
An Experimental Evaluation of Imbalanced Learning and
Time-Series Validation in the Context of CI/CD Prediction

Bohan Liu∗, He Zhang∗, Lanxin Yang∗, Liming Dong∗, Haifeng Shen∗∗, Kaiwen Song∗
∗State Key Laboratory of Novel Software Technology, Software Institute, Nanjing University, Nanjing, Jiangsu, China
Email: dg1732003@smail.nju.edu.cn, hezhang@nju.edu.cn, {dg1932007; dg1832001; mf1932152}@smail.nju.edu.cn

∗∗Australian Catholic University, Sydney, New South Wales, Australia
Email: Haifeng.Shen@acu.edu.au

ABSTRACT
Background: Machine Learning (ML) has been widely used as a
powerful tool to support Software Engineering (SE). The funda-
mental assumptions of data characteristics required for specific
ML methods have to be carefully considered prior to their appli-
cations in SE. Within the context of Continuous Integration (CI)
and Continuous Deployment (CD) practices, there are two vital
characteristics of data prone to be violated in SE research. First,
the logs generated during CI/CD for training are imbalanced data,
which is contrary to the principles of common balanced classifiers;
second, these logs are also time-series data, which violates the as-
sumption of cross-validation. Objective: We aim to systematically
study the two data characteristics and further provide a compre-
hensive evaluation for predictive CI/CD with the data from real
projects. Method: We conduct an experimental study that evalu-
ates 67 CI/CD predictive models using both cross-validation and
time-series-validation. Results: Our evaluation shows that cross-
validation makes the evaluation of the models optimistic in most
cases, there are a few counter-examples as well. The performance of
the top 10 imbalancedmodels are better than the balancedmodels in
the predictions of failed builds, even for balanced data. The degree
of data imbalance has a negative impact on prediction performance.
Conclusion: In research and practice, the assumptions of the var-
ious ML methods should be seriously considered for the validity
of research. Even if it is used to compare the relative performance
of models, cross-validation may not be applicable to the problems
with time-series features. The research community need to revisit
the evaluation results reported in some existing research.

CCS CONCEPTS
• Software and its engineering→ Software verification and vali-
dation; • Computing methodologies → Machine learning algo-
rithms; Cross-validation.

KEYWORDS
continuous integration, continuous deployment, time-series-validation,
cross-validation, imbalanced learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE 2020, April 15–17, 2020, Trondheim, Norway
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7731-7/20/04. . . $15.00
https://doi.org/10.1145/3383219.3383222

ACM Reference Format:
Bohan Liu∗, He Zhang∗, Lanxin Yang∗, Liming Dong∗, Haifeng Shen∗∗,
Kaiwen Song∗. 2020. An Experimental Evaluation of Imbalanced Learn-
ing and Time-Series Validation in the Context of CI/CD Prediction. In
Evaluation and Assessment in Software Engineering (EASE 2020), April 15–
17, 2020, Trondheim, Norway. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3383219.3383222

1 INTRODUCTION
With the development of software, process data is recorded in the
software repositories in the form of logs. The mining of reposi-
tories is a trending topic and there are plenty of research using
machine learning techniques to support the prediction of software
products and processes. However, two crucial data characteristics
are often ignored. The data in SE is naturally time-series since the
product and process will change with the evolution of software.
Both software development activities, the people involved, and the
complexity of the artifacts change dynamically over time. Another
characteristic is that the prediction of defects, code smell, Continu-
ous Integration and Continuous Deployment (CI/CD) results, etc.
are all class imbalance classification problems. Therefore, the data
for prediction in SE is commonly the imbalanced time-series data,
which may not meet the assumptions of commonly used learning
algorithms and validation methods.

To the best of the authors’ knowledge, there is not a study that
systematically compare imbalanced learning models and balanced
learning models with time-series-validation as well as provide a
comprehensive comparison between cross-validation and time-
series-validation in a class imbalance classification problem in SE.
In this study, we aim to take predictive CI/CD, where none of the
problems have been addressed, as a case to empirically investigate
these two coupled problems so as to fill the gap.

CI/CD enables integration and deployment to be completed early
so that integration defects can be detected and fixed timely [17, 51].
However, a high frequency of CI/CD would prolong the software
lead time as each CI/CD process is potentially time-consuming.
There are two possible outcomes of a CI/CD pipeline: passed and
failed. A passed one does not detect any defects and can be safely
skipped, whereas a failed one is critical as the defects need to be
detected and fixed at the earliest time possible. A cost-effective
way to shorten software lead time is to skip a CI/CD process if it
is going to pass and a possible way to know this without actually
doing CI/CD is through prediction. A prediction model, which is
trained by historical CI/CD data, forecasts the outcome of the next
CI/CD right after each commit and the CI/CD process would only
be triggered if the prediction outcome was failed.

https://doi.org/10.1145/3383219.3383222
https://doi.org/10.1145/3383219.3383222
https://doi.org/10.1145/3383219.3383222

EASE 2020, April 15–17, 2020, Trondheim, Norway Bohan Liu∗ , He Zhang∗ , Lanxin Yang∗ , Liming Dong∗ , Haifeng Shen∗∗ , Kaiwen Song∗

Several studies [20, 24, 25, 41, 54, 55] used machine learning
methods to predict CI/CD outcomes. Common to these studies
is the evaluation of balanced classifiers (e.g., C4.5, Naive Bayes)
using validation methods that shuffle the data sets. However, the
amount of passed is often several times that of failed. Clearly, failed
is the minority class and as such it is more difficult to predict failed
than passed [20, 24] because common balanced classifiers are based
on the assumption that the number of all classes in the sample
set is equal and the importance is treated equally. Furthermore,
as logs of software development, the input data is naturally time
series. Atchison et al. [2] analyzed 1283 projects from TravisTorrent
repository and found that CI/CD presents strong seasonal behavior.
Consequently, it is reasonable to question the reliability of their
prediction results.

The learning of minority class from imbalanced data is an open
challenge in machine learning [29, 53]. There are various meth-
ods for solving the imbalance problem, e.g., sampling methods,
cost-sensitive methods, ensemble methods, etc. [27]. We conduct
an experimental study to evaluate 67 models including 4 balanced
models and 63 imbalanced models that consists of five types of im-
balanced learning methods discussed in the literature review [27].
The contribution of this study is three-fold: 1) We have conducted
an experimental study to compare the time-series-validation and
cross-validation under a class imbalance classification context. 2)
We systematically compare the imbalanced and balanced learn-
ing methods using time-series-validation. 3) We provide a more
comprehensive and realistic result for predictive CI/CD and reveal
the reason of the phenomenon found in existing studies that the
performance of prediction on different projects is quite different.

2 CHARACTERISTICS OF CI/CD DATA
This section presents an investigation of the characteristics of
CI/CD data and how these characteristics, i.e. class imbalance and
time series, impact prediction models.

2.1 Imbalanced time series data
We analyzed the latest TravisTorrent dataset [9], which contains
build logs of 1283 GitHub projects that use the Travis CI service.
Figure 1 presents the frequencies of ratios of failed to passed of
projects in TravisTorrent. Among the 1283 projects, 52 projects that
have no record of failed or passed were excluded. It shows that there
are few projects with a ratio exceeding 0.5 (16%). In 68% projects,
the number of failed in them is less than 30% of the number of
passed. Imbalance is a common phenomenon in TravisTorrent.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
failed / # passed

0
10
20
30
40
50
60

Fr
eq

ue
nc

ie
s

Figure 1: Frequencies of ratios of failed vs. passed among
1231 projects from TravisTorrent.

