Muscle organ development 228 46 18.61 2.47 1.22E-05

Mesoderm development 439 68 35.84 1.9 1.95E-04

GBM Developmental process 1835 223 144.37 1.54 2.09E-08

Nervous system development 619 98 48.7 2.01 3.75E-08

System development 1013 137 79.7 1.72 2.81E-07

Visual perception 185 39 14.56 2.68 1.66E-05

Cellular process 8220 735 646.72 1.14 8.84E-04

XgBoost Nervous system development 619 101 46.65 2.17 3.28E-10

Developmental process 1835 218 138.28 1.58 5.28E-09

System development 1013 137 76.34 1.79 1.73E-08

Cellular process 8220 718 619.43 1.16 3.79E-05

Visual perception 185 37 13.94 2.65 4.43E-05

Reference – the number of genes in the reference list, Uploaded – the number of genes in an uploaded list, Expected – number of genes expected in the uploaded list, Fold Enrichment

– Ratio of Uploaded/Expected, P value – determined by the binomial statistic test.

learning methods captured complex SNP-SNP interactions and
non-linear relationships. Therefore, they produced much smaller
residual variance, hence, resulted in an increased genetic variance
and heritability values.

In supervised learning methods, a prediction error of an
algorithm is comprised two parts—a variance and a bias.
According to Dietterich and Kong (1995), “the bias of a learning
algorithm (for a given learning problem and a fixed size m
for training sets) is the persistent or systematic error that the

learning algorithm is expected to make when trained on training
sets of size m.” A goal of a learning algorithm is to minimize
both statistical bias and variance. In RF each individual decision
tree that is formed with mtry SNPs is renowned to be prone
to an overfitting prediction error, caused by a high variance
and a low bias of an individual tree. However, by using a large
number of un-pruned decision trees (i.e., through resampling
the data over and over again) to form a forest, the prediction
error can be reduced through reducing the variance component
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TABLE 3 | Gene enrichment analysis for the SNPs with positive variable importance values from RF, GBM, and XgBoost methods (P-value < 0.001 and Fold

Enrichment > 1).

Method Gene annotation category Reference Uploaded Expected Fold enrichment P-value

RF Developmental process 1835 675 511.48 1.32 4.91E-11

Cellular process 8220 2548 2291.21 1.11 4.13E-10

Nervous system development 619 246 172.54 1.43 1.21E-05

Visual perception 185 93 51.57 1.8 2.78E-05

Anatomical structure morphogenesis 160 83 44.6 1.86 3.76E-05

Mesoderm development 439 182 122.37 1.49 4.99E-05

Intracellular signal transduction 995 362 277.34 1.31 7.96E-05

System development 1013 367 282.36 1.3 9.74E-05

GBM Developmental process 1835 597 464.4 1.29 7.01E-08

Visual perception 185 90 46.82 1.92 2.77E-06

Cellular process 8220 2275 2080.33 1.09 3.70E-06

Nervous system development 619 229 156.66 1.46 5.17E-06

Cell-cell signaling 449 175 113.63 1.54 9.30E-06

System development 1013 344 256.37 1.34 1.17E-05

Mesoderm development 439 167 111.1 1.5 8.14E-05

XgBoost Developmental process 1835 440 316.8 1.39 7.14E-10

Nervous system development 619 182 106.87 1.7 2.53E-09

Visual perception 185 71 31.94 2.22 3.49E-07

System development 1013 253 174.89 1.45 1.65E-06

Cellular process 8220 1579 1419.14 1.11 4.61E-06

Mesoderm development 439 120 75.79 1.58 3.06E-04

Cell-cell signaling 449 121 77.52 1.56 5.37E-04

Reference – the number of genes in the reference list, Uploaded – the number of genes in an uploaded list, Expected – number of genes expected in the uploaded list, Fold Enrichment

– Ratio of Uploaded/Expected, P-value – determined by the binomial statistic test.

