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Abstract
Power systems are pivotal in providing sustainable energy across various sectors. However, optimizing their performance 
to meet modern demands remains a significant challenge. This paper introduces an innovative strategy to improve the opti-
mization of PID controllers within nonlinear oscillatory Automatic Generation Control (AGC) systems, essential for the 
stability of power systems. Our approach aims to reduce the integrated time squared error, the integrated time absolute error, 
and the rate of change in deviation, facilitating faster convergence, diminished overshoot, and decreased oscillations. By 
incorporating the spiral model from the Whale Optimization Algorithm (WOA) into the Multi-Objective Marine Predator 
Algorithm (MOMPA), our method effectively broadens the diversity of solution sets and finely tunes the balance between 
exploration and exploitation strategies. Furthermore, the QQSMOMPA framework integrates quasi-oppositional learning 
and Q-learning to overcome local optima, thereby generating optimal Pareto solutions. When applied to nonlinear AGC 
systems featuring governor dead zones, the PID controllers optimized by QQSMOMPA not only achieve 14% reduction in 
the frequency settling time but also exhibit robustness against uncertainties in load disturbance inputs.

Keywords Multi-objective optimization · Automatic generation control · PID controller · Multi-objective marine predator 
algorithm · Whale optimization algorithm

1 Introduction

As regional power grids become increasingly interconnected, 
the complexity of the power grid’s overall structure grows, 
accompanied by a wider array of disturbances [1]. Conse-
quently, Automatic Generation Control (AGC) emerges as a 
paramount concern within interconnected power systems [2]. 
When a disturbance affects a segment of the interconnected 
power system, the resulting frequency deviation traverses tie 
lines, potentially impacting power flow between regional grids 
[3]. In power systems, AGC plays a pivotal role in restoring 
unit frequency and inter-regional tie line power to predefined 
permissible ranges during regular operation or minor disrup-
tions [4]. Neglecting timely frequency deviation adjustments 
can lead to power overload, jeopardizing power system safety 
and even causing widespread outages and substantial eco-
nomic losses. Consequently, the development of AGC with 
robustness and comprehensive control effectiveness assumes 
critical importance [5].

Based on a comprehensive review of the existing lit-
erature [6–9], a wide range of control strategies based on 
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artificial intelligence techniques have been developed. These 
strategies encompass various methodologies such as rein-
forcement learning [10], Adjustable Neuro-Fuzzy Inference 
Systems (ANFIS) [11], and developing model-based predic-
tion methods [12, 13]. Additionally, advanced controllers 
such as sliding mode controllers [14] and robust controllers 
[15] have been proposed to enhance AGC. However, these 
methods often entail high complexity and computational 
burdens, fostering the application of Proportional-Integral-
Derivative (PID) controllers [16]. PID controllers are com-
monly preferred in educational and engineering contexts due 
to their simplicity, cost-effectiveness, and robustness against 
diverse disturbances [17].

Nevertheless, the performance of PID controllers hinges 
on their settings [18, 19], underscoring the importance of 
efficient optimization models [20]. The researchers improved 
the Bacterial Foraging Optimization Approach (BFOA) by 
reducing a time-domain objective function to develop PID 
controllers [21]. The researchers presented a novel approach 
called Teaching Learning-Based Optimization (TLBO) to 
optimize the parameters of PID controllers in a two-region 
thermal system [22]. Kumar et al. [23] compared two search 
algorithms for PID controller design, utilizing the Imperial-
ist Competitive Algorithm (ICA) to determine ideal param-
eters. Gheisarnejad [24] devised a hybrid algorithm by com-
bining the harmony search algorithm (HSCOA) and Cuckoo 
Optimization Algorithm (COA) mechanisms to tune PID 
gains. He et al. [25] presented the Wind-Driven Butterfly 
Optimization Algorithm (WDBOA), which effectively bal-
ances exploration and exploitation capabilities and demon-
strates superior performance in PID controller parameter 
optimization.

Despite scholars optimizing auxiliary controller param-
eters, their research typically focuses on a single objective 
that aligns with specific control requirements and can be 
addressed by a single-objective optimization algorithm. 
Shiva and Mukherjee [26] used Integral Squared Error 
(ISE) as the objective function to design a PID controller. 
Meanwhile, Singh et al. [5] took into account a range of per-
formance indicators. The performance measurements were 
consolidated into a singular target through the utilization of 
the analytical hierarchy process (AHP). The inherent con-
tradiction between these objectives presents a challenge in 
determining an optimal scheme for a multi-objective model 
that effectively addresses the trade-offs between speed, 
economy, and safety.

The performance of AGC primarily hinges on three fac-
tors: (a) controller structure; (b) algorithm for optimizing 
controller parameters; and (c) loss function performance. 
Facing the challenge of balancing multiple, often conflicting, 
control optimization objectives in nonlinear and oscillatory 
AGC systems, the Multi-Objective Marine Predators Algo-
rithm (MOMPA) [27] offers an innovative solution. Inspired 

by the foraging behavior of marine predators, this algorithm 
adopts their dynamic strategies to effectively tackle multi-
objective optimization problems. MOMPA is specifically 
designed to explore and exploit the solution space, iden-
tifying solutions that balance various objectives across the 
complex Pareto front [28]. Despite MOMPA’s capability 
in navigating complex Pareto fronts, it faces challenges 
in highly multi-modal environments with numerous local 
optima, necessitating refined exploration and exploitation 
strategies to prevent premature convergence on suboptimal 
solutions [29].

