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A B S T R A C T

Various diffusion MRI (dMRI) measures have been proposed for characterising tissue microstructure over the last
15 years. Despite the growing number of experiments using different dMRI measures in assessments of white
matter, there has been limited work on: 1) examining their covariance along specific pathways; and on 2)
combining these different measures to study tissue microstructure. Indeed, it quickly becomes intractable for
existing analysis pipelines to process multiple measurements at each voxel and at each vertex forming a
streamline, highlighting the need for new ways to visualise or analyse such high-dimensional data. In a sample of
36 typically developing children aged 8–18 years, we profiled various commonly used dMRI measures across 22
brain pathways. Using a data-reduction approach, we identified two biologically-interpretable components that
capture 80% of the variance in these dMRI measures. The first derived component captures properties related to
hindrance and restriction in tissue microstructure, while the second component reflects characteristics related to
tissue complexity and orientational dispersion. We then demonstrate that the components generated by this
approach preserve the biological relevance of the original measurements by showing age-related effects across
developmentally sensitive pathways. In summary, our findings demonstrate that dMRI analyses can benefit from
dimensionality reduction techniques, to help disentangling the neurobiological underpinnings of white matter
organisation.
1. Introduction

The human brain is composed of multiple white matter fibres con-
necting gray matter areas dedicated to processes such as memory,
cognition, language, or consciousness. Diffusion MRI (dMRI) (Basser
et al., 1994, 2000; Basser and Jones, 2002; LeBihan et al., 2001) has
become the preferred tool to probe the brain's tissue microstructure
non-invasively. Measures derived from diffusion tensor imaging (DTI)
(Basser et al., 1994) can be obtained at each imaging voxel, including
fractional anisotropy (FA) which reflects the degree of diffusion anisot-
ropy (Pierpaoli and Basser, 1996), and mean diffusivity (MD), an indi-
cator of the overall magnitude of diffusion. Based on local estimates of
underlying trajectories at every voxel, dMRI is also capable of virtually
reconstructing the structural architecture of the brain white matter
pathways using tractography (Conturo et al., 1999; Mori and Van Zijl,
. Chamberland).
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2002). The conventional approach to merge the quantitative nature of
diffusion measures with the qualitative nature of tractography is to
collapse voxel-based measures into a single scalar value per bundle (e.g.,
by averaging values over all vertices of a streamline; Jones et al. (2006);
Kanaan et al. (2006); Jones et al. (2005a)). Individual differences in such
summary diffusion-related measures can then be correlated, for example,
with individual differences in cognition or behaviour. However, despite
its well documented sensitivity, DTI has its limitations (Tournier et al.,
2011; Jeurissen et al., 2013). For example, FA and MD lack specificity to
the various physical properties of white matter, such as crossing fibres
(Jeurissen et al., 2013), axon density and myelination (Beaulieu, 2002;
Jones et al., 2013). Moreover, the average profile of those measures may
vary along a given pathway depending on the underlying fibre archi-
tecture (Vos et al., 2012; Yeatman et al., 2012). Furthermore, only a
subset of DTI measures are known to be orthogonal with each other (e.g.,
19
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FA, MD or tensor norm; Ennis and Kindlmann (2006); Kindlmann et al.
(2007); De Santis et al. (2014)).

Recent advances in diffusion hardware, acquisition and modelling
(Sotiropoulos et al., 2013; Jones et al., 2018; Assaf and Basser, 2005;
Tournier et al., 2012; Jeurissen et al., 2014) have been introduced to
overcome the limitations of DTI, giving access to previously inaccessible
measures. High angular resolution diffusion imaging (HARDI; Tuch et al.
(2002)) was originally developed to not only provide new anisotropy
measures (Tournier et al., 2011) but also to solve the so-called crossing
fibre problem, making tractography more robust (Descoteaux, 2015).
Multi-shell acquisitions (Wedeen et al., 2005) have also facilitated new
ways to link relevant tissue properties to the signal such as CHARMED
(Assaf and Basser, 2005), AxCaliber (Assaf et al., 2008), ActiveAx
(Alexander et al., 2010), multi-tensor models (Scherrer et al., 2016) and
NODDI (Zhang et al., 2012) among others (for review, see Alexander
et al. (2017)). In general, such models aim to extract parameters from
intra- and extracellular compartments, and to estimate parameters such
as axon diameter distributions and other high-order information.

Multi-shell acquisitions have also shown to improve the angular
resolution of orientation distribution functions (ODFs) (Descoteaux et al.,
2011; Jeurissen et al., 2014; Chamberland et al., 2018). In conjunction,
new frameworks such as fixel-based analysis (Raffelt et al., 2012) have
been proposed to map fibre-specific measures by looking at the apparent
fibre density (AFD), a measure proportional to the underlying fibre
density, as opposed to having voxel-specific scalar maps. The combina-
tion of frameworks such as along-tract profiling (Jones et al., 2005b;
Corouge et al., 2006; Yeatman et al., 2012; De Santis et al., 2014; Colby
et al., 2012; Cousineau et al., 2017) and tractometry (e.g., combining
multiple measures (Bells et al., 2011)) allows for a comprehensive
assessment of white matter microstructure. Both frameworks have the
advantage of providing higher sensitivity to microstructural features of
fibre pathways by mapping a set of MR-derived measures over white
matter bundles. Recently, along-tract profiling has been successfully
applied to study normal brain development (Geeraert et al., 2018) and to
characterise areas of the brain with abnormal properties in various brain
conditions (Dayan et al., 2016; Cousineau et al., 2017; Groeschel et al.,
2014).

However, one problem arises with having access to multiple new
measurements at each voxel and at each vertex forming a streamline: it
quickly becomes intractable for existing analysis pipelines to process
such high-dimensional data (a problem often referred to as the curse of
dimensionality; Bellman (1961)), highlighting the need for new ways to
visualise or analyse such data. Moreover, dMRI measures may share
overlapping information which can cause redundancies (in the sense of
correlation) in data analysis and ultimately decrease statistical power if
strictly correcting for Type I errors (Penke et al., 2010; Metzler-Baddeley
et al., 2017; Bourbon-Teles et al., 2017). A solution to this problem re-
sides in dimensionality reduction, an established technique that has been
successfully applied in the past by the neuroimaging community (for
review, see Mwangi et al. (2014)). Despite the growing number of ex-
periments using different microstructural measures in assessments of
white matter, there has been limited work on combining these different
measures and on examining their covariance along specific pathways.

In this work, we explore the covariance of commonly-derived dMRI
measures (De Santis et al., 2014). We propose a data reduction frame-
work that takes advantage of those redundancies and aims to provide a
better insight into patterns of associations between DTI and HARDI
measures. Specifically, we identified common components that explain
the maximal variance in measures profiled along multiple fibre bundles.
We demonstrate the utility of our framework by showing enhanced
sensitivity to the detection of age-related differences in tissue micro-
structure across developmentally sensitive pathways compared with the
individual dMRI measures. Finally, we provide recommendations for
future studies with limited capabilities in terms of data acquisition and
processing.
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2. Methods

2.1. Participants

This study reports on a sample of typically developing children aged
8–18 years (mean¼ 12.2 � 2.8) participating in the Cardiff University
Brain Research Imaging Centre (CUBRIC, School of Psychology) Kids
study. The study was performed with ethics approval from the internal
ethics review board and informed consent was provided from the pri-
mary caregiver of children enrolled in the study. Exclusion criteria
included previous history of a neurological condition or epilepsy.

2.2. Data acquisition

Data from thirty-six (n¼ 36, 13 male) children were acquired using a
multi-shell HARDI protocol on a Siemens 3T Connectom system with
maximum gradient amplitude¼ 300mT/m. The acquisition protocol
consisted of 14 b0 images, 30 diffusion directions at b¼ 500, 1200 s/
mm2 and 60 diffusion directions at b¼ 2400, 4000, 6000 s/mm2 with 2
� 2 � 2mm3 voxels (TE/TR: 59/3000ms, δ/Δ: 7.0/23.3ms).

2.3. Data pre-processing

Data quality assurance was performed on the raw diffusion volumes
using slicewise outlier detection (SOLID; Sairanen et al. (2018)). Each
dataset was then denoised in MRtrix (Veraart et al., 2016) and corrected
for signal drift (Vos et al., 2017), subject motion (Andersson and Sotir-
opoulos, 2016), field distortion (Andersson et al., 2003), gradient
non-linearities (Glasser et al., 2013; Suryanarayana et al., 2018) and
Gibbs ringing artefacts (Kellner et al., 2016).

