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ABSTRACT: Air pollution exposure is typically assessed at the
front door where people live in large-scale epidemiological studies,
overlooking individuals’ daily mobility out-of-home. However,
there is limited evidence that incorporating mobility data into
personal air pollution assessment improves exposure assessment
compared to home-based assessments. This study aimed to
compare the agreement between mobility-based and home-based
assessments with personal exposure measurements. We measured
repeatedly particulate matter (PM2.5) and black carbon (BC) using
a sample of 41 older adults in the Netherlands. In total, 104 valid
24 h average personal measurements were collected. Home-based
exposures were estimated by combining participants’ home
locations and temporal-adjusted air pollution maps. Mobility-
based estimates of air pollution were computed based on smartphone-based tracking data, temporal-adjusted air pollution maps,
indoor-outdoor penetration, and travel mode adjustment. Intraclass correlation coefficients (ICC) revealed that mobility-based
estimates significantly improved agreement with personal measurements compared to home-based assessments. For PM2.5,
agreement increased by 64% (ICC: 0.39−0.64), and for BC, it increased by 21% (ICC: 0.43−0.52). Our findings suggest that
adjusting for indoor-outdoor pollutant ratios in mobility-based assessments can provide more valid estimates of air pollution than the
commonly used home-based assessments, with no added value observed from travel mode adjustments.
KEYWORDS: air pollution, GPS, personal exposure, PM2.5, black carbon, exposure assessment

1. INTRODUCTION
Air pollution is a major threat to global public health,
attributable to about 6.7 million premature deaths yearly.1 Its
adverse health effects, including cardiovascular diseases,2,3

mental health problems,4 and respiratory diseases,5,6 have been
documented in many meta-analyses and reviews. However, the
magnitudes of the estimated effect sizes were not always
consistent. These inconsistencies could partly arise from how
people’s exposure to air pollutants was estimated.

Air pollution assessments in large-scale epidemiological
studies are typically conducted at the front door where people
live7−10 by intersecting the address location with modeled air
pollution concentration maps.7,10,11 However, these ap-
proaches likely lead to inaccuracies in air pollution exposure
assessments because people do not spend all the time at
home.12 People’s everyday life unfolds over multiple activity
locations (e.g., workplace, recreation), and they experience
different exposure concentrations along their day-to-day
mobility.13,14 It is thus vital to assess air pollution exposures
dynamically based on people’s mobility patterns.

Some attempts have been made to advance home-based air
pollution exposure assessments to mobility-based assess-

ments,11,15,16 including direct and indirect approaches. Direct
approaches rely on personal portable air pollution monitors
that directly measure air pollutant concentrations. However,
multiple methodological and technical challenges have been
brought forward; for example, the devices monitor only a
selected number of pollutants and are limited by battery life
and high costs, leading to limited measurements to estimate
long-term exposures.17 These challenges prevent their use in
large studies.

Indirect approaches assess air pollution concentration levels
based on people’s spatiotemporal trajectories captured by
global positioning system (GPS)-enabled devices (e.g., GPS-
trackers, smartphones).18−20 By combining the GPS data with
air pollution maps obtained through land use regressions
(LUR), personal exposure to air pollution can be estimated.

Received: December 27, 2023
Revised: May 8, 2024
Accepted: May 28, 2024
Published: June 5, 2024

Articlepubs.acs.org/est

© 2024 The Authors. Published by
American Chemical Society

10685
https://doi.org/10.1021/acs.est.3c10867

Environ. Sci. Technol. 2024, 58, 10685−10695

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

19
2.

14
8.

22
8.