The purpose of this paper is to provide a multi-objective 
approach that can effectively tune PID controllers with sim-
ple designs. We construct a multi-objective model featuring 
the Integrated Time Squared Error (ITSE), the Integrated 
Time Absolute Error (ITAE), and the rate of change in devia-
tion as objectives, comprehensively addressing convergence 
rate, overshoot, and system oscillation. Our approach utilizes 
the efficient MOMPA integrating spiral mode, Quasi-Oppo-
sitional Learning (QOL), and Q-learning (QQSMOMPA) 
to optimize PID controller parameters for three real-world 
AGC systems. The inherent variability and uncertainty pre-
sent in AGC systems, including load fluctuations and param-
eter shifts, necessitate optimization algorithms to possess a 
high degree of adaptability. The augmented diversity within 
the QQSMOMPA guarantees that the algorithm can adjust to 
these fluctuations, thereby sustaining optimal or near-opti-
mal performance across more conditions. The contributions 
of this paper are summarized as follows: 

(1) Introduce a novel multi-objective optimization method-
ology aimed at augmenting PID controller performance 
in nonlinear and oscillatory AGC. This methodology 
stands out by concurrently minimizing ITSE, ITAE, and 
the deviation rate of change, thereby balancing the con-
vergence rate, overshoot, and system oscillation.

(2) Integration of advanced optimization techniques, 
including spiral model and Q-learning framework, to 
efficiently diversify solution sets and effectively bal-
ance exploration and exploitation strategies, resulting 
in superior Pareto solutions for AGC systems.

(3) Demonstration of QQSMOMPA’s efficacy through 
experiments, showcasing superior performance and 
robustness in optimizing PID controllers for AGC 
under various conditions. When applied to nonlin-
ear AGC systems featuring governor dead zones, the 
PID controllers optimized by QQSMOMPA not only 
achieve 14% reduction in the frequency settling time 
but also exhibit robustness against uncertainties in load 
disturbance inputs.

The following sections are organized in the following man-
ner: Sect. 2 provides an overview of the AGC problem and 
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presents a multi-objective optimization model. Section 3 
elaborates on MOMPA and the proposed SMOMPA and 
QQSMOMPA. In Sect.  4, we employ QQSMOMPA to 
resolve three real-world AGC scenarios. The paper con-
cludes in Sect. 5.

2  The Description and Solution 
of the Problem of AGC 

2.1  The Description of AGC 

This section introduces the fundamental transfer function 
model of the AGC. The examination of AGC often utilizes 
a thermal power system with two regions and no reheat, as 
seen in Fig. 1, which serves as a widely adopted framework 
for AGC investigations. The interconnected grid system pri-
marily consists of governors, turbines, and power systems. 
The inputs to the system consist of the control system signal 
ΔPref  , changes in demand for energy ΔPL , and deviations in 
tie-line power ΔPtie . In addition, the outputs of the system 
encompass the frequency deviation Δf  and the area control 
error (ACE), which are precisely specified by:

The symbol B is used to denote the frequency deviation 
parameter. To achieve desired goals, the control system 
adjusts the reference power setting of the generator set, 
thereby balancing the power generation and load in each 
region.

(1)
ACE1 = −BΔf1 − ΔPtie,

ACE2 = −BΔf2 + ΔPtie.

In previous studies [3, 30], the parameters for test sys-
tem-1 were uniformly set. The parameters include Tg for 
the governor’s time constant, Tt for the non-reheat steam 
turbine’s time constant, B for the frequency deviation, T12 
for the synchronous torque coefficient, ΔPref  for the refer-
ence power setting, ΔPg for the governor valve’s positional 
adjustment, ΔPt for changes in steam turbine power output, 
ΔPL for load demand changes, Δf  for frequency variation, 
and ΔPtie for tie-line power discrepancies between regions. 
Per-unit values are provided for system variables: f = 60 Hz, 
B = 0.425 p.u MW/Hz, R = 2.4 Hz/p.u, Tg = 0.03 s, Tt = 0.3 
s, Kps = 120 Hz/p.u, Tps = 20 s, and T12 = 0.545 p.u MW/
rad.

When affected by load changes, the frequency can still 
be maintained near the stable point. Therefore, each link 
can be approximated using a low-order transfer function, as 
detailed in Elgerd [31].

The transfer functions of the governor, non-reheat tur-
bine, and power system are given by:

and

(2)Gg(s) =
ΔPg(s)

ΔPe(s)
=

1

sTg + 1
,

(3)Gt(s) =
ΔPt(s)

ΔPg(s)
=

1

sTt + 1
,

(4)Gps(s) =
Δf

ΔPt(s) − ΔPL(s) + ΔPtie(s)
=

Kps

sTps + 1
.

Fig. 1  Transfer function model 
of test system-1
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The controller functions as a supplement to the AGC sys-
tem. Despite significant advancements in advanced control-
lers, the traditional PID controller and its variations remain 
preferred due to its simple structure, high reliability, and 
excellent control performance. Furthermore, their ease of 
dynamic modeling and cost-effectiveness contribute to their 
effectiveness in engineering practice.