Results of the current CI/CD is related to the last one and the
time interval between them. This causal relationship was confirmed
by existing research that found variables related to the previous
CI/CD would affect the predicted results [24, 41]. In addition, new
patterns will emerge due to the dynamic changes in complexity and
development stages as software evolves. The CI/CD data is clearly
time series and the causal relationship has to be preserved when
evaluating a prediction model, which means evaluation methods,
such as shuffle split or K-fold cross-validation [18], are not appli-
cable. If the causal relationship was not preserved, future patterns
would be introduced into the training set, leading to a biased result.

2.2 Imbalance problems in prediction
The imbalance is usually two-fold: 1) the data is imbalanced; 2)
we pay more attention to the minority class in practice. This is
also true for CI/CD outcome prediction. The purpose of CI/CD is
to verify commits and locate the bugs as early as possible. The
use of predictive models is to make predictions before executing
CI/CD pipeline to reduce some unnecessary builds. The prediction
of CI/CD outcome is a binary classification problem and results
can be passed or failed. When a commit is predicted to be failed,
the developers should execute the CI/CD to validate the result and
locate the bug; when a commit is predicted to be passed, this build
can be skipped. The failed result is due to the defects in the commit.
The number of passed is commonly several times that of failed
in the CI/CD results of a project. Therefore, it is more difficult
to predict failed, which is consistent with the results of existing
research [20, 24]. On the other hand, if the failed results are not
effectively identified, the predictive model will cause the fixing of a
large number of problematic commits to be postponed. Hence, the
recall of failed is critical in the evaluation of models.

Class imbalance is a long-standing problem. Studies have shown
that some base classifiers (e.g., C4.5, Naive Bayes) perform signifi-
cantly better on balanced data than on imbalanced data [14, 30, 34].
The reason is that these classifiers treat all categories equally and
their learning is aimed at optimizing overall accuracy. When the
categories are not balanced, classifiers tend to provide a severely
imbalanced degree of the precision, with the majority class having
a precision several times than the minority class [27]. However, this
is opposite to the purpose of our predictions. Our goal is usually
to predict the minority class, for instance, the purpose of defect
prediction is to identify the fault-prone modules.

Various imbalanced learning methods were proposed to improve
the accuracy of predicting minority class from imbalanced data,
which are mainly optimized from two aspects, one is to modify the
training set by sampling, and the other is to design the classifier to
make it sensitive to the minority class [27].

2.2.1 Sampling algorithms. The use of sampling methods in im-
balanced learning is to modify an imbalanced dataset into a bal-
anced dataset. The two common mechanisms of sampling are over-
sampling and under-sampling. The former randomly duplicate in-
stances of the minority class and the latter randomly discard in-
stances of the majority class from the original dataset.

With regard to over-sampling, a simple random over-sampling
is to duplicate certain instances, which would cause these instances

An Experimental Evaluation of Imbalanced Learning and Time-Series Validation in the Context of CI/CD Prediction EASE 2020, April 15–17, 2020, Trondheim, Norway

to become tied, resulting in over-fitting [40]. To overcome this is-
sue, Chawla et al. proposed a Synthetic Minority Oversampling
TEchnique (SMOTE), which has been widely adopted at present.
The main idea of SMOTE is to generate and interpolate new mi-
nority class instances between adjacent pre-existing minority class
instances [14]. In addition to this, there are some other improved
algorithms designed to mitigate over-fitting.

As to under-sampling, a simple random under-sampling is to
randomly remove the samples of majority class until the number
of the two categories is balanced. However, the random removing
of instances may cause some vital information of majority class to
be removed at the same time. In view of this, different improved
algorithms were proposed to reduce the loss of valuable informa-
tion. For instance, EditedNearestNeighbours removes instances that
differ from two of its three nearest neighbours.

The combination of under-sampling and over-sampling were
also explored. For example, SMOTEENN combines SMOTE and
Edited Nearest Neighbours (ENN) [7].

Table 1 presents the sampling algorithms that are considered in
this study. We use Imbalanced-learn [35] which is an OSS python
toolbox to implement them.

Table 1: Sampling algorithms.

Strategies Samplers Tools

Over-sampling

Random Over Sampler (ROS)

Imbalanced-learn
SMOTE [14]
BorderlineSMOTE (BSMOTE) [23]
SVMSMOTE [28]
ADASYN [26]

Under-sampling

Random Under Sampler (RUS)

Imbalanced-learn
One Sided Selection (OSS) [33]
Neighbourhood Cleaning Rule (NCR) [34]
Near Miss (NM) [56]
Instance Hardness Threshold (IHT) [50]

Combination
SMOTETomek [7]

Imbalanced-learnSMOTEENN [8]

2.2.2 Imbalanced learning classifiers. They are the classifiers that
are robust to imbalanced data as well as balanced classifiers assume
class balance.

There are various methods, which instead of modifying the orig-
inal training set, make the classification more sensitive to minority
class through special design, so as to improve the accuracy of the
classification of minority samples. The four effective mechanisms
are cost-sensitive methods, kernel modification methods, one-class
learning methods, and ensemble methods.

Cost-sensitive methods use different cost matrices that indicate
the costs for misclassifying any particular instances [19]. Kernel
modification methods add a trainable post-processing step to map
the outputs of predictions into probabilities [42]. One-class learning
methods are designed for identifying minority instances by only
recognizing one category without distinguishing between different
categories [43]. Ensemble methods construct a set of classifiers and
then classify instances by taking a vote or weight of the predictions
of all the classifiers [16].

Table 2: Learning algorithms.

Strategies Classifiers Tools

Cost-sensitive

BayesMinimumRisk [6]

Costcla

Thresholding Optimization (TO) [48]
Cost-Sensitive Logistic Regression (CSLR) [3]
Cost-Sensitive Decision Tree (CSDT) [5]
Cost-Sensitive Random Forest (CSRF) [4]
Cost-Sensitive Bagging (CSB) [4]
Cost-Sensitive Pasting (CSP) [4]
Cost-Sensitive Random Patches (CSRP) [4]

Kernel modification SVC [42] Scikit-Learn

One-class learning One Class SVM (OCSVM) [38] Scikit-LearnLocal Outlier Factor (LOF) [13]

Ensemble

Balanced Random Forest (BRF) [15]

Imbalanced-learn
Easy Ensemble (EE) [36]
RUSBoost [46]
Balanced Bagging (BB) [37]

Balanced classifiers

Gaussian Naive Bayes (GNB)

Scikit-Learn
CART [12]
Gradient Boosting (GB) [21]
Random Forest (RF) [11]

We consider 15 imbalanced classifiers as presented in Table 2. We
use Costcla1 to implement cost-sensitive classifiers, Scikit-Learn2
to implement kernel modification and one-class learning classifiers,
Imbalanced-learn to implement ensemble methods.

In addition, four balanced classifiers that performed well in stud-
ies [41, 54, 55] are considered, including RF, CART, GNB, and GB.
We used Scikit-Learn to implement them. The CART implemented
by Scikit-Learn is an optimised version and it is very similar to C4.5.
It should be noted that RF and GB are also ensemble methods but
they are not imbalanced classifiers without weighting.

2.3 Time series in evaluation
The fundamental assumptions of classical cross-validation tech-
niques such as K-fold and shuffle split are that samples should be
independent and identically distributed [1]. However, time series
data is characterized by autocorrelation between samples so it does
not meet the assumption of using cross-validation.

