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Abstract

Background:Muscle mass maintenance is largely regulated by basal muscle protein synthesis and the capacity to stimulate

muscle protein synthesis after food intake. The postprandial muscle protein synthetic response is modulated by the amount,

source, and type of protein consumed. It has been suggested that plant-based proteins are less potent in stimulating

postprandial muscle protein synthesis than animal-derived proteins. However, few data support this contention.

Objective: We aimed to assess postprandial plasma amino acid concentrations and muscle protein synthesis rates after

the ingestion of a substantial 35-g bolus of wheat protein hydrolysate compared with casein and whey protein.

Methods: Sixty healthy older men [mean6 SEM age: 716 1 y; body mass index (in kg/m2): 25.36 0.3] received a primed

continuous infusion of L-[ring-13C6]-phenylalanine and ingested 35 g wheat protein (n = 12), 35 g wheat protein hydrolysate

(WPH-35; n = 12), 35 g micellar casein (MCas-35; n = 12), 35 g whey protein (Whey-35; n = 12), or 60 g wheat protein

hydrolysate (WPH-60; n = 12). Plasma and muscle samples were collected at regular intervals.

Results: The postprandial increase in plasma essential amino acid concentrations was greater after ingesting Whey-35

(2.23 6 0.07 mM) than after MCas-35 (1.53 6 0.08 mM) and WPH-35 (1.50 6 0.04 mM) (P < 0.01). Myofibrillar protein

synthesis rates increased after ingesting MCas-35 (P < 0.01) and were higher after ingesting MCas-35 (0.050% 6

0.005%/h) than after WPH-35 (0.032% 6 0.004%/h) (P = 0.03). The postprandial increase in plasma leucine

concentrations was greater after ingesting Whey-35 than after WPH-60 (peak value: 580 6 18 compared with 378 6

10 mM, respectively; P < 0.01), despite similar leucine contents (4.4 g leucine). Nevertheless, the ingestion of WPH-60

increased myofibrillar protein synthesis rates above basal rates (0.049% 6 0.007%/h; P = 0.02).

Conclusions: Themyofibrillar protein synthetic response to the ingestion of 35 g casein is greater than after an equal amount

of wheat protein. Ingesting a larger amount of wheat protein (i.e., 60 g) substantially increases myofibrillar protein synthesis

rates in healthy older men. This trial was registered at clinicaltrials.gov as NCT01952639. J Nutr 2016;146:1651–9.
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Introduction

The preservation of skeletal muscle mass throughout life is of key
importance to maintain functional capacity and metabolic health
(1, 2). Muscle mass maintenance is largely regulated by basal
muscle protein synthesis rates and the ability to stimulate muscle

protein synthesis after food intake (3). In particular, protein
ingestion directly stimulates postprandial muscle protein synthesis

rates (4–10). The muscle protein synthetic response to protein

ingestion can be modulated by changing the amount, source,

and type of protein consumed (11). Current research aims at

identifying the characteristics of the ingested protein source that

determine the magnitude of the postprandial muscle protein

synthetic response to develop more effective dietary strategies that

support muscle mass maintenance in health and disease.
In the US diet, plant-based proteins account for 30–50% of

total dietary protein intake (12). In less-privileged countries,

plant-based protein intake has been estimated to exceed 60%

(13). Despite the large contribution of plant-based proteins to

our diet, relatively few studies, to our knowledge, have assessed
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the muscle protein synthetic response to the ingestion of plant-
based proteins in humans (9, 10, 14–17). Nevertheless, it is
generally believed that plant-based proteins are less anabolic
than animal-derived proteins due to lower digestibility and
deficiencies in certain essential amino acids such as leucine,
lysine, and/or methionine (18). Innovations in food processing
have solved many issues with regard to plant-based protein
digestibility by the production of plant-based protein concen-
trates, isolates, and hydrolysates (19). Moreover, deficiencies in
leucine, lysine, and/or methionine may exist in some, but certainly
not all, plant-based proteins, because there is a great variety in the
amino acid composition between various plant-based proteins
(18). Most human studies performed so far have compared the
muscle protein synthetic response to the ingestion of soy protein
with casein (9), whey protein (9, 10), milk (17), or beef (16). Few
data exist on the muscle protein synthetic response after the
ingestion of other plant-based proteins.

