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Abstract

In energy demand forecasting, the objective function is often symmetric, implying that

over-prediction errors and under-prediction errors have the same consequences. In practice, these two

types of errors generally incur very different costs. To accommodate this, we propose a machine

learning algorithm with a cost-oriented asymmetric loss function in the training procedure. Specifically,

we develop a new support vector regression incorporating a linear-linear cost function and the

insensitivity parameter for sufficient fitting. The electric load data from the state of New South Wales

in Australia is used to show the superiority of our proposed framework. Compared with the basic

support vector regression, our new asymmetric support vector regression framework for multi-step load

forecasting results in a daily economic cost reduction ranging from 42.19% to 57.39%, depending on the

actual cost ratio of the two types of errors.
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1 Introduction

Electric load forecasting is essential in energy system administration. Optimized objectives in machine

learning for electric load forecasting are often symmetric, and the target is to predict the electric load as

accurately as possible. However, the prediction of the electric load is extremely challenging due to the

non-linear, dynamic, and complex system in demand [1]. As a result, the errors in real forecasting are hard

to avoid. Moreover, in real applications, the penalties from under-predictions and over-predictions are very

different based on the corresponding financial costs [2]. Apparently, predictions with symmetric loss will

result in more unnecessary economic costs, although unbiased predictions can be obtained, and biased

predictions considering different real costs are more reasonable.

However, symmetric loss is popularly used to obtain higher accurate load forecasting, such as with a

neural network and its variations [3–5] and support vector regression (SVR) with its developments [6–8].

Even now, to handle these complex systems more efficiently for load forecasting, deep learning has been

introduced, and its optimization objective is symmetric, such as mean square error for recurrent neural

networks [9]. There is also a variety of different symmetric loss functions proposed in the literature,

motivated by objectives in estimation efficiency, robustness to outliers, and computational convenience.

Novel examples include ε-Laplace error [10] and exponential squared loss [11].

Interestingly, the concept of “asymmetric” loss has been introduced before in machine learning. However,

in “asymmetric” machine learning, different distributions from positive errors and negative errors are

considered to develop more accurate regressions [12–16]. [17] proposed an asymmetric and quadratic loss

function for SVR to accurately predict power usage. [18] presented an asymmetric ν-twin SVR based on

the pinball loss function, which can enhance generalization ability by controlling the fitting error. [19]

incorporated asymmetric Huber and ε-insensitive Huber loss functions into SVR to avoid the interruption

from asymmetric noise and outliers. To summarize, the motivation for the investigated asymmetric SVR

frameworks is to improve the forecasting accuracy instead of minimizing the real cost.

As recommended by [20], penalties from over-predictions and under-predictions should be distinguished,

so symmetric loss and “asymmetric” loss for highly accurate load forecasting are not rational in real

applications. Thus, the forecasting model with real asymmetric loss is recommended based on the real

economic cost minimization for electric load forecasting [21]. Asymmetric loss considering different

outcomes is more rational. So far, there has been limited work on machine learning with asymmetric loss.

Linear-linear cost is one of the asymmetric loss functions that is applied to two parameters to determine

the severity of the prediction type (over-prediction or under-prediction). It has been used in neural

networks training to minimize costs in some specific applications. [22] introduced linear-linear cost in

neural networks to predict optimum service levels in inventory management. [23] developed a neural

network with linear-linear cost for resale price forecasting to aid with pricing decisions. A complex

linear-linear cost was developed by [2] for tree regression training, where the prediction was divided into

four types with different severities.

As reviewed above, most current electric load forecasting systems are designed for error minimization

with symmetric loss. Symmetric loss ignores the difference in penalties from over-prediction and

under-prediction in load forecasting. A biased prediction with asymmetric loss is more appropriate in load
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forecasting. This means a cost-oriented asymmetric loss is demanded by considering the real penalties for

over-prediction and under-prediction. Furthermore, due to the solid theoretical foundation of SVR, a

cost-oriented asymmetric SVR framework (AsySVR) is more promising for load forecasting. Therefore, this

is motivated by the following three considerations: (a) an economic cost is more rational as the objective

function for electric load forecasting, where different economic penalties for over- and under-predictions as

well as the generalization of the forecasting system should be considered; (b) a new design and

corresponding training procedure for a cost-oriented AsySVR framework are required to show the

performance of the proposed economic cost; and (c) the effectiveness of the proposed AsySVR framework

should be validated by a load forecasting project.