Figure 2 takes a simple three-fold cross-validation as an example.
It compares the results of cross-validation with the time-series-
validation. The circle, square, pentagon, and star represent different
patterns of samples, respectively. In this time series data, new pat-
terns appear over time. The basic K-fold cross-validation divides
the data into K equal folds without disturbing the chronological
order, then it iteratively takes one fold as test data each time, and
remaining folds as the training data for evaluating the model, and
finally average the results of K iterations. In this example, both the
recall and precision evaluated using cross-validation are 0.92. In
reality, it is impossible to train the model with the data from future
to predict what happened in history since the data is generated
in a time series order. Time-series-validation simulates the actual
validation. Using the test set with the same sample size as in the
cross-validation, the model can be iteratively evaluated twice. As
a result, the mean values of recall and precision are smaller than
the results cross-validation. As to the shuffle split, it completely
disrupts the chronological order and we will not repeat it here.
1https://github.com/albahnsen/CostSensitiveClassification
2https://scikit-learn.org/

EASE 2020, April 15–17, 2020, Trondheim, Norway Bohan Liu∗ , He Zhang∗ , Lanxin Yang∗ , Liming Dong∗ , Haifeng Shen∗∗ , Kaiwen Song∗

Recall = 0.75
Precision = 0.75

Recall = 1
Precision = 1

Recall = 1
Precision = 1

Recall = 0.92
Precision = 0.92

Recall = 0.75
Precision = 0.75

Recall = 0.75
Precision = 0.75

Recall = 0.75
Precision = 0.75

Cross-validation

Time-series-validation (Actual)

Legend

PatternsTest SetTraining Set

Time series data

Figure 2: The comparison of prediction performance be-
tween cross-validation and actual results.

3 EXPERIMENTAL STUDY
Based on the characteristics of CI/CD data, we explained the prob-
lems in training and evaluating predictive models. To study the two
problems, i.e. time series and class imbalance, we conduct an experi-
mental study to compare time-series-validation and cross-validation
as well as compare imbalance models and balanced models. This
study formed a quasi-experiment because we select projects based
on a particular criterion to ensure the sample size for model train-
ing. We select all the projects that meet the criterion from the two
most well-known open-source platform, i.e. Github (TravisTorrent
records CI/CD logs of all the projects enabled Travis CI on Github)
and Gitlab. From this point, our experimental samples are represen-
tative.

3.1 Research questions and hypotheses
We define the following research questions and hypotheses:

RQ1: Does cross-validation lead to an overly biased evaluation?
RQ1 aims to test our hypothesis that cross-validationwould produce
biased results since it needs to be based on the assumption that the
emergence of new patterns is time-independent. As a more realistic
way of validation, time-series-validation cannot be replaced by
cross-validation in the evaluation of CI/CD prediction models. We
state the null hypothesis as follows:

H0,1: There is no difference between the results of cross-validation
and time-series-validation.

RQ2: Can imbalanced learning achieve better performance than
balanced learning? In theory, it is more appropriate to use imbal-
anced learning methods for imbalanced data. RQ2 aims to com-
prehensively evaluate and compare the performance of various
balanced and imbalanced models on predicting CI/CD result. In
more detail, RQ2 contains two sub-questions based on the two levels
of imbalanced learning. For data level, 1) Can sampling techniques
improve the performance of balanced classifiers for imbalanced
data? For classifier level, 2) Whether imbalanced classifiers perform
better than the balanced classifiers for imbalanced data? The null
hypotheses arising from the sub-questions are:

H0,2a : No sampling algorithm can improve the performance.

H0,2b : No imbalanced classifiers can achieve better performance
than the balanced classifiers.

RQ3: Does the degree of data imbalance affect the performance
of models? Existing studies have reported that the performance
of CI/CD prediction on different projects varies widely. The goal
of RQ3 is to investigate whether the degree of imbalance has an
impact onmodel performance, which can be a reference for whether
predictions can be applied. We state the null hypothesis as follows:

H0,3: There is no correlation between the prediction perfor-
mance and the degree of data imbalance.

3.2 Study design
Driven by the RQs, we conducted a quasi-experiment which is
designed as follows.

Data sets.We selected 18 projects from TravisTorrent and Gitlab
based on a particular criterion to ensure the sample size (number
of CI/CD records) for training. Xia and Li [55] excluded projects
with less than 1000 builds for cross-validation. To avoid bias caused
by insufficient training data since an n-fold time-series-validation
uses only 1/(n + 1) of the data for training in the first iteration. We
excluded projects with less than 4000 builds so that each included
project can use at least three-fold time-series-validation with a
training set consists of more than 1000 builds. TravisTorrent has 14
projects that meet the criteria. As a supplement, and to increase the
universality of the results, we also selected projects from Gitlab. By
April 2019, four projects in Gitlab met the criteria. Figure 3 depicts
the ratios of failed to passed for the projects we selected from Travis-
Torrent and Gitlab respectively. It shows that the number of passed
is about three times the failed on average and only two projects
from TravisTorrent have a higher proportion of failed. Therefore,
most of them are imbalanced data (among the imbalanced data sets
in the study [14], the largest proportion is 54%), which is consistent
with our findings in Sec. 2.1. We consider data with a proportion
less than 0.6 as imbalanced and the two data balanced projects can
serve as a reference.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
 # failed / # passed

Travis

Gitlab

Figure 3: Ratios of failed to passed of the selected projects.

Treatments. We consider 15 kinds of imbalanced learning al-
gorithms and four balanced classifiers presented in Table 1. As to
the four balanced classifiers, we use 12 sampling algorithms (ref.
Table 2) combined with each of them, for example, SMOTE+CART
denotes the model consists of SMOTE and CART. For compari-
son, we add a group that does not adopt any sampling algorithm.
Therefore, there are a total of 67 models for evaluation, including 4
balanced models, and 63 (15 imbalanced classifiers + 12 × 4 combi-
nations of sampler+balanced classifier) imbalanced models. We use
both time-series-validation and cross-validation to evaluate models.
For RQ1, the evaluation using cross-validation is the control group,
and the treatment group uses time-series-validation. For RQ2 and
RQ3, the control group uses balanced models and the treatment
group uses imbalanced models.

An Experimental Evaluation of Imbalanced Learning and Time-Series Validation in the Context of CI/CD Prediction EASE 2020, April 15–17, 2020, Trondheim, Norway

3.3 Conduct of the quasi-experiment

Phase 4: Analysis of experimental results

Cross validation

Time-series validation

Phase 3: Training & Test Models

Confusion Matrices
of Different models
[Sampler, Classifier] Test

data

Balanced
data

Training
data

Phase 1: Data Acquisition

Version
Control

Repositories

Phase 2: Data Processing

Data Collection

Determination
of features Build

logs
Commit

logs

Determine Contain

Data
extraction Data cleaning Standardization

Data

Data

Input: determined features
Output: failed or passed

Time Series
/ Cross

Sampler

Balanced
Classifier

logs

Confusion Matrices of
time-series-validation

Evaluates

Evaluation results
Train Train

Imbalanced
Classifier

F2 of
imbalanced

models

F2 of
balanced
models

F2 of
imbalanced

models

F2 of
balanced
models

RQ1: t-test

RQ2: t-test
RQ3 Linear

regression
across

projects

Confusion Matrices of
cross-validation

Figure 4: Research framework.

Figure 4 illustrates the research framework of the experimental
study, which consists of four phases.

3.3.1 Data acquisition. It follows two steps to collect the raw data.
As a supplement, in addition to TravisTorrent, we also considered
Gitlab3. GitLab is a web-based application for the entire DevOps
lifecycle, from project planning and source code management to
CI/CD and monitoring. It provides a built-in tool, GitLab CI/CD,
which allows users to apply all the continuous methods to their
software with no third-party application or integration needed.