57
 o

n 
M

ar
ch

 2
8,

 2
02

5 
at

 0
0:

45
:5

2 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lai+Wei"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Donaire-Gonzalez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marco+Helbich"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Erik+van+Nunen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gerard+Hoek"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Roel+C.+H.+Vermeulen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Roel+C.+H.+Vermeulen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.3c10867&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c10867?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c10867?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c10867?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c10867?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.3c10867?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/esthag/58/24?ref=pdf
https://pubs.acs.org/toc/esthag/58/24?ref=pdf
https://pubs.acs.org/toc/esthag/58/24?ref=pdf
https://pubs.acs.org/toc/esthag/58/24?ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.est.3c10867?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Due to the highly granular data on people’s whereabouts,
diverse aspects of human behaviors and the microenvironment,
such as dwelling time and travel model, can be taken into
account to enhance the accuracy of exposure assess-
ments.16,21−24 Compared to direct approaches, indirect
assessments are more convenient and cheaper to apply to a
large population and multiple exposures, and thus become
more feasible and used in epidemiological studies.11,14

However, whether moving from home-based (static) to
mobility-based (dynamic) approaches improves the validity of
the exposure assessment remains largely unknown. Only a few
studies compared the differences between the air pollution
concentrations assessed statically and dynamically, and the
results suggested pronounced differences between static and
dynamic air pollution exposure assessments.13,23,25−27 For
example, residential and dynamic estimated personal exposure
to PM2.5 were significantly different and the difference could be
up to 6%.16,21,27,28 However, personal exposure estimates were
simulated and cannot capture the true exposure as measured
with portable air pollution monitors. Due to the absence of
personal exposure measurements, comparisons against ground-
truth benchmark data were not made in past studies.
Therefore, existing evidence is insufficient in terms of whether
mobility-based approaches improve personal air pollution
exposure assessment.

Identifying such an improvement for specific population
groups (e.g., older adults) benefits the decision-making on
adopting the suitable exposure assessment method in
epidemiological studies. Older adults are subject to higher
health risks and more vulnerable to the environment than
other groups.29 Though the mobility-based method is
considered to be suitable for identifying exposure to the
environment in the general population, its applicability in older
adults could be limited.27 Older adults usually present a

different spatiotemporal mobility profile, characterized by less
daily travel and smaller activity spaces, than younger adults.30

Given their daily activities are mostly conducted around the
home locations, there are emerging concerns about whether
using mobility-based assessment of older adults is really
necessary.

To respond to these knowledge gaps, this study aimed to
compare the agreement between home-based and mobility-
based air pollution assessment methods and a ground-truth
benchmark (e.g., direct approach-based personal measure-
ments) using a sample of older adults. Our findings contribute
to accurately quantifying the validity of the mobility-based
method of air pollution assessment, and evaluating to what
extent the mobility-based method improves the validity of
exposure assessment compared to the standard home-based
method.

2. MATERIALS AND METHODS
2.1. Study Design. This study was conducted as a part of

the EXPOsOMICS project.31,32 Participants were recruited
mostly from cohort studies in the Netherlands.31 Inclusion
criteria for eligible participants were: (1) aged 50−70 years;
(2) in good health condition; (3) nonsmokers and no smoking
in their home (i.e., not smoking combustible and electronic
cigarettes); and (4) having a historic blood sample in an
ongoing cohort study.31 For increasing the contrast in
exposure, our objective was to enroll 50% of the participants
living close to main roads (≥10,000 vehicles/day) and 50% at
minor roads (<10,000 vehicles/day). In the end, we included
41 participants living in Amsterdam or Utrecht who were
monitored for three nonconsecutive 24 h between March 2014
and February 2015. To minimize seasonal variation in personal
mobility behavior and ambient air pollution,33 three monitor-
ing activities for each participant took place in different seasons