Therefore, we incorporate a cost-oriented asymmetric loss into SVR, and develop a novel AsySVR

framework to reduce the economic costs of electric load forecasting. Additionally, in order to overcome the

over-fitting in AsySVR framework training, an insensitive linear-linear cost is designed that ignores the

smaller errors to improve its generalization. We also show that the asymmetric least absolute value

regression, as a special AsySVR framework, is equivalent to quantile regression. To apply our theoretical

discussion, we focus on the state of New South Wales load forecasting project to minimize operational

costs. To this end, the three main contributions of our work are as follows.

(a) An insensitive linear-linear cost (insensitive LLC) is modified based on the LLC, where an insensitive

parameter ε is incorporated, to overcome the over-fitting for model training with good generalization.

In addition, the proposed insensitive LLC considering different real economic penalties from

over-predictions and under-predictions can minimize the cost of load forecasting.

(b) A cost-oriented AsySVR framework is developed for electric load forecasting, where the proposed

insensitive LLC works as the objective function in the AsySVR training. Moreover, similar to the

basic SVR training, the corresponding dual problem for our AsySVR framework is obtained for

model training.

(c) In two multi-step electric load forecasting scenarios, the proposed AsySVR framework is more

practical and appropriate, as it significantly reduces the daily costs from 42.19% to 57.39%,

depending on the actual penalty ratio of two types of predictions.

Additionally, the nomenclature of the paper is listed in Table 1.

The organization of this paper is as follows. Section 2 reviews the LLC, and presents our insensitive

LLC; then, our proposed asymmetric framework is illustrated. In Section 3, the performance of our

proposed framework is evaluated in two scenarios with the state of New South Wales electric load data.

Finally, Section 4 concludes the paper.

2 The proposed asymmetric SVR

To design our SVR with asymmetric loss framework (AsySVR), suppose there are training data

{(xi, yi), i = 1, 2, . . . , n}, and the function f(·) is formulated as

f(x) = 〈ω, x〉+ b (1)
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Table 1: Nomenclature

Notation Description Notation Description

xi features of the i-th sample yi response of the i-th sample
ω normal vector b threshold
ŷ predictions y observation
k1 penalty for over-predictions k2 penalty for under-predictions
ε insensitive parameter ξ slack variable for under-predictions
C regularization parameter L Lagrange function
ξ∗ slack variable for over-predictions ηi Lagrange multiplier for ξi
〈·, ·〉 dot product in a Hilbert space k penalty ratio
η∗i Lagrange multiplier for ξ∗i ρτ the loss function for τ -quantile regression
u prediction errors MWh megawatt-hour
A$ Australia dollar MDC mean daily cost
% proportion of over-predictions κ kernel function
α∗
i Lagrange multiplier for αi Lagrange multiplier for

〈ω, xi〉+ b− yi − ε− ξ∗i yi − 〈ω, xi〉 − b− ε− ξi
τ quantile of quantile regression LLC Linear-linear cost

with the normal vector ω, the threshold b, and the dot product 〈·, ·〉 in a Hilbert space.

2.1 The linear-linear cost

Let u = ŷ − y be the prediction error representing over-prediction if u > 0 or under-prediction if u < 0. As

noted by [24], the cost should represent the actual business objective, such as, the profit maximization.

