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Abstract

Degradation data are usually collected for assessing the reliability of the product.

We propose a new two-stage method to analyze degradation data. The degradation

path is fitted by the nonlinear mixed effects model in the first stage, and the param-

eters in lifetime distribution are estimated by maximizing the asymptotic marginal

distribution of pseudo lifetimes in the second stage. The new method has many advan-

tages: (i). it does not require the distributions on random effects, (ii). the historical

information about lifetime distribution of the product can be incorporated easily, and

thus the estimated lifetime distribution has a closed form, (iii). bias correction term is

automatically embedded into the asymptotic marginal distribution of pseudo lifetime.

Finally, simulation studies and real data analysis are performed for illustration.

Keywords: Degradation data; Random effects; Stochastic process; General path model;

Bias reduction.
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1 Introduction

1.1 Degradation models review

Degradation data are often collected in assessing reliability and life span of industrial prod-

ucts. The models for analyzing degradation data are widely developed in past two decades.

For example, general path models [1, 2], stochastic degradation models [3, 4], Markov and

semi-Markov models [5, 6], data-driven models [7], and so on. However, the stochastic degra-

dation model and general path model are the two most used degradation models. [8] gave

a comprehensive review on the two kinds of degradation models, while [9] focused the re-

view work on the Wiener process and its related models. Recently, [10] used the objective

Bayesian method to analyze constant stress accelerated degradation test based on inverse

Gaussian (IG) process. [11] considered the IG process model with nonsymmetric random

effects using skew-normal distribution. [12] proposed generalized inference method for con-

stant stress accelerated degradation test based on gamma process, which is efficient for the

case of small sample size. [13] presented a linear degradation model with skewness and

heavy tailed behaviors. [14] introduced a hierarchical Bayesian bi-exponential degradation

model with application to a fuel cell stack system. The advantages of stochastic degrada-

tion models are that the mathematical derivation is analytical and the physical explanation

of the performance degradation can be well justified. While the general path model is to

describe longitudinal nature of the degradation process for individual units, and therefore it

has both fixed and random effects with fixed effects for the population levels and random

effects for individual variability. [8] indicated that the stochastic degradation models are

capable of explaining the randomness of the degradation over time due to unobserved en-

vironmental factors, while the general path model is much restrictive by assuming that the

inherent degradation is deterministic, and thus is applicable when the randomness among

the unobserved environmental factors is small enough.
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1.2 Motivation

In fact, the difference for deriving the cumulative distribution function (CDF) of the lifetime

of the product exists between the two kinds of degradation models. For the stochastic degra-

dation model, the CDF of the lifetime can be achieved by the theory of first passage time for

a stochastic process, while for the general path model, the CDF of the lifetime stems from

the random-effect variables. Thus, the stochastic degradation models are preferable when

the information for the CDF of the lifetime is not available. However, the historical data,

the experts’ experience or lifetime information of a similar product are usually obtainable in

practice. We refer to these information as prior information. The prior information may con-

tradict lifetime distribution deriving from the assumption of a stochastic degradation model.

For example, assume that the prior information implies the product’s lifetime following log-

normal distribution, while the product’s lifetime can be shown to follow IG distribution if

the Wiener process is assumed for the degradation process. Thus, the stochastic degradation

model may be not suitable when prior information exists. For the general path model, the

prior information could be used directly or be incorporated into the random-effect variables.

Besides, CDF based on stochastic degradation model with random effects is usually not an-

alytical, especially for the cases of involving change points and multiple degradation paths

[15, 16, 17]. The general path model may also encounter the problem when the degradation

path is nonlinear and there exists several random effects, which will be discussed below.

Assume that yi1, . . . , yimi
are the degradation values measured at times xi1, . . . , ximi

for

the i-th unit, i = 1, . . . , n. The general path model is expressed as

yij = η(xij|β,bi) + eij, j = 1, . . . ,mi, i = 1, . . . , n, (1)

where η(·) is some known function describing the degradation path, β is a vector of fixed-

effect parameters, bi is a vector of random effects for unit i, and eij represents the unexplained

random error including the measurement error. The random errors are assumed to be inde-
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pendent of each other and eij is assumed to have a constant variance V(eij) = σ2
e . Assume

that the joint distribution for the random effects is specified as π(bi|ω) (ω is a parameter

vector). Based on the data y = {yij, j = 1, . . . ,mi, i = 1, . . . , n}, the likelihood function of

(β,ω) is

L =
n∏
i=1

∫ mi∏
j=1

f(yij|β,bi)π(bi|ω)dbi.