(Hastie et al., 2009). While in GBM, a prediction error is due to
a low variance and a high bias of a “weak learner.” However,
a boosting process improves both bias (through assembling
many “weak learners” sequentially and using the weighted sum
of predictions of individual trees to reduce the bias) and the
variance (by combining many models, Hastie et al., 2009).
Therefore in general GBM outperforms RF. In comparison to
GBM, XgBoost has more options to choose for regularization
to further improve overfitting problems (Chen and He, 2015).
Therefore, the performance of XgBoost is expected to be better
than GBM. We did observe that the genes close to the top 3,000
SNPs identified by XgBoost had relatively higher P values in
the gene enrichment analysis than the ones from GBM and RF.
However, when applying the top 3,000 SNPs identified from
each method in an additive genomic model for the prediction of
GEBVs, surprisingly we see that GBM outperformed XgBoost in
the prediction accuracy. This could be due to the fact that there
were 18 parameters requiring pre-tuning in XgBoost, we only
explored different values for two parameters–Ntree (the number
of decision trees) and the learning rate eta, not the optimal
values for the remaining 16 parameters. These results suggest the
complicity of XgBoost parameters.

It is a property of the mixed-models applied in genetic
(and genomic) evaluation that prediction error variances are
proportional to the diagonal elements of the inverse of the

relationship matrix (VanRaden, 2008). In general a low-
density panel could inevitably result in higher variance in
genomic relationship estimates. This high variation could
translate into large diagonals of the GRM inverse which in
turn results in inflated accuracy estimates (Hill and Weir,
2011). In our study here, in comparison to the results from
using all SNPs, the evidence of much increased variances
in both genomic relationship matrices (GRMs) and inversed
GRMs (Figures 5, 6) was very strong in the cases where
the subsets of 400 or 1,000 SNPs were used for genomic
prediction of the cow population, regardless of the methods
used for selecting the subsets of SNPs. However, the large
variances in GRMs diminished as the density of SNPs reached
beyond 3,000. Therefore, this suggests that a minimum of
3,000 SNPs would be required to implement genomic selection
tools.

It is worth pointing out that the additive genetic variance and
heritability values referred to in this study are not the same as the
strict definitions of traditional quantitative genetics theory (de
los Campos et al., 2015). They should be “genomic variance” and
“genomic heritability.” According to de los Campos et al. (2015),
“the genomic heritability and the trait heritability parameters are
equal only when all causal variants are typed.” Given that the
number of true QTLs are unknown and a limited number of SNPs
is used, these estimates are biased from the true additive genetic
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FIGURE 5 | Distributions of diagonal and off-diagonal elements of genomic relationship matrices (GRMs) constructed with different subsets of SNPs from RF, GBM,

XgBoost, evenly spaced, or all SNPs of Brahman cow population. (A) Diagonal elements of genomic relationship matrices. (B) Off-Diagonal elements of genomic

relationship matrices.
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FIGURE 6 | Distributions of diagonal and off-diagonal elements of inversed genomic relationship matrices (inversed-GRMs) constructed with different subsets of

SNPs from RF, GBM, XgBoost, evenly spaced, or all SNPs of Brahman cow population. (A) Diagonal elements of inversed genomic relationship matrices. (B)

Off-diagonal elements of inversed genomic relationship matrices.
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TABLE 4 | Heritability (h2) and additive genetic variances (σ2a ) explained by different subsets of SNPs from Brahman cow population.