Wheat protein is the most abundant plant-based protein in
our diet and comprises;20%of total protein intake (13). Despite
the low digestibility of whole wheat (;45%), the removal of
antinutritional factors (i.e., compounds that interfere with protein
digestion and absorption) has resulted in purified wheat protein
with a digestibility similar to that of animal-derived proteins (i.e.,
>90%) (19). The production of wheat protein hydrolysate has
resulted in a more practical protein source to be used in various
food products. However, wheat protein has a relatively low lysine
and leucine content compared with isonitrogenous amounts of
animal-derived proteins (20). Previous work in rodents has shown
that the muscle protein synthetic response to the ingestion of a
single bolus of wheat protein is lower than after the ingestion of
dairy protein, and that consuming a greater amount of wheat
protein can compensate for a relative lack of certain essential
amino acids and allow for a greater postprandial muscle protein
synthetic response (20, 21). However, this concept remains to be
established in humans.

In the present study we first compared postprandial plasma
amino acid profiles and the muscle protein synthetic response
after the ingestion of 35 g intact or hydrolyzed wheat protein.
The ingestion of 35 g wheat protein provides 2.5 g leucine, which
should theoretically induce a measurable increase in postprandial
muscle protein synthesis rates (22). Next, we compared the impact
of ingesting 35 g wheat protein hydrolysate or the ingestion of 35 g
casein and 35 g whey protein on the postprandial muscle protein
synthetic response in older men. Finally, we assessed the muscle
protein synthetic response to the ingestion of leucine-matched
amounts of wheat protein hydrolysate compared with whey
protein (i.e., 60 compared with 35 g, respectively). By using
intravenous infusions of L-[ring-13C6]-phenylalanine and
L-[ring-3,5-2H2]-tyrosine, we were able to evaluate whole-
body amino acid kinetics as well as basal and postprandial
muscle protein synthesis rates after the ingestion of plant-
based and dairy proteins in vivo in humans (23). This is the
first study, to our knowledge, to provide a detailed evaluation
of the anabolic properties of one of the main plant-based
proteins in our diet.

Methods

Participants. Sixty healthy older men [mean6 SEM age: 716 1 y; BMI

(in kg/m2): 25.3 6 0.3] participated in this double-blind, parallel-group
randomized trial. The trial was conducted between January 2014 and

October 2014 at Maastricht University in Maastricht, Netherlands.

Participants� characteristics are shown in Table 1. All participants were

informed about the purpose of the study, experimental procedures, and

possible risks before providing written consent to participate. The

procedures followed were in accordance with the ethical standards of the

Medical Ethics Committee of Maastricht University Medical Centre+ on
human experimentation and in accordance with the Helsinki Declara-

tion of 1975 as revised in October 2013. The trial was registered at

clinicaltrials.gov (NCT01952639).

Pretesting. Volunteers between the age of 65 and 80 y and a BMI

between 18.5 and 30.0 underwent a medical screening to assess their

glycated hemoglobin, glucose tolerance [by a 2-h oral-glucose-tolerance

test (24)], blood pressure, weight, height, and body composition (by
DXA; Discovery A; Hologic). The participants were deemed healthy on

the basis of their responses to a medical questionnaire and screening

results. [See Figure 1 for the CONSORT (Consolidated Standards of
Reporting Trials) flow diagram.]

Study design. Participants were randomly assigned to consume 35 g

wheat protein (WP-357; Amygluten; Tereos; n = 12), 35 g wheat protein
hydrolysate (WPH-35; Meripro; Tereos; n = 12), 35 g micellar casein

(MCas-35; Refit MCI 80; Domo; n = 12), 35 g whey protein (Whey-35;

Nutri Whey 800F; DMV; n = 12), or 60 g wheat protein hydrolysate

(WPH-60; Meripro; n = 12). The ingestion of 35 g wheat protein
provides 2.5 g leucine, which should theoretically induce a measurable

increase in postprandial muscle protein synthesis rates (22). Random-

ization was performed by using a computerized random-number
generator.

Diet and physical activity control. All of the participants were

instructed to refrain from any sort of strenuous physical activity and to
keep their diet as consistent as possible for 2 d before the infusion trial.

On the evening before the infusion trial, all participants consumed a

standardized meal (30.9 6 0.5 kJ/kg body weight) composed of 16% of

energy from protein, 33% from carbohydrate, and 51% from fat.

Infusion protocol. At 0800 h, after an overnight fast, participants

arrived at the laboratory by car or public transport. A catheter was

inserted into an antecubital vein for stable isotope amino acid infusion. A
second catheter was inserted into a dorsal hand vein of the contralateral

arm and placed in a hot box (60�C) for arterialized blood sampling (25).