The distribution of bi or the transformed (reparametrized) bi is usually assumed to be

multivariate normal. If bi is p-dimensional, the above integral may induce substantial com-

putational complexity, which is often the case in nonlinear mixed models. With recent

computational development for nonlinear mixed models ([18]), numerical solutions are read-

ily available from statistical packages in SAS, S-PLUS and R. The normality assumption of

the random effects may not always be realistic, because the random effects are not observed,

which may be difficult to verify. [19] have indicated that the parameter estimation of β can

be sensitive to the misspecification of the joint distribution of random effects. However, cor-

rect specification of the joint distribution of the random effects reflecting the true stochastic

nature is often difficult, if not impossible. On the other side, the aim of analyzing degra-

dation data is often, not to characterize the path model itself, but to provide information

on lifetime distribution. Without loss of generalization, we assume that η(·) is a strictly

monotone increasing function of measurement time. Let ηc be the threshold level for the

degradation path. Then from the Equation 13.9 on page 329 in [20], the lifetime for the unit

is defined as

T = inf{t|η(t|β,b) ≥ ηc}. (2)

If b is a univariate, T can be expressed as η−1(b). That is, b and T is one-to-one correspond-

ing, and thus the prior information about T can be incorporated into b easily. However, in

the case of multivariate b, such one-one correspondence between b and T breaks down. It

is difficult to transmit the prior information about T to b. Two-stage method could solve

the problem for multivariate b ([21, 22]), and the method has high computational efficiency
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and simple implementation procedure. However, the first stage will bring estimation bias,

and [21] did not address this bias well. In this paper, we will propose a new procedure for

two-stage method. The new procedure has many advantages. Firstly, we do not need to

assume the joint distribution of random effects; then the prior information of T can be used

directly, finally and the most importantly, the estimation bias in the first stage could be

corrected.

The paper is organized as follows. In section 2, we introduce the two-stage method, and

a new procedure for the two-stage method is proposed in section 3. Simulation studies are

performed to compare the new procedure with the other two-stage methods in section 4.

Real data analysis is carried out for illustration in Section 5. Finally, we give a conclusion

of this paper.

2 Two-stage methods

The two-stage algorithm is fully described in [21], who also reported that this method per-

forms well comparing with other more computationally intensive methods. We briefly sum-

marize the two steps as

(I). In the first stage, obtain the individual estimates (β̂i, σ̂
2
ei, b̂i) of (β, σ2

e ,bi) for the i-th

unit using the least-squares method based on the observed data (xi1, yi1), . . . , (ximi
, yimi

).

(II). In the second stage, combine these individual estimates to obtain the final parameter

estimates of the population parameters (β, σ2
e) and ω in the joint distribution π(b|ω)

using moment approach or maximum likelihood method.

There are a few advantages of this method: it is computationally simple and it does not

require normality of the random effects. [21] suggested some transformation may be necessary

for the estimates of b so that their distribution is approximately multivariate normal. This

is equivalent to reparametrize b in the path model. In fact, the approaches used in the
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second stage do not require normality because the sample mean and covariance estimators

are unbiased. Although the individual estimates (β̂i, σ̂
2
ei, b̂i) in the first stage are consistent,

the estimation efficiency may be reduced since only part of the observed data are used to

estimate the population parameters (β, σ2
e). Besides, the CDF of T is not usually analytic.

[21] proposed to a Monte Carlo method to obtain the CDF of T . However, the engineers

often have some historical experiences about the CDF of T , and prefer to use explicit CDF

in practice.

If the objective is to infer on the lifetime distribution of the product, we may wish to

impose directly a parametric model for it [23]. Such parametric model may be chosen to meet

certain desirable properties based on experience. One obvious advantage of this approach

is that it is one-dimensional. Then [22] modified the two-stage method by assuming that T

follows some lifetime distribution with probability density function (PDF) g(t|ξ), where ξ is

an unknown parameter vector. Their method is summarized as follows:

(I). In the first stage, obtain the estimates (β̂, σ̂2
e , b̂1, . . . , b̂n) of (β, σ2

e ,b1, . . . ,bn) using the

nonlinear least-squares method based on the observed data {(xi1, yi1), . . . , (ximi
, yimi

), i =

1, . . . , n}. Then by solving the equation η(t|β̂, b̂i) = ηc for unit i, obtain the pseudo

lifetimes

T̂i = h(β̂, b̂i), i = 1, . . . , n.

(II). The second stage is an iterative algorithm that includes three steps:

Initialization. Obtain the maximum likelihood estimate (MLE) of ξ by using the pseudo lifetimes

T̂i, i = 1, . . . , n. We denote the initial estimate as ξ̂(1).