Figure 1. Workflow of this study.
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(spring/fall, summer, and winter). The Ethical Committee of
the University Medical Center Utrecht approved the study
protocol. Participants provided written informed consent
before study inclusion.
2.2. Personal Exposure Monitoring. On the monitoring

day, participants wore a belt equipped with a smartphone, a
backpack fitted with a time-integrated gravimetric sampler of
particulate matter with an aerodynamic diameter of 2.5 μm or
less (PM2.5), and a time-resolved light absorbance device
(aethalometer) measuring black carbon (BC).34 Participants’
mobilities were tracked with the preinstalled “ExpoApp”
Android smartphone application, an integrated system
monitoring multiple personal exposures that records geo-
locations every 10 s.35 During each monitoring session,
participants also filled out a time-activity diary with a 5 min
accuracy to record their locations (e.g., home, work, in-transit,
or other), dwelling time (e.g., 15 min), and travels (e.g., car,
bike, or tram). Additionally, home-based air pollution
measurements at participants’ home locations were taken.
2.3. Air Pollution Measurement Methods and Data

Processing. We assessed participants’ exposure to PM2.5 and
BC using standard measurement methods (Figure 1).
2.3.1. Fixed-Site Measurements. PM2.5 and BC measure-

ments at fixed monitoring sites (see Supporting Figure S1)
were obtained from the Dutch National Air Quality
Monitoring Network (https://www.luchtmeetnet.nl/). The
measurements followed the European Air Quality Directive
2008/50/EC.36 Specifically, PM2.5 was measured with the
MetOne beta-attenuation monitor and BC with a multi-angle
absorption photometer (MAAP). We assigned air pollution
levels from the geographically closest monitoring station to the
participants’ home locations. Hourly monitored exposure levels
over 24 h were averaged as the fixed-site measurement.
2.3.2. Outdoor Home Measurements. Outdoor home

measurements of PM2.5 and BC were collected by the
gravimetrical samplers placed outside the participants’ main
living room window. As reported elsewhere,32 PM2.5 and BC
were sampled with the same 37 mm Teflon filters held in a
cyclone (model GK2.05 SH, BGI, Inc., Waltham MA)
(Supporting Figure S2) with an aerodynamic cut point of 2.5
μm and connected to a BGI/Mesa Labs A4004 pump working
at 3.5 L/min. 24 h average PM2.5 concentrations were
determined by the difference between pre- and postsampling
filter weight using a microbalance of 1 μg accuracy (Model
MT5, Mettler-Toledo International, Inc., Switzerland). The
exposure level of BC was converted from PM2.5 reflectance,
which was measured using a Smoke Stain Reflectometer (SSR)
(Model 43D, Diffusion Systems Ltd., U.K.). Measurements
were discarded if the sampling duration was less than 16 h
and/or the end flow deviated more than 20% from the
designed 3.5 L/min (2.8−4.2 L/min). Standardized operating
procedures for collecting samples, analytical procedures, and
quality control followed the ESCAPE procedures (manuals can
be found at http://www.escapeproject.eu/manuals/).
2.3.3. Personal Measurements. 2.3.3.1. Gravimetric Sam-

pler-Based Measurements. Gravimetric sampler-based meas-
urements of PM2.5 and BC were collected by the gravimetric
samplers, the same as the devices for outdoor home
measurements, carried by the participants. The details of
devices, data collection, and cleaning procedures are described
in Section 2.3.2. Our analysis considered the gravimetric
sampler-based measurements of PM2.5 and BC as the

benchmark. Unless otherwise stated, we refer to gravimetric
sampler-based measurements as personal measurements.
2.3.3.2. Light Absorbance Measurements. The concen-

tration of BC was also measured using a MicroAeth monitor
(model AE51, AethLabs, San Francisco, CA) with a 1 min
temporal resolution (Supporting Figure S2). The validation
report of the MicroAeth monitor can be found elsewhere.37 An
Optimized Noise reduction Averaging (ONA) algorithm was
applied to reduce measurement errors in the BC concen-
trations.38 Similar to gravimetric sampler-based measurements,
only measurements with more than 16 h monitoring can be
retained. This method was used as an alternative benchmark
for BC in the sensitivity test.