Determination of independent variables. We used a total
of 24 input variables which are presented and explained in detail
in Table 3. Twenty-two of which are borrowed from related stud-
ies [24, 41]. We excluded the variables that require the information
of subsystem used in the study [24] as it is not available in the
selected projects. Besides, we excluded name of collision developers
since the same developer may use multiple user names, which may
introduce a lot of noisy data. To balance the effectiveness of using
prediction, we did not consider AST level code change modification
data used in the study [25], instead, the additions_last_build and
deletions_last_build that indicate the code changes were used. We
conducted pilot experiments and confirmed that eliminating any of
the 24 features can make the prediction worse.

3https://gitlab.com/

Data collection.Wedownloaded the latest TravisTorrent dataset4.
As to Gitlab, we used the API5 to collect the build logs. The commit
logs are also required to generate some variables. We cloned the
code and used git log command to obtain the commit logs.

Table 3: Input variables.

Variables Explanations Ref.

total_files_pushed # of files edited in this build. [24, 41]
avg_file_committed Avg. # of files edited in this build. [41]
commit_msg_length Avg. length of the commit messages of this build. [41]
time_elapse The days since the last build sequentially. [41]
time_last_failed_build The days since the last failed build. [24]
additions_last_build The lines of code added since the last build. New
deletions_last_build The lines of code deleted since last build. New
commit_last_build # of commits since the last build. [41]
last_build_result The result of last build (passed or failed). [24, 41]
no_src_edited The XOR between booleans of this and last builds that in-

dicate if there are source code files edited.
[41]

no_config_edited The XOR between booleans of this and last builds that in-
dicate if there are configuration files edited.

[41]

ame_committer A boolean to indicate whether the committer is the same
as the last build.

[41]

committer_history The historical fail rate of the pushes by the current com-
mitter on this project before this build.

[41]

committer_recent The result of the last build that triggered by the current
committer on this project.

[41]

project_history The fail rate of all the previous builds in the project. [41]
project_recent Similar to project_history but using only last five builds. [41]
gaussian_threat Model the build failure of the project as gaussian distribu-

tion to measure the threat to current build.
[41]

committer_exp The number of commits the committer made in the project
before this build.

[41]

day_time Time of Day (0-24). [24]
weekday Day of Week (Mon, Tue, Wed, Thu, Fri, Sat, Sun). [24]
month_day Day in Month (1-31). [24]
developer_count The number of developers who integrated changes to the

main branch.
[24]

collision_files The number of files modified multiple times in parallel
since the last certified build.

[24]

collision_developers The number of developers who modified files in parallel. [24]

3.3.2 Data processing. It follows three steps to obtain the required
data for model input from the collected raw data.

Data extraction. We developed a python program to extract
and generate required data of input variables from logs we collected
in the previous phase.

Data cleaning. The output variable for training the model is
the build result. There are four types of results in TravisTorrent
build logs, including passed, failed, errored, and canceled, and Gitlab
CI/CD contains passed, failed, skipped, and canceled instead. We
removed logs other than passed and failed since others mean that
the CI/CD was terminated before the scripts were executed, in
other words, whether it can pass the test is unknown. There are
passed with warnings in Gitlab which are caused by the failures
of scripts that are allowed to fail. Consistent with [54], we treated
them as passed since warnings are usually not processed further by
developers.

Standardization. The values of some numerical variables are
fairly large and some even differ by orders of magnitude, for exam-
ple, there may be more than a hundredfold gap between the total
number of commits made by two committers. Therefore, we stan-
dardize all the variables to make the mean value of each variable 0
and the standard deviation equals to 1.

4https://travistorrent.testroots.org/dumps/travistorrent_8_2_2017.sql.gz
5https://docs.gitlab.com.cn/ee/api/pipelines.html

EASE 2020, April 15–17, 2020, Trondheim, Norway Bohan Liu∗ , He Zhang∗ , Lanxin Yang∗ , Liming Dong∗ , Haifeng Shen∗∗ , Kaiwen Song∗

3.3.3 Training & Test. It mainly follows three steps.
Split of Data set. Cross-validation and time-series-validation

are used respectively for comparison. It is important to note that
the prepared data must be split into the training set and the test
set before sampling, otherwise, the test set will be changed by
sampling [45]. Time-series-validation simulates the real situation
shown in Figure 2, which gradually increases the size of the training
set to iteratively evaluate the model as we did in the application
scenario. In the first iteration, the first set is the training set and the
second set is the test set. In the second iteration, the training set
contains both the first and second sets, and the third set is the test set.
The rest of the iterations follow the same way. The test set is always
the most recent generated data set, which is used to evaluate the
model being trained by all the previous data sets. For each iteration,
the sample size of the training set is approximately i ∗ 1000 samples,
where i denotes the ith iteration, and the sample size of the test set
is approximately 1000 samples. We did not deliberately make the
two validation processes have the same training or testing set as
Tantithamthavorn et al. did [52] since whether or not the test set
will introduce future data is the major difference between the two
methods. In addition, this is more consistent with the validation
process in existing studies.

Training. Table 2 presents four categories of imbalanced learn-
ing algorithms, i.e. cost-sensitive, kernel modification, one-class
learning and ensemble. Besides, four balanced classifiers are con-
sidered. These learning algorithms are applied to each training
set split in the previous step. For the balanced classifiers, various
sampling algorithms presented in Table 1 can be combined with
them to form an imbalanced model. Therefore, different sampling
algorithms are adopted for the training set, and different training
sets will be generated.

Test.The test set is used to test themodels trained in the previous
step. As a result, the confusion matrices would be generated to
indicate the performance of these models.

Evaluation metrics. We take failed as positive and passed as
negative due to the interest of failed in practice. Therefore, Pre-
cision (P) in this study is the percentage of correct predictions of
all the builds that were predicted as failed and Recall (R) is the
percentage of correctly predicted failed to all the true failed. P and
R are sometimes a pair of contradictory measures. Fβ-measure (Fβ)
which is the harmonic mean of P andR is commonly used to provide
a comprehensive measurement. Fβ is measured as follows:

Fβ =
(1 + β2) · P · R

β2 · P + R
(1)

where β is a positive parameter to weight the relative importance
of the precision over the recall. A greater β value indicates a higher
importance of recall over precision. In imbalanced learning, the
evaluation of classifiers should focus primarily on the recall of the
minority class, and it is a common practice to take β as 2 [32, 39].
In the CI/CD prediction problem, specifically, the cost of missing
failed is greater than the cost of missing passed, since the former
means the slip of the defects whilst the latter simply means an extra
build. Therefore, we use F2 to measure the overall performance.

3.3.4 Analysis of experimental results. We evaluate the 67 models
using cross-validation and time-series-validation respectively for

each project. To answer RQ1, we compare the mean results of cross-
validation with those of time-series-validation from both model
and project perspectives. To answer RQ2, we only use the results
of time-series-validation. We applied different splits to each project
respectively so that the size of all test sets can be roughly the same.
We used one-tailed t-test to test the hypotheses H0,1,H0,2a ,H0,2b
and used linear-regression to test the hypothesis H0,3. To compare
the two validation methods, we use Relative deviation (Rd) and
Absolute deviation (Ad) in terms ofmodels and projects respectively.
The Rd and Ad are defined as follows:

Rd =

∑n
i=1(ci − ti)/ti

n
; Ad =

n∑
i=1

(ci − ti)/n (2)

We define Rdm andAdm as the Rd andAd measuring across models,
where ci and ti denote the average F2 of model i on all the projects
using cross-validation and time-series-validation respectively. To
measure the deviation across projects, we define Rdp and Adp ,
where ci and ti denote the average F2 of all the models on project i .