Imputation. At the k-th iteration, predict Ti by T̃i, and

T̃i =

∫ TU
i

TL
i
t · g

(
t|ξ̂(k)

)
dt∫ TU

i

TL
i
g
(
t|ξ̂(k)

)
dt

,
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where TLi = max

{
tij, T̂i − Zα/2

√
V̂ (T̂i)

}
, TUi = min

{
tij+1, T̂i + Zα/2

√
V̂ (T̂i)

}
,

tij denotes the maximum of the xijs that are less than or equal to T̂i, tij′+1 =

∞ if T̂i > ximi
, and Zα/2 is the (1 − α/2)-th quantile of the standard normal

distribution.

Maximization. Maximize the loglikelihood function lcz =
n∑
i=1

log
[
g
(
T̃i|ξ

)]
with respect to ξ, and

obtain ξ̂(k+1).

– Repeat Imputation step and Maximization step until convergence occurs.

The two-stage method of [22] is an iterative algorithm, and we call it “iterative two-stage

method”. If α = 1, the idea is similar to [21]. Then the above imputation step can be

omitted and ξ̂(1) is the final estimate. We call the two-stage method with α = 1 “direct

two-stage method”. For 0 < α < 1, [22] suggested that for large V̂ (T̂i), α should be also

chosen largely, and vise versa. They also showed via simulation studies that the their two-

stage method performs better than direct two-stage method. However, iterative two-stage

method is an iterative algorithm, and thus it is not clear that how the method could improve

the precision of parameter estimation.

3 Bias reduction two-stage method

In the first stage of iterative two-stage method, T̂i can be treated as the estimate of the true

lifetime of the i-th unit Ti. Under some regularity conditions, and mi →∞ ([22]),

E(T̂i) = Ti +O(m−1i ). (3)

Our interest lies in g(t|ξ), and Ti is unobservable. From (3), we know that further inference

on the unknown parameter vector ξ can just rely on T̂is. Thus, we suggest to maximize the

asymptotic likelihood function for T̂is, and the asymptotic likelihood function for T̂i can be
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written as

Li =

∫ ∞
0

f(T̂i|Ti = t)g(t|ξ)dt. (4)

The first term f(T̂i|Ti = t) is a conditional PDF of T̂i given Ti, since T̂i is an estimate of

Ti, and the magnitude of T̂i may rely on Ti. The second term g(t|ξ) is the PDF of Ti.

Thus, Li leads to the marginal PDF of T̂i. From [24], we know that conditional on Ti, T̂i

asymptotically follows a normal distribution with mean Ti and variance u2i . We have

u2i =
[
5h

(
β̂, b̂i

)]′
Vi

[
5h

(
β̂, b̂i

)]
,

where 5h
(
β̂, b̂i

)
=
∂h(β,bi)

∂(β,bi)
′

∣∣∣∣
(β̂,b̂i)

′
, and Vi is the asymptotic covariance-variance matrix

of (β̂, b̂i)
′

evaluated at (β̂, b̂i)
′
. One may therefore assume that f(T̂i|Ti = t) is a normal

density function with mean t and variance u2i . This leads to

Li =

∫ ∞
0

1

ui
φ

(
T̂i − t
ui

)
g(t|ξ)dt,

where φ(·) is the PDF of the standard normal distribution. To gain more insight into the

likelihood function Li, we expand g(t|ξ) at t = T̂i and obtain that

Li =

∫ ∞
0

1

ui
φ

(
T̂i − t
u

)
g(t|ξ)dt

≈
∫ ∞
0

1

ui
φ

(
T̂i − t
u

)
{g(T̂i|ξ) + (t− T̂i)g′(T̂i|ξ) + 0.5(t− T̂i)2g′′(T̂i|ξ)}dt

= ai1g(T̂i|ξ) + ai2g
′(T̂i|ξ) + ai3g

′′(T̂i|ξ),

where ai1 = 1−Φ (−Ci), ai2 = uiφ (−Ci), ai3 = [1− Φ (−Ci)− Ciφ (−Ci)]u2i /2, Ci = T̂i/ui,

and Φ(·) is the CDF of the standard normal distribution. Thus, based on the pseudo lifetimes
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T̂is, the likelihood function of ξ can be approximated as

LM2S =
n∏
i=1

[
ai1g(T̂i|ξ) + ai2g

′(T̂i|ξ) + ai3g
′′(T̂i|ξ)

]
=

n∏
i=1

g(T̂i|ξ)
n∏
i=1

[
ai1 + ai2g

′(T̂i|ξ)/g(T̂i|ξ) + ai3g
′′(T̂i|ξ)/g(T̂i|ξ)

]
.