Personal and outdoor home measurements were performed
with the same instrumentation. Fixed-site measurements were
performed with different instruments; thus, differences in the
absolute level can be expected in comparisons of fixed-site
measurements with personal and outdoor home measurements
and estimated exposure (Section 2.4) based on another PM
sampler. PM2.5 and BC from different instruments have been
shown to be highly correlated.21 We did not colocate
instruments to quantify differences for this study.
2.4. Air Pollution Estimate Methods. The exposures to

PM2.5 and BC for each participant were also modeled using
participants’ geolocations and air pollution maps (Figure 1).
2.4.1. Land Use Regression Models for PM2.5 and BC. We

used annual average PM2.5 and PM2.5 absorbance concen-
tration maps for modeling personal exposures. The exposure to
BC was estimated by PM2.5 absorbance as explained in Section
2.3, which is highly correlated with BC concentration.21 These
maps were derived from ESCAPE LUR models predicted by
traffic intensity, population, land use, and elevation.39 The
models were derived from measurements made with the
Harvard Impactor.39 The data referred to 2009 with a 5 m
spatial resolution. The LUR model validation results are
provided elsewhere.40

2.4.2. Home-Based Estimates. The home-based PM2.5 and
BC exposure estimates were determined by combining the
LUR-based concentrations at the participants’ geocoded home
locations and an hourly temporal adjustment factor. The
adjustment factor extrapolated the air pollution concentration
in 2009 to the concentration during the participants’
monitoring period. The factor was computed based on the
time series measurement data and the LUR-based air pollution
map at the closest fixed-site monitoring station.21,39 Specifi-
cally, for each monitoring station, we utilized the differences
between the PM2.5 measurements during the monitoring
period in an hour resolution and the PM2.5 concentrations at
the location of the monitoring station based on the LUR
model as the hourly temporal adjustment factor. Home-based
PM2.5 estimates were determined by adding up the mean
hourly temporal adjustment factor and the PM2.5 concen-
trations at the participants’ home locations in the LUR model.

For BC, we calculated the hourly temporal adjustment factor
as the ratio between the hourly BC concentration measure-
ment at the monitoring station and the concentration at the
station’s location in the LUR-based air pollution map. The
hourly home-based exposure was derived by multiplying this
hourly temporal adjustment factor with the BC concentrations
at the participants’ home locations in the LUR-based air
pollution map. Subsequently, the home-based BC estimates
were determined by averaging these hourly home-based
exposures. The median temporal adjustment factors and their
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first and third quartiles over 24 h are shown in Supporting
Figure S3.
2.4.3. Mobility-Based Estimates. The mobility-based PM2.5

and BC estimates were computed using participants’ GPS-
based tracking data in three steps. First, we extracted
concentrations from the LUR-based air pollution surface at
each GPS location and combined these values with a temporal
adjustment factor. The temporal adjustment factor was
computed based on air pollution measurements from the
nearest monitoring station to each GPS point. For each GPS
point, the temporal adjustment factor for PM2.5 was calculated
as the difference between the measured PM2.5 concentration at
the monitoring station at the recording time of the GPS point,
and the PM2.5 concentration of the LUR model at the
monitoring station’s location. We then obtained the PM2.5
exposure value for each GPS point by adding this temporal
correction factor. Similarly, for BC, we utilized the ratio of BC
measurements at the monitoring station to the LUR model
value at the station’s location as the BC temporal adjustment
factor. Subsequently, the BC exposure value for the GPS point
was determined by multiplying the BC concentration by the
temporal adjustment factor. Supporting Figure S2 shows the
median, the first and third quartiles of temporal adjustment
factors over 24 h.