After taking a baseline blood sample, the plasma phenylalanine and
tyrosine pools were primedwith a single dose of L-[ring-13C6]-phenylalanine

(2.1 mmol/kg) and L-[ring-3,5-2H2]-tyrosine (0.8 mmol/kg), after which a

continuous L-[ring-13C6]-phenylalanine (0.048 mmol � kg21 � min21)

and L-[ring-3,5-2H2]-tyrosine (0.018 mmol � kg21 � min21) intravenous
infusion was initiated (t = –270 min). After resting in a supine position

for 90 min, a second arterialized blood sample was drawn and a muscle

biopsy sample was collected from the vastus lateralis of a randomly

chosen leg (t = –180 min). To determine basal muscle protein synthesis
rates, a second muscle biopsy sample from the same leg was collected

180 min after the first biopsy. Subsequently, participants received a

drink containing WP-35 (n = 12), WPH-35 (n = 12), MCas-35 (n = 12),
Whey-35 (n = 12), orWPH-60 (n = 12) (t = 0min; Supplemental Table 1 lists

the amino acid composition of the proteins). Arterialized blood samples

were collected at t =2120,290,260,230, 0, 15, 30, 45, 60, 75, 90, 120,

150, 180, 210, and 240min. Third and fourthmuscle biopsy samples were
collected from the contralateral leg at t = 120 and t = 240min to determine

postprandial muscle protein synthesis rates. Blood samples were collected

in EDTA-containing tubes and centrifuged at 1000 g for 10 min at 4�C.
Aliquots of plasma were frozen in liquid nitrogen and stored at 280�C.
Biopsy samples were collected from the middle region of the vastus
lateralis, ;15 cm above the patella and 3 cm below entry through the

fascia, by using the percutaneous needle biopsy technique (26). Muscle
samples were dissected carefully, freed from any visible nonmuscle

material, immediately frozen in liquid nitrogen, and stored at280�C until

7 Abbreviations used: FSR, fractional synthetic rate; GC-MS, gas chromatography–-

mass spectrometry; MCas-35, 35 gmicellar casein; mTORC1, mammalian target

of rapamycin complex 1; Whey-35, 35 g whey protein; WP-35, 35 g wheat

protein; WPH-35, 35 g wheat protein hydrolysate; WPH-60, 60 g wheat protein

hydrolysate.
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further analysis. For a schematic representation of the infusion protocol,

see Supplemental Figure 1.

Plasma and muscle tissue analyses. For the determination of plasma
concentrations of all essential and nonessential amino acids, 10mL plasma

was mixed with 1500 mL 0.5-mM tridecafluoroheptanoic acid (Sigma) in

water and 10 mL internal standard solution containing stable isotope–
labeled amino acids (Cambridge Isotopes Laboratories) in 0.1 M HCl.

Amino acid concentrations were determined by using ultraperformance

liquid chromatography–tandem mass spectrometry, as described previ-

ously (27). Plasma phenylalanine, tyrosine, and leucine concentrations;
plasma L-[ring-13C6]-phenylalanine, L-[ring-13C6]-tyrosine, and L-[ring-

3,5-2H2]-tyrosine enrichments; and muscle intracellular L-[ring-13C6]-

phenylalanine enrichments were determined by gas chromatography–

mass spectrometry (GC-MS; Agilent 7890A GC/5975C MSD; Agilent
Technologies) as described in our previous work (28). Myofibrillar and

mixed muscle proteins were extracted from separate pieces of muscle

tissue (;60 mg) as described previously (28, 29). Myofibrillar and mixed
muscle protein-bound L-[ring-13C6]-phenylalanine enrichments were de-

termined by gas chromatography-combustion-isotope ratio mass spec-

trometry analysis as described in our previous work (30).

Calculations. Intravenous infusions of L-[ring-13C6]-phenylalanine and

L-[ring-3,5-2H2]-tyrosine combined with arterialized blood sampling

allowed us to assess whole-body amino acid kinetics in non–steady state

conditions. Total rate of appearance (Ra), total rate of disappearance
(Rd), and oxidation and synthesis rates were calculated by usingmodified

Steele�s equations (31, 32), as follows:

TotalRa ¼
Fiv2

"
pV3CðtÞ3dEiv

dt

#

EivðtÞ ð1Þ

TotalRd ¼ TotalRa2pV3
dC

dt
ð2Þ

Phe hydroxylation ¼ TyrRa 3
ETyrðtÞ
EPheðtÞ3

PheRd

ðFPhe þ PheRdÞ ð3Þ

Protein synthesis ¼ TotalRd 2Phe hydroxylation ð4Þ

Total Ra represents the rate at which both dietary protein–derived

phenylalanine as well as phenylalanine derived from whole-body protein
breakdown enters the circulation. Fiv is the intravenous L-[ring-13C6]-