Assuming that in Fig. 1, the PID controller acts as an addi-
tional control element, the reference power settings ΔPref1 and 
ΔPref2 are given by:

where Kp , Ki , and Kd represent the gains of the PID control-
ler. This paper assumes that the gains of all region control-
lers are the same, namely Kp1 = Kp2 = Kp , Ki1 = Ki2 = Ki , 
and Kd1 = Kd2 = Kd . To achieve the control objectives, these 
gains must be accurately optimized, which is the motivation 
behind this paper.

2.2  The Construction of Multi‑objective 
Optimization Model

As mentioned earlier, an effective AGC system for an intercon-
nected grid aims to minimize frequency and power overshoots, 
guiding them to converge rapidly to zero. To achieve this goal, 
it is imperative to adjust the gains of the PID controller, a task 
that may be conceptualized as a multi-objective optimization 
problem (MOP). The general mathematical formulation for 
MOP is presented as follows:

where X represents the candidate solution, F(X) is employed 
to represent the goal function, while g(X) and h(X) are uti-
lized to express unequal and equal limitations, respectively. 
M represents the count of goal functions, while a and b 
stand for the quantities of inequality and equality constraints 
correspondingly.

Dominance is a notion that describes the optimality of 
MOP. If X1 and X2 satisfy:

(5)
ΔPref1 = Kp1ACE1 + Ki1 ∫ ACE1dt + Kd1

d

dt
ACE1,

ΔPref2 = Kp2ACE2 + Ki2 ∫ ACE2dt + Kd2

d

dt
ACE2,

(6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

minimize

F(X) =
�
f1(X), f2(X),… , fM(X)

�
s.t.

gi(X) ≥ 0,

hj(X) = 0,

i = 1, 2,… , a, j = 1, 2,… , b,

(7)
∀i ∈ {1,… ,M} ∶ fi

(
X1

) ≤ fi
(
X2

)
,

∧ ∃j ∈ {1,… ,M} ∶ fj
(
X1

)
< fj

(
X2

)
,

then consider that X1 dominates X2 , denoted by X1 ≺ X2.
According to the retrospective research [3, 5], ITAE and 

ITSE are widely used in the tuning of PID controller param-
eters. Each of these functions has unique properties that 
contribute to improving the above specifications, and the 
formula is as follows:

and

When the error is big in the parameter optimization based 
on the ITSE, the gradient reduces quickly; when the error is 
small, the gradient declines slowly, which is beneficial for 
the convergence of the optimization. Compared with ITSE, 
ITAE is very effective in controlling the error amplitude, but 
the convergence speed is slower. Furthermore, to enhance 
the stability of the entire system, a third objective function 
given by

is proposed considering the rate of change of Δf1 , Δf2 and 
ΔPtie which is easy to calculate.

While ITAE prioritizes long-term precision and stabil-
ity, potentially resulting in slower response times, ITSE 
aggressively reduces large errors, favoring rapid response 
but risking overshoot and instability. On the other hand, the 
rate of change of deviation function aims to smooth system 
response by minimizing error fluctuations, which may hin-
der rapid adaptation. Due to the conflict between objective 
functions, this paper constructs a multi-objective optimiza-
tion model to tune the PID controller parameters, which is 
as follows:

In this paper, all PID gain coefficients are in the range of 
[0.0, 2.0]. The objective of the optimization work is to 
identify the Pareto optimum set of parameters for the PID 
controller. To accomplish this objective, this paper employs 
an enhanced version of the multi-objective marine preda-
tor algorithm (MOMPA), which is expounded upon in the 
subsequent section.

(8)ITAE = ∫
T

0

t
(|Δf1| + |Δf2| + ||ΔPtie

||
)
dt,

(9)ITSE = ∫
T

0

t
(
Δf 2

1
+ Δf 2

2
+ ΔP2

tie

)
dt.

(10)J = ∫
T

0

t

(
d|Δf1|
dt

+
d|Δf2|
dt

+
d||ΔPtie

||
dt

)
dt

(11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

minimize

ITSE = ∫ T

0
t
�
Δf 2

1
+ Δf 2

2
+ ΔP2

tie

�
dt

ITAE = ∫ T

0
t
���Δf1�� + ��Δf2�� + ��ΔP tie

��
�
dt

J = ∫ T

0
t
�

d�Δf1�
dt

+
d�Δf2�

dt
+

d�ΔP tie �
dt

�
dt

s.t. 0 ≤ Kp ≤ 2, 0 ≤ Ki ≤ 2, 0 ≤ Kd ≤ 2.
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3  The Proposed Strategy

3.1  The MOMPA

The MOMPA, introduced by Chen et al. [27], stands out in 
the realm of multi-objective optimization for its innovative 
integration of dominance-based evolutionary strategies 
and its adeptness at balancing diversity and convergence 
in the Pareto frontier. Distinctively, MOMPA combines 
non-dominated sorting with a reference point strategy, a 
methodological choice that facilitates the identification 
and preservation of outstanding solutions, thereby ensur-
ing a diverse set of Pareto-optimal solutions [32]. Unique 
to MOMPA is its adoption of a Gaussian perturbation 
technique, designed to enhance population diversity and 
bolster its global search efficacy [33].

The evolutionary strategies of MOMPA include high 
velocity, same velocity, and low velocity. During each 
phase, the updating process involves two matrices from 
the following options:

and

where N represents the number of preys and d denotes the 
number of dimensions. In MOMPA, Elite is randomly con-
structed from each generation of Prey.