(5)

Remark 1: As one can see, the first product term is the likelihood function if T̂is are

the truly observed failure time, and the second product term arises because T̂i is an estimate.

As mi →∞, we have ui → 0 and Ci →∞. Then ai1 → 1, ai2 → 0 and ai3 → 0. Thus, LM2S

is reduced to be
n∏
i=1

g(T̂i|ξ), which is direct two-stage method. For ui → 0, the imputation

step in iterative two-stage method can be neglected, which will also be reduced to be direct

two-stage method. Thus, the three two-stage method will lead to the same result. For small

or moderate mi, T̂i may be a biased estimate. Then the second product term can be treated

as a correction of the bias, and can not be neglected.

Remark 2: The parameter estimate of ξ, ξ̂, can be obtained by maximizing lM2S =

logLM2S. Under certain regularity conditions, mi →∞, i = 1, . . . , n and n→∞, we have

√
n(ξ̂ − ξ) ∼ N

(
0, I−1(ξ)

)
, (6)

where I(ξ) is the Fisher information matrix of T . The proof is trivial, because the condition

of mi →∞, i = 1, . . . , n makes that T̂i converges to Ti in probability, and then the normality

of MLE assures that (6) holds. Then for any continuous function of ξ, q(ξ), we have

√
n
(
q
(
ξ̂
)
− q(ξ)

)
∼ N (0, Vq(ξ)) ,
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where Vq(ξ) = [5q(ξ)]
′
I−1(ξ) [5q(ξ)]

∣∣
ξ=ξ̂

and 5q(ξ) =
∂q(ξ)

∂ξ
. Then the 100(1 − α)%

confidence interval of q(ξ) can be constructed as

[
q
(
ξ̂
)
− Zα/2

√
Vq

(
ξ̂
)
, q
(
ξ̂
)

+ Zα/2

√
Vq

(
ξ̂
)]

.

Remark 3: If there are some historical experiences about g(t|ξ), then the statistical

inference can be done for the determined lifetime distribution. Otherwise, several candi-

date lifetime distributions can be selected, and the distribution with the smallest Akaike’s

Information Criterion (AIC) value is chosen as the lifetime distribution.

Example: Lognormal distribution

Suppose that T follows a lognormal distribution (LN(µ, σ2)) with PDF

g(t|µ, σ) =
1√

2πtσ
exp

{
−(log t− µ)2

2σ2

}
, t, σ > 0, µ ∈ R.

Simple algebra computations lead to

g
′
(t|µ, σ)

g(t|µ, σ)
= −1

t
− log t− µ

σ2
,

g
′′
(t|µ, σ)

g(t|µ, σ)
= − 2

t2
− 1

tσ2
+

log t− µ
tσ2

+
log t− µ
t2σ2

+
(log t− µ)2

tσ4
.

Then the procedure for the case of lognormal distribution is implemented as follows.

1. For the observed data {(xi1, yi1), . . . , (ximi
, yimi

), i = 1, . . . , n}, fit the nonlinear least-

squares method to obtain the estimates (β̂, σ̂2
e , b̂1, . . . , b̂n) of (β, σ2

e ,b1, . . . ,bn) and

the corresponding covariance-variance matrix.

2. Obtain T̂i by solving the equation η(t|β̂, b̂i) = ηc , and compute its variance estimate

u2i , i = 1, . . . , n.
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3. Then (µ̂, σ̂) can be obtained by maximizing the loglikelihood function

lM2S =
n∑
i=1

log g(T̂i|µ, σ) +
n∑
i=1

log[ai1 −
ai2

T̂i
− 2ai3

T̂ 2
i

− ai3

T̂iσ2
+

(ai3T̂i + ai3 − ai2T̂ 2
i )(log T̂i − µ)

T̂ 2
i σ

2
+

(log T̂i − µ)2

T̂iσ4
].

In fact, the first two steps are general for any lifetime distributions, and the last step depends

on the assumed lifetime distribution. For gamma distribution, Weibull distribution, IG dis-

tribution and Birnbaum-Saunders (BS) distribution, we also list the results of g′(t|ξ)/g(t|ξ)

and g′′(t|ξ)/g(t|ξ), and the likelihood functions can be written similarly.

For the gamma distribution (gamma(β, λ)) with PDF

g(t|β, λ) =
λβtβ−1

Γ(β)
exp {−λt} , t, β, λ > 0,

we have

g
′
(t|β, λ)

g(t|β, λ)
=
β − 1

t
− λ,

g
′′
(t|β, λ)

g(t|β, λ)
= [(β − 1)/t− λ]2 +

1− β
t2

.