phenylalanine infusion rate (mmol � kg21 �min21), pV (0.125 L � kg21) is

the distribution volume (31), C(t) is the mean plasma phenylalanine

concentration between 2 consecutive time points, dEiv/dt is the time-

dependent variation in plasma L-[ring-13C6]-phenylalanine enrichments,
and Eiv(t) is the mean plasma L-[ring-13C6]-phenylalanine enrichment

between 2 consecutive time points. Total Rd represents the rate of

phenylalanine hydroxylation (first step in phenylalanine oxidation) plus
the rate of phenylalanine utilization for protein synthesis. dC/dt is the

time-dependent variation in plasma phenylalanine concentrations. Tyr

Ra is the total rate of tyrosine appearance based on the intravenous

L-[ring-3,5-2H2]-tyrosine infusion, plasma L-[ring-3,5-2H2]-tyrosine en-
richments, and plasma tyrosine concentrations; ETyr(t) and EPhe(t)
represent the mean plasma L-[ring-13C6]-tyrosine and L-[ring-13C6]-

phenylalanine enrichment between 2 consecutive time points, respec-

tively; Phe Rd is the total rate of phenylalanine disappearance; and
FPhe is the intravenous infusion rate of L-[ring-13C6]-phenylalanine

(mmol � kg21 � min21).

Myofibrillar and mixed muscle protein fractional synthetic rates
(FSRs) were calculated by using the standard precursor-product equa-

tion, as follows:

FSR ¼ DEp

Eprecursor � t � 100 ð5Þ

DEp is the increment in myofibrillar or mixed muscle protein–bound

L-[ring-13C6]-phenylalanine enrichment after an incorporation period,

Eprecursor is the weighted mean plasma or intracellular L-[ring-13C6]-

phenylalanine enrichment during that incorporation period, and t is the
incorporation period (h). Weighted mean plasma or intracellular

enrichments were calculated by taking the average enrichment between

all consecutive time points and correcting for the time between these

sampling time points. The weighted mean plasma precursor pool is
preferred in this setting, because the more frequent sampling time

points allow for a more accurate correction of the transient changes in

precursor pool enrichments over time (29). For basal FSR, muscle
biopsy samples at t =2180 and 0 min were used; and for postprandial

FSRs, biopsy samples at t = 0, 120, and 240 min were used.

Statistical analysis. All of the data are expressed as means 6 SEMs.
Within this study we compared the following treatments: 1) WP-35 with

WPH-35, 2) WPH-35 with MCas-35 and Whey-35, and 3) Whey-35

with WPH-60. This allowed us to determine 1) whether wheat protein

hydrolysis affects postprandial plasma amino acid concentrations and
the muscle protein synthetic response to the ingestion of wheat protein,

2) the anabolic properties of wheat protein hydrolysate compared

with both casein and whey protein, and 3) whether the ingestion of a
leucine-matched amount of wheat protein hydrolysate can compensate

TABLE 1 Subject characteristics1

WP-35 WPH-35 MCas-35 Whey-35 WPH-60

Age, y 68 6 1 72 6 2* 73 6 1 72 6 2 68 6 1

Weight, kg 77.1 6 1.7 78.6 6 3.9 75.1 6 2.8 79.3 6 2.4 81.0 6 3.0

BMI, kg/m2 25.1 6 0.6 25.5 6 1.0 24.6 6 0.5 25.2 6 0.5 26.3 6 0.8

Systolic BP, mm Hg 138 6 6 140 6 4 139 6 5 133 6 3 139 6 6

Diastolic BP, mm Hg 77 6 3 67 6 2* 69 6 3 69 6 2 71 6 3

Fat, % 22.9 6 1.1 24.0 6 1.0 25.1 6 1.2 23.9 6 0.7 25.4 6 1.1

Appendicular lean mass, kg 25.1 6 0.7 24.5 6 1.0 23.0 6 1.0 25.1 6 0.7 25.5 6 1.0

Lean body mass, kg 57.4 6 1.5 56.9 6 2.5 53.6 6 2.0 57.8 6 1.5 58.1 6 2.2

Fasting glucose, mmol/L 6.0 6 0.1 6.0 6 0.2 6.0 6 0.2 6.1 6 0.1 5.8 6 0.1

2-h glucose, mmol/L 6.5 6 0.3 6.2 6 0.5 6.1 6 0.5 6.1 6 0.4 5.5 6 0.5

HbA1c, % 5.5 6 0.1 5.6 6 0.1 5.5 6 0.1 5.3 6 0.1 5.4 6 0.1

OGIS, mL � min21 � m22 351 6 11 357 6 8 351 6 23 353 6 12 357 6 18

1 Values are means 6 SEMs, n = 12/group. Statistical analysis was performed on the following comparisons: 1) WP-35 compared with

WPH-35, 2) WPH-35 compared with MCas-35 and Whey- 35, and 3) Whey-35 compared with WPH-60. *Different from WP-35, P , 0.05.