Thus, in our asymmetric loss designs, the LLC is employed with two different penalties k1 and k2 for

over-predictions and under-predictions, respectively, which can directly quantify the economic costs of each

error as [24],

l (u|k1, k2) =

 k1u
+, u > 0,

k2u
−, u 6 0

(2)

with u+ = max{u, 0} and u− = max{−u, 0}. Corresponding to the over-prediction and under-prediction,

two positive parameters, k1 and k2, determine the economic severity of a given error type. Note that

l(u|k1, k2) = max(k1u
+, k2u

−). Also, we have k1 > 0, l(u|k1, k2) = k1l(u|1, k), where k = k2/k1. Therefore,

without loss of generality, we can assume k1 = 1 and let k = k2/k1 for convenience as

l (u|k) =

 u+, u > 0,

ku−, u 6 0.
(3)

Notice two penalty parameters, k1 and k2, are given based on economic cost calculations. Thus, as

visualized in Fig. 1, the parameter k shows the bias on two types of errors. Obviously, if k is larger than 1,

under-prediction brings a higher cost than over-prediction. Otherwise, over-prediction is more costly.

2.2 The linear-linear cost with an insensitive parameter

To overcome over-fitting of the model with LLC, according to good performance of the insensitive Laplace

loss by [10], an insensitive LLC is developed with an insensitive parameter ε, that can ignore the smaller
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Figure 1: The linear-linear cost: (a) the proposed linear-linear cost, and (b) the illustration of prediction
types.

errors (|u| 6 ε). The proposed insensitive LLC is formulated as

l (u|k) =


u+ − ε, u > ε,

0, |u| 6 ε,

k (u− − ε) , u < −ε.

(4)
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Figure 2: The proposed insensitive linear-linear cost: (a) the proposed insensitive linear-linear cost, (b) the
illustration of prediction types.

Different from Fig. 1, two soft margins are introduced in our insensitive LLC. As shown in Fig. 2, only

the larger prediction errors located out of margins are counted to calculate the cost. The slack variables for

the under-prediction and over-prediction are defined as ξ = u− − ε and ξ∗ = u+ − ε, respectively. More

specifically, the proposed insensitive LLC can guarantee the model’s fitting, especially in complex networks.
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2.3 The new support vector regression

Now considering the optimized loss in ε-SVR [25], we incorporate the insensitive LLC, Eq. (4), in the SVR

structure to develop an AsySVR. Moreover, the corresponding convex optimization problem (primal

objective function) with slack variables ξi and ξ∗i for the cost-oriented asymmetric framework is formulated

as

min
ω,b,ξi,ξ∗i

1

2

(
‖ω‖2

)
+ C

n∑
i=1

(kξi + ξ∗i )

s.t.


〈ω, xi〉+ b− yi 6 ε+ ξi,

yi − 〈ω, xi〉 − b 6 ε+ ξ∗i ,

ξi > 0, ξ∗i > 0, i = 1, 2, . . . , n

(5)

with a regularization parameter C. Here, the optimized objective is designed with cost-oriented penalties.

In our case, we consider a simple condition, under which over-prediction (u > ε) will be punished with k1

for each unit loss, while under-prediction (u < −ε) will be punished with k2 for each unit loss. The weight

k is calculated by two penalties from a real scenario. Apparently, according to different real practices, the

optimized objective can be generalized to L2 regularization with a specific piecewise function. It should be

noted that conventional asymmetric cost functions are for accurate regressions to address noises or outliers

in the dataset.

Next, in order to reduce the complexity of the primal objective optimization, a dual problem is

recommended where dimensionality depends only on the number of support vectors. Thus, a Lagrange

function is constructed from the primal objective function and the corresponding constraints with a set of

variables as

L : =
1

2
‖ω‖2 + C

n∑
i=1

(kξi + ξ∗i )−
n∑
i=1

(ηiξi + η∗i ξ
∗
i )

+

n∑
i=1

αi (yi − 〈ω, xi〉 − b− ε− ξi)

+

n∑
i=1

α∗i (〈ω, xi〉+ b− yi − ε− ξ∗i )

(6)

where ηi, η
∗
i , αi, and α∗i are Lagrange multipliers.