2.4. Local representation

Multi-shell multi-tissue constrained spherical deconvolution (MSMT-
CSD; Jeurissen et al. (2014)) was applied to the pre-processed images to
obtain voxel-wise estimates of fibre ODFs (fODFs; Tournier et al. (2004,
2007); Seunarine and Alexander (2009); Descoteaux et al. (2009)) with
maximal spherical harmonics order lmax ¼ 8. The fODFs were generated
using a set of 3-tissue group-averaged response functions (Dhollander
et al., 2016) followed by joint bias field and image intensity normalisation
in MRtrix (Tournier et al., 2012), enabling the direct comparison of fODF
amplitudes across subjects (Raffelt et al., 2012). Diffusion tensors were
also generated using linearly weighted least squares estimation (for
b< 1200 s/mm2 data) providing the following quantitative scalar mea-
sures: FA, axial diffusivity (AD), radial diffusivity (RD), MD, geodesic
anisotropy (GA; Fletcher et al. (2004)) and tensor mode representing the
shape of the tensor (Kindlmann et al., 2007). In addition, HARDImeasures
were extracted from the fODFs of each subject. Those measures include
fibre-specific AFD (Raffelt et al., 2012) for the bundles described in the
next section, AFDtot (spherical harmonics l¼ 0) and the Number of Fibre
Orientations (NuFO) based on the number of local fODF peaks (Dell’Ac-
qua et al., 2013). Finally, restricted signal fractionmaps (FR, adapted from
CHARMED to remove potential isotropic partial volume contamination;
Assaf and Basser (2005)) were also computed using the fODFs peaks to
initialise and regularise model-fitting. To summarise, ten dMRI measures
related to tissue microstructure (m¼ 10) were generated for each subject.

2.5. Tractography and tractometry

Whole-brain streamline tractography was performed using Fiber-
Navigator (Chamberland et al., 2014) using 8 seeds/voxel evenly distrib-
uted across thewhole brain (approximating1.8M seeds), aminimum fODF
amplitude of 0.1, a 1mm step size (i.e. 0.5� voxel size), a 45∘ maximum
curvature angle and streamlines whose lengths were outside a range of
20mm–300mm were discarded. Twenty-two bundles of interest (t¼ 22)
were then interactively dissected in the native space of each subject using a
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combination of include andexclude regions of interests (ROIs). Anatomical
definitions and ROIs used to delineate each pathway are listed in the
Supplementary Materials. The virtual dissection plan included:

Commissural bundles: anterior commissure (AC), body of the corpus
callossum (CC), forceps minor (Genu), forceps major (Splenium).
Association bundles (bilateral): arcuate fasciculus (AF), cingulum
(Cg), inferior fronto-occipital fasciculus (iFOF), inferior longitudinal
fasciculus (ILF), optic radiations (OR), superior longitudinal fascic-
ulus (SLF), uncinate fasciculus (UF).
Projection bundles (bilateral): corticospinal tract (CST), frontal
aslant tract (FAT).

At this stage, we examined the covariance of the averaged diffusion
measures for all bundles using Pearson's correlation (r). Next, along-tract
profiling was performed for each bundle using the Python toolbox
developed by Cousineau et al. (2017), combined with DIPY functions
(Garyfallidis et al., 2014). Bundles were first pruned to remove outliers as
in (Cousineau et al., 2017; Garyfallidis et al., 2018). If necessary, the
order in which the vertex-wise measures were stored was reversed, to
ensure consistency across the subjects profiles (i.e., from left-to-right for
commissural bundles, from inferior-to-superior for projection bundles
and from posterior-to-anterior for association bundles). A representative
core streamline was generated for each bundle (i.e., mean streamline of
the pathway) and was subsequently resampled to s¼ 20 equidistant
segments. Then, every vertex of every streamline forming the pathway
was assigned to its closest segment along the core. The measure values of
each vertex were then projected and averaged along each segment of the
pathway, weighted by their geodesic distance from the core (Cousineau
et al., 2017). An along-tract profile was finally generated for every
combination of measure and pathway.

2.6. Dimensionality reduction

Each dataset comprised m¼ 10 dMRI-derived measures mapped
along 440 white matter regions (t¼ 22 bundles � s¼ 20 segments). To
explore the possible redundancy (in the context of data reduction) and
complementarity of each measure, a principal component analysis (PCA)
was performed on the concatenated set of profiles across subjects and
bundles (Table 1) using the tidy data standard (Wickham et al., 2014).
Performing PCA over tract segments rather than over all voxels alleviates
the need to register each diffusion measure to a common space. PCA
reduces data dimensionality by extracting principal components that
reflect relevant features in the data (Jolliffe, 2002; Abdi and Williams,
2010). The benefit is that a significant proportion of the variance in the
data can be explained by a reduced number of orthogonal components,
compared to the total number of raw input variables. PCA was performed
by singular value decomposition of the z-transformed tract profiles via
the prcomp function in R (R Core Team, 2018). Here, the goal was to end
up with the minimum number of components that summarise the
maximum amount of information contained in the original set of diffu-
sion measures. However, in order to avoid instability around the
component loadings that comprise the principal components (Garg and
Tai, 2013), measures showing significant covariance were discarded
Table 1
Data structure input for PCA. Individual subjects (n¼ 36), bundles (t¼ 22) and
segments (s¼ 20) are concatenated to form observations while variables repre-
sent the measures (m¼ 10) derived from dMRI.

Subject Bundle Section FA AD … FR

S1 Bundle1 Section1 FA111 AD111 … FR111

S2 Bundle1 Section1 FA211 AD211 … FR211

⋮ ⋮ ⋮ ⋮ ⋮ … ⋮
S1 Bundle1 Section2 FA112 AD112 … FR112

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
Sn Bundleb Sections FAnbs ADnbs … FRnbs
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based on their correlation scores (jrj > 0.8) and the PCA was
re-computed. Finally, the minimal number of principal components that
accounted for the most variability was selected based on: 1) their inter-
pretability (Metzler-Baddeley et al., 2017); and 2) the inspection of scree
plots (Cattell, 1966) to select ranked components with an eigenvalue> 1.

2.7. Statistical analysis

PCA results were tested for sampling adequacy using a Kaiser-Meyer-
Olkin (KMO; Dziuban and Shirkey (1974)) test followed by Bartlett's test
of sphericity to test whether the covariance matrix is significantly
different from identity. We then ran an exploratory linear regression
analysis to see whether profiles extracted from the PCA can provide
increased sensitivity in the detection of age-related differences in tissue
microstructure (as opposed to using the full set of m¼ 10 measures). It is
important to recall that PCA results are always orthogonal, and therefore
are statistically independent of one another. To address the multiple
comparisons problem, a strict Bonferroni correction was applied to all
linear models whereby statistical significance was defined as:
p< 0.05/(mmeasures � t bundles � s segments) resulting in p< 1.14e-5
for the ten raw measures, and p< 5.68e-5 for the first two principal
components. All statistical analyses were carried out using R v3.5.1 (R
Core Team, 2018) and RStudio v1.1.456 (RStudio Team, 2016).

3. Results

3.1. Measures covariance and profiling

The entire set of bundles and measures was successfully reconstructed
in all subjects. Fig. 1 shows the relationship between the various input
measures averaged on different white matter pathways using a cross-
correlation matrix representation. Matrices are re-organised using hier-
archical clustering (Murtagh and Legendre, 2014), placing higher corre-
lations closer to the diagonal in order to regroup measures that have
similar correlations together. In general, the measures form two or three
clusters across all bundles. Across the whole set of bundles (Fig. 1, mid-
dle), we observe a first cluster of positive correlations (r> 0.5) between
AD, FA, GA, Mode, AFD, AFDtot and FR measures. A second cluster of
positive correlations is formed of MD, RD and NuFO. The group-averaged
diffusion measures of each bundle are reported in Suppl. Table 1.

However, important details about the spatial heterogeneity of the
various input measures of interest appear when profiled along pathways.
For example, FA, AFD and FR values all get progressively smaller along
the CST as they approach the cortex (Figs. 2 and 3). Furthermore, the
high number of fibre crossings near the centrum semiovale is reflected by
a high NuFO index and is also marked by a low FA (Fig. 2). As might be
expected, HARDI-derived measures such as FR and AFDtot seem to be less
affected by the intra-voxel orientational heterogeneity of crossing re-
gions than the tensor-based measures like FA, AD and RD. The correla-
tion matrix in Fig. 3 also highlights the similarity between the various
microstructural profiles, indicating potential overlap in the amount of
information conveyed by the dMRI measures.