Second, we extrapolated outdoor and indoor exposure using
a microenvironmental factor. Each participant’s GPS tracking
data were classified into four microenvironments (i.e., home,
work, in-transit, and others) using a validated map-matching
algorithm for travel-activity location classification.35 We
reclassified home, work, and others as the indoor environment.
Previous studies have shown that outdoor and indoor air
pollution concentrations vary substantially.41−43 We therefore
calculated indoor exposure concentrations from outdoor
concentrations when participants were indoors. Hoek et al.44

derived different intercepts and slopes for relationships
between 24 h average indoor and outdoor concentrations of
PM2.5 and BC in Amsterdam. The microenvironmental factors
were as follows:44 Indoor PM2.5 concentration = 4.7 + 0.39 ×
outdoor PM2.5 concentration; indoor BC concentration = 0.1 +
0.78 × outdoor BC concentration. Indoor sources of PM2.5 and
BC were ignored.

Third, we applied a travel mode factor to extrapolate the
exposure levels for different in-transit modes. Participants’
travel modes were acquired from the time-activity diary. Air
pollution concentrations can be extrapolated between travel
modes using the transport ratios with one type of travel mode
as the constant of reference.45 Guided by a quantitative review
study in European cities,45 the exposure levels for different
travel modes were bike/walk (PM2.5 = 1.3; BC = 1.5), bus/
walk (PM2.5 = 1.5; BC = 0.8), car/walk (PM2.5 = 1.4; BC =
2.9). We assumed that the LUR-based concentrations equal
pedestrian-level exposure concentrations.16 We further as-
sumed that the exposure concentrations were the same in
buses, trams, metros, and trains, as we had no information
about mode-specific concentration differences.16 The micro-
environmental and travel model adjustment factors corrected
exposure levels of PM2.5 and BC per GPS point. Averaged
values from all GPS points were used as mobility-based
estimates.
2.5. Statistical Analysis. Boxplots and raincloud plots

summarized the estimated and measured PM2.5 and BC levels
descriptively. Since exposure data did not follow normal
distributions, Spearman correlation analysis was applied to

quantify bivariate associations between different air pollution
assessment methods. The intraclass correlation coefficient
(ICC) quantified the agreement between personal measure-
ments and other exposure assessment methods.46 Since each
participant had multiple observations, we fitted linear mixed
models with a random intercept for each participant to obtain
the ICC.

Several indicators were adopted to compare the measure-
ment error between different exposure assessment methods.
First, we calculated the normalized mean bias factor (Bnmbf)
and normalized mean absolute error factor (Enmaef), as
statistically robust measures of relative bias and error of a
model.47 The level of agreement between methods was defined
a priori as excellent if the ICC is >0.7, |Bnmbf| < 0.25, and Enmaef
< 0.35, moderate if the ICC is between 0.5 and 0.7, or |Bnmbf| ≥
0.25, or Enmaef ≥ 0.35.47

Second, we visualized the agreement between different
exposure assessment methods and the benchmark with Bland−
Altman plots, which plot the difference between two methods
against the mean of two methods.48 Based on the Bland−
Altman plots, we calculated the bias, and limits of agreement
(i.e., mean bias ±1.96 standard deviation (SD) of the bias).

As sensitivity tests, we repeated the analyses after: (1)
replacing the benchmark with light absorbance measurements
for BC; (2) stratifying by participants’ median time in-transit
to evaluate the impact of participants’ travel behavior on the
validity of the mobility-based exposure assessment; and (3)
decomposing the mobility-based method by each adjustment
factor to evaluate their significance to the mobility-based
exposure assessment. Three mobility-based models were
compared: Model 1 was temporally adjusted, Model 2 was
temporally and microenvironmentally adjusted, and Model 3
was fully adjusted including transportation mode. Unless stated
otherwise, mobility-based estimates refer to Model 3. All
analyses were conducted in R, version 4.1.2.49

3. RESULTS
3.1. Study Population Characteristics and Exposure

Distribution. Table 1 provides descriptive statistics of the
study population. Study participants were, on average, aged
61.7 (SD ± 6.7) years, predominantly female (82.9%), highly