For the Weibull distribution (Wei(γ, ω)) with PDF

g(t|γ, ω) =
γtγ−1

ωγ
exp {−(t/ω)γ} , t, γ, ω > 0,

after some calculations, we have

g
′
(t|γ, ω)

g(t|γ, ω)
=
γ − 1

t
− γtγ−1

ωγ
,

g
′′
(t|γ, ω)

g(t|γ, ω)
=
[
(γ − 1)/t− γtγ−1/ωγ

]2
+

1− β
t2
− γ(γ − 1)tγ−2

ωγ
.
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For the IG distribution (IG(a, b)) with PDF

g(t|a, b) =

[
b

2πt3

]1/2
exp

{
−b(t− a)2

2a2t

}
, t, a, b > 0,

we have

g
′
(t|a, b)

g(t|a, b)
= − 3

2t
− bt1/2

2

(
t

a2
− 1

t

)
,

g
′′
(t|a, b)

g(t|a, b)
=

15

4t2
− bt−3/2 +

bt1/2

2

[
3

2t5/2
+
b(a−2 − t−2)

2

](
t

a2
− 1

t

)
.

For the BS distribution (BS(c, d)) with PDF

g(t|c, d) =
1

2
√

2πcd

[(
d

t

)1/2

+

(
d

t

)3/2
]

exp

{
−t/d+ d/t− 2

2c2

}
, t, c, d > 0,

we have

g
′
(t|c, d)

g(t|c, d)
= −

[
1

2t
+

3d

2t2
+

t1/2

2c2d3/2
− d1/2

2c2t3/2

] [
1 +

d

t

]−1
,

g
′′
(t|c, d)

g(t|c, d)
=

[
3

4t2
+

15d

4t3
− d1/2

c2t5/2
+

1

2c2

(
1

2t
+

3d

2t2
+

t1/2

2c2d3/2
− d1/2

2c2t3/2

)(
1

d
− d

t2

)][
1 +

d

t

]−1
.

4 Simulation studies

In this section, we investigate the performance of the modified two-stage method. Firstly, we

compare the proposed two-stage method with the other two methods under different scenarios

when the lifetime distribution of the product is known. Then when the lifetime distribution

of the product is unknown, and even not in the set of candidate lifetime distributions, the

performance of the proposed method is studied.
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4.1 The efficiency of the proposed method

The sample size n is chosen as 20 and 30, and each unit is measured m times where m = 10

and 20. The lifetime distribution of T is assumed to be log-normal, and the parameters are

µ = 1 and σ = 0.25. The path model is yij = θ1it
θ2i
j + εij, and εij ∼ N(0, σ2

e) for i = 1, · · · , n

and j = 1, · · · ,m. The values of σe are assumed to be 3 . Due to the heterogeneity among

the products, we assume that θ1i and θ2i are random. The critical value ηc is taken as 50.

The degradation data are generated as follows.

1. The measurement times are (x1, x2, . . . , xm) = (q0.3/m, 2 ∗ q0.3/m, · · · , (m− 1) ∗ q0.3/m, q0.3),

where q0.3 denotes the 0.3 quantile of LN(µ, σ2).

2. Generate n failure times T1, . . . , Tn from LN(µ, σ2), and θ11, . . . , θ1n from the distri-

bution of θ1i, where three different distribution types of θ1i are examined for illustra-

tion. That is, log-normal (LN(2, 0.12)), gamma distribution (gamma(100, 13.5)) and

Weibull distribution (Wei(5, 8)).

3. The values of θ21, . . . , θ2n are determined by ηc = θ1i ∗ T θ2ii , that is, θ2i = {log(ηc) −

log(θ1i)}/ log(Ti).

4. Generate εij from N(0, σ2
e); then yij = θ1i ∗ xθ2ij + εij, i = 1, · · · , n and j = 1, · · · ,m.

Each combination of m, n and the distribution of θ1i is repeated 3000 times. In the simula-

tion, we compare the proposed two-stage method with direct two-stage method and iterative

two-stage method. The estimates of µ, σ, q0.05, q0.95 and the mean time to failure (MTTF)

are obtained for each sample, where the true values of µ, σ, q0.05, q0.95 and MTTF are 1.00,

0.25, 1.801, 4.100 and 2.804, respectively. Then the mean, square root of mean squared errors

(RMSE) and 95% coverage probabilities (CP) based on 3000 estimators are computed. The

results for θ1i ∼ LN(2, 0.12) are listed in Tables 1-3. The results for θ1i ∼ gamma(100, 13.5)

and θ1i ∼ Wei(5, 8) are similar, and we provide them as the supplementary material. For

each combination with 3000 repetitions, the CPU computing times (seconds) for the three
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Table 1: The mean estimates of the parameters for different (m,n) based on 3000 replications
when θ1i ∼ LN(2, 0.12).