3.2. Principal component analysis

The loading vector plots in Fig. 4 show association patterns between
the various input measures. The left panel shows PCA results performed
on the entire set of measures. If two vectors subtend a small angle to each
other, the two variables they represent are strongly correlated. When
such vectors were found to be close, the one showing higher correlations
with any other measures was removed (see Section 2.6). In line with the
aforementioned results, shared covariance is observed between AD and
tensor mode (r¼ 0.8), as well as between FA and GA (r¼ 0.95). After
pruning up measures for multicollinearity (Fig. 4, right panel), PCA re-
sults show that 80% of the variability in the data is accounted by the first
two principal components (KMO: 0.64, sphericity: p< 2.2e-16). As



Fig. 1. Correlation matrices of the ten diffusion measures, group-averaged for each extracted bundles. The middle image represents the average of all white matter
bundles. Matrices are re-organised using hierarchical clustering, grouping measures that have similar correlations together. A first cluster of positive correlations
(r> 0.5) is observed between most of the bundles for measures like AD, FA, GA, AFD, AFDtot, Mode and FR. A second set of positively correlated measures (NuFO, MD,
RD) forms the second cluster. Note that for bilateral pathways, the left and right values were combined prior performing the correlation.
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shown in Fig. 5, the PC that explains the largest proportion of the vari-
ance (PC1, 48%, λ¼ 3.4) is composed of hindrance-sensitive measures
(Dell’Acqua et al., 2013) with AFD, FR and AFDtot contributing positively
(24%, 21% and 16%, respectively) and AD contributing negatively
(25%). The second PC (PC2) represents 32% of the variance in the data
(λ¼ 2.2) and is mostly driven by orientational dispersion and
complexity-sensitive measurements, with its largest positive contribution
from NuFO (34%), and negative contributions from AD (26%) and MD
(25%) (Fig. 5, PC2).
3.3. Detecting differences in tissue microstructure

3.3.1. Bundle averages
To asses the relevance of the two principal components, we first
92
report developmental changes in white matter tissue microstructure
using bundle-averaged measures (m¼ 10, s¼ 1) and PCA components
(m¼ 2, s¼ 1). Significance thresholds were Bonferroni-corrected to ac-
count for multiple comparisons (p< 2.27e-4 for the ten raw measures,
and p< 1.14e-3 for the two principal components). Fig. 6 shows a sig-
nificant increase in PC1 as a function of age for the left iFOF and CST,
whereas no correlation with age was observed between individual
hindrance-related measures. Significant positive correlations were found
between PC1 (restriction-related component) and age in the following
association pathways: AF (left: R2: 0.34, p¼ 1.06e-4), iFOF (left: R2: 0.31,
p¼ 2.51e-4), FAT (left: R2: 0.43, p¼ 9.06e-6, right: R2: 0.43, p¼ 7.77e-
6), UF (right: R2: 0.26, p¼ 9.76e-4) and motor pathways: CST (left: R2:
0.40, p¼ 1.92e-5, right: R2: 0.40, p¼ 2.0e-5), CC (R2: 0.29, p¼ 4.51e-4).
One significant positive correlation between PC2 (complexity-related



Fig. 2. Overview of the ten input measures overlaid on the CST of a representative subject. Whole-brain tractograms (top-left) were manually dissected into t¼ 22
bundles (bottom-left) and measures were subsequently mapped along each pathway, providing information about their spatial heterogeneity.

Fig. 3. Group-average profiling of the ten input diffusion measures along the left CST for s¼ 20 segments, spanning from the brainstem (s¼ 1) to the cortex (s¼ 20).
Heterogeneity in the profiles along the tract highlights the need for a vertex-wise assessment of the measures. Similarity between profiles also shows shared covariance
between the measures, indicated by the two clusters (1 and 2) on the correlation matrix (sorting: hierarchical clustering). Shaded tract-profile area: �1 stan-
dard deviation.

M. Chamberland et al. NeuroImage 200 (2019) 89–100
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Fig. 4. PCA results before (left) and after (right) multicollinearity analysis. To improve stability around PC1, AFD was kept over GA and FA due to its fibre specificity
properties. Tensor mode was also discarded based on its collinearity with AD. On the right PCA, one can observe separation between the various measures, generating
a hindrance-related component (PC1) that loads on AFD, AFDtot, RD and FR and a complexity-related component (PC2) that loads on NuFO, AD and MD. Here, the
squared cosine notation (cos2) shows the importance of a measure for a given PC. A high cos2 indicates a good representation of the measure for a given principal
component. Figure generated using the FactoExtra package (Kassambara and Mundt, 2017) in R.

Fig. 5. Visual overview of PC1 and PC2 with the contribution of each measure to that component. The first PC captures most of the hindrance- and restriction-related
measures (AFD, RD, FR, AFDtot). The second PC mostly represents tissue complexity and orientational dispersion properties associated with NuFO, AD and MD. The
first two components accounted for 80% of the variance in the diffusion measures.
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component) and age was found in the SLF (right: R2: 0.27, p¼ 6.82e-4).
No significant age relationships were found between any of the

bundles and FA, GA, Mode, AFD, AFDtot, FR and NuFO. Significant
negative correlations with age were found in RD for the AF (left: R2: 0.37,
p¼ 5.40e-5, right: R2: 0.34, p¼ 1.02e-4), Cg (left: R2: 0.33, p¼ 1.45e-4,
right: R2: 0.47, p¼ 2.22e-6), CST (left: R2: 0.35, p¼ 7.36e-5, right: R2:
0.33, p¼ 1.28e-4), FAT (left: R2: 0.37, p¼ 4.65e-5, right: R2: 0.28,
p¼ 4.67e-4). Significant negative correlations with age were found in
MD for the FAT (left: R2: 0.33, p¼ 1.22e-4, right: R2: 0.31, p¼ 2.18e-4),
AF (left: R2: 0.39, p¼ 2.48e-5, right: R2: 0.36, p¼ 6.28e-5), CST (left: R2:
0.40, p¼ 2.06e-5, right: R2: 0.42, p¼ 1.12e-5), SLF (right: R2: 0.38,
p¼ 3.21e-5) and Cg (right: R2: 0.37, p¼ 4.06e-5). One significant
negative correlation was found between AD and age in the SLF (right: R2:
0.41, p¼ 1.80e-5).

3.3.2. Along-tract profiling
Here, we report on developmental changes in tissue microstructure

seen with along-tract profiling (see Fig. 7). Table 2 reports the measures
and tract segment mapped along different pathways where significant
94
correlation with age was observed. Significant positive correlations were
found between PC1 (restriction-related component) and age near the
motor cortex area for the CST20 (right: R2: 0.37, p¼ 4.91e-5) and CC3
(R2: 0.37, p¼ 4.62e-5). Significant age-related positive correlations with
PC2 were observed for motor-related pathways: CC2 (R2: 0.37, p¼ 5.63e-
5), CST20 (right: R2: 0.49, p¼ 1.41e-6), CST19 (left: R2: 0.43, p¼ 8.59e-6)
and association pathways: FAT19 (right: R2: 0.38, p¼ 4.08e-5), iFOF19
(right: R2: 0.39, p¼ 2.89e-5), ILF1 (right: R2: 0.35, p¼ 9.26e-5), UF3,4
(right: R2: 0.43& 0.39, p¼ 7.71e-6& 3.0e-5) and SLF1,2 (R2: 0.46& 0.42,
p¼ 3.41e-6 & 1.14e-5). Suppl. Fig. 2 shows that the PCA profiles pre-
serve the spatial heterogeneity of the input diffusion measures along the
CST.

No significant age relationships were found in any bundles for FA, GA,
Mode, AD and AFD. Significant negative correlations were observed for
RD in the FAT8 (right: R2: 0.42, p¼ 1.08e-5) and for MD in the AF16
(right: R2: 0.44, p¼ 5.62e-6) and Cg7 (left: R2: 0.43, p¼ 6.5e-6). Signif-
icant positive correlations were also found for AFDtot in the CST20 (left:
R2: 0.50, p¼ 9.02e-7, right: R2: 0.53, p¼ 2.73e-7) and CST1 (left: R2:
0.46, p¼ 2.88e-6). For NuFO, significant age-related differences in tissue



Fig. 6. Developmental changes in iFOF and CST bundles. PC1 show significant positive correlation with age, whereas no correlation was observed between the
individual hindrance-sensitive measures.
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complexity were observed in the CST20 (right: R2: 0.54, p¼ 1.56e-7) and
CC3 (R2: 0.43, p¼ 7.09e-6). Finally, one significant positive correlation
in FR was found for the FAT6 (right: R2: 0.57, p¼ 4.9e-8).

4. Discussion

4.1. Extraction of interpretable components

The aim of this study was to systematically examine any potential
covariance between various diffusion measures mapped along white
matter fibre bundles extracted from a cohort of typically-developing
children and adolescents. We first examined the covariance of the mea-
sures averaged over different bundles, which revealed two clusters of
inter-dependent measures. The first cluster revealed that measures sen-
sitive to restricted diffusion shared high correlations with each other.
Similarly, measures which are known to be sensitive to local complexity
or orientational-dispersion co-varied. When profiled along pathways,
measures showed heterogeneity across the trajectory of diverse path-
ways, but their interdependency remained marked by a two-cluster for-
mation. This provided motivation for the next step of our analysis, where
we performed a PCA to collapse the inter-dependent measures into the
95
principal modes of variance. This was done by profiling multiple brain
fibre systems based on their dMRI features, and then deriving a set of
principal components that best represent those individual measures. We
then showed the sensitivity of these new components to the detection of
differences in tissue microstructure of white matter pathways by
exploring their relationship with the age of participants.