Table 1. Characteristics of Study Participants (N = 41)

category n (%)/mean (SD)

age (years) 61.7 (6.7)
sex:

female 34 (82.9%)
male 7 (17.1%)

education level:
any secondary school 1 (2.4%)
high school 6 (14.6%)
university or higher 34 (83.0%)

traffic volume at home location:
low (<10,000 vehicles/day) 20 (48.8%)
high (≥10,000 vehicles/day) 21 (51.2%)

living in an urban area 39 (95.1%)
daily in-transit travel duration (hours) 1.1 (0.7)
daily duration at home (hours) 19 (3.8)
daily duration at other environment (hours) 2.2 (2.0)

time in green spaces, ≥30 min 23 (56.1%)
daily travel distance (km) 35.8 (47.9)
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educated (83%), and from urban areas (95.1%). They spent an
average of 1.1 h (SD ± 0.7) in-transit, and 19 h (SD ± 3.8) at
home. More than half (56.1%) of the subjects spent at least 30
min in green spaces.

There were 123 person-days of PM2.5 and BC measurements
monitored. Due to partial measurement equipment failures,
104 person-days were available for outdoor home and personal
measurements. There were 74 valid samples for real-time light
absorbance measurements used for sensitivity analysis. Figure 2

and Supporting Table S1 show the PM2.5 and BC distribution
across different methods. For both exposures, outdoor home
measurements and home-based estimates showed considerably
more variations and higher median exposure levels than
personal measurements and mobility-based estimates. The
median and interquartile range (IQR) of personal measure-
ments were 8.92 (6.94) μg·m−3 and 0.82 (0.71) 10−5·m−1 for
PM2.5 and BC, respectively (Supporting Table S1).

Supporting Figure S4 shows the correlation matrices across
different methods. Personal measurements for both exposures
were moderately correlated (0.63) with home-based and
mobility-based estimates. Home-based and mobility-based
estimates were highly correlated (0.97−0.99) for both
exposures.
3.2. Agreement between Exposure Assessment

Methods and the Benchmark. Figure 3 displays the
agreement between personal measurements (i.e., the bench-
mark) and other methods for PM2.5, and Figure 4 shows the

results of BC. For PM2.5, no method achieved an excellent level
of agreement. Mobility-based estimates and outdoor home
measurements achieved moderate agreement; the former had a
higher ICC. Compared to the ICC of home-based estimates,
the ICC of mobility-based estimates increased from 0.39 to
0.64, improving about 64%. The bias was reduced from 5.15 to
0.64 μg·m−3. Fixed-site measurements showed the worst
performance, with the lowest ICC (0.39) and the largest bias
(5.26 μg·m−3).

For BC (Figure 4), despite outdoor home measurements
exhibiting a high ICC (0.73), its Bnmbf (0.29) and Enmaef (0.39)
both exceed the criteria showing a moderate level of
agreement. Mobility-based estimates also resulted in a
moderate agreement (ICC = 0.52), surpassing home-based
estimates (ICC = 0.43) by about 21%. Fixed-site measure-
ments had the lowest ICC (0.26). The sensitivity test using
light absorbance measurements as the benchmark shows
similar results (Supporting Figure S5 and Table S2).
Mobility-based estimates still have better agreement with the
benchmark than home-based estimates.
3.3. Stratified Analysis. Supporting Table S3 summarizes

the results of the stratified analysis. The agreements between
all methods and personal measurements of PM2.5 and BC were
higher in participants with <1 h in-transit than those with ≥1
h. The agreement between personal measurements and
mobility-based estimates was consistently larger than that
with home-based estimates. Participants with less in-transit
time showed an excellent agreement (ICC = 0.77) between
mobility-based estimates and personal measurements of PM2.5
but moderate for BC (ICC = 0.63). Population with longer in-
transit time exhibited a moderate agreement for PM2.5 and a
poor agreement for BC between mobility-based estimates and
personal measurements.
3.4. Assessment of Adjustment Factors. We computed