The strategies used in the high-velocity phase are as 
follows:

and

where the vector RB consists of random numbers generated 
from a normal distribution. The variable N represents the 
number of search agents, whereas R is a vector compris-
ing random numbers generated from a uniform distribution 
within the range of 0 to 1. Moreover, the symbol ⊗ denotes 
element-wise multiplications. The value of P is set to 0.5.

The strategies used in the same velocity phase are as 
follows:

(12)Prey =

⎡⎢⎢⎢⎣

X1,1 X1,2 … X1,d

X2,1 X2,2 … X2,d

… … … …

XN,1 XN,2 … XN,d

⎤⎥⎥⎥⎦
,

(13)Elite =

⎡
⎢⎢⎢⎢⎣

XI
1,1

XI
1,2

… XI
1,d

XI
2,1

XI
2,2

… XI
2,d

… … … …

XI
N,1

XI
N,2

… XI
N,d

⎤
⎥⎥⎥⎥⎦
,

(14)
stepsizei = RB ⊗

(
Elitei − RB ⊗ Preyi

)
i = 1,… ,N,

(15)Preyi = Preyi + P ⋅ R⊗ stepsizei,

and

where RL is a vector of random numbers based on Lévy 
distribution. The remaining half of the prey is intended for 
exploitation, which is indicated by:

and

where CF =
(
1 −

Iter

Itermax

) 2Iter

Itermax is made to regulate the stepsize
.

The strategies used in the low-velocity phase are as 
follows:

and

Another significant issue, such as the effects of fish aggre-
gating devices (FADs), has the potential to alter the behavior 
of marine predators. The FADs are thought of as local opti-
mums, and their results in the search space are the discovery 
of these spots.

When r < FADs , the strategy is as follows:

When r ≥ FADs,

where the probability of the FADs effect is 0.2. The lower 
and upper bounds of the predators’ positions are lb and ub , 
and r is a uniform random value in the range of [0, 1]. The 
binary vector U is created by initializing a random vector 
in the range [0, 1] and setting its arrays to 0 if the value is 
less than 0.2 and 1 otherwise. Integers r1 and r2 are chosen 
at random from 1 to N.

Moreover, the MOMPA employs a Gaussian perturba-
tion technique to enhance the diversity of the population 
and enhance its ability to explore the global search space. 
The equations of the Gaussian perturbation technique are 
as follows:

(16)
stepsizei = RL ⊗

(
Elitei − RL ⊗ Preyi

)
i = 1,… ,

⌊
N

2

⌋
,

(17)Preyi = Preyi + P ⋅ R⊗ stepsizei,

(18)
stepsizei = RB ⊗

(
RB ⊗ Preyi − Elitei

)
, i =

⌊
N

2

⌋
+ 1,… ,N,

(19)Preyi = Preyi + P ⋅ CF ⋅ stepsizei,

(20)
stepsizei = RL ⊗

(
Elitei − RB ⊗ Preyi

)
i = 1,… ,N,

(21)Preyi = Preyi + P ⋅ CF ⋅ stepsizei.

(22)
Preyi = Preyi + CF ⋅ [lb + R⊗ (ub − lb)]⊗ U, i = 1,… ,N.

(23)

Prey
i
= Prey

i
+ [FADs ⋅ (1 − r) + r] ⋅

(
Prey

r1
− Prey

r2

)
,

i = 1,… ,N,
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where G follows a normal distribution and i = 1,… ,N.
It is worth noting that MOMPA utilizes a hybrid approach 

that combines the non-dominated sorting technique [34] with 
reference point strategy [35] to accurately and efficiently find 
preys of superior quality. The aforementioned procedure not 
only serves to improve the identification of solutions of supe-
rior quality but also plays a pivotal role in preserving the diver-
sity present within the sets of Pareto optimal solutions. Despite 
the MOMPA’s efficacy in a broad spectrum of optimization 
scenarios, it encounters inherent limitations regarding search 
space complexity and susceptibility to local optima entrap-
ment. This observation necessitates an evolution towards a 
more sophisticated solution, hence the development of the 
QQSMOMPA technique, aimed at ameliorating these con-
straints and augmenting the algorithm’s overall optimization 
capability.

3.2  The First Improvement: SMOMPA

To balance exploration and exploitation strategies and diver-
sify the solution set, this paper integrates the spiral model from 
the whale optimization algorithm (WOA) into the MOMPA, 
thus developing SMOMPA. The incorporation of the spiral 
model, initially proposed by Chen et al. [36] and based on 
the behavior of whales creating air bubbles to herd prey as 
elucidated by Gharehchopogh and Gholizadeh [37], serves 
as a strategic improvement. The selection of the spiral model 
for enhancement is motivated by its proven effectiveness in 
achieving a balanced interplay between the exploration and 
exploitation phases throughout the optimization process. Nota-
bly, the spiral model replicates the spiral bubble-net feeding 
strategy, which achieves a harmonious balance between encir-
cling the prey and initiating a spiraling approach [38, 39]. This 

(24)Preyi = Preyi + G ⋅ (ub − lb), approach is akin to efficiently contracting the search area in 
optimization challenges while ensuring exhaustive explora-
tion, thereby offering an effective method to navigate the deli-
cate equilibrium between extensive global search and focused 
exploitation [40].

The strategy for updating the solution via the spiral model 
in SMOMPA is as follows:

where l is a constant parameter that modifies the form of the 
spiral. By default, its value is set to 1. On the other hand, 
� is a numerical value selected randomly from the interval 
[−1, 1] in each iteration.