BP, blood pressure; HbA1c, glycated hemoglobin; MCas-35, 35 g micellar casein; OGIS, oral-glucose insulin sensitivity; Whey-35, 35 g

whey protein; WP-35, 35 g wheat protein; WPH-35, 35 g wheat protein hydrolysate; WPH-60, 60 g wheat protein hydrolysate.
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for the (anticipated) lower anabolic properties of wheat protein

hydrolysate compared with whey protein. For plasma time curves,

repeated-measures ANOVA with treatment, time, and their interaction
was used to identify differences between treatments over time. When

significant interaction or treatment effects were observed, Tukey�s post
hoc analysis was performed to locate these differences. For muscle
variables, ANCOVA with basal values as covariates and time and

treatment as factors was used to identify differences between treatments,

and repeated-measures ANOVAwas used to identify differences between

basal and postprandial muscle protein synthesis rates. Significance was
set at P < 0.05. All calculations were performed by using IBM SPSS

Statistics (version 21).

Results

Intact compared with hydrolyzed wheat protein. Postpran-
dial plasma concentrations of the essential amino acids are
presented in Supplemental Figure 2. Plasma concentrations of
histidine, isoleucine, leucine, lysine, phenylalanine, threonine,

tryptophan, and valine and the sum of essential amino acids
increased after protein ingestion (P < 0.001) and did not differ
between WP-35 and WPH-35 (P-interaction $ 0.05). Plasma
methionine concentrations increased to a greater extent after the
ingestion of WP-35 than after WPH-35 (P-interaction < 0.001).

Supplemental Figure 3 shows plasma leucine and phenylal-
anine concentrations as well as L-[ring-13C6]-phenylalanine
enrichments as measured by GC-MS for the calculation of
whole-body amino acid kinetics. Plasma leucine and phenylal-
anine concentrations increased after protein ingestion to a
similar extent in both groups (P-interaction $ 0.05). Plasma
L-[ring-13C6]-phenylalanine enrichments transiently declined
after protein intake (P < 0.001), with no differences between
WP-35 and WPH-35 (P = 0.46).

Total phenylalanine appearance rates increased after the
ingestion of both intact and hydrolyzed wheat protein (P <
0.001), with no differences between treatments (P-interaction =
0.32; Figure 2A). The postprandial muscle protein synthetic
response as assessed over the entire 0- to 4-h postprandial

FIGURE 1 CONSORT flow diagram. CONSORT, Consolidated Standards of Reporting Trials.
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period did not differ between WP-35 and WPH-35 (P = 0.65;
Figure 2B).

Wheat protein hydrolysate compared with dairy protein.
The postprandial increase in plasma essential amino acid and
leucine concentrations was greater after the ingestion of Whey-
35 than after WPH-35 and MCas-35 (P-interaction < 0.001;
Figure 3A, B). Moreover, MCas-35 ingestion resulted in more
prolonged hyperaminoacidemia than did WPH-35 ingestion
(P-interaction < 0.001). Postprandial plasma lysine and methi-
onine concentrations were different between all 3 treatments
and were higher after Whey-35 ingestion and lower after the
ingestion of WPH-35 (P-interaction < 0.001; Figure 3C, D). A
complete overview of all essential amino acid concentrations is
presented in Supplemental Figure 4.

Supplemental Figure 5 shows plasma leucine and phenylal-
anine concentrations as well as L-[ring-13C6]-phenylalanine
enrichments as measured by GC-MS for the calculation of
whole-body amino acid kinetics. Plasma leucine concentrations
increased to a greater extent after the ingestion of Whey-35 than
after MCas-35 and WPH-35 (P-interaction < 0.001). The
ingestion of WPH-35 resulted in a slightly greater but more
transient increase in plasma leucine concentrations than did
MCas-35 ingestion (P-interaction < 0.001). Postprandial
plasma phenylalanine concentrations were significantly higher
after WPH-35 ingestion than after Whey-35 (P-interaction <
0.001). MCas-35 ingestion resulted in a slightly lower but more

FIGURE 2 Whole-body total Ra (A) and myofibrillar protein FSRs

calculated on the basis of the plasma precursor pool (B) over the entire

(0–4 h) postprandial period after the ingestion of WP-35 or WPH-35 in

healthy older men. Values are means 6 SEMs, n = 12/group. FSR,

fractional synthetic rate; Ra, rate of appearance; WP-35, 35 g wheat

protein; WPH-35, 35 g wheat protein hydrolysate.