A common problem with PCA is that the interpretation of the
resulting components can be challenging. Here, the principal compo-
nents loaded onto variables that shared similarities in their sensitivity to
different tissue properties, making the interpretation of the resulting
components more meaningful. Measures accounting for the largest per-
centage of variance in the data (forming PC1) are those known to be most
sensitive to hindrance or restriction in the signal, including RD, AFD and
FR. In contrast, PC2 features measures that could reflect complexity or
orientational-dispersion in the signal, such as NuFO, AD and MD.

The raw tract-averaged diffusion measures showed significant nega-
tive correlations in MD and RD with age across a range of developmen-
tally sensitive tracts, which is in line with previous studies that also
report a decrease in MD and RD with age, whereas FA shows slower in-
creases with age in late childhood (Lebel et al., 2008). Additionally, we
observed significant age relationships for PC1 and PC2 in



Fig. 7. Age relationships captured by PC1 and PC2 over the left CST. Highlighted section of an axial slice overlaid with fODFs reconstruction of a representative
participant (top left) shows the contoured area (black line) where streamlines terminated to form segment 20. At the group level, significant positive correlations with
age were found with PC1 and PC2 (top right). Significant positive correlations were also found for HARDI measures AFDtot and NuFO (middle right). No significant
correlations were observed for any of the DTI measures (bottom right). Profile plots indicate where significant differences in tissue microstructure were located along
the CST (-log(p) scale).

Table 2
Segments of white matter bundles where significant correlation between diffu-
sion measures and age was observed. Subscript ordering for along-tract positions:
left (s¼ 1) to right (s¼ 20) for commissural bundles, inferior (s¼ 1) to superior
(s¼ 20) for projections bundles and posterior (s¼ 1) to anterior (s¼ 20) for as-
sociations bundles. Positive and negative correlations are indicated by increasing
(↗) and decreasing (↗) arrows, respectively. Significance thresholds for the
measures and components were set as p< 1.13e-5 and p< 5.68e-5, respectively
(adjusted R2 > 0.3).

Individual diffusion measures PCA

RD MD AFDtot NuFO FR PC1 PC2
↘ r-
FAT8

↘ r-
AF16

↗ l-
CST1,20

↗ CC1 ↗ r-
FAT6

↗CC3 ↗CC2

↘ l-Cg7 ↗ r-CST20 ↗r-
CST20

↗r-
CST20

↗r-CST20

↗ l-
CST19
↗ r-
FAT19
↗ r-
iFOF19
↗ r-ILF1
↗ r-UF3,4
↗ r-
SLF1,2
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developmental-sensitive tracts involved in language (i.e., AF, SLF, FAT,
iFOF, ILF) and motor functions (i.e., CST and CC), which is also in line
with previous reports in the literature (Genc et al., 2017, 2018, 2018;
Lebel et al., 2017; Geeraert et al., 2018). Examining the tract-averaged
values for PC2, only one significant correlation with age was found for
the right SLF. However, additional significant correlation between age
and PC2 were observed when performing along-tract profiling. A po-
tential explanation for this findings resides in the nature of PC2, with
most of its contributions coming from AD, MD and NuFO. Indeed, since
PC2 reflects the local complexity at each voxel, measures like NuFO will
vary depending on the underlying structural architecture and therefore
taking the average value across the bundle may lead to a summary sta-
tistic that is hard to interpret. In contrast, the values of PC1 (or AFD)
remain relatively constant over bundles and thus are less impacted by
96
calculating the bundle average. This may also explain why the first
principal component derived from bundle-averages was found to show
significant correlations with age in white matter bundles, whereas the
original DTI measures did not. We also note that sex differences were not
accounted for due to our relatively small sample size but may play a role
in some of the differences we observed across pathways (Seunarine et al.,
2016). Moreover, studies of larger size would be better powered to test
whether the resulting PCs are linked with other factors over and above
the participant's age, such as sex, IQ and cognition. Yet, our results
highlight the sensitivity of PC1 and PC2 as a composite measure by 1)
showing significant correlation with age in regions where other measures
did not, and 2) reflecting effects captured by the other measures.

Restricted (or hindered) diffusion is primarily caused by dense
packing of axons and their cell membranes (Beaulieu, 2002). Other tissue
properties such as myelination and local complexity can also affect the
degree of hindrance or restrictance measured at each voxel (Vos et al.,
2012). In the current study, an increase in PC1 may indicate higher
coherence of the underlying white matter bundles for our older subjects,
in comparison with the younger ones. Previous studies have demon-
strated that dMRI measures can be sensitive to age-related differences,
and those are often associated with an increased microstructural orga-
nisation (for review, see Lebel et al. (2017)). Given the well-established
role of the CST in supportingmotor performance, our finding of increased
hindrance with age in typically developing children is in line with pre-
vious research that showed that brain maturation varies across different
pathways, with commissural and projection tracts reaching maturation
by early adolescence while association pathways develop over a longer
time period (Geeraert et al., 2018). Interestingly, PC2 also captured an
increase in orientational dispersion for that same region (which was
either marked by an increase in NuFO or decrease in MD, Fig. 4). The fact
that those changes appear near the cortex, a region usually contaminated
by partial volume effects, highlights the role of MSMT-CSD in achieving
adequate fODFs representation at the boundary between gray matter and
white matter (Jeurissen et al., 2014).

In light of our results, we stress that the proposed framework was
applied to study neuro-developmental changes related to age only, and
therefore, results should be interpreted with care in any other context.
The framework should be used as a general approach to data reduction of
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MRI-derived measures. However, this does not suggest that all studies
will benefit from this form of data reduction since our results may not be
generalizable to other populations. Thus, we recommend that our pro-
posed framework is applied to each new data set to discover the most
appropriate PCA loadings. Indeed, it is entirely plausible that in a disease
population or data collected with different acquisition parameters or
hardware, the optimal factor loadings would be different than the ones
found here.

4.2. Choice of diffusion measures

A growing interest in utilising advanced dMRI measures to study the
human brain motivated us to investigate the shared relationship between
DTI and HARDI measures (De Santis et al., 2014). Ultimately, the signals
captured from a white matter bundle are coming from the same substrate
i.e., from the same axons, myelin and other cellular inclusions, so some
degree of correlation is likely to be observed. Redundancy between the
different measures (in the sense of correlation) does not however imply
that the some of the measures are not useful. In the event that two
measures are strongly correlated, any deviation from perfect correlation
may reflect that each is capturing subtly different information that may
indeed be crucial (for example in understanding disease processes) and
thus, regarding one redundant measure to be discarded in favour of the
other may not be sound decision. Here, we adopt the term redundancy to
refer explicitly to data reduction only.

Being a relatively fast-developing field, dMRI offers a multitude of
mathematical models to represent the underlying tissue microstructure
(Alexander et al., 2017). Here, we focused on DTI and HARDI measures
(Descoteaux, 2015). dMRI measures are generally sensitive to differences
in tissue microstructure that can potentially be linked to fibre properties
such as myelination and axon density (Scholz et al., 2014). Despite the
fact that the specific interpretation of these measures remains contro-
versial (Jones et al., 2013), DTI and HARDI measures are routinely used
by neuroscientists and clinicians to gain insights into white matter
properties. The findings reported here are in line with existing evidence
suggesting that HARDI measures may be more specific than DTI for the
detection of differences in tissue microstructure (Tournier et al., 2011;
Jeurissen et al., 2013; Cousineau et al., 2017). Our results suggest that
combining the sensitivity of DTI and the specificity of HARDI has the
potential for compromise between the two techniques. Other macro-
structural measures (e.g., bundle volume or mean length; Lebel et al.
(2012, 2008, 2017); Geeraert et al. (2018); Girard et al. (2014)) have
been used to study brain development and may also provide comple-
mentary features that could be added in the proposed framework. Other
measures such as rotationally invariant spherical harmonic features
(RISH; Mirzaalian et al. (2015); Caruyer and Verma (2015); Zucchelli
et al. (2018)) could also be introduced in the current framework, with the
main advantage of representing more directly the diffusion signals rather
than relying on various microstructural models. Ultimately, the key
challenge resides in knowing what measure (or combination of; De Santis
et al. (2014)) provides the best value in terms of scanning and processing
time. To help with the planning of future studies and based on our ob-
servations, we present some recommendations for data analysis.