3.3  The Second Improvement: QQSMOMPA

3.3.1  The QOL

QOL is an innovative optimization technique that draws 
inspiration from opposition-based learning (OBL) [41]. 
QOL entails evaluating potential solutions in conjunction 
with their quasi-opposite counterparts, which are not precise 
opposites but are deliberately selected to be more closely 
aligned with the original answers. The objective of this 
strategy is to improve the search for the best possible solu-
tions within given numerical ranges. This approach aims 
to broaden the search scope within the solution space and 
facilitate the evasion of local optima [42, 43].

The quasi-opposite solution can be defined in d-dimen-
sion as follows:

(25)
Preyi = |Elitei − Preyi| ⋅ el� ⋅ cos (2��) + Elitei i = 1,… ,N,

(26)
Preyi = rand

(
ub + lb

2
, ub + lb − Preyi

)
i = 1,… ,N.
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3.3.2  The Q‑learning

To adaptively select among numerous strategies, this paper 
aims to utilize Q-learning for improvement. Q-learning is a 
renowned algorithm in the field of Reinforcement Learning 
(RL) and it plays a crucial part in the methodology suggested 
in this work. The Q-learning method employs a reward table 
to provide incentives and consequences to an agent based 
on its behavior in various states. The Q− table serves as 
an agent’s collection of experiences, as elucidated by Zam-
firache et al. [44]. The primary objective of the agent is to 
make well-informed judgments by consistently updating its 
current state, taking into account the corresponding Q-value 
from the Q− table , and evaluating all possible actions. The 
learning process occurs through a sequence of iterations, 
known as iterations (referred to as Iter), where agents gain 
knowledge by exploring their surroundings and updating 
their Q − table using the Bellman equation:

where � is the learning rate value and � is the discount factor 
between 0 and 1. r Iter is the immediate reward calculated by s 
and a. The Algorithm 1 demonstrates the sequential process 
of Q-learning.

3.3.3  The QQSMOMPA

Our enhancement strategy introduces the SMOMPA algo-
rithm and its advanced iteration, QQSMOMPA, which inte-
grates Q-learning to refine the exploration and exploitation 
phases of MOMPA. This combination enhances the algo-
rithm’s ability to remember and utilize information about the 
search space across iterations, effectively helping to escape 
local optima and improving search efficiency.

Q-learning is a crucial component in the process of mak-
ing intelligent decisions. It dynamically chooses between the 

(27)
Q(s, a) ← Q(s, a) + �

[
rIter + � max

a

(
Q
(
s�, a

))
− Q(s, a)

]
,

fish aggregating devices and the QOL strategy, depending 
on the rewards obtained. The incorporation of Q-learning, 
QOL, and FADs provides numerous benefits. It facilitates 
the dynamic selection of strategies, enabling the system to 
modify its approach flexibly based on the present condition 
and past knowledge. The overarching goal of Q-learning, 
which is to maximize long-term rewards, is applied to the 
choice of position update strategy, ultimately leading to the 
discovery of improved solutions [45, 46].

According to our proposed QQSMOMPA, the prey 
assumes the function of the agent. The states represent the 
continuous actions of each prey, whereas action indicates 
the movement of each agent from one state to another. 
The Q− table contains the historical performance of the 
Q-learning agent in previous episodes. This information is 
crucial for determining the most appropriate option during 
the three stages. QQSMOMPA regulates the determination 
of the suitable phases for each agent ( i = 1,… ,N ) according 
to a particular criterion or parameter referred to as

With Q-learning assistance, the selection of actions for each 
prey becomes adaptive. The primary interaction between 
Q-learning and the three potential operations can be con-
densed into four steps, as outlined below: 

1. Initialize the Q− table as a 3 × 3 zero matrix and 

Reward is given as: 
⎡⎢⎢⎣

−1 1 1

1 1 1

1 1 1

⎤⎥⎥⎦
.

2. Obtain the best strategy for the current iteration to be 
executed based on the values contained in the Q− table 
for the current state shown in Eq. (28).

3. Execute the selected action and calculate the number of 
selected preys in Prey by implementing non-dominant 
sorting and reference point. The immediate reward is 
updated as follows: 

4. Update the Q− table using Algorithm 1.

(28)

Preyi

=

⎧⎪⎨⎪⎩

Preyi + CF ⋅ [lb + R⊗ (ub − lb)]⊗ U, ifQ
�
s, a1

�
ismax,

Preyi + [FADs ⋅ (1 − r) + r] ⋅
�
Preyr1 − Preyr2

�
, ifQ

�
s, a2

�
ismax,

rand
�

ub+lb

2
, ub + lb − Preyi

�
ifQ

�
s, a3

�
ismax,

(29)Rewardm,n = number
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An outstanding characteristic of the suggested method QQS-
MOMPA is its capacity to transition between various phases as 
required. Due to this particular characteristic, it can efficiently 
investigate both global and local optimal solutions. The Algo-
rithm 2 demonstrates the sequential process of the proposed 
QQSMOMPA. Additionally, the proposed QQSMOMPA’s 
effectiveness is verified through its application to benchmark 
functions, as detailed in Supplementary Materials.