Method σ
2
a σ

2
e σ

2
p h2 % σ

2
a of all SNPs

RF400 36.37 (16.96) 563.14 (28.96) 599.51 (27.47) 0.061 (0.028) 48.47

RF1,000 45.99 (20.94) 553.36 (30.64) 599.35 (27.47) 0.077 (0.035) 61.29

RF3,000 67.01 (27.79) 533.00 (33.67) 600.02 (27.63) 0.11 (0.046) 89.30

RF18,453
†

71.20 (31.70) 529.11 (36.42) 600.32 (27.64) 0.12 (0.052) 94.88

GBM400 39.99 (17.56) 559.71 (28.98) 599.69 (27.52) 0.067 (0.029) 53.29

GBM1,000 61.87 (23.71) 537.93 (31.02) 599.80 (27.66) 0.10 (0.039) 82.45

GBM3,000 82.07 (30.70) 518.64 (34.60) 600.71 (27.83) 0.14 (0.050) 109.37

GBM16,600
†

73.57 (32.25) 526.86 (36.62) 600.37 (27.67) 0.12 (0.053) 98.04

XgBoost400 22.28 (15.75) 578.30 (29.64) 600.57 (27.37) 0.037 (0.026) 30.36

XgBoost1,000 35.01 (20.73) 565.45 (31.41) 600.46 (27.43) 0.058 (0.035) 46.66

XgBoost3,000 40.56 (23.45) 559.66 (32.79) 600.22 (27.42) 0.068 (0.039) 54.05

XgBoost9,122
†

65.75 (29.30) 534.18 (34.94) 599.63 (27.59) 0.11 (0.049) 87.62

Even400 20.46 (15.25) 580.42 (29.52) 600.88 (27.39) 0.034 (0.026) 27.27

Even1,000 32.42 (19.82) 568.07 (31.13) 600.48 (27.40) 0.054 (0.033) 43.20

Even3,000 53.85 (25.77) 546.55 (33.18) 600.40 (27.56) 0.090 (0.043) 71.76

All SNPs (38,082) 75.04 (32.43) 525.02 (36.77) 600.06 (27.64) 0.125 (0.054) 100.00

σ
2
e – residual variance; σ

2
p – total phenotypic variance.

Standard errors are given in parentheses.

RF – Random Forests; GBM – Gradient Boosting Machine, XgBoost – Extreme Gradient Boosting; Even – evenly spaced along the genome;
†
The SNPs with positive variable importance

values.

variance and heritability value of the population. These could also
impact on our results.

Since all machine learning methods are non-parametric
models, these models do not differentiate between fixed
environmental effects and random genetic effects. If fixed
environmental effects were directly used as covariates, they would
be treated as predictor variables as SNPs, then the subset SNP
results would be dependent on these fixed effects. Therefore, we
pre-adjusted the phenotype the same way as the other studies
(Lubke et al., 2013; Waldmann, 2016). However, a GBLUPmodel
is a mixed model in which fixed effects (age and contemporary
group effects) can be properly separated from the random genetic
effect, hence we used the original phenotype for the GBLUP
model in the validation population. It is possible that the accuracy
could be different if we also used the pre-adjusted phenotype for
the GBLUP analysis in the validation population.

Both linkage disequilibrium (LD) and MAF (minor allele
frequency) can systematically impact the variable importance
measures used by both RF and GBM (Strobl et al., 2007;
Habier et al., 2009; Walters et al., 2012; Lubke et al., 2013;
Ogawa et al., 2014; Zhou and Troyanskaya, 2015). Walters
et al. (2012) suggested applying a sliding window algorithm that
uses overlapping subsets of SNPs chosen from a whole genome
association study to assign the SNPs with high LD to different
subsets to reduce bias in VIM. We did not apply the method in
our analyses, as the Manhattan plots from 3 methods (Figure 3)
showed that the top ranking SNP markers (e.g., 400, 1,000, and
3,000) were relatively sparsely spaced along the whole genome.

The prediction accuracy of genomic breeding values can be
affected by a number of factors, for example, number of animals
in a training (or reference) population, heritability of a trait of

TABLE 5 | Average accuracy of genomic prediction by different subsets of SNPs

from Brahman cow population using a 5-fold cross-validation approach.

Marker Accuracy

RF400 0.35 (0.072)

RF1000 0.36 (0.10)

RF3000 0.41 (0.15)

RF18453
†

0.42 (0.14)

GBM400 0.36 (0.19)

GBM1000 0.42 (0.14)

GBM3000 0.46 (0.072)

GBM16600
†

0.42 (0.11)

Xgb400 0.20 (0.081)

Xgb1000 0.26 (0.092)

Xgb3000 0.33 (0.13)

Xgb9122 0.39 (0.14)

Even400 0.18 (0.055)

Even1000 0.22 (0.13)

Even3000
†

0.29 (0.19)

All SNPs 0.43 (0.13)

Standard errors are given in parentheses.