Then, the saddle point condition can be calculated by the zero of the partial derivatives of L with respect

to the primal variables (ω, b, ξi, ξ
∗
i ) as

∂L

∂b
=

n∑
i=1

(α∗i − αi) = 0, (7)

∂L

∂ω
= ω −

n∑
i=1

(αi − α∗i )xi = 0, (8)

∂L

∂ξi
= kC − αi − ηi = 0, (9)

and
∂L

∂ξ∗i
= C − α∗i − η∗i = 0. (10)
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After that, the corresponding dual problem can be obtained as

max
α,α∗

n∑
i=1

yi(αi − α∗i )− ε
n∑
i=1

(αi + α∗i )

− 1

2

n∑
i=1

n∑
j=1

(αi − α∗i )(αj − α∗j )xTi xj

s.t.


n∑
i=1

(α∗i − αi) = 0,

0 6 αi 6 kC,

0 6 α∗i 6 C,

(11)

which is required to meet the Karush–Kuhn–Tucker (KKT) condition [26]

αi (yi − 〈ω, xi〉 − b− ε− ξi) = 0,

α∗i (〈ω, xi〉+ b− yi − ε− ξ∗i ) = 0,

αiα
∗
i = 0, ξiξ

∗
i = 0,

(kC − αi) ξi = 0, (C − α∗i ) ξ∗i = 0.

(12)

Finally, substitute Eq. (8) for Eq. (1), and our proposed asymmetric SVR framework with the Lagrange

multipliers αi and α∗i can be estimated as

f(x) =

n∑
i=1

(αi − α∗i )〈xi, x〉+ b (13)

where b can be estimated by the KKT condition. Here, similar to the basic SVR, our corresponding dual

problem can be solved by quadratic programming [27] or sequential minimal optimization [28]. It should be

mentioned that the proposed framework for training large sample sets can process within the allowed

computing resources. Our computation requirement is as same as the original ε-SVR, thus the scalability is

unchanged, and any efficient training procedures in SVR can be adopted to our framework. For example,

sequential minimal optimization can solve the proposed dual problem for training large sample sets

following the search strategies by [29].

Now, the procedure of our proposed AsySVR framework can be given as follows:

Step 1 Calculate the penalty ratio k using the different penalties k1 and k2 from a real scenario.

Step 2 Obtain the corresponding specific dual problem Eq. (11) by substituting the penalty ratio k.

Step 3 Input training data.

Step 4 Solve the dual problem to achieve αi, α
∗
i and b with two proper hyper-parameters, C and ε.

Step 5 Predict the test data using Eq. (13) .

For a clearer illustration, the flowchart of our proposed AsySVR framework is displayed in Fig. 3.
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Figure 3: The flowchart of the proposed AsySVR framework

2.4 Connection to quantile regression

In the special case of the asymmetric SVR framework with ε = 0 and C −→ +∞, the optimized objective

function (Eq. (5)) can become equivalent to

L =

n∑
i=1

l(ui|k). (14)

Note that l(ui|k) is equivalent to (up to a constant τ = k/(1 + k))

ρτ =

 τu−, u < 0,

(1− τ)u+, u > 0,
(15)

which is the optimized objective function for τ -quantile regression, also known as the least absolute value

regression under asymmetric loss [30–32]. The case where k = 1 or τ = 0.5 corresponds to median

regression. Thus, this optimization problem can be solved via quantile regression [33].

3 The case study

In this section, our proposed cost-oriented asymmetric framework, AsySVR, is evaluated by a multi-step

New South Wales (NSW) electric load forecasting project.

3.1 Data

The half-hourly electric load from February, 01, 2019 to March, 20, 2019 in NSW is used as experimental

data, which was retrieved from the Australia Energy Market Operator (AEMO). As displayed in Fig. 4,

the dataset is divided into two groups: a training set (1, 344 data points) from 01/02/2019 0:30 -

01/03/2019 0:00, and a test set (912 data points) from 01/03/2019 0:30 - 20/03/2019 0:00.