(m,n) Method µ σ q0.05 q0.95 MTTF

Bias reduction two-stage 1.000 0.247 1.815 4.042 2.805

(10,20) Iterative two-stage 1.008 0.252 1.815 4.176 2.838

Direct two-stage 1.014 0.258 1.809 4.253 2.862

Bias reduction two-stage 1.000 0.250 1.807 4.056 2.805

(20,20) Iterative two-stage 1.003 0.251 1.811 4.150 2.824

Direct two-stage 1.006 0.249 1.822 4.144 2.829

Bias reduction two-stage 0.997 0.247 1.811 4.081 2.801

(10,30) Iterative two-stage 1.004 0.258 1.789 4.192 2.828

Direct two-stage 1.010 0.267 1.776 4.286 2.855

Bias reduction two-stage 0.995 0.252 1.818 4.083 2.803

(20,30) Iterative two-stage 0.999 0.252 1.797 4.127 2.809

Direct two-stage 1.002 0.253 1.800 4.144 2.817

methods (the proposed method, direct two-stage method and iterative two-stage method) are

13.08s, 12.35s and 38.56s, respectively. The time efficiency of the proposed method is close to

that of direct two-stage method, and is much better than that of iterative two-stage method.

This is not surprising, because iterative two-stage method is an iterative method, and the

proposed method and direct two-stage method obtain the estimates by direct maximization.

From Table 1, we see that the mean estimates based on the three methods are all close

to the true values for all cases, which indicates that the two-stage methods are efficient. As

can be seen in Table 2, for a fixed m or n, RMSE of the estimates are improved greatly

as n or m increases. However, the effects of n on the estimates are greater than those of

m. For example, compared with (m,n) = (10, 20), the RMSE of the case (10, 30) are much

smaller than these of (20, 20). This is reasonable, because the precision of pseudo lifetimes

depends on the measurement times m and the precision of the parameter estimation in

lifetime distribution of T is correlated with the sample size n. Among the three methods,

the proposed two-stage method performs the best, because the RMSE based on the proposed
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Table 2: The RMSE of the estimates for different (m,n) based on 3000 replications when
θ1i ∼ LN(2, 0.12).

(m,n) Method µ σ q0.05 q0.95 MTTF

Bias reduction two-stage 0.059 0.049 0.168 0.453 0.178

(10,20) Iterative two-stage 0.061 0.049 0.163 0.476 0.188

Direct two-stage 0.065 0.054 0.165 0.573 0.210

Bias reduction two-stage 0.057 0.046 0.165 0.415 0.168

(20,20) Iterative two-stage 0.058 0.049 0.164 0.459 0.177

Direct two-stage 0.059 0.050 0.165 0.474 0.182

Bias reduction two-stage 0.046 0.041 0.135 0.371 0.138

(10,30) Iterative two-stage 0.048 0.041 0.132 0.387 0.146

Direct two-stage 0.050 0.049 0.140 0.486 0.165

Bias reduction two-stage 0.045 0.035 0.127 0.312 0.130

(20,30) Iterative two-stage 0.044 0.037 0.127 0.328 0.130

Direct two-stage 0.044 0.038 0.129 0.340 0.131

Table 3: The 95% coverage probabilities of the estimates for different (m,n) based on 3000
replications when θ1i ∼ LN(2, 0.12).

(m,n) Method µ σ q0.05 q0.95 MTTF

Bias reduction two-stage 0.935 0.897 0.920 0.896 0.930

(10,20) Iterative two-stage 0.925 0.897 0.917 0.896 0.927

Direct two-stage 0.920 0.887 0.920 0.886 0.905

Bias reduction two-stage 0.933 0.897 0.940 0.887 0.935

(20,20) Iterative two-stage 0.927 0.897 0.935 0.890 0.930

Direct two-stage 0.927 0.887 0.940 0.883 0.927

Bias reduction two-stage 0.946 0.903 0.969 0.908 0.933

(10,30) Iterative two-stage 0.954 0.903 0.961 0.908 0.938

Direct two-stage 0.946 0.897 0.946 0.897 0.923

Bias reduction two-stage 0.943 0.927 0.937 0.910 0.947

(20,30) Iterative two-stage 0.950 0.927 0.933 0.910 0.950

Direct two-stage 0.953 0.903 0.930 0.907 0.950
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method are the smallest for most of the cases, see the bold numbers in Table 2. For example,

for the parameter µ with the case (m,n) = (10, 20), the RMSE based on the proposed method

is 0.059, which is smaller than that based on the other two methods. Table 3 lists the 95%

coverage probabilities of the interval estimates for different values of (m,n). The coverage

probabilities based on the three methods for all cases are close to each other, because the

interval estimates are all constructed by the asymptotic normality result (6).