FIGURE 3 Plasma EAA (A), leucine (B), lysine (C), and methionine

(D) concentrations after the ingestion of WPH-35, MCas-35, or Whey-

35 in healthy older men. Values are means 6 SEMs, n = 12/group.

EAA, essential amino acid; MCas-35, 35 g casein; Whey-35, 35 g

whey protein; WPH-35, 35 g wheat protein hydrolysate.
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prolonged increase in plasma phenylalanine concentrations than
did Whey-35 ingestion (P-interaction < 0.001). The dilution in
plasma L-[ring-13C6]-phenylalanine enrichments was reflective of
the increase in plasma phenylalanine concentrations, with the
greatest dilution after the ingestion of WPH-35 compared with
MCas-35 and Whey-35 (P-interaction < 0.001).

Whole-body phenylalanine kinetics are shown in Supple-
mental Figure 6. Total phenylalanine appearance rates, total
phenylalanine disappearance rates, and phenylalanine utiliza-
tion for protein synthesis increased after protein ingestion, with
a greater increase after WPH-35, a moderate increase after
Whey-35, and a lower but more prolonged elevation after
MCas-35 ingestion (P-interaction < 0.001). Phenylalanine ox-
idation was higher after the ingestion ofWPH-35, which is likely
due to a higher phenylalanine content and/or suboptimal amino
acid composition of wheat protein compared with dairy protein
(18). Phenylalanine oxidation rates reached similar peak values
after the ingestion of MCas-35 and Whey-35 and remained
elevated for a longer time period after MCas-35 ingestion
(P-interaction = 0.001).

Myofibrillar protein synthesis rates calculated on the basis
of the plasma precursor pool (Figure 4) increased from basal
rates after the ingestion ofMCas-35 when assessed over the late
(2–4 h) and entire (0–4 h) postprandial period (time P = 0.007
and P = 0.008, respectively). The ingestion of Whey-35 or
WPH-35 did not significantly stimulate muscle protein synthe-
sis rates above basal values (P = 0.12 and P = 0.25, respectively).
Postprandial myofibrillar protein synthesis rates were higher
after the ingestion of MCas-35 than after WPH-35 when
assessed over the early (0–2 h) and entire (0–4 h) postprandial
period (treatment P = 0.027 and P = 0.011, respectively).
Similar responses were observed by using the mixed muscle
protein fraction and when muscle protein synthesis rates were
calculated on the basis of the intracellular precursor pool (data
not shown).

Leucine-matched amounts of whey protein compared
with wheat protein hydrolysate. The postprandial increase
in plasma concentrations of isoleucine, leucine, lysine, methio-
nine, threonine, tryptophan, and valine and the sum of essential
amino acids was greater after ingesting Whey-35 than after
ingesting WPH-60 (P-interaction < 0.001; Supplemental Figure

7). Plasma histidine and phenylalanine concentrations increased
to a greater extent after the ingestion of WPH-60 than after
Whey-35 (P-interaction < 0.001). Figure 5 shows plasma leucine
and phenylalanine concentrations as well as L-[ring-13C6]-
phenylalanine enrichments as measured by GC-MS for the
calculation of whole-body amino acid kinetics. Despite equal
leucine content, plasma leucine concentrations increased to a
greater extent after the ingestion of Whey-35 than after WPH-
60 (P-interaction < 0.001). Plasma phenylalanine concentra-
tions increased to a greater extent and remained elevated for a
more prolonged period after the ingestion of WPH-60 than
after Whey-35 (P-interaction < 0.001). The postprandial

FIGURE 4 Myofibrillar protein FSRs, calculated on the basis of the

plasma precursor pool, during the fasting state (Basal) and over the

entire (0–4 h) postprandial period after the ingestion of WPH-35,

MCas-35, or Whey-35 in healthy older men. Values are means 6
SEMs, n = 12/group. Labeled bars without a common letter differ, P,
0.05. FSR, fractional synthetic rate; MCas-35, 35 g casein; Whey-35,

35 g whey protein; WPH-35, 35 g wheat protein hydrolysate.

FIGURE 5 Plasma leucine (A) and phenylalanine (B) concentrations

and L-[ring-13C6]-phenylalanine (C) enrichments (MPE) during the

fasting state and after the ingestion of Whey-35 or a leucine-matched

amount (i.e., 60 g) of WPH-60 in healthy older men. Values are

means 6 SEMs, n = 12/group. MPE, mole percent excess; Whey-35,

35 g whey protein; WPH-60, 60 g wheat protein hydrolysate.
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dilution in plasma L-[ring-13C6]-phenylalanine enrichments
was reflective of the increase in plasma phenylalanine concentra-
tions, with a more prolonged dilution after WPH-60 ingestion
(P-interaction < 0.001).