4 RESULTS AND ANALYSIS
This section details and discusses the evaluation results in terms of
the RQs. We focus primarily on the predictive performance of failed
since the overall performance or the performance for majority class
would cause the illusion that the model performs well. For example,
failed accounts for less than 5% in project O, hence, the overall
accuracy will reach 0.95 even if all categories are predicted to be
passed. Due to the space limitation, we share the project list and
complete evaluation results at figshare 6.

4.1 Validation methods (RQ1)
Figure 5 depicts the gap of the evaluation results between the two
validation methods for each model. The evaluation results are the
mean values of F2 for the 18 projects. Of the 67 models, only for four
(6%) models, i.e. OCSVM, NM+GNB, CSLR, and LOF, time-series-
validation produced larger F2. For the remaining 63 models, cross-
validation relatively increased F2 by 14% on average. Specifically,
theRdms ranged from 3% to 40%, of which 18models have anRdm of
less than 10%. Both the highRdms andAdms mainly occur inmodels
with poor performance. The Rdms in the four balanced models
are about 10%, which is lower than the mean of the imbalanced
models. We performed a one-tailed t-test, and the results show
that p < 0.05, which means F2 produced by cross-validation is
statistically significantly higher than that of time-series-validation
(rejecting H0,1).

Figure 6 depicts the mean absolute and relative deviations across
projects, i.e. Adps and Rdps. For different projects, the degree of
Rdps are obviously different whilst the Adps are around 4.5%. The
reason for the smaller deviation compared with Figure 5 is that
there are cases where the cross-validation produced smaller results
than time-series-validation. For project H, more than half of mod-
els achieved better performance using time-series-validation. For
other projects, there are also a few models that get better results
using time-series-validation. Each model has situations where it
performs better with time-series-validation on some projects, but
it has nothing to do with whether it comes from TravisTorrent or
6https://doi.org/10.6084/m9.figshare.11317169.v1

An Experimental Evaluation of Imbalanced Learning and Time-Series Validation in the Context of CI/CD Prediction EASE 2020, April 15–17, 2020, Trondheim, Norway

Gitlab. However, this is more likely to happen in models such as
OCSVM mentioned above. For projects F and Q, there were high
Rdp due to the fact that several models got a very low F2 when
using time-series-validation, whilst cross-validation did not.

Furthermore, the difference between the results of the two vali-
dation strategies are inconsistent across models, which means that
cross-validation cannot even be used to compare the performance
of the two models relatively.

For most models, on most CI/CD data, using cross-validation
will get more optimistic results. Different from the results found
in [31], we found that using future data in training set (cross-
validation) also had the potential to make the results worse. In
summary, H0,1 is rejected and recommend time-series-validation
for time-series data.

4.2 Balanced or imbalanced learning (RQ2)
In Figure 5, we highlight balanced models, i.e. GNB, GB, RF, and
CART, with red dashed line. There are twomain types of imbalanced
models, one is the combinations of sampler and balanced classifier,
and the other is to directly use imbalanced classifiers. Overall, the
performance of balancedmodels is not even ranked in the top 20% of
all models, and the performance of the three models except GNB is
at a relatively low level. Among the models we evaluated, the worst
8 models are imbalanced models. Therefore, not all imbalanced
models have better prediction performance than balanced models
on imbalanced data. However, the proper imbalanced model can
obviously achieve better performance.

As to the combinations with samplers, although the F2 of RF is
lower than 0.3, its performance can be improved after combining
any sampling algorithms. In all models, eight of the top ten models
are the combinations of RF and sampling algorithms, and any sam-
pling algorithm we considered can improve RF. For GB and CART,
performance can be improved by combining the appropriate sam-
pling algorithm, otherwise, the performance will be deteriorated.
In addition, the combination of SMOTE and RF or GNB achieve a
better performance on average, but when the SMOTE is combined
with GB or CART, it results in worse performance. We performed
a one-tailed t-test to compare the SMOTEENN+RF with the four
balanced classifiers for projects, the results show that p < 0.05 for
each comparison (rejecting H0,2a).

For models with imbalanced classifiers, the performance presents
polarization as both the best and worst two models are from this
type. Among the 15 imbalanced classifiers, nine are superior to
all the balanced classifiers, which cover three different learning
methods, including all the cost-sensitive algorithms (TO, CSP, CSRP,
CSDT, CSB, BMR), a one-class learning algorithms (OCSVM), and
an ensemble methods (BB, BRF). We performed a one-tailed t-test to
compare the BRF with the four balanced classifiers for projects, the
results show that p < 0.05 for each comparison (rejecting H0,2b).

Considering the different proportions of failed/passed in differ-
ent projects, and in order to further compare the performance of
balanced and imbalanced learning in different projects, we present
the performance of the four balanced models and mean and median
F2 of all imbalanced models in Figure 7. The AVG-TOP10 is better in
all the projects except A and F. Even in A and F, the differences from
the best-performing model, GNB, were only 0.01. On the other hand,

0.2 0.3 0.4 0.5
F2-measure

0.2 0.3 0.4 0.5
F2-measure

LOF
ROS+CART

ROS+GB
SMOTE+GB

BSMOTE+GB
SMOTETomek+GB

BSMOTE+CART
ADASYN+GB

RF
GB

RUSBoost
SMOTE+CART

SMOTETomek+CART
ADASYN+CART

SVC
CART

NM+GNB
OSS+CART

OSS+GB
CSLR

SVMSMOTE+CART
SVMSMOTE+GB

NM+CART
RUS+CART

NCR+GB
OSS+RF

IHT+CART
NCR+CART

CSRF
IHT+GB

NM+GB
RUS+GNB

RUS+GB
EE

SMOTEENN+CART
BSMOTE+GNB

GNB
BMR

OCSVM
OSS+GNB

NCR+RF
ROS+GNB

ADASYN+GNB
SMOTE+GNB

SMOTETomek+GNB
SVMSMOTE+GNB

IHT+GNB
SMOTEENN+GB

CSB
BB

NCR+GNB
ROS+RF

CSDT
CSP

TO
IHT+RF

NM+RF
ADASYN+RF

CSRP
SMOTE+RF

SMOTETomek+RF
BSMOTE+RF

SMOTEENN+GNB
RUS+RF

SVMSMOTE+RF
SMOTEENN+RF

BRF

Cross-validation
Time series validation

Balanced model
Imbalanced model

Rdm
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Figure 5: Mean value of F2 of failed for all models vali-
dated using cross-validation and time-series-validation re-
spectively (The symbol "+" denotes a combination, e.g.,
NM+RF denotes the combination of Near Miss and Random
Forest); the box-plot presents the distribution of relative de-
viations of using cross-validation across models (Rdm).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Rdp

Adp

Figure 6: Deviations of all models between cross-validation
and time-series-validation across projects.

GNB is not stable as it ranks last in C, G, J and Q. MEDIAN-ALL
is better than AVG-ALL as well as AVG-ALL is better than CART,
GB, and RF in most projects. In two projects with balanced data,
C and E, AVG-TOP10 is still significantly better than the balanced
models. However, GB, RF, and CART are better than MEDIAN-ALL

EASE 2020, April 15–17, 2020, Trondheim, Norway Bohan Liu∗ , He Zhang∗ , Lanxin Yang∗ , Liming Dong∗ , Haifeng Shen∗∗ , Kaiwen Song∗

and AVG-ALL in C; RF and GNB are better than MEDIAN-ALL
and AVG-ALL in E. It means that most imbalanced models have
an advantage for imbalanced data, and even for balanced data, the
best imbalanced models still perform better. It is due to the explicit
need to focus on minority classes in the imbalance problem.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

F
2

-M
e

a
s
u

re

Projects

CART GNB GB RF AVG-ALL AVG-TOP10 MEDIAN-ALL

A B C D E F G H I J L K M N O P Q R

Figure 7: F2 of models for each project. AVG-ALL and
MEDIAN-ALL denote the mean and median value of all the
imbalanced models respectively; AVG-TOP10 denotes the
mean value of the ten best performing imbalanced models.