DTI and HARDI: DTI measures can nowadays be easily be derived
from a conventional 30 directions protocol acquired at b¼ 1000 s/mm2

in approximatively 5min. Here, all DTI measures were derived using only
the b¼ 1200 s/mm2. HARDI measures such as AFD (Raffelt et al., 2012;
Dell’Acqua et al., 2013) and NuFO (Dell’Acqua et al., 2013) are also
readily derived using a standard 3TMRI scanner. Indeed, CSD can usually
be performed on data acquired with a minimum of 30–45 directions at
b¼ 1000 s/mm2 (Dell’Acqua and Tournier, 2018; Alexander and Barker,
2005; Tournier et al., 2013) or even 21 directions if the quality is
acceptable (Chenot et al., 2018a). Moreover, going beyond single b-value
acquisitions will provide a better estimation of partial volume effects and
better characterisation of various tissue types that will subsequently
improve HARDI reconstructions in those areas (Jeurissen et al., 2014;
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Tract-averaging and along-tract profiling: In the context of along-tract

profiling, age-related effects might be more pronounced when perform-
ing group-wise comparisons (e.g., young vs old, patients vs controls;
Yeatman et al. (2014)) rather than directly looking at a single
cross-sectional change in tissue microstructure. Indeed, theses changes
might be too subtle to detect, especially considering that the age range of
our participants falls on the inflection point of the developmental curve
(Lebel and Beaulieu, 2011). Moreover, one may consider first looking at
the profile along each tract of interest and ask the following: are there any
benefits in sub-segmenting the profile into finer portions? Admittedly, if
the measure of interest remains stable along the pathways, a conventional
tract average is probably better suited than looking at a constant profile at
multiple points. Depending on the research hypothesis, the use of a more
permissive approach such as false discovery rate (FDR) correction could
be considered to assess differences along multiple adjacent bundle seg-
ments. Another possible approach to analyse the multi-dimensionality of
the data resides in functional data analysis (FDA; Ramsay (2005); Ferraty
and Vieu (2006); Wang et al. (2016)), a statistical method that operates on
continuous or discrete functions (e.g., tract profiles; Goodlett et al.
(2009)) and that takes into account the spatial interdependency of each
segment. In addition, the cluster patterns shown in Fig. 1 may suggest that
performing a PCA on each bundle separately might result in different
decompositions. We presume this approach would be more appropriate in
the context of a bundle-specific analysis (or hypothesis-driven approach).
However, by doing so, comparisons between bundles become impossible,
as there is no guarantee that e.g., the first PC of a given bundle could be
matched with the first PC of another bundle.

Lastly, we acknowledge that the data acquisition and processing
employed in this study were performed on unique hardware; however,
this should not discourage future users to adopt the current framework
for their own data analysis. Again, one should not infer that we are
recommending that the factor loadings presented here should be used off-
the-shelf; rather, we are recommending that the general framework pre-
sented here is applied to the specific application, acquisition, and hard-
ware so that the data reduction is tailored. Yet, advances in data
harmonisation (Tax et al., 2019) show great promise in bridging the gap
between state-of-the-art and standard data acquisition schemes.

4.3. Future perspectives

Over the last few years, a wide range of supervised and unsupervised
learning applications based on feature extraction has emerged, ranging
from individual classifiers for specific brain disorders (Wang et al., 2010;
Chu et al., 2012) to data predictors of brain function (Chen et al., 2009;
Franke et al., 2012; Casanova et al., 2011; Kucukboyaci et al., 2014). In
the field of functional MRI, independent component analysis (ICA) is a
successful example of unsupervised dimensionality reduction that allows
the extraction of temporally segregated resting-state networks (Beck-
mann et al., 2009). In all cases, data reduction approaches facilitate a
stream to analyse and interpret the increasingly large multi-dimensional
data generated by new methodological models. Admittedly, despite PCA
being one of the most commonly-used tool for data reduction, it can also
over-fit data (Kramer, 1991) and potentially require multiple
post-processing regression steps to explore the link between the resulting
components and the observations. Similar to PCA, a canonical correlation
analysis (Hotelling, 1936) may help in finding the link between the
correlated measures and observations by extracting their joint informa-
tion. Other non-linear dimensionality reduction techniques based on
manifold learning such as isometric feature mapping (Tenenbaum, 1998)
or locally linear embedding (Roweis and Saul, 2000) may also better
disentangle the measurement space. However, one has to be cautious
when applying advanced models of dimensionality reduction to medical
imaging as it is often a trade-off between model accuracy and inter-
pretability. Indeed, although these techniques may result in better dis-
entangling of the manifold space, this often comes at the expense of
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generating complex and less interpretable features that cannot be related
to brain tissue microstructure.

Overall, data representation frameworks such as the one presented
here can become fundamental in advancing the application of diffusion
models in health and disease. The proposed framework may open new
avenues for examining brain microstructure in general and other related
lines of research, especially if complimented with other modalities such
as measures derived from quantitative magnetisation transfer (Rovaris
et al., 2003; Cercignani and Bouyagoub, 2018). Indeed, with the
ever-growing acquisition of large cohorts of subjects, feature extraction
techniques may become essential tools for processing multi-dimensional
brain imaging datasets (e.g., the Human Connectome Project with>1000
young adults scans; Van Essen et al. (2013) or the UK Biobank with its
500,000 participants; Miller et al. (2016)).

Finally, our study may also open new avenues for fibre clustering by
leveraging microstructural properties mapped over fibre bundles. Suppl.
Fig. 1 shows how different bundles project and cluster in the new
reference frame formed by PC1 and PC2. One can observe that PC1 is
sensitive to various hindrance level in white matter by disentangling
bundles such as the CST (green), genu (blue) and splenium (pink).
Conversely, pathways that are known to have many crossing regions such
as the AF and the SLF are located on the superior portion of the bi-plot,
showing properties of increased orientational dispersion (Suppl. Fig. 1
orange and purple, respectively).

5. Conclusions

In summary, our findings demonstrate that there exist redundancies
in measures conventionally derived from dMRI and that those re-
dundancies may be exploited by dimensionality reduction to reduce the
risk of Type I errors, arising from multiple statistical comparisons. Our
results support the use of data reduction to detect along-tract differences
in tissue microstructure. Specifically, the curse of dimensionality and
redundancies in statistical analyses were considerably mitigated by
extracting principal components that summarise the inter-dependent
measures. From an application perspective, a general increase in the
first component related to white matter hindrance was found to have a
significant correlation with age in various developmentally sensitive
pathways, a change that would otherwise remain undetected using
conventional approaches.

Funding

MC is supported by the Postdoctoral Fellowships Program from the
Natural Sciences and Engineering Research Council of Canada (PDF-
502385-2017) and a Wellcome Trust New Investigator Award (to DKJ).
ER is supported by a Marshall Sherfield Postdoctoral Fellowship. CMWT
is supported by a Rubicon grant from the Netherlands Organisation for
Scientific Research (680-50-1527). This work was also supported by a
Wellcome Trust Investigator Award (096646/Z/11/Z), a Wellcome Trust
Strategic Award (104943/Z/14/Z), and an EPSRC equipment grant (EP/
M029778/1).

Acknowledgements

The authors would like to thank Umesh Rudrapatna, Peter Hobden,
John Evans, Alison Cooper and Isobel Ward (CUBRIC) for their support
with data acquisition. The authors are also thankful to Jean-Christophe
Houde (Sherbrooke Connectivity Imaging Lab) for sharing implementa-
tion details. The authors are also grateful to the Natural Sciences and
Engineering Research Council of Canada (NSERC), the Marshall Sherfield
Postdoctoral Fellowship (UK), the Netherlands Organisation for Scienti-
fic Research (NWO), the Wellcome Trust (UK) and the Engineering and
Physical Sciences Research Council (EPSRC, UK) for supporting this
research. Finally, we thank the participants and their families for
participating in the study.
98
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.06.020.

References

Abdi, H., Williams, L.J., 2010. Principal component analysis. Wiley Interdiscip. Rev.:
Comput. Stat. 2, 433–459.

Alexander, D.C., Barker, G.J., 2005. Optimal imaging parameters for fiber-orientation
estimation in diffusion mri. Neuroimage 27, 357–367.

Alexander, D.C., Dyrby, T.B., Nilsson, M., Zhang, H., 2017. Imaging brain microstructure
with diffusion mri: practicality and applications. NMR in Biomedicine.

Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J.,
Dyrby, T.B., 2010. Orientationally invariant indices of axon diameter and density
from diffusion mri. Neuroimage 52, 1374–1389.

Andersson, J.L., Skare, S., Ashburner, J., 2003. How to correct susceptibility distortions in
spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage
20, 870–888.

Andersson, J.L., Sotiropoulos, S.N., 2016. An integrated approach to correction for off-
resonance effects and subject movement in diffusion mr imaging. Neuroimage 125,
1063–1078.

Assaf, Y., Basser, P.J., 2005. Composite hindered and restricted model of diffusion
(charmed) mr imaging of the human brain. Neuroimage 27, 48–58.

Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J., 2008. Axcaliber: a method for
measuring axon diameter distribution from diffusion mri. Magn. Reson. Med. 59,
1347–1354.

Basser, P.J., Jones, D.K., 2002. Diffusion-tensor mri: theory, experimental design and data
analysis–a technical review. NMR Biomed. 15, 456–467.

Basser, P.J., Mattiello, J., LeBihan, D., 1994. Mr diffusion tensor spectroscopy and
imaging. Biophys. J. 66, 259–267.

Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A., 2000. In vivo fiber
tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632.

Beaulieu, C., 2002. The basis of anisotropic water diffusion in the nervous system–a
technical review. NMR Biomed. 15, 435–455.

Beckmann, C.F., Mackay, C.E., Filippini, N., Smith, S.M., 2009. Group comparison of
resting-state fmri data using multi-subject ica and dual regression. Neuroimage 47,
S148.

Bellman, R.E., 1961. Dynamic Programming Treatment of the Traveling Salesman
Problem.

Bells, S., Cercignani, M., Deoni, S., Assaf, Y., Pasternak, O., Evans, C., Leemans, A.,
Jones, D., 2011. Tractometry–comprehensive multi-modal quantitative assessment of
white matter along specific tracts. In: Proc. ISMRM.

Bourbon-Teles, J., Bells, S., Jones, D.K., Coulthard, E., Rosser, A., Metzler-Baddeley, C.,
2017. Myelin breakdown in human huntington's disease: multi-modal evidence from
diffusion mri and quantitative magnetization transfer. Neuroscience.

Caruyer, E., Verma, R., 2015. On facilitating the use of hardi in population studies by
creating rotation-invariant markers. Med. Image Anal. 20, 87–96.

Casanova, R., Wagner, B., Whitlow, C.T., Williamson, J.D., Shumaker, S.A., Maldjian, J.A.,
Espeland, M.A., 2011. High dimensional classification of structural mri alzheimer's
disease data based on large scale regularization. Front. Neuroinf. 5, 22.

Cattell, R.B., 1966. The scree test for the number of factors. Multivariate Behav. Res. 1,
245–276.

Cercignani, M., Bouyagoub, S., 2018. Brain microstructure by multi-modal mri: is the
whole greater than the sum of its parts? Neuroimage 182, 117–127.

Chamberland, M., Tax, C.M., Jones, D.K., 2018. Meyer's loop tractography for image-
guided surgery depends on imaging protocol and hardware. Neuroimage: Clin. 20,
458–465.

Chamberland, M., Whittingstall, K., Fortin, D., Mathieu, D., Descoteaux, M., 2014. Real-
time multi-peak tractography for instantaneous connectivity display. Front. Neuroinf.
8, 59. https://doi.org/10.3389/fninf.2014.00059.

Chen, K., Reiman, E.M., Huan, Z., Caselli, R.J., Bandy, D., Ayutyanont, N.,
Alexander, G.E., 2009. Linking functional and structural brain images with
multivariate network analyses: a novel application of the partial least square method.
Neuroimage 47, 602–610.

Chenot, Q., Tzourio-Mazoyer, N., Rheault, F., Descoteaux, M., Crivello, F., Zago, L.,
Mellet, E., Jobard, G., Joliot, M., Mazoyer, B., et al., 2018a. A population-based atlas
of the human pyramidal tract in 410 healthy participants. Brain Struct. Funct. 1–14.

Chu, C., Hsu, A.L., Chou, K.H., Bandettini, P., Lin, C., Initiative, A.D.N., et al., 2012. Does
feature selection improve classification accuracy? impact of sample size and feature
selection on classification using anatomical magnetic resonance images. Neuroimage
60, 59–70.

Colby, J.B., Soderberg, L., Lebel, C., Dinov, I.D., Thompson, P.M., Sowell, E.R., 2012.
Along-tract statistics allow for enhanced tractography analysis. Neuroimage 59,
3227–3242.

Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S.,
McKinstry, R.C., Burton, H., Raichle, M.E., 1999. Tracking neuronal fiber pathways in
the living human brain. Proc. Natl. Acad. Sci. Unit. States Am. 96, 10422–10427.

Corouge, I., Fletcher, P.T., Joshi, S., Gouttard, S., Gerig, G., 2006. Fiber tract-oriented
statistics for quantitative diffusion tensor mri analysis. Med. Image Anal. 10,
786–798.

Cousineau, M., Jodoin, P.M., Garyfallidis, E., Cote, M.A., Morency, F.C., Rozanski, V.,
GrandMaison, M., Bedell, B.J., Descoteaux, M., 2017. A test-retest study on

https://doi.org/10.1016/j.neuroimage.2019.06.020
https://doi.org/10.1016/j.neuroimage.2019.06.020
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref1
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref2
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref3
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref3
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref4
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref4
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref4
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref4
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref5
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref5
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref5
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref5
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref6
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref7
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref7
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref7
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref8
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref9
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref10
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref11
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref12
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref12
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref12
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref12
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref13
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref13
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref13
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref14
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref15
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref16
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref16
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref16
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref17
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref17
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref17
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref18
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref21
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref21
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref21
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref22
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref24
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref24
https://doi.org/10.3389/fninf.2014.00059
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref26
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref26
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref26
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref26
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref26
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref27
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref29
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref30
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref31
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref31
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref31
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref31
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref32
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref32
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref32
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref32
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref33
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref33


M. Chamberland et al. NeuroImage 200 (2019) 89–100
Parkinson's ppmi dataset yields statistically significant white matter fascicles.
Neuroimage: Clin. 16, 222–233.

Dayan, M., Monohan, E., Pandya, S., Kuceyeski, A., Nguyen, T.D., Raj, A., Gauthier, S.A.,
2016. Profilometry: a new statistical framework for the characterization of white
matter pathways, with application to multiple sclerosis. Hum. Brain Mapp. 37,
989–1004.

De Santis, S., Drakesmith, M., Bells, S., Assaf, Y., Jones, D.K., 2014. Why diffusion tensor
mri does well only some of the time: variance and covariance of white matter tissue
microstructure attributes in the living human brain. Neuroimage 89, 35–44.

Dell'Acqua, F., Simmons, A., Williams, S.C., Catani, M., 2013. Can spherical
deconvolution provide more information than fiber orientations? hindrance
modulated orientational anisotropy, a true-tract specific index to characterize white
matter diffusion. Hum. Brain Mapp. 34, 2464–2483.

Dell'Acqua, F., Tournier, J.D., 2018. Modelling White Matter with Spherical
Deconvolution: How and Why? NMR in Biomedicine, e3945.

Descoteaux, M., 2015. High angular resolution diffusion imaging (hardi), 1–25. Wiley
Encyclopedia of Electrical and Electronics Engineering.

Descoteaux, M., Deriche, R., Knosche, T.R., Anwander, A., 2009. Deterministic and
probabilistic tractography based on complex fibre orientation distributions. IEEE
Trans. Med. Imaging 28, 269–286.

Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J.F., Poupon, C., 2011. Multiple q-shell
diffusion propagator imaging. Med. Image Anal. 15, 603–621.

Dhollander, T., Raffelt, D., Connelly, A., 2016. Unsupervised 3-tissue response function
estimation from single-shell or multi-shell diffusion mr data without a co-registered
t1 image. In: ISMRM Workshop on Breaking the Barriers of Diffusion MRI.

Dziuban, C.D., Shirkey, E.C., 1974. When is a correlation matrix appropriate for factor
analysis? some decision rules. Psychol. Bull. 81, 358.

Ennis, D.B., Kindlmann, G., 2006. Orthogonal tensor invariants and the analysis of
diffusion tensor magnetic resonance images. Magn. Reson. Med. 55, 136–146.

Ferraty, F., Vieu, P., 2006. Nonparametric Functional Data Analysis: Theory and Practice.
Springer Science & Business Media.

Fletcher, P.T., Pizer, S.M., Joshi, S., 2004. Statistical variability in nonlinear spaces:
application to shape analysis and DT-MRI. Citeseer.

Franke, K., Luders, E., May, A., Wilke, M., Gaser, C., 2012. Brain maturation: predicting
individual brainage in children and adolescents using structural mri. Neuroimage 63,
1305–1312.

Garg, A., Tai, K., 2013. Comparison of statistical and machine learning methods in
modelling of data with multicollinearity. Int. J. Model. Identif. Control 18, 295–312.

Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M.,
Nimmo-Smith, I., Contributors, D., 2014. Dipy, a library for the analysis of diffusion
mri data. Front. Neuroinf. 8.

Garyfallidis, E., Côt�e, M.A., Rheault, F., Sidhu, J., Hau, J., Petit, L., Fortin, D., Cunanne, S.,
Descoteaux, M., 2018. Recognition of white matter bundles using local and global
streamline-based registration and clustering. Neuroimage 170, 283–295.

Geeraert, B.L., Lebel, R.M., Mah, A.C., Deoni, S.C., Alsop, D.C., Varma, G., Lebel, C., 2018.
A comparison of inhomogeneous magnetization transfer, myelin volume fraction, and
diffusion tensor imaging measures in healthy children. Neuroimage 182, 343–350.