4.2 The effects of the test termination time and misspecification

Under the model setting as the previous subsection, the effects of the test termination time

(TTT) on estimation performance are investigated. We choose the TTT as the α quantile

of LN(µ, σ2), where α = 0.1, 0.2, . . . , 0.9. The random effect variable θ1i ∼ LN (2, 0.12).

The sample size n and the measurement times m are 30 and 20, respectively. We repeat

the simulation study for each TTT case 3000 times. The results of RMSEs and CPs under

different TTTs are shown in Figures 1 and 2. Some interesting results can be summarized

from Figures 1 and 2.

1. For all cases, the RMSEs based on the proposed method are smaller than these based

on direct two-stage method.

2. The proposed method and iterative two-stage method are comparable. For the cases of

small TTTs or small αs, the proposed method performs better than iterative two-stage

method according to RMSE, while for large αs, iterative two-stage method is better.

However, the TTT is usually much smaller than MTTF in practice, which means that

small TTT or α will be chosen. Then the proposed method will be preferred.

3. When α = 0.1, the CPs do not perform well for the parameters σ and q0.95. However,

for the other cases, the CPs are close to the nominal level 0.95.

The above simulation studies are based on the known lifetime distribution of the product.

However, we may misspecify the lifetime distribution in practice. The data generation scheme
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Figure 1: RMSE of the estimates with different test termination times.
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Figure 2: Coverage probabilities of the estimates with different test termination times.
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Table 4: The mean and RMSE of the estimates for different test termination times with the
true values (q0.05, q0.95,MTTF )=(1.801,4.100,2.804).

α Estimate q0.05 q0.95 MTTF

0.1 Mean 1.703 4.101 2.788

RMSE 0.181 0.490 0.163

0.2 Mean 1.757 4.043 2.798

RMSE 0.143 0.347 0.139

0.3 Mean 1.751 4.004 2.778

RMSE 0.135 0.307 0.126

0.4 Mean 1.772 4.023 2.799

RMSE 0.140 0.324 0.135

0.5 Mean 1.79 3.984 2.794

RMSE 0.120 0.315 0.127

0.6 Mean 1.787 4.004 2.800

RMSE 0.132 0.304 0.129

0.7 Mean 1.786 4.027 2.809

RMSE 0.140 0.293 0.137

0.8 Mean 1.788 3.989 2.795

RMSE 0.125 0.305 0.129

0.9 Mean 1.779 3.994 2.792

RMSE 0.122 0.288 0.125

is the same as the previous part (m = 20, n = 20, α = 0.1, 0.2, . . . , 0.9, 3000 repetitions).

The candidate lifetime distributions of the product are selected as the Weibull distribution,

gamma distribution, inverse Gaussian distribution and BS distribution, respectively. Thus,

the candidate lifetime distributions do not contain the true lifetime distribution (lognormal

distribution). For each data set, we choose the optimal lifetime distribution by the AIC

values, then q0.05, q0.95 and MTTF of the product are estimated. The results are listed in

Table 4. From Table 4, we can see that although the true lifetime distribution is not in

the set of candidate lifetime distributions, the estimated quantile lifetimes and MTTF are

close to the true values for all cases, which means that the proposed method is robust to the

choice of candidate lifetime distributions.
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5 Real Data Analysis

We illustrate the new method in this section by analyzing two real data sets: (i) the laser

degradation data presented in Table C.17 on page 642 in [20], and (ii) the fatigue-crack-

growth data in Table 1 on page 162 in [21].

5.1 Laser degradation data

The laser degradation data from [20] is a classic dataset. The data shows the increase in

operating current over time for a sample of GaAs lasers tested at 80◦C. When there is a 10%

increase in the operating current, the device is considered to have failed. There are totally

15 devices tested, and all the devices are measured every 250 hours. The test terminal time

is 4000 hours, and thus m1 = · · · = m15 = 16. Following the analysis of [20], we also assume

that the path model is

yij = θixj + εij, i = 1, . . . , 15, j = 1, . . . , 16.

The log-likelihoods are computed for the following distributions: Log-normal, Weibull,

Gamma, IG and BS, and the AIC values are -121.31, -123.68, -121.39, -121.17 and -121.16,

respectively. AIC prefers to choose Weibull distribution, since it leads to the smallest AIC

value. Figure 3 show the five fitted distributions and the empirical distribution based on

pseudo failure times (black dots). As can be seen in Figure 3, Weibull distribution is apt to

fit the last 11 pseudo failure times and neglect the former 4 pseudo failure times, while the

other distributions prefer a trade-off between the two parts.