For imbalanced data, imbalanced learning is not a panacea, but
an appropriate imbalanced model can obviously achieve better
performance than the balanced model. Whether it is effective
does not lie in the type of imbalance learning methods, but in the
specific algorithm. Even with balanced data, imbalanced models
perform better when we focus on a specific class (i.e. failed in
CI/CD). In summary, H0,2a and H0,2b are rejected.

4.3 Impact of imbalance ratio (RQ3)
Figure 7 shows the AVG-TOP10 is better in C and E. In order to
further explore whether the degree of imbalance has an impact on
model performance, we performed linear regressions between F2
of each model and imbalance ratio (failed/passed) for each project.
As shown in Figure 8 (a), an R2 of 0.64 indicates that the lower the
degree of imbalance, the better the prediction performance for AVG-
TOP10. Figure 8 (b) depicts the distribution of R2 for each model. It
shows the correlation is significant for most models with a mean
R2 of 0.49 (rejecting H0,3). For 12 models, we cannot reject H0,3
(p>=0.05), one of which is LOF, and the rest are the combinations
with GNB. This may be due to the low sensitivity of GNB to data
characteristics. NM is the only sampling algorithm that makes GNB
sensitive to the degree of imbalance, but it is an algorithm that
makes GNB worse as shown in Figure 5.

The degree of data imbalance has a significant negative impact
on prediction performance for most models. In summary, for
55 models, H0,3 is rejected; and we cannot reject H0,3 for 12
models. When the data is excessively imbalanced, that is, when
the proportion of failed is extremely small, no imbalance model
is a silver bullet.

0.0 0.4 0.8 1.2
Failed/Passed

0.0
0.2
0.4
0.6
0.8
1.0

F 2
 fo

r e
ac

h
pr

oj
ec

t R2 = 0.639 (p < 0.05)

(a) AVG-TOP10

R2 of all models0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

R
2

(b) Distribution of all models

Figure 8: Linear regression fitness (R2) between F2 and
failed/passed for each project.

4.4 Implications and limitations
Our findings are not only limited to the prediction of CI/CD, but
also has enlightenment and reference value for similar problems
involving machine learning in SE research. We should be more
cautious about the assumptions of the methods used.

For the studies that apply the classical cross-validation to eval-
uate predictive models training with time series data, we should
revisit their results. Our study presents a more realistic evaluation
of the CI/CD predictions.

In similar prediction problems, e.g., prediction of code smells, it
is necessary to consider the imbalanced learning for better perfor-
mance. When evaluating the performance of the model on different
projects, the degree of class imbalance in the project should be
taken into account. The appropriate Fβ is recommended to be con-
sidered according to the interest of specific category in the specific
scene, rather than blindly taking β as 1.

The top ten models for the projects we evaluated were different.
Designing a scene-driven model selection algorithm may be more
effective than improving a single model. It is also critical to investi-
gate how much more effective it is to use predictive models than
the CI/CD without prediction.

One threat to construct validity is that we only used F2 to mea-
sure model performance. Although F-measure is a comprehensive
metric that was widely used in class imbalance problems, it is worth
studying whether other metrics would produce different results.

Randomization was not possible when we selected projects and
algorithms. To mitigate this threat to internal validity, we select
a considerable number of algorithms, which cover main types of
sampling and imbalanced learning techniques.

We did not discuss the cross-project prediction although there
are studies on it in related work. Cross-project prediction is beyond
the scope of our study since it is based on different assumptions
that the patterns of any project can be obtained from other projects.
There are more similar problems in SE that is urgent to explore
from an empirical perspective. It is worth reviewing the rationality
of the application of machine learning in SE.

5 RELATEDWORK
5.1 Imbalanced learning and time-series
Before 2012, many studies were not aware of the data imbalance in
defect prediction [22]. Since then this problem was addressed by
several studies using different methods such as sampling [10, 47]
and weighting [44, 49].

An Experimental Evaluation of Imbalanced Learning and Time-Series Validation in the Context of CI/CD Prediction EASE 2020, April 15–17, 2020, Trondheim, Norway

Table 4: The summary of the performance of prediction in existing research.

Study Data sets Algorithms Validation Results∗

[24] IBM Toronto Labs C4.5 Shuffle split R = 0.69, R
′
= 0.95

[54] IBM JazzTM Social network, Naive Bayes Leave-one-out R ∈ [0.55, 0.75], P ∈ [0.50, 0.76]
[20] IBM JazzTM Hoeffding Tree K-fold cross-validation R = 0.65, A = 0.72
[25] Ant, Maven, Gradle Random forest K-fold cross-validation R = 0.82, P = 0.85, F1 = 0.83, R

′
= 0.93, P

′
= 0.92, F

′

1 = 0.92
[41] 532 OSS projects available on

TravisTorrent
Cascaded classifiers, C4.5, Naive Bayes Shuffle split R = 0.69, A = 0.74

[55] 126 OSS projects available on
TravisTorrent

CART, Gradient boosting, Logistic regression, Multilayer
perception, Multinomial naive bayes, Nearest centroid,
Nearest neighbours, Random forest, Ridge regression

K-fold cross-validation;
On-line prediction

Cross-validation: 44 projects achieve F1 > 0.6, 21 of which over 0.7;
On-line: More than 50% projects achieve F1 < 0.3.

∗ R , P , and F1 denote the Recall, Precision, and F1-measure for failed respectively; R
′
, P

′
, and F

′

1 denote the metrics for passed; A denotes the overall accuracy.

The work of Seiffert et al. [47] is most similar to the research in
this paper. They conducted an empirical study to evaluate the effects
of imbalance and noise on predicting fault-prone software modules.
Imbalanced methods other than sampling were not considered in
their work and the 10-fold cross-validation was used. They also
investigated the impacts of degree of imbalance, but only balanced
classifiers were evaluated. Their study indicated that the degree of
imbalance only has significant impact on RBF network, which is
partially consistent with the conclusions of our work. This may be
because they evaluated the performance using AUC since the ROC
curve itself is not sensitive to the degree of imbalance.

Time-series-validation was rarely discussed in SE. Tantithamtha-
vorn et al. [52] compared different validation methods, but time-
series was not considered. Jimenez et al. [31] indicated that intro-
ducing future labels in the training set can lead to optimistic results
when predicting software vulnerabilities. It reveals the potential
problems with cross-validation, but they did not compare validation
methods.

5.2 Predictive CI/CD
Table 4 summarizes existing research that applied machine learn-
ing techniques to predict the build outcomes, including the data
sets used for validation, the evaluated algorithms, and the main
validation results. Since a variety of algorithms were evaluated in
[41, 55], we only present the best performance.

The concept of predicting build outcome through mining reposi-
tory was first proposed by Hassan and Zhang [24]. They evaluated
the performance of decision trees built using different factors for
predicting build outcome. The study showed that using a combina-
tion of all kinds of factors performed better, but the prediction of
failed was not as accurate as passed.