Genc, S., Seal, M.L., Dhollander, T., Malpas, C.B., Hazell, P., Silk, T.J., 2017. White matter
alterations at pubertal onset. Neuroimage 156, 286–292.

Genc, S., Smith, R.E., Malpas, C.B., Anderson, V., Nicholson, J.M., Efron, D., Sciberras, E.,
Seal, M., Silk, T.J., 2018. Development of White Matter Fibre Density and
Morphology over Childhood: a Longitudinal Fixel-Based Analysis. bioRxiv,
p. 342097.

Girard, G., Whittingstall, K., Deriche, R., Descoteaux, M., 2014. Towards quantitative
connectivity analysis: reducing tractography biases. Neuroimage 98, 266–278.

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L.,
Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., et al., 2013. The minimal
preprocessing pipelines for the human connectome project. Neuroimage 80,
105–124.

Goodlett, C.B., Fletcher, P.T., Gilmore, J.H., Gerig, G., 2009. Group analysis of dti fiber
tract statistics with application to neurodevelopment. Neuroimage 45, S133–S142.

Groeschel, S., Tournier, J.D., Northam, G.B., Baldeweg, T., Wyatt, J., Vollmer, B.,
Connelly, A., 2014. Identification and interpretation of microstructural abnormalities
in motor pathways in adolescents born preterm. Neuroimage 87, 209–219.

Hotelling, H., 1936. Relations between two sets of variates. Biometrika 28, 321–377.
Jeurissen, B., Leemans, A., Tournier, J.D., Jones, D.K., Sijbers, J., 2013. Investigating the

prevalence of complex fiber configurations in white matter tissue with diffusion
magnetic resonance imaging. Hum. Brain Mapp. 34, 2747–2766.

Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J., 2014. Multi-tissue
constrained spherical deconvolution for improved analysis of multi-shell diffusion
mri data. Neuroimage 103, 411–426.

Jolliffe, I.T., 2002. Graphical representation of data using principal components. Princ.
Compon. Anal. 78–110.

Jones, D., Alexander, D., Bowtell, R., Cercignani, M., Dell'Acqua, F., McHugh, D.,
Miller, K., Palombo, M., Parker, G., Rudrapatna, U., et al., 2018. Microstructural
imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong
gradients for diffusion mri. Neuroimage 182, 8–38.

Jones, D.K., Catani, M., Pierpaoli, C., Reeves, S.J., Shergill, S.S., O’sullivan, M.,
Golesworthy, P., McGuire, P., Horsfield, M.A., Simmons, A., et al., 2006. Age effects
on diffusion tensor magnetic resonance imaging tractography measures of frontal
cortex connections in schizophrenia. Hum. Brain Mapp. 27, 230–238.

Jones, D.K., Catani, M., Pierpaoli, C., Reeves, S.J., Shergill, S.S., O’sullivan, M.,
Maguire, P., Horsfield, M.A., Simmons, A., Williams, S.C., et al., 2005a. A diffusion
tensor magnetic resonance imaging study of frontal cortex connections in very-late-
onset schizophrenia-like psychosis. Am. J. Geriatr. Psychiatry 13, 1092–1099.
99
Jones, D.K., Kn€osche, T.R., Turner, R., 2013. White matter integrity, fiber count, and
other fallacies: the do's and don’ts of diffusion mri. Neuroimage 73, 239–254.

Jones, D.K., Travis, A.R., Eden, G., Pierpaoli, C., Basser, P.J., 2005b. Pasta: pointwise
assessment of streamline tractography attributes. Magn. Reson. Med. 53, 1462–1467.

Kanaan, R.A., Shergill, S.S., Barker, G.J., Catani, M., Ng, V.W., Howard, R., McGuire, P.K.,
Jones, D.K., 2006. Tract-specific anisotropy measurements in diffusion tensor
imaging. Psychiatr. Res. Neuroimaging 146, 73–82.

Kassambara, A., Mundt, F., 2017. Factoextra: extract and visualize the results of
multivariate data analyses. URL: https://CRAN.R-project.org/package¼factoextra. r
package version 1.0.5.

Kellner, E., Dhital, B., Kiselev, V.G., Reisert, M., 2016. Gibbs-ringing artifact removal
based on local subvoxel-shifts. Magn. Reson. Med. 76, 1574–1581.

Kindlmann, G., Ennis, D.B., Whitaker, R.T., Westin, C.F., 2007. Diffusion tensor analysis
with invariant gradients and rotation tangents. IEEE Trans. Med. Imaging 26,
1483–1499.

Kramer, M.A., 1991. Nonlinear principal component analysis using autoassociative neural
networks. AIChE J. 37, 233–243.

Kucukboyaci, N., Kemmotsu, N., Leyden, K., Girard, H., Tecoma, E., Iragui, V.,
McDonald, C., 2014. Integration of multimodal mri data via pca to explain language
performance. Neuroimage: Clin. 5, 197–207.

Lebel, C., Beaulieu, C., 2011. Longitudinal development of human brain wiring continues
from childhood into adulthood. J. Neurosci. 31, 10937–10947.

Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., Beaulieu, C., 2012. Diffusion
tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60,
340–352.

Lebel, C., Treit, S., Beaulieu, C., 2017. A review of diffusion mri of typical white matter
development from early childhood to young adulthood. NMR Biomed., e3778

Lebel, C., Walker, L., Leemans, A., Phillips, L., Beaulieu, C., 2008. Microstructural
maturation of the human brain from childhood to adulthood. Neuroimage 40,
1044–1055.

LeBihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.,
2001. Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging
13, 534–546.

Metzler-Baddeley, C., Foley, S., De Santis, S., Charron, C., Hampshire, A.,
Caeyenberghs, K., Jones, D.K., 2017. Dynamics of white matter plasticity underlying
working memory training: multimodal evidence from diffusion mri and relaxometry.
J. Cogn. Neurosci. 29, 1509–1520.

Miller, K.L., Alfaro-Almagro, F., Bangerter, N.K., Thomas, D.L., Yacoub, E., Xu, J.,
Bartsch, A.J., Jbabdi, S., Sotiropoulos, S.N., Andersson, J.L., et al., 2016. Multimodal
population brain imaging in the UK biobank prospective epidemiological study. Nat.
Neurosci. 19, 1523.

Mirzaalian, H., de Pierrefeu, A., Savadjiev, P., Pasternak, O., Bouix, S., Kubicki, M.,
Westin, C.F., Shenton, M.E., Rathi, Y., 2015. Harmonizing diffusion mri data across
multiple sites and scanners. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, pp. 12–19.

Mori, S., Van Zijl, P.C., 2002. Fiber tracking: principles and strategies–a technical review.
NMR Biomed. 15, 468–480.

Murtagh, F., Legendre, P., 2014. Ward's hierarchical agglomerative clustering method:
which algorithms implement ward's criterion? J. Classif. 31, 274–295.

Mwangi, B., Tian, T.S., Soares, J.C., 2014. A review of feature reduction techniques in
neuroimaging. Neuroinformatics 12, 229–244.

Penke, L., Maniega, S.M., Murray, C., Gow, A.J., Hern�andez, M.C.V., Clayden, J.D.,
Starr, J.M., Wardlaw, J.M., Bastin, M.E., Deary, I.J., 2010. A general factor of brain
white matter integrity predicts information processing speed in healthy older people.
J. Neurosci. 30, 7569–7574.

Pierpaoli, C., Basser, P.J., 1996. Toward a quantitative assessment of diffusion anisotropy.
Magn. Reson. Med. 36, 893–906.

RCore Team, 2018. R: A Language andEnvironment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

Raffelt, D., Tournier, J.D., Rose, S., Ridgway, G.R., Henderson, R., Crozier, S., Salvado, O.,
Connelly, A., 2012. Apparent fibre density: a novel measure for the analysis of
diffusion-weighted magnetic resonance images. Neuroimage 59, 3976–3994.

Ramsay, J., 2005. Functional data analysis. Encycl. Stat. Behav. Sci.
Rovaris, M., Iannucci, G., Cercignani, M., Sormani, M.P., De Stefano, N., Gerevini, S.,

Comi, G., Filippi, M., 2003. Age-related changes in conventional, magnetization
transfer, and diffusion-tensor mr imaging findings: study with whole-brain tissue
histogram analysis1. Radiology 227, 731–738.

Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear
embedding. Science 290, 2323–2326.

RStudio Team, 2016. RStudio. Integrated Development Environment for R. RStudio, Inc.,
Boston, MA. URL: http://www.rstudio.com/.

Sairanen, V., Leemans, A., Tax, C., 2018. Fast and accurate slicewise outlier detection
(solid) with informed model estimation for diffusion mri data. Neuroimage 181,
331–346.

Scherrer, B., Schwartzman, A., Taquet, M., Sahin, M., Prabhu, S.P., Warfield, S.K., 2016.
Characterizing brain tissue by assessment of the distribution of anisotropic
microstructural environments in diffusion-compartment imaging (diamond). Magn.
Reson. Med. 76, 963–977.