Total phenylalanine appearance rates, total phenylalanine
disappearance rates, and phenylalanine utilization for protein
synthesis increased after the ingestion of bothWhey-35 andWPH-
60, with a more prolonged elevation after WPH-60 ingestion
(P-interaction < 0.001; Supplemental Figure 8). Phenylalanine
oxidation increased to a greater extent and remained elevated for
a longer time period after the ingestion of WPH-60 than after
Whey-35 (P-interaction < 0.001).

Myofibrillar protein synthesis rates calculated on the basis of
the plasma precursor pool (Figure 6) increased from basal rates
after the ingestion of WPH-60 when assessed over the late
(2–4 h) and entire (0–4 h) postprandial period (time P < 0.001
and P = 0.017, respectively) and did not increase from basal rates
after the ingestion of Whey-35 (time P = 0.11). Similar responses
were observed by using the mixed muscle protein fraction and
when muscle protein synthesis rates were calculated on the basis
of the intracellular precursor pool (data not shown).

Discussion

In the current study, we assessed the postprandial response to the
ingestion of intact compared with hydrolyzed wheat protein.
The ingestion of 35 g intact or hydrolyzed wheat protein
was followed by a rapid increase in circulating essential amino
acid concentrations, with no differences between protein forms
(Supplemental Figure 2). Accordingly, postprandial muscle
protein synthesis rates did not differ after the ingestion of intact
compared with hydrolyzed wheat protein (Figure 2). Because no
differences were evident between the postprandial responses to
the ingestion of intact and hydrolyzed wheat protein, and
solubility is much higher for the protein hydrolysate, it would
generally be preferable to apply a wheat protein hydrolysate in
the development of (liquid) nutritional supplements.

Plant-based proteins generally exhibit lower digestibility than
animal-derived proteins (33). As such, less of the dietary protein
is effectively digested and absorbed, resulting in lower post-
prandial availability of dietary protein–derived amino acids as
precursors for de novo muscle protein synthesis (34). However,

once freed from antinutritional compounds that interfere with
protein digestion and absorption, purified plant-based proteins
are likely to possess digestion and absorption kinetics that are
not different from animal-derived proteins (19, 33). Here, we
assessed postprandial amino acid profiles after the ingestion of
purified wheat protein hydrolysate compared with casein and
whey protein. The ingestion of WPH-35, MCas-35, and Whey-
35 rapidly increased plasma essential amino acid concentrations
(Figure 3). The ingestion of wheat protein hydrolysate resulted
in postprandial peak essential amino acid concentrations similar
to casein ingestion, despite the lower essential amino acid
content of the ingested wheat protein hydrolysate. However,
casein ingestion resulted in a more prolonged elevation of
circulating essential amino acid concentrations compared with
the ingestion of the same amount of wheat protein hydrolysate
(Figure 3). The ingestion of whey protein, compared with wheat
protein hydrolysate and casein, resulted in a more prominent
postprandial increase in plasma essential amino acid concen-
trations. Plasma lysine and methionine concentrations in-
creased only marginally after the ingestion of wheat protein
hydrolysate compared with casein and whey protein, which is
in agreement with the lower lysine and methionine contents in
wheat protein hydrolysate (1.5% and 0.6%, respectively) com-
pared with casein (7.6% and 2.1%, respectively) and whey
protein (10.1% and 2.0%, respectively). These data imply that
wheat protein hydrolysate is well digested and absorbed, with a
substantial postprandial increase in plasma amino acid avail-
ability. Despite this rapid postprandial increase in circulating
amino acid concentrations, we observed no significant
increase in muscle protein synthesis rates after the ingestion
of WPH-35 (4% 6 17%; P = 0.25) and an intermediate
increase in muscle protein synthesis rates after the ingestion
of Whey-35 (33% 6 24%; P = 0.12; Figure 4). In contrast, the
ingestion of an equal amount of casein resulted in a 48%6 16%
increase in muscle protein synthesis rates compared with basal
values (P = 0.011; Figure 4). The absence of a measurable
increase in muscle protein synthesis rates after the ingestion of
Whey-35 was surprising because we previously observed a
significant 44% and 38% increase in muscle protein synthesis
rates after the ingestion of whey protein in old (8) and young
(35) men, respectively.