Wolf et al. [54] constructed a Bayesian classifier using commu-
nication network measures to predict whether integration will fail.
However, the model did not achieve satisfactory performance.

Finlay et al. [20] compared Hoeffding Tree classification method
with C4.5 and the results showed the former performed better. How-
ever, they indicated that it was difficult to predict failed accurately.

Hassan and Wang [25] evaluated a model using Random forest
algorithm with the metrics available on TravisTorrent as input.
Although the model performed well on predicting failed, only three
large projects, Ant, Maven, and Gradle were used for evaluation.

Using similar metrics available on TravisTorrent, Ni and Li [41]
evaluated the performance of cross-project prediction. They com-
pared three algorithms including Cascaded Adaboost, C4.5 and

NaiveBayes. Cascaded Adaboost performed better on average, but
Naive Bayes was not far behind.

Xia and Li [55] compared nine classifiers using 126 OSS projects
from TravisTorrent. They evaluated two scenarios - cross-validation
and on-line prediction. All classifiers performed far worse in on-line
prediction than in cross-validation, but they did not touch on the
root cause of this phenomenon.

It seems that existing research has provided good predictive per-
formance on average using just some common algorithms. However,
the performance of the models varies widely on different projects
and the cause was not found. In addition, the preference for failed
in CI/CD was not adequately considered in terms of evaluation
metrics and their training sets contain future data, which may lead
to optimistic results.

6 CONCLUSIONS
In the application of machine learning, SE researchers should raise
their concerns on the assumptions of various methods, or the re-
sults may be biased. Our empirical study confirms that the cross-
validation would result in an biased result for time series data; the
imbalanced learning should be considered for imbalance problems
since it would provide better performance than using balanced
models. Although these are not novel problems, there are plenty
of studies that are not rigorous enough. This paper takes the study
of CI/CD prediction as an example to remind the research com-
munity to take care of the fundamental assumptions in machine
learning. In particular, we should revisit the studies that applied
cross-validation on time series data. This study systematically com-
pared time-series-validation and cross-validation in the imbalance
classification problem, which fills a gap in the relevant research.

Even with the consideration of imbalanced learning, existing
models still have significant limitations. We found no model can
achieve an F2 of 0.6 on average. However, on some data balanced
projects, multiple imbalanced models have achieved F2 values in
excess of 0.7. Even for imbalancedmodels, the degree of data balance
largely determines the upper limit of performance. To some extent,
it explains the phenomenon that the model performance varies
widely between different projects in the existing research, and also
provides a reference for whether CI/CD prediction can be applied
in a specific project.

ACKNOWLEDGMENT
This work is supported by the National Natural Science Foundation
of China (Grant No.61572251).

EASE 2020, April 15–17, 2020, Trondheim, Norway Bohan Liu∗ , He Zhang∗ , Lanxin Yang∗ , Liming Dong∗ , Haifeng Shen∗∗ , Kaiwen Song∗

REFERENCES
[1] Sylvain Arlot and Alain Celisse. 2010. A survey of cross-validation procedures

for model selection. Stat. Surv. 4, 2010 (2010), 40–79.
[2] Abigail Atchison, Christina Berardi, Natalie Best, Elizabeth Stevens, and Erik

Linstead. 2017. A time series analysis of TravisTorrent builds: to everything
there is a season. In Proc. of the 14th Int. Conf. on Mining Softw. Repos. (MSR’17).
463–466.

[3] Alejandro Correa Bahnsen, Djamila Aouada, and Björn E. Ottersten. 2014.
Example-Dependent Cost-Sensitive Logistic Regression for Credit Scoring. In
2014 13th Int. Conf. on Mach. Learn. and Appl. (ICMLA’14). 263–269.

[4] Alejandro Correa Bahnsen, Djamila Aouada, and Björn E. Ottersten. 2015. En-
semble of Example-Dependent Cost-Sensitive Decision Trees. CoRR (2015).

[5] Alejandro Correa Bahnsen, Djamila Aouada, and Björn E. Ottersten. 2015.
Example-dependent cost-sensitive decision trees. Expert Syst. With Appl. 42,
19 (2015), 6609–6619.

[6] Alejandro Correa Bahnsen, Aleksandar Stojanovic, Djamila Aouada, and Björn E.
Ottersten. 2014. Improving Credit Card Fraud Detection with Calibrated Proba-
bilities. In Proc. 2014 SIAM Inter. Conf. on Data Mining (SDM’14). 677–685.

[7] Gustavo E. A. P. A. Batista, Ana L. C. Bazzan, and Maria Carolina Monard. 2003.
Balancing Training Data for Automated Annotation of Keywords: a Case Study.
In II Brazilian Workshop on Bioinformatics, December 3-5, 2003, Macaé, RJ, Brazil
(WOB’03). 10–18.

[8] Gustavo E. A. P. A. Batista, Ronaldo C. Prati, and Maria Carolina Monard. 2004. A
study of the behavior of several methods for balancing machine learning training
data. Sigkdd Explorations 6, 1 (2004), 20–29.

[9] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: syn-
thesizing Travis CI and GitHub for full-stack research on continuous integration.
In Proc. 14th Int. Conf. on Min. Softw. Repos. (MSR’17). 447–450.

[10] Kwabena Ebo Bennin, Jacky Keung, Passakorn Phannachitta, Akito Monden, and
Solomon Mensah. 2018. MAHAKIL: diversity based oversampling approach to
alleviate the class imbalance issue in software defect prediction. In Proc. 40th Int.
Conf. on Softw. Eng. (ICSE’18). 699.

[11] Leo Breiman. 2001. Random Forests. Mach. Learn. archive 45, 1 (2001), 5–32.
[12] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification

and Regression Trees. Wadsworth.
[13] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.

LOF: identifying density-based local outliers. In Proc. 2000 ACM SIGMOD Int.
Conf. on Manage. of Data, Vol. 29. 93–104.

[14] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. J. Artfi. Intell. Res.
16, 1 (2002), 321–357.

[15] Chao Chen. 2004. Using Random Forest to Learn Imbalanced Data. (2004).
[16] Thomas G. Dietterich. 2000. Ensemble Methods in Machine Learning. Multiple

Classifier Syst. (2000), 1–15.
[17] Paul M. Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous Integration:

Improving Software Quality and Reducing Risk.
[18] Bradley Efron. 1983. Estimating the Error Rate of a Prediction Rule: Improvement

on Cross-Validation. J. American Statistical Association 78 (06 1983), 316–331.
[19] Charles Elkan. 2001. The foundations of the cost-sensitive learning. In Proc. 17th

Int. joint Conf. on Artfi. Intell. (IJCAI’01). 973–978.
[20] Jacqui Finlay, Russel Pears, and Andy M. Connor. 2014. Data stream mining

for predicting software build outcomes using source code metrics. Inf. & Softw.
Technol. 56, 2 (2014), 183–198.

[21] Jerome H. Friedman. 2001. Greedy function approximation: A gradient boosting
machine. Annals of Stat. 29, 5 (2001), 1189–1232.

[22] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2012.
A Systematic Literature Review on Fault Prediction Performance in Software
Engineering. IEEE Trans. Softw. Eng. 38, 6 (2012), 1276–1304.

[23] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. 2005. Borderline-SMOTE: a new
over-sampling method in imbalanced data sets learning. In Int. Conf. on Intell.
Comput. (ICIC’05). 878–887.

[24] Ahmed E. Hassan and Ken Zhang. 2006. Using Decision Trees to Predict the
Certification Result of a Build. In 21st IEEE/ACM Int. Conf. on Autom. Softw. Eng.
(ASE’06). 189–198.