Moreover, according to the report from the World Nuclear Association in 2019, Australia’s National

Electricity Market (NEM) volume-weighted wholesale price (k1) was around A$82/MWh in NSW (here,

the Australian dollar is denoted as A$). Also, the NEW had real-time balancing with the obligation before

delivery. Thus, the price (k2) is highly capped at A$14, 500/MWh (mid-2018) (here, the megawatt-hour is

8
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Figure 4: The electric load from NSW: (a) the training data (30 days), and (b) the test data (20 days).
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denoted as MWh).

In the Australian electricity market, the electricity retailer buys some electric loads at a spot price and

on-sale to the end-use customer. Due to the volatility of the spot price, the retailer and the power generator

often sign a hedge contract to decrease financial risks by locking in a fixed price for the electric load in the

short term. Therefore, in our study, the whole demand side of NSW is regarded as a retailer. Assume the

actual order exactly follows the prediction. Then, in the case of under-predictions, the electricity retailer

has to buy extra loads from NEM at a very high price. On the other hand, over-prediction will lead to the

disposal of the unused order. As a result, from a economic perspective, the economic penalties for

over-predictions and under-predictions are different in the assumed NSW load forecasting project.

3.2 Evaluation criterion

Different from the conventional evaluation criterion, the mean daily cost (MDC, unit: A$) is used to show

the effectiveness of our AsySVR framework in two scenarios as

MDC =
48

n

n∑
i=1

(k1 · |ui| · I(ui > 0) + k2 · |ui| · I(ui < 0)) (16)

where ui = ŷi − yi represents the prediction error, and I is the indicator function. Thus, a smaller MDC

value means a more economical daily optimal load prediction.

Furthermore, the proportion % is employed to show the proportion of over-predictions (or the bias of

predictions) as

% =
1

n

n∑
i=1

I(ui > 0). (17)

From Eq. (17), we see that if % is smaller than 0.5, the forecasting tends toward under-prediction.

Otherwise, it tends toward over-prediction.

3.3 Experimental settings

In the multi-step load forecasting project, the proposed AsySVR is targeted at predicting the one-, three-,

and five-step ahead loads. As for the input, due to the high correlation with our responses [34,35], the

half-hourly loads of the previous day (48 data points) are taken as the main input. In addition, we follow

the idea of the intra-day cycles modeling for the temperature factor from [36] and introduce the harmonic

functions sin(2πt/T ), and cos(2πt/T ) (with time order t, and the cycle length T = 48 since the half-hourly

data is employed in our study), to describe the daily seasonality as the additional inputs. Furthermore, the

linear function κ(xi, xj) = xi · x′j is chosen as the kernel, and the proposed AsySVR framework is trained

via quadratic programming in our study. Here, to avoid the impact from the scale of the electric load, the

data is normalized in our experiments. All experiments were implemented in R 3.6.2 on HPC with ncpus 8

and 32GB memory.

Moreover, the proposed asymmetric framework, AsySVR, is validated in two scenarios as: (1) Scenario 1:

k1 = 80, k2 = 600; and (2) Scenario 2: k1 = 80, k2 = 900 (here, the unit is A$/MWh).
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3.4 The hyper-parameter selection for AsySVR

As shown in Eq. 5, there are two hyper-parameters (the insensitive parameter ε and the regularization

parameter C). To tune these hyper-parameters, the 5-fold cross-validation is used for our proposed

AsySVR framework. Furthermore, the alternative values for C are set as: 0.1, 1, 10, 100, and 1,000, while

these for ε are set as: 0, 0.0001, 0.001, 0.01, 0.1, 0.2, and 0.4. These alternative values can be evaluated

using cross-validation, in the training set, and the corresponding MDC in the two scenarios are displayed in

Fig. 5

According to the results from cross-validation, the optimal hyper-parameters obtained are shown in

Table 2, and the whole results are provided in the Supplementary Material.

Table 2: The optimal results for the hyper-parameters by cross-validation: (C, ε)

1-step ahead 3-step ahead 5-step ahead

Scenario 1 (1, 0.001) (1000, 0) (1, 0.0001)
Scenario 2 (10, 0.0001) (1000, 0.0001) (1, 0.001)

3.5 Experimental results

In the two investigated scenarios, with the optimal hyper-parameter in Table 2, the proposed AsySVR is

trained in the total training set for one-, three-, and five-step ahead load forecasting, respectively. Then,

the experimental results of the proposed AsySVR framework are plotted in Fig. 6.