3.4  The Fuzzy Decision

After obtaining the Pareto optimal set of PID controller param-
eters, selecting a compromise solution becomes essential. The 
paper employs fuzzy set theory for a final evaluation of solutions 
in the Pareto optimal set. The fuzzy utility value �i for the ith 
solution is determined by:

where the variable M denotes the quantity of goal functions, 
whereas the variable N denotes the quantity of solutions. The 
formula for �i,j is as follows:

where fmax
j

 represents the highest value of the jth goal func-
tion within the population, whereas fmin

j
 represents the 

smallest value. It is noteworthy to mention that this research 
selects the option with the highest � value as the ideal com-
promise solution.

(30)�i =

∑M

j=1
�i,j

∑N

i=1

∑M

j=1
�i,j

,

(31)�i,j =

⎧
⎪⎨⎪⎩

1 fj
�
Xi

� ≤ fmin
j

fmax
j

−fj(Xi)
fmax
j

−fmin
j

fmin
j

≤ fj
�
Xi

� ≤ fmax
j

0 fj
�
Xi

� ≥ fmax
j
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4  Practical AGC Problem

The proposed QQSMOMPA tuning PID controller’s gains 
to the AGC is shown in this section using three test sys-
tems. The obtained results are contrasted with the subse-
quent strategy: (1) BFOA: PI [21], (2) HBFOA:PI [47], 
(3) TLBO: PID [22], (4) ISFS: PID [3], (5) DE: PID [48]. 
The tests are conducted within the Matlab R2017a envi-
ronment, utilizing a computing system equipped with an 
i7-8750 H CPU and 8 GB RAM.

4.1  Test System‑1

The design of test system-1 is depicted in Fig. 1, where 
Table 1 lists the ideal controller parameters, peak values 
(p), and settling times ( Ts ). Utilizing the QQSMOMPA-
tuned PID controller when introducing a 0.1 Step Load 
Disturbance (SLD) into region-1 at t = 0 s, the peak of Δf1 
is recorded at p = 0.0651 Hz (see Table 1), which is lower 

than the peak achieved with the ISFS-tuned PID controller 
( p = 0.1226 Hz) but slightly higher than that of the TLBO-
tuned PID controller ( p = 0.0587 Hz). In contrast, the 
QQSMOMPA-tuned PID controller achieves the smallest 
peak for Δf2 at p = 0.0321 Hz, outperforming the TLBO-
tuned PID controller ( p = 0.0355 Hz) and significantly the 
ISFS-tuned PID controller ( p = 0.1746 Hz). Regarding 
ΔPtie ’s peak value, the QQSMOMPA-tuned PID control-
ler records the lowest at p = 0.0123 p.u, surpassing both 
the TLBO-tuned PID controller ( p = 0.0143 p.u) and the 
ISFS-tuned PID controller ( p = 0.0155 p.u). These results 
underline the effectiveness of our proposed method in 
minimizing system overshoot. Table 3 demonstrates how 
the QQSMOMPA framework, through the incorporation 
of QOL and Q-learning, adeptly balances exploration and 
exploitation to optimize PID controllers within nonlinear 
oscillatory AGC systems, yielding a diverse set of superior 
Pareto-optimal solutions. This balance is manifested in a 
spectrum of optimized PID controller gains, as evidenced 
by the objective function metrics, which unequivocally 

Table 1  Controller gains, 
settling times, and peak value 
for system-1 test using different 
methods

Bold values highlight the shortest settling time or the smallest overshoot of different control strategy

Controllers BFOA: PI [21] HBFOA: PI [47] TLBO: PID [22] ISFS: PID [3] QQSMOMPA: PID

Controller gains Kp = −0.4207 Kp = −0.4383 Kp = 1.1726 Kp = 1.6293 Kp = 2.0000

 Ki = 1.9370  Ki = 2.0000  Ki = 2.0000

 Ki = 0.2795  Ki = 0.3349  Kd = 1.1635  Kd = 0.5882  Kd = 0.9010

Ts

   Δf1 5.52 5.17 4.84 2.15 2.94
   Δf2 7.09 6.81 5.13 3.66 2.94
   ΔPtie 6.35 4.59 3.03 3.01 4.67

Peak value (p)
   Δf1 0.2533 0.2543 0.0587 0.1226 0.0651
   Δf2 0.2165 0.2172 0.0355 0.1746 0.0321
   ΔPtie 0.0824 0.0824 0.0143 0.0155 0.0123

Table 2  Controller gains, settling times, and peak value for system-2 test using different methods

Bold values highlight the shortest settling time or the smallest overshoot of different control strategy

Controllers HBFOA:PI [47] CRAZYPSO:PI [49] DE: PID [48] ISFS: PID [3] QQSMOMPA: PID

Controller gains Kp = −0.5484 Kp = −0.5762 Ki = 0.1962 Kp = 0.2383 Kp = 0.3898 Kp = 0.3894

 w1 = 0.7300

 w2 = 0.6848  Ki = 0.9718  Ki = 1.0013  Ki = 1.2909

 Ki = 0.2277  w3 = 0.7879  Kd = 0.4922  Kd = 0.7695  Kd = 0.7443

Ts (s)
   Δf1 10.58 11.08 6.87 6.25 6.75
   Δf2 10.95 11.99 6.89 6.48 5.56
   ΔPtie 9.43 11.12 4.40 4.40 6.66

Peak value (p)
   Δf1 0.0337 – 0.0196 0.0173 0.0172
   Δf2 0.0362 – 0.0145 0.0113 0.0115
   ΔPtie 0.0090 – 0.0040 0.0032 0.0032
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indicate an enhancement in performance via a comprehen-
sive array of superior Pareto-optimal solutions.