[25] Foyzul Hassan and Xiaoyin Wang. 2017. Change-aware build prediction model
for stall avoidance in continuous integration. In Proc. 11th ACM/IEEE Int. Sysmp.
on Empirical Softw. Eng. and Meas. (ESEM’17). 157–162.

[26] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. 2008. ADASYN: Adaptive
synthetic sampling approach for imbalanced learning. In 2008 IEEE Int. Joint Conf.
on Neural Networks (IJCNN’08). 1322–1328.

[27] Haibo He and Edwardo A. Garcia. 2009. Learning from Imbalanced Data. IEEE
Trans. on Knowl. and Data Eng. 21, 9 (2009), 1263–1284.

[28] Wang He-yong. 2008. Imbalance Data Set Classification Using SMOTE and
Biased-SVM. Comput. Science (2008).

[29] Robert C. Holte, Liane E. Acker, and Bruce W. Porter. 1989. Concept learning
and the problem of small disjuncts. In Proc. 11th Int. joint Conf. on Artfi. Intell.
(IJCAI’89). 813–818.

[30] Nathalie Japkowicz and Shaju Stephen. 2002. The class imbalance problem: A
systematic study. Intell. Data Anal. 6, 5 (2002), 429–449.

[31] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro, Yves Le
Traon, and Mark Harman. 2019. The Importance of Accounting for Real-World
Labelling When Predicting Software Vulnerabilities. In Proc. 27th ACM Joint
Meeting on European Softw. Eng. Conf. and Sysmp. on the Found. Softw. Eng.
(ESEC/FSE’19). 695–705.

[32] Xiao-Yuan Jing, Fei Wu, Xiwei Dong, and Baowen Xu. 2017. An Improved SDA
Based Defect Prediction Framework for Both Within-Project and Cross-Project
Class-Imbalance Problems. IEEE Trans. Softw. Eng. 43, 4 (April 2017), 321–339.

[33] Miroslav Kubat and Stan Matwin. 1997. Addressing the Curse of Imbalanced
Training Sets: One-Sided Selection. In Proc. of the Fourteenth Inter. Conf. on Mach.
Learn. ICML’17. 179–186.

[34] Jorma Laurikkala. 2001. Improving Identification of Difficult Small Classes by
Balancing Class Distribution. Artfi. Intell. in Med. in Eur. (2001), 63–66.

[35] Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas. 2017.
Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in
machine learning. J. of Mach. Learn. Res. 18, 1 (2017), 559–563.

[36] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. 2009. Exploratory Undersampling
for Class-Imbalance Learning. IEEE Trans. Systems, Man, and Cybernetics 39, 2
(2009), 539–550.

[37] Gilles Louppe and Pierre Geurts. 2012. Ensembles on random patches. In Proc.
2012th Eur.an Conf. on Mach. Learn. and Knowl. Discovery in Databases (ECMLP-
KDD’12). 346–361.

[38] Larry M. Manevitz and Malik Yousef. 2002. One-class svms for document classifi-
cation. J. Mach. Learn. Res. 2, 2 (2002), 139–154.

[39] Antonio Maratea, Alfredo Petrosino, andMario Manzo. 2014. Adjusted F-measure
and kernel scaling for imbalanced data learning. Inf. Sci. 257 (2014), 331–341.

[40] David Mease, Abraham J. Wyner, and Andreas Buja. 2007. Boosted Classification
Trees and Class Probability/Quantile Estimation. J. of Mach. Learn. Res. 8 (2007),
409–439.

[41] Ansong Ni and Ming Li. 2017. Cost-effective build outcome prediction using cas-
caded classifiers. In 2017 IEEE/ACM 14th Int. Conf. on Min. Softw. Repos. (MSR’17).
455–458.

[42] J. Platt. 1999. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in Large Margin Classifiers (1999).

[43] Bhavani Raskutti and Adam Kowalczyk. 2004. Extreme re-balancing for SVMs: a
case study. Sigkdd Explorations 6, 1 (2004), 60–69.

[44] Duksan Ryu, Jong-In Jang, and Jongmoon Baik. 2017. A transfer cost-sensitive
boosting approach for cross-project defect prediction. Softw. Qual. J. 25, 1 (2017),
235–272.

[45] Miriam Seoane Santos, Jastin Pompeu Soares, Pedro Henriques Abreu, Helder J.
Araujo, and Joao A M Santos. 2018. Cross-Validation for Imbalanced Datasets:
Avoiding Overoptimistic and Overfitting Approaches. IEEE Comput. Intell. Mag.
13, 4 (2018), 59–76.

[46] C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, and A. Napolitano. 2010. RUSBoost:
A Hybrid Approach to Alleviating Class Imbalance. IEEE Trans. Systems, Man,
and Cybernetics 40, 1 (2010), 185–197.

[47] Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, and Andres Folleco. 2014.
An empirical study of the classification performance of learners on imbalanced
and noisy software quality data. Inf. Sci. 259 (2014), 571–595.

[48] Victor S. Sheng and Charles X. Ling. 2006. Thresholding for making classifiers
cost-sensitive. In Proc. 21st national Conf. on Artfi. Intell. (AAAI’06). 476–481.

[49] Michael J. Siers and Md Zahidul Islam. 2016. Addressing Class Imbalance and
Cost Sensitivity in Software Defect Prediction by Combining Domain Costs and
Balancing Costs. In Advanced Data Min. and Appl. - 12th Int. Conf., ADMA 2016,
Gold Coast, QLD, Australia, December 12-15, 2016, Proc. 156–171.

[50] Michael R. Smith, Tony R. Martinez, and Christophe G. Giraud-Carrier. 2014. An
instance level analysis of data complexity. Mach. Learn. 95, 2 (2014), 225–256.

[51] Daniel Ståhl and Jan Bosch. 2014. Modeling continuous integration practice
differences in industry software development. J. Syst. Softw. 87, 1 (2014), 48–59.

[52] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. 2017. An Empirical Comparison of Model Validation Techniques for
Defect Prediction Models. IEEE Trans. Softw. Eng. 43, 1 (2017), 1–18.

[53] Gary M. Weiss. 2004. Mining with rarity: a unifying framework. Sigkdd Explo-
rations 6, 1 (2004), 7–19.

[54] Timo Wolf, drian Schröter, Daniela E. Damian, and Thanh H. D. Nguyen. 2009.
Predicting build failures using social network analysis on developer communica-
tion. In Proc. 31st Int. Conf. on Softw. Eng. (ICSE’09). 1–11.

[55] Jing Xia and Yanhui Li. 2017. Could We Predict the Result of a Continuous
Integration Build? An Empirical Study. In 2017 IEEE Int. Conf. on Softw. Qual.,
Reliab. and Secur. Companion (QRS-C’17). 311–315.

[56] Jianping Zhang and Inderjeet Mani. 2003. KNN Approach to Unbalanced Data
Distributions: A Case Study Involving Information Extraction. In Icml Workshop
on Learning from Imbalanced Datasets.

	Abstract
	1 Introduction
	2 Characteristics of CI/CD data
	2.1 Imbalanced time series data
	2.2 Imbalance problems in prediction
	2.3 Time series in evaluation

	3 Experimental study
	3.1 Research questions and hypotheses
	3.2 Study design
	3.3 Conduct of the quasi-experiment

	4 Results and analysis
	4.1 Validation methods (RQ1)
	4.2 Balanced or imbalanced learning (RQ2)
	4.3 Impact of imbalance ratio (RQ3)
	4.4 Implications and limitations

	5 Related work
	5.1 Imbalanced learning and time-series
	5.2 Predictive CI/CD

	6 Conclusions
	References