As illustrated in Fig. 6, three interesting points can be achieved using our proposed AsySVR framework.

The most obvious finding is that the predictions in both scenarios are biased. For example, at k2 = 600,

the mean of residual distributions for all one-, three-, and five-step ahead predictions are significantly

larger than 0, as shown in Fig. 6a. Another one is that the accuracy of load prediction decreases with the

forecasting step increasing. From Fig. 6b, we can see that compared with the predictions for one-step

ahead, the five-step ahead forecasting results are far from the block line (which is denoted as the most ideal

performance). The last point is that more biases are introduced when the penalty k2 increases. From

Table 3, we can see that in one-step ahead forecasting, the % proportion by AsySVR is 0.90 for Scenario 1,

while it is 0.93 for Scenario 2. To explore the underlying mechanism, the proposed AsySVR framework

considers the different penalties for over-predictions and under-predictions in model training; as a result,

with k2 increasing, the prediction by the AsySVR tends toward over-prediction, which can significantly

reduce the economic cost for load forecasting.

In short, our proposed AsySVR framework with insensitive LLC can effectively reduce the economic cost

for load forecasting in a real energy operation.

3.6 Comparative analysis

To show the efficiency of our proposed AsySVR framework, five popular frameworks (least square

regression (LS) [37], least absolute value regression (LAV) [38], SVR [6,39], and multilayer perception

(MLP) [40,41]) with quantile regression (QUANTILE) are investigated in the two scenarios. The

parameter settings for SVR are set as the recommendation in [42] as the regularization parameter 1 and
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Figure 5: The multi-step MDC by 5-fold cross-validation in the two scenarios.
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(a) Scenario 1

(b) Scenario 2

Figure 6: The predictions and corresponding residuals in two scenarios: the black line is denoted as yi = yi.
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the insensitive parameter 0.1, while the structure of MLP is set as 50-20-1 with the logistic activation

function by the R Package “neuralnet” [43]. Here, the quantile regression is implemented by using R

Package “quantreg” [44]. According to the discussion in Sect. 2.4, the quantiles τ for the two scenarios are

calculated as 88.24% and 91.84%, respectively.

After the implementation for all benchmark frameworks, the residuals and economic costs by four

symmetric frameworks and two asymmetric frameworks (QUANTILE and AsySVR) in two scenarios are

shown in Fig. 7 and Fig. 8, respectively. Here, it should be mentioned that the optimized objective for the

investigated “asymmetric” SVR frameworks is to obtain a highly accurate prediction, and it is very

different from our insensitive LLC considering economic costs; however, our proposed cost-oriented

AsySVR framework is more effective from an economic perspective. Therefore, their “asymmetric” SVR

frameworks are not considered in our comparative analysis.

As shown in Fig. 7 and 8, the bias brought by the proposed AsySVR framework decreases the accuracy

of forecasting. Meanwhile, the economic costs for under-predictions and over-predictions are balanced by

the bias. This is because different penalties are considered in our asymmetric framework to balance the

daily cost for the over-prediction and under-prediction. Apparently, in Scenario 1 (k1 = 80, and k2 = 600),

compared to symmetric frameworks, more over-predictions are offered by our proposed asymmetric

framework. From the daily cost comparison, the symmetric frameworks balance their loss with more costs

for the under-predictions, while the AsySVR framework can give biased predictions with a good

economic-cost balance.

In addition, from the two scenarios, it can be seen that when the penalty k2 increases, our proposed

AsySVR framework is more effective with economic costs. Especially as shown in Fig. 8, it almost forecasts

values by AsySVR that are over-predicted to pay less cost on under-predictions.