When introducing a 0.1 SLD into region-1 at t = 0 s, the 
resulting time-domain responses are showcased in Fig. 4. 
The QQSMOMPA-tuned PID controller’s responses are 
notably smoother, attributed to the formulation of the goal 
function J. Moreover, this method exhibits quicker conver-
gence to zero for frequency deviations and tie-line power, 
alongside diminished peak magnitudes.

The PID controller settings, as detailed in Table 1, are 
kept constant to assess the controller’s stability across 
different operational scenarios. Furthermore, an analy-
sis involving a concurrent 0.1 SLD in region-1 and a 0.2 
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Fig. 2  Transfer function model of test system-2

Table 3  Obtained controller 
gains and objective function 
values of QQSMOMPA:PID for 
test system-1

Bold values highlight the shortest settling time or the smallest overshoot of different control strategy

Controllers Kp Ki Kd ITAE ITSE J

QQSMOMPA:PID:1 1.0723 2.0000 0.3627 0.1298 0.0042 0.2521
QQSMOMPA:PID:2 1.3510 2.0000 0.3823 0.1346 0.0035 0.2303
QQSMOMPA:PID:3 1.5476 2.0000 0.5296 0.1464 0.0031 0.2009
QQSMOMPA:PID:4 1.6659 2.0000 0.5267 0.1528 0.0029 0.1972
QQSMOMPA:PID:5 1.8761 2.0000 0.8015 0.1690 0.0028 0.1825
QQSMOMPA:PID:6 1.9956 0.1057 1.3482 3.7376 0.1084 0.1625
QQSMOMPA:PID:7 2.0000 0.0124 1.6544 4.4518 0.1530 0.0572
QQSMOMPA:PID:8 2.0000 0.1240 1.6543 3.6225 0.1020 0.1764
QQSMOMPA:PID:9 2.0000 2.0000 0.8748 0.1768 0.0028 0.1784
QQSMOMPA:PID:10 2.0000 2.0000 0.9010 0.1774 0.0028 0.1782

Fig. 3  Random load
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SLD in region-2 has been conducted. The results for each 
region are depicted in Fig. 5. All evaluated strategies dis-
play adaptability to changes in the location and magnitude 
of load disturbances, effectively minimizing their regional 
discrepancies to zero. Notably, in these tests, our method-
ology exhibits enhanced transient response characteristics.

4.2  Test System‑2

To better align AGC with real-world conditions, we incor-
porate governor dead band (GDB) into a two-area no-reheat 
thermal power generation system, as illustrated in Fig. 2. The 
presence of GDB introduces system oscillations at a natural 

(a) ∆f1 (b) ∆f2 (c) ∆Ptie

Fig. 4  Test system-1’s time-domain responses to a 0.1 SLD in region-1

(a)∆ f1 (b) ∆ f2 (c)∆ Ptie

Fig. 5  Test system-1’s time-domain responses to a 0.1 SLD in region-1 and 0.2 SLD in region-2

(a)∆ f1 (b) ∆ f2 (c)∆ Ptie

Fig. 6  Test system-2’s time-domain responses to a 0.01 SLD in region-1
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frequency of approximately 0.5 Hz. The revised governor 
transfer function model is presented as follows:

The per-unit values are defined as f = 60Hz,B = 0.425p.u

MW/Hz,R = 2.4Hz∕p.u, Tg = 0.2s, Tt = 0.3s,Kps = 120Hz∕p.u,

Tps = 20s, T12 = 0.444p.u MW∕rad . A 0.01 SLD is intro-
duced to region-1 at t = 0 s. According to Table 2, the Ts 
for Δf2 achieved by the QQSMOMPA-tuned PID control-
ler is Ts = 5.56 s , demonstrating efficiency over the DE-
tuned PID controller ( Ts = 6.89 s ) and the ISFS-tuned PID 
controller ( Ts = 6.48 s ). Likewise, the peak value of Δf1 is 
lowest when using the QQSMOMPA-tuned PID controller 
( p = 0.0172 Hz ) compared to the DE-tuned PID control-
ler ( p = 0.0196 Hz ) and the ISFS-tuned PID controller 
( p = 0.0173 Hz).

The time-domain responses, derived from the gains listed 
in Table 2, are illustrated in Fig. 6. Characteristics such as 
improved responsiveness, reduced damping oscillations, 
faster settling times, and decreased peak values distinguish 
the performance of QQSMOMPA-tuned PID controllers, 
enabling a swift return to equilibrium. Notably, while the 
ISFS-tuned PID controller emerges as a primary contender, 
it overlooks certain objective functions, limiting its ability 
to provide more feasible solutions.

Additionally, a simultaneous consideration of a 0.01 
SLD in region-1 and a 0.03 SLD in region-2 is examined, to 
assess the resilience of each method in complex instances. 
The controller’s settings match those in Table 2. Figure 7 
displays the matching system response. Each control 
scheme’s system frequency change is stable, showing the 
robustness of the system. In contrast, the present investiga-
tion demonstrates that the QQSMOMPA tuning PID control-
ler exhibits enhanced anti-interference capabilities, as seen 

(32)Gg(s) =
0.8 − s(0.2∕�)

sTg + 1
.