ICCs between personal measurements and three models of
mobility-based estimates with incremental adjustment factors
(Table 2). Model 1 with only temporal adjustment still showed
higher levels of agreement with personal measurements than
home-based estimates (PM2.5: 0.41 versus 0.39, BC: 0.45
versus 0.43). After correcting for temporal and micro-
environmental adjustment factors in Model 2, we observed
large increases in the agreement with personal measurements
of 56% for PM2.5 and 16% for BC. However, the ICCs of
Model 2 (Table 2) and the fully adjusted Model 3 (Figures 3
and 4) were nearly identical, with Bnmbf and Enmaef also closely
aligned.

4. DISCUSSION AND CONCLUSIONS
This study is among the first to quantitatively evaluate
mobility-based estimates’ agreement with personal measure-
ments and its improvement in the agreement with personal
measurements as compared to traditional home-based assess-
ments using an older adult sample. We compared four typical
exposure assessment methods with the benchmark assessed by
personal measurements. Our results revealed that each method
overestimated the actual exposure to air pollution (i.e., the
benchmark) to some extent. Fixed-site measurements (from
fixed monitoring sites) performed worst for both PM2.5 and
BC. Mobility-based estimates notably improved the validity of
the PM2.5 exposure assessment by 64% and of BC by 21%
compared to home-based estimates. In our sample, the
improvement in the agreement between mobility-based
estimates and real exposure was primarily attributed to the

Figure 2. Distribution of the assessed PM2.5 and black carbon (BC)
concentrations across different exposure assessment methods (N =
104). Mobility-based estimates refer to Model 3 which were adjusted
for temporal, microenvironmental, and travel mode factors. Note that
BC from fixed-site measurements is in the unit of μg·m−3; both BC
and PM2.5 from fixed-site measurements were measured from different
instruments than outdoor home and personal measurements.
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microenvironmental adjustment factor distinguishing indoor-
outdoor exposure concentration, with no added value observed
from travel mode adjustments.

Our results showed that the assessed personal exposures
were higher than the benchmark. Static methods (i.e., home-
based estimates, outdoor home measurements, and fixed-site
measurements) were found to have higher levels of exposure
concentrations than dynamic methods (i.e., mobility-based
estimates). As fixed-site measurements and the LUR model
were based on different instruments, differences in level can be
due to instruments. These findings were contrary to previous
studies which have suggested that the daily exposure assessed
by the mobility-based method is higher than the home-based
method assessment.27 This contradiction may be due to the
use of penetration factors in our study, which adjusts for
indoor and outdoor air pollution differences in our sample.
Given the fact that our older participants spent, on average, 19
h at home, the cumulative indoor/outdoor exposure difference
can be profound. Our results align with previous findings that
the fixed-site measurements are a poor proxy for personal
exposure.50 Though fixed-site monitors usually have extensive
coverage, they fail to capture hyperlocal variation in air
pollution due to a sparse geographic distribution of the
monitoring sites.51,52 Moreover, outdoor home measurements
showed better agreement with the benchmark than home-
based estimates. However, it is worth noting that deploying
gravimetric samplers at participants’ homes incurs heavy costs
and workload. Therefore, the potential improvement in the
validity of exposure assessment due to outdoor home
measurements is less likely to outweigh the associated costs,

particularly in large-population studies. Advances in low-cost
sensors may change this in the future.