The multi-step forecasting performance (MDC and %) and the execution time for four symmetric

frameworks and two asymmetric frameworks in two scenarios are reported in Table 3. Obviously, according

to the MDC index, our proposed AsySVR framework is the most superior in reducing the daily economic

costs in electric load forecasting. One of the most obvious cases is Scenario 2 for five-step ahead

forecasting, where the MDCs for LS, LAV, SVR, MLP, QUANTILE, and AsyVR, are A$2,597,415.73,

A$2,592,080.52, A$2,595,644.69, A$3,275,893.63, A$1,187,334.86, and A$1,185,369.98, respectively.

Furthermore, in the case where both % proportions are 0.93 for QUANTILE and AsySVR, those for the

symmetric framework ranges from 0.47 to 0.52. This shows our proposed framework can balance the daily

costs by adding more biases in predictions. Furthermore, compared with the QUANTILE, the proposed

AsySVR framework also obtains good improvements in our study. As shown in Table 3, compared with

QUANTILE, A$1, 014.94−A$4, 171.78 of savings in the daily economic cost can be achieved using our

AsySVR framework. Particularly, when the step increases, residuals for the load forecasting are larger, and

more biases are brought by our AsySVR framework, and the daily economic cost reduces more significantly.

Moreover, our proposed AsySVR framework is also very computationally efficient in the 1,344 historical

load data training for the multi-step forecasting. For instance, in Scenario 2, for three-step-ahead

forecasting, although the computational cost of the AsySVR (12.63s) is higher than those of LS (0.01s),

LAV (0.03s), SVR (0.93s), and QUANTILE (10.66s), our proposed framework is more efficient than MLP

(53.57s).
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Figure 7: The residuals and corresponding economic costs in Scenario 1. Red color represents over-predictions
while blue color represents under-predictions
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Figure 8: The residuals and corresponding economic costs in Scenario 2. Red color represents over-predictions
while blue color represents under-predictions.
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Table 3: The MDC, % proportion, and execution time for multi-step load forecasting: (MDC: A$, Time: s)

Panel A: Scenario 1 (k1 = 80 and k2 = 600)

1-step ahead 3-step ahead 5-step ahead

MDC % Time MDC % Time MDC % Time

LS 501,762.58 0.52 0.01 1,229,119.94 0.52 0.01 1,814,764.51 0.52 0.01

LAV 508,926.23 0.52 0.05 1,242,653.32 0.52 0.03 1,806,520.82 0.51 0.03

SVR 490,778.12 0.56 0.34 1,234,895.85 0.52 0.93 1,809,207.12 0.51 1.08

MLP 601,167.73 0.51 38.42 1,210,044.20 0.50 53.57 2,252,860.23 0.47 113.77

QUANTILE 270,722.45 0.89 10.71 686,994.43 0.89 10.66 1,046,921.01 0.90 11.51

AsySVR 267,883.97 0.90 18.16 682,822.22 0.89 12.21 1,045,906.07 0.90 12.60

Panel B: Scenario 2 (k1 = 80 and k2 = 900)

1-step ahead 3-step ahead 5-step ahead

MDC % Time MDC % Time MDC % Time

LS 721,003.86 0.52 0.01 1,762,172.70 0.52 0.01 2,597,415.73 0.52 0.01

LAV 732,502.42 0.52 0.05 1,787,169.87 0.52 0.03 2,592,080.52 0.51 0.03

SVR 698,736.06 0.56 0.34 1,773,109.21 0.52 0.93 2,595,644.69 0.51 1.08

MLP 861,442.16 0.51 38.42 1,739,095.62 0.50 53.57 3,275,893.63 0.47 113.77

QUANTILE 299,656.34 0.93 11.02 768,859.99 0.90 10.66 1,187,334.86 0.93 11.63

AsySVR 297,699.83 0.93 13.62 765,841.96 0.91 12.63 1,185,369.98 0.93 13.52
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Additionally, another interesting finding is that the performance of MLP is inferior among all investigated

frameworks. The first reason is that there is a strong linear relationship among the investigated load series

according to the performance from forecasting benchmark frameworks with symmetric loss, and the MLP

is designed to extract the nonlinear relationship. The second is that different from the conventional error

index for the accuracy, the new index based on the mean daily cost (MDC) is presented to measure the

daily economic cost. Since there are two different economic penalties on the over-prediction and the

under-prediction, the forecasting model with the asymmetric loss is superior to the MLP.