In this study, we showed that the muscle protein synthetic
response after the ingestion of wheat protein hydrolysate is
lower than after the ingestion of casein. It seems likely that this is
attributable to differences in amino acid composition, with the
essential amino acid and leucine contents being lower in wheat
protein hydrolysate (;10 and 2.5 g/35 g protein, respectively)
than in casein (;15 and 3.2 g/35 g protein, respectively). In the
current study, participants consumed a substantial 35-g wheat
protein dose providing 2.5 g leucine, which has been suggested
by the PROT-AGE study group to be sufficient to stimulate
muscle protein synthesis (22). Clearly, the leucine content of the
protein source or the postprandial increase in circulating leucine
concentrations are not the only factors responsible for deter-
mining the postprandial increase in muscle protein synthesis
rates. We hypothesized that ingesting a greater dose of wheat
protein hydrolysate, matched for the amount of leucine present
in 35 g whey protein, would result in a similar postprandial
increase in plasma amino acid concentrations and muscle
protein synthesis rates as observed after the ingestion of the
Whey-35. Despite an equal leucine content in the WPH-60 and
Whey-35 bolus (both 4.4 g leucine), we observed that plasma
leucine concentrations increased to a greater extent after
the ingestion of the Whey-35 than after WPH-60 (Figure 5).

FIGURE 6 Myofibrillar protein FSRs, calculated on the basis of the

plasma precursor pool, during the fasting state (Basal) and over the

early (0–2 h) and late (2–4 h) postprandial period after the ingestion of

Whey-35 or a leucine-matched amount (i.e., 60 g) of WPH-60 in

healthy older men. Values are means 6 SEMs, n = 12/group.

*Different from Basal, P , 0.05. FSR, fractional synthetic rate; Whey-

35, 35 g whey protein; WPH-60, 60 g wheat protein hydrolysate.
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Nevertheless, the more sustained appearance of amino acids
into the circulation after the ingestion of WPH-60 than after
Whey-35 resulted in a greater stimulation of postprandial
muscle protein synthesis rates. We (28, 36) and others (37)
previously observed a delayed increase inmuscle protein synthesis
rates in older compared with younger individuals. A more
sustained provision of amino acids may facilitate the delayed
postprandial increase in muscle protein synthesis in older
individuals, resulting in a greater postprandial muscle protein
synthetic response after the ingestion of WPH-60 than after
Whey-35. These data provide evidence that both the type and
amount of protein consumed define the postprandial muscle
protein synthetic response, and that the amount consumed can be
modified to match the anabolic properties of a certain protein
source. Certainly, leucine plays a key role in the initiation of
muscle protein synthesis through mammalian target of rapamycin
complex 1 (mTORC1) signaling. However, with all of the
treatments providing $2.5 g leucine, all treatments may have
exceeded the leucine threshold for assembly of the initiation
complex, eliminating leucine as the key factor determining the
postprandial increase in muscle protein synthesis rates.

Dairy proteins are very potent for the stimulation of muscle
protein synthesis due to their high digestibility and high leucine
content, but they are relatively expensive. From a global
sustainability and economic standpoint, there is an increasing
interest in the application of plant-based proteins (18). The
muscle protein synthetic response to the ingestion of plant-based
protein is generally deemed inferior to that of dairy protein
ingestion (9, 10, 16, 17, 20). Although this does not necessarily
apply to all plant-based proteins (18), we confirm that the
ingestion of WPH-35 induces a lower postprandial muscle
protein synthetic response than does the ingestion of the same
amount of casein. However, the lesser postprandial muscle
protein synthetic response may be compensated for by increas-
ing the amount of protein ingested (Figure 6). This study
provides proof-of-concept that the ingestion of WPH-60 stim-
ulates muscle protein synthesis. The ingestion of a bolus of 60 g
protein does not represent a practical dietary strategy to stimu-
late muscle protein synthesis. Therefore, a more practical, cost-
effective, and sustainable strategy may be to fortify plant-based
protein sources with dairy protein to increase the anabolic
properties of lower protein doses. Recently, Reidy et al. (38, 39)
showed that the ingestion of a soy-dairy protein blend stimu-
lated postexercise muscle protein synthesis rates to a similar
extent as a bolus of whey protein containing an equal essential
amino acid content.

We conclude that the postprandial muscle protein synthetic
response to the ingestion of 35 g casein is greater than the
response to the ingestion of the same amount of wheat protein.
The ingestion of a larger amount of wheat protein (i.e., 60 g)
substantially increases myofibrillar protein synthesis rates in
healthy older men. These data provide useful information when
developing or optimizing food product formulations combin-
ing wheat or other plant-based proteins with dairy proteins to
stimulate muscle protein synthesis rates and to support muscle
mass maintenance.
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