RF – Random Forests; GBM – Gradient Boosting Machine, XgBoost – Extreme Gradient

Boosting; Even – evenly spaced along the genome;
†
The SNPs with positive variable

importance values.

interest, relationship between training and validation animals
(i.e., genetic architecture), length of chromosomes (in Morgans)
and the effective population size (Goddard, 2009; Howard et al.,
2014). There are a few limitations in this study. Firstly, our
training and the validation populations (the Brahman bull and
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FIGURE 7 | Comparison of computational times undertaken by RF, GBM and XgBoost. Y axis refers to the seconds, X axis refers to the size of forest trees (NTree).

(A) RF vs. GBM vs. XbBoost (B) RF vs. XbBoost.

cow populations) were not independent and they were related
half-sibs. The accuracy of genomic prediction of breeding values
could change when different training and validation populations
are used. Therefore caution is needed for the interpretation
of our results. Secondly, we only examined a phenotype with
the moderate heritability—live yearling weight in beef cattle.
Further studies are required to further validate the efficiency of

machine learning methods in building low density SNP panels
for genomic prediction, for a range of phenotypes with different
heritability values under various population sizes. Thirdly, we
only investigated the predictability of subsets of top ranking SNPs
with the effects on a univariate—live weight. The pleiotropy of the
subset SNPs could have the impact on the traits correlated to the
live weight. Fourthly, we applied a random 5-fold cross validation
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scheme, rather than the split of the animals from the same sire
families into the same group and no connection between training
and validation datasets (i.e., a family-based cross-validation
scheme). Therefore the results would be expected to be very
different for the family-based cross-validation scheme.

There is no doubt that there are other machine learning
methods that can be used for high dimension reduction and
efficient selection of subsets of SNPs for low-density SNP panels
(e.g., Liang and Kelemen, 2008; Long et al., 2011; Walters et al.,
2012; Bermingham et al., 2015), and then apply the panels for
genomic prediction of breeding values. The machine learning
methods such as GBM have the advantage over parametric
methods for its ability in dealing with variable interactions,
nonlinear relationships, outliers, and missing values. They can
also be used to initially identify a small number of informative
SNPs associated with phenotypes and then use these SNPs for
the imputation to high density genotypes to further improve the
accuracy of genomic prediction.

It is worthwhile to mention that this study here intended
to serve as a proof of concept. We have also applied RF as a
pre-screening tool for identifying low-density SNPs for genomic
prediction in another beef cattle population that consisted of
2,109 Brahman cattle with 651,253 SNP genotypes and found
the similar results (Li et al., 2018). One of the limitations for
this study is that we only evaluated three machine learning
methods for selecting subsets of SNPs for genomic prediction of
a single trait, rather than for multiple traits. There is literature
available about the application of machine learnings for genomic
prediction of multiple traits (He et al., 2016; Paré et al., 2017).
However, given complex relationships among multiple traits
and SNPs, a vigorous evaluation of three methods for selecting
subsets of SNPs affecting multiple traits is beyond the scope
of the current study. Tackling multiple traits will be the future
work.

The outcomes from this study have a number of potential
implementations. For example, (1) using the machine learning
methods as a pre-screening tool (or a high-dimension reduction
tool) to identify biologically relevant variants from large genome
sequence variants of a large population, and then apply subsets
for detailed investigation of gene functions or pathways or
genomic prediction of future generations; (2) Building large
reference populations by initially genotyping a large SNP panel
on part of a population, and then choosing subsets of SNPs
to genotype the rest of a population for future genomic
selection.

CONCLUSIONS

In this study, using the live weight from Brahman cattle and
38,083 SNPs, we demonstrated that two machine learning
methods—RF and GBM, are efficient in identifying potential
candidate genes for the growth trait. Using at least 3,000
SNPs with positive VIM values identified by RF and especially
GBM achieved the similar estimates of heritability and genomic

prediction accuracy of breeding values as those of using all
SNPs. The subsets of SNPs (400, 1,000, and 3,000) selected
by the RF and GBM significantly outperformed those SNPs
evenly spaced across the genome. The superiority of GBM
performance comes at the expense of longer computational
time.
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