To summarize, the proposed AsySVR framework can reduce the daily economic costs by introducing

more biases in forecasting results with low computation costs. Meanwhile, under the proposed cost

oriented insensitive LLC, the proposed AsySVR framework can obtain the lowest daily costs among all

considered frameworks. The source code of our AsySVR framework is available at:

https://github.com/wujrtudou/AsySVR_cost_minimisation.git

4 Conclusion

In this study, a cost-oriented asymmetric framework, AsySVR, was developed for electric load forecasting.

Based on different penalties for over-predictions and under-predictions, an insensitive LLC was proposed to

train the asymmetric SVR framework for real economic cost minimization. In particular, compared with a

conventional SVR framework, in our NSW load forecasting project, the proposed asymmetric framework

achieved excellent daily economic cost reductions with A$222,894.15 (one-step ahead), A$552,073.63

(three-step ahead), and A$763,301,05 (five-step ahead) in Scenario 1, and A$401,036.23 (one-step ahead),

A$1,007,267.25 (three-step ahead), and A$1,410,274.71 (five-step ahead) in Scenario 2. With the step

increases, the residuals increased, and the daily economic cost reductions were more significant. Moreover

an insensitive LLC was designed for our AsySVR framework, where an insensitive parameter ε is used to

address the over-fitting. From an economic cost comparison, it can be seen that the AsySVR framework

with the insensitive LLC was the most superior for economic cost reduction in both scenarios. Additionally,

we also show that the proposed AsySVR framework was essentially the same as the quantile regression. In

brief, our proposed AsySVR framework is an efficient and promising tool for electric load forecasting.

The electricity demand data inevitably often contains Gaussian noises and heavy-tailed non-Gaussian

noises. The distribution of the noises does not affect the validity of our framework but the extent of

improvement does depend on the distribution. More economic benefit may be obtained when the data

follows heavy tailed distributions implying more serious errors in predictions.The distribution of the noise

affects the parameter estimation, and careful modeling of the noise distribution can improve the parameter

estimation with limited impact on the overall loss function. More theoretic work can be carried out in this

direction. Our key contribution in the proposed framework is to minimize the economic loss instead of the

conventional statistical objective function. In addition, the proposed framework is a regularized forecasting

approach, where the regularizer is the squared norm of the estimating function in some reproducing kernel

Hilbert space. In the linear case, according to Theorem 1 of [45], the asymptotic results hold. Much more

theoretic work can be done from a statistical perspective following the work by [46], for example. Fast

convergence in computation when the training size is large is another big data issue worth research
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attention.

There are still some limitations in our work. The first limitation is that our electric load forecasting is

based on time series modeling, ignoring some environmental factors, such as temperature and humidity.

Furthermore, in our AsySVR framework, the cross-validation was used to select the regularization

parameter C and the insensitive parameter ε, which selects the parameters from the alternative values with

large computational costs for the AsySVR training. Additionally, the penalties for over-predictions and

under-predictions should be obtained (or forecasted) to improve the effectiveness of a symmetric SVR

framework.

In the future, there are many research directions. For electric load forecasting, more economical and

environmental factors can be incorporated to establish a highly accurate forecasting system, promoting the

economic cost reduction. Moreover, our proposed asymmetric frameworks can be extended to other

economic cost minimizations in operational management, such as the renewable energy bidding. In

addition, some advanced approaches can be developed for the parameter selection in our AsySVR

framework. Furthermore, our proposed insensitive LLC can be extended to other state-of-the-art methods,

such as recurrent neural network architecture, for big data forecasting. Finally, since the load series is

temporal data, some incremental learning methods [47] can be designed for our proposed AsySVR

framework to speed up the computation for large-scale data. In addition, parallel computing [48] can be

implemented for our new framework in big data training.
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