Then based on Weibull distribution, we analyze the data by the proposed modified two-

stage method, direct two-stage method and iterative two-stage method. Since Ci = T̂i/ui

is large enough, the parameter estimation based on the three methods are the same as we

indicate in Remark 1. The estimates of the parameters are γ̂ = 6.599 and ω̂ = 5482.46.

The standard deviation of γ̂ and ω̂ are 1.385 and 220.67, respectively. The 95% confidence
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interval (CI) estimates of γ and ω are (3.83, 9.37) and (5041.12, 5923.79), respectively. The

95% pointwise CI of CDF are shown in Figure 3. The 95% pointwise CI covers all the pseudo

lifetimes, and thus the Weibull distribution performs well.

5.2 Fatigue-crack-growth data

The fatigue-crack-growth data contains the degradation measurements on 21 test units. The

crack length of each unit was recorded once every 0.01 million cycles over a period of 0.12

million cycles. The initial crack length of every unit is the same as 0.9 inches. A unit is

considered to have failed if the crack length exceeds 1.6 inches. The path model for the

fatigue-crack-growth is derived from the Paris Law in material science and is given below:

yij =
1

θ2i
log
(
1− 0.9θ2iθ1iθ2ixj

)
+ εij,

where i = 1, · · · , 21; j = 1, · · · ,mi. The fatigue-crack-growth data has been analyzed

by many authors using different methods. Lu and Meeker (1993) analyzed the data using

their two-stage least squares method. [24] analyzed the data directly using ordinary and

weighted least squares methods by treating the path model as a mixed effect regression

model. The maximum likelihood method and a Bayesian method for the analysis of the

data were explored by [25]. [25] also made comparisons among direct two-stage method, the

maximum likelihood method and the Bayesian method. All these methods provided similar

conclusions in this application. The common feature of these methods is that an assumption

on the distribution of the random parameters θ1i and θ2i was made.

Here, we re-analyze the fatigue-crack-growth data using the new method. The log-

likelihoods with parameters estimated by the method-of-moments are computed for the fol-

lowing distributions: Log-normal, Weibull, Gamma, IG and Birnbaum-Saunders. Their AIC

values are -96.22, -92.80, -95.82, -95.56 and -95.30, respectively. Since the log-likelihood

of the Log-normal distribution is the largest, the Log-normal distribution is taken as the
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assumed lifetime distribution. We use the following methods to compute the result.

1. Direct two-stage method: µ̂ = −2.124; σ̂2 = 0.1832

2. Iterative two-stage method: µ̂ = −2.102; σ̂2 = 0.1822

3. Bias reduction two-stage method: µ̂ = −2.103; σ̂2 = 0.1802

The standard deviation of µ̂ and σ̂2 are 0.0393 and 9.563×10−3, respectively. Then based

on the proposed method, the 95% CI estimates of µ and σ2 are (-2.180, -2.025) and (0.0137,

0.0511), respectively. In Figure 4, we plotted the three estimated CDF curves and the 95%

pointwise CI based on the proposed two-stage method. The 95% pointwise confidence band

covers all the pseudo lifetimes, which indicates that the log-normal distribution fits the data

well.

6 Conclusion

In this paper, we have proposed a new two-stage method for analyzing the degradation

data. The key step is to expand the asymptotic likelihood function for the pseudo lifetimes

T̂i, where the expanded likelihood is simple. Compared with the existing methods (e.g.,

iterative two-stage method, direct two-stage method), the newly proposed two-stage method

has smaller RMSE than the existing two-stage methods. The computational efficiency of the

proposed method is close to that of direct two-stage method, and is about two times faster

than that of iterative two-stage method. The results based on the new method is robust

to the choice of test termination times and candidate lifetime distributions. Moreover, the

newly proposed two-stage method does not require any distributional assumptions of the

random effects but some regularity conditions. It is not clear if random effects can lead to

better estimation. However, the new method also has its limitations. For example, the bias

in the first stage depends on the number of measurement time m. For small m, e.g., m < 5,

the method as well as the other two-stage methods may fail.

Our future work will investigate stochastic degradation model with random effects, where
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the CDF of random effects is unknown. Besides, as we have discussed in the introduction,

the CDF derived from the stochastic degradation model may contradict the prior informa-

tion, then developing an information fusion model is also of interest. More interestingly,

degradation models with unknown path function is also a challenging problem for further

study.
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