(a)∆ f1 (b) ∆ f2 (c)∆ Ptie

Fig. 7  Test system-2’s time-domain responses to a 0.01 SLD in region-1 and a 0.03 SLD in region-2

Fig. 8  Test system-2’s comparative time-domain responses to random 
load disturbance
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by the faster load interference suppression observed in the 
red track compared to previous experiments.

To verify the robustness of our proposed strategy 
against random disturbances under more complex con-
ditions, a loading scenario is implemented on region-1 
as depicted in Fig. 2. The loading scenario is random 
in duration and amplitude, and its amplitude range is 
[− 0.005, 0.01] shown in Fig. 3.

Remaining the controller parameters unchanged, the 
same as Table 2, Fig. 8 shows the dynamic response of test 
system-2 when such a load disturbance occurs. Compared 
with DE: PID, QQSMOMPA has an excellent performance 
in optimizing PID controller parameters. From the super-
position response, our scheme has better system robustness 
than other controllers in terms of the uncertainty of load 
disturbance input.
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Table 4  Controller gains for 
system-3 test using different 
methods

Controllers Controller gains

Region-1 Region-2 Region-3

Intergral Ki1 = 0.111 Ki2 = 0.111 Ki3 = 0.113

HBFOA:PI [47] Kp1 = −0.1502 Kp2 = −0.1202 Kp3 = −0.0399

Ki1 = 0.0952 Ki2 = 0.1199 Ki3 = 0.0210

ISFS:PID [3] Kp = 1.1539 × 10−12 Kp = 1.1539 × 10−12 Kp = 1.1539 × 10−12

Ki = 0.0577 Ki = 0.0577 Ki = 0.0577

Kd = 0.1606 Kd = 0.1606 Kd = 0.1606

QQSMOMPA:PID Kp = 0 Kp = 0 Kp = 0

Ki = 0.0546 Ki = 0.0546 Ki = 0.0546

Kd = 0.1648 Kd = 0.1648 Kd = 0.1648
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(a) (b)

(c) (d)

(e) (f)

Fig. 10  Test system-3’s time-domain responses to a 0.01 SLD in all regions
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(a) (b)

(c) (d)

(e) (f)

Fig. 11  Test system-3’s time-domain responses to a 0.01 SLD in all regions
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4.3  Test System‑3

We employ a three-region hydroelectric power system 
(test system-3) to evaluate the applicability of the QQS-
MOMPA-tuned PID controller for managing multiple 
generating units. The terminology used to describe this 
system is consistent with that of the previously mentioned 
test system-1 and test system-2. In test system-3, the 
scheduled tie-line power transmission between two adja-
cent regions may have indirect connections to tie lines in 
regions beyond the two adjacent regions it is originally 
scheduled to connect. The transfer function model of test 
system-3 is depicted in Fig. 9, and the relevant parameters 
a r e  f = 60 Hz,B = 0.425 p.uMW∕Hz,R = 2.4 Hz∕p.u,

Tg = 0.08 s,K
r
= 0.5 s, T

r
= 10 s 

Tt = 0.3 s,Kep = 1.0,Ked = 4.0,Kei = 5.0, Tw = 1 s,

K
ps
= 120 Hz∕p.u,T

ps
= 20 s 

T12 = T23 = T13 = 0.086 p.uMW∕Hz. The thermal systems 
in region-1 and region-2 make use of single-stage reheat 
turbines, whereas region-3 utilizes a contemporary hydraulic 
system that incorporates an electronic governor in place of 
a traditional mechanical governor.

The same optimization procedure employed in the previ-
ous test system is used to determine the optimal controller 
parameters for the test system-3 with Generation Rate Con-
straints (GRC).

The PID controller refined through the QQSMOMPA 
process demonstrates improved step responses in each 
region. It rapidly enters the specified frequency range, 
reducing overshoot caused by this adjustment compared to 
ISFS: PID, and efficiently dampens oscillations, resulting 
in a smoother convergence curve. Nevertheless, our algo-
rithm is not flawless either. When comparing stability time, 
QQSMOMPA:PID is slightly longer than ISFS:PID, but still 
falls within an acceptable range. These enhancements are 
depicted in Figs. 10 and 11.

5  Conclusions

This paper delineates a novel framework for the optimization 
of PID controller gains within AGC systems for intercon-
nected power grids, employing the QQSMOMPA algorithm. 
This methodology, grounded in the integration of ITAE, 
ITSE, and the deviation rate of change as optimization objec-
tives, advances the state of controller tuning in AGC sys-
tems. The efficacy of this approach is substantiated through 
simulation analyses, evidencing the potential for improved 
robustness and control in AGC (Table 4).

Crucially, the auxiliary controller’s significant impact on 
enhancing control effectiveness highlights the imperative for 
continued refinement of controller structures. This under-
scores an emergent research trajectory that necessitates the 

exploration of advanced control strategies. Among these, 
reinforcement learning (RL) and model predictive control 
(MPC) stand out as pivotal areas for future investigation. 
RL’s adaptability and ability to optimize decision-making 
processes in real-time environments suggest a promis-
ing avenue for developing dynamic control strategies that 
can autonomously adjust to fluctuating system dynamics. 
Concurrently, MPC’s foresight in anticipating system dis-
turbances provides a compelling case for its application in 
preempting and mitigating control challenges. Additionally, 
we also notice the promising prospects of utilizing dendritic 
neuron models as controllers, offering another broad avenue 
for innovative control.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42235- 024- 00548-w.
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