Scholz, J., Tomassini, V., Johansen-Berg, H., 2014. Individual differences in white matter
microstructure in the healthy brain. In: Diffusion MRI. Elsevier, pp. 301–316.

Seunarine, K., Alexander, D., 2009. Multiple fibers: beyond the diffusion tensor. Chapter
4. In: Diffusion mri: from quantitative measurement to in-vivo neuroanatomy.

Seunarine, K.K., Clayden, J.D., Jentschke, S., Munoz, M., Cooper, J.M., Chadwick, M.J.,
Banks, T., Vargha-Khadem, F., Clark, C.A., 2016. Sexual dimorphism in white matter
developmental trajectories using tract-based spatial statistics. Brain Connect. 6,
37–47.

http://refhub.elsevier.com/S1053-8119(19)30505-1/sref33
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref33
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref33
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref34
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref35
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref35
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref35
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref35
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref36
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref37
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref38
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref39
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref40
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref40
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref40
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref41
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref41
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref41
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref42
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref42
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref43
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref44
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref44
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref44
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref45
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref45
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref46
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref46
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref46
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref46
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref47
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref47
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref47
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref48
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref48
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref48
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref49
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref50
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref51
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref51
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref51
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref52
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref52
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref52
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref52
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref53
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref54
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref55
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref55
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref55
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref56
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref57
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref57
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref58
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref58
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref58
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref58
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref59
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref60
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref61
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref62
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref63
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref64
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref65
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref67
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref67
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref67
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref67
https://CRAN.R-project.org/package=factoextra.%20r%20package%20version%201.0.5
https://CRAN.R-project.org/package=factoextra.%20r%20package%20version%201.0.5
https://CRAN.R-project.org/package=factoextra.%20r%20package%20version%201.0.5
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref69
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref69
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref69
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref70
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref71
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref72
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref72
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref72
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref72
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref73
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref73
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref73
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref74
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref74
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref74
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref74
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref75
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref75
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref76
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref76
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref76
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref76
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref77
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref77
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref77
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref77
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref78
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref79
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref79
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref79
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref79
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref80
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref80
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref80
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref80
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref80
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref81
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref81
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref81
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref81
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref82
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref82
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref82
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref83
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref83
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref83
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref84
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref84
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref84
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref84
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref84
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref84
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref85
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref85
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref85
https://www.R-project.org/
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref87
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref87
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref87
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref87
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref88
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref89
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref89
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref89
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref89
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref89
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref90
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref90
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref90
http://www.rstudio.com/
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref92
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref92
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref92
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref92
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref93
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref93
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref93
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref93
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref93
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref94
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref94
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref94
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref95
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref95
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref96
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref96
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref96
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref96
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref96


M. Chamberland et al. NeuroImage 200 (2019) 89–100
Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J.,
Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., et al., 2013. Advances in
diffusion mri acquisition and processing in the human connectome project.
Neuroimage 80, 125–143.

Suryanarayana, U., Parker, G., Roberts, J., Jones, D., 2018. Can we correct for interactions
between subject motion and gradient-nonlinearity in diffusion mri?. In: Proc. ISMRM.

Tax, C.M., Grussu, F., Kaden, E., Ning, L., Rudrapatna, U., Evans, J., St-Jean, S.,
Leemans, A., Koppers, S., Merhof, D., et al., 2019. Cross-scanner and cross-protocol
diffusion mri data harmonisation: a benchmark database and evaluation of
algorithms. NeuroImage.

Tenenbaum, J.B., 1998. Mapping a manifold of perceptual observations. In: advances in
neural information processing systems, pp. 682–688.

Tournier, J., Calamante, F., Connelly, A., et al., 2012. Mrtrix: diffusion tractography in
crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66.

Tournier, J.D., Calamante, F., Connelly, A., 2007. Robust determination of the fibre
orientation distribution in diffusion mri: non-negativity constrained super-resolved
spherical deconvolution. Neuroimage 35, 1459–1472.

Tournier, J.D., Calamante, F., Connelly, A., 2013. Determination of the appropriate b
value and number of gradient directions for high-angular-resolution diffusion-
weighted imaging. NMR Biomed. 26, 1775–1786.

Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A., 2004. Direct estimation of the
fiber orientation density function from diffusion-weighted mri data using spherical
deconvolution. Neuroimage 23, 1176–1185.

Tournier, J.D., Mori, S., Leemans, A., 2011. Diffusion tensor imaging and beyond. Magn.
Reson. Med. 65, 1532–1556.

Tuch, D.S., et al., 2002. Diffusion MRI of Complex Tissue Structure. Ph.D. thesis.
Massachusetts Institute of Technology.

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.,
Consortium, W.M.H., et al., 2013. The Wu-minn human connectome project: an
overview. Neuroimage 80, 62–79.
100
Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J., Fieremans, E., 2016.
Denoising of diffusion mri using random matrix theory. Neuroimage 142, 394–406.

Vos, S.B., Jones, D.K., Jeurissen, B., Viergever, M.A., Leemans, A., 2012. The influence of
complex white matter architecture on the mean diffusivity in diffusion tensor mri of
the human brain. Neuroimage 59, 2208–2216.

Vos, S.B., Tax, C.M., Luijten, P.R., Ourselin, S., Leemans, A., Froeling, M., 2017. The
importance of correcting for signal drift in diffusion mri. Magn. Reson. Med. 77,
285–299.

Wang, J.L., Chiou, J.M., Müller, H.G., 2016. Functional data analysis. Annu. Rev. Stat.
Appl. 3, 257–295.

Wang, Y., Fan, Y., Bhatt, P., Davatzikos, C., 2010. High-dimensional pattern regression
using machine learning: from medical images to continuous clinical variables.
Neuroimage 50, 1519–1535.

Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M., 2005. Mapping
complex tissue architecture with diffusion spectrum magnetic resonance imaging.
Magn. Reson. Med. 54, 1377–1386.

Wickham, H., et al., 2014. Tidy data. J. Stat. Softw. 59, 1–23.
Yeatman, J.D., Dougherty, R.F., Myall, N.J., Wandell, B.A., Feldman, H.M., 2012. Tract

profiles of white matter properties: automating fiber-tract quantification. PLoS One 7,
e49790.

Yeatman, J.D., Wandell, B.A., Mezer, A.A., 2014. Lifespan maturation and degeneration of
human brain white matter. Nat. Commun. 5, 4932.

Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C., 2012. Noddi: practical
in vivo neurite orientation dispersion and density imaging of the human brain.
Neuroimage 61, 1000–1016.

Zucchelli, M., Deslauriers-Gauthier, S., Deriche, R., 2018. A closed-form solution of
rotation invariant spherical harmonic features in diffusion mri. In: MICCAI-
computational Diffusion MRI Workshop 2018.

http://refhub.elsevier.com/S1053-8119(19)30505-1/sref97
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref97
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref97
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref97
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref97
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref98
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref98
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref99
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref99
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref99
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref99
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref100
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref100
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref100
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref101
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref101
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref101
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref102
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref102
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref102
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref102
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref103
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref103
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref103
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref103
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref104
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref104
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref104
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref104
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref105
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref105
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref105
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref106
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref106
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref107
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref107
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref107
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref107
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref108
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref108
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref108
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref109
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref109
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref109
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref109
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref110
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref110
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref110
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref110
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref112
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref112
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref112
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref113
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref113
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref113
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref113
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref114
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref114
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref114
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref114
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref115
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref115
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref117
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref117
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref117
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref118
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref118
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref119
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref119
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref119
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref119
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref120
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref120
http://refhub.elsevier.com/S1053-8119(19)30505-1/sref120

	Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain
	1. Introduction
	2. Methods
	2.1. Participants
	2.2. Data acquisition
	2.3. Data pre-processing
	2.4. Local representation
	2.5. Tractography and tractometry
	2.6. Dimensionality reduction
	2.7. Statistical analysis

	3. Results
	3.1. Measures covariance and profiling
	3.2. Principal component analysis
	3.3. Detecting differences in tissue microstructure
	3.3.1. Bundle averages
	3.3.2. Along-tract profiling


	4. Discussion
	4.1. Extraction of interpretable components
	4.2. Choice of diffusion measures
	4.3. Future perspectives

	5. Conclusions
	Funding
	Acknowledgements
	Appendix A. Supplementary data
	References