Congruent with prior studies, our findings suggested that
mobility-based estimates are valid to simulate personal
exposures.16,21,24,26,50,53 We found that mobility-based esti-
mates were relatively more valid than home-based estimates,
which conflicted with earlier results.24,50 Those studies
reported that personal measurements have stronger correla-
tions with home-based estimates than mobility-based esti-
mates.24,50 The discrepancy in the study population could
explain different findings, but it also implies that the suitable
exposure assessment method for specific population groups
may vary. Moreover, PM2.5 showed a greater improvement
(64%) in the agreement with actual exposure than that of BC
(21%). A possible explanation is the larger variation of BC
concentration across different microenvironments (e.g., home,
dining, and shopping) compared to PM2.5

54 Given that we only
accounted for indoor versus outdoor air pollution concen-
tration with a simple penetration factor, the adjustments for
BC could be insufficient. In addition, some previous works
suggested to use home-based estimates as a proxy for mobility-
based estimates of PM2.5 because of the high correlation
between exposure concentrations estimated by these two
methods.13,55 We also observed that home-based estimates
were highly correlated with mobility-based estimates; thus, we
believe that home-based estimates could serve as an alternative
to mobility-based estimates for PM2.5 when GPS data or time-
activity recordings are unavailable. However, there were
striking discrepancies in their agreements with the benchmark,
and the assessed exposure concentration levels. Such a

Figure 3. Bland−Altman plots of PM2.5 exposure levels between different exposure assessment methods and the benchmark (i.e., personal
measurements). Limits of agreement (LoA; i.e., mean bias ±1.96 standard deviation of the bias) and bias are shown in red dashed lines and black
solid lines, respectively. Mobility-based estimates refer to Model 3 which were adjusted for temporal, microenvironmental, and travel mode factors.
ICC refers to the intraclass correlation coefficient.
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difference may translate into a change in estimated effect sizes
when linking the exposure to health outcomes.

Our results indicated that the improvement in the agreement
between mobility-based estimates and the benchmark stems
from the microenvironmental adjustment. When focusing on
participants with shorter in-transit time, mobility-based
estimates showed significant improvements in the agreement
with real exposure, with a 20% improvement for PM2.5 and
21% for BC. This result aligns with earlier findings that
incorporating microenvironments results in large variations in
modeled personal exposure concentration.24,50,54 More im-
portantly, Lin et al.54 observed higher PM2.5 and BC
concentrations in cycling and bus environments. These two

travel modes contribute to ∼ a third of seniors’ travels in a
study in Rotterdam.30 Therefore, the significance of travel
mode adjustment should be stressed, as our results indicated.
For participants with an in-transit duration of ≥1 h, the
performance of the mobility-based estimates in assessment
accuracy significantly decreased. This fact entails that the travel
mode-adjusted mobility-based exposure deviated substantially
from the real exposure. A possible explanation could be that
these adjustment factors were compiled from several European
studies45 and thus may not be perfectly suitable for Amsterdam
and Utrecht. It could also relate to different environment
settings within the same travel mode which could also alter
pollutant concentrations.45,56,57 For instance, differences in
ventilation conditions inside a vehicle can lead to changed
pollutant concentrations.57 Lastly, it could well be that the
validity of the exposure surfaces for PM2.5 and BC are not
accurate enough on this hyperlocal scale to allow such detailed
and nuanced linkage of position and time on an individual
level.

Though our study confirmed better validity of the mobility-
based method in an older adult population, it did not support
replacing home-based estimates with mobility-based estimates
in all circumstances. Incorporating more detailed and precise
data (e.g., mobility data) may produce more accurate personal
exposure estimates, but it comes with higher costs and higher
participation burden. The key to the balance of the costs and
gains is to what extent exposure assessments can be improved.
In practice, when only GPS data and air pollution maps are
available, home-based estimates are still recommended. The
differences in ICCs between Model 1 and home-based
estimates in our study are minor. Considering that home-

Figure 4. Bland−Altman plots of BC exposure levels between different exposure assessment methods and the benchmark (i.e., personal
measurements). Limits of agreement (LoA; i.e., mean bias ±1.96 standard deviation of the bias) and bias are shown in red dashed lines and black
solid lines, respectively. Mobility-based estimates refer to Model 3 which were adjusted for temporal, microenvironmental, and travel mode factors.
ICC refers to the intraclass correlation coefficient.

Table 2. Agreement Statistics on Exposure to PM2.5 and
Black Carbon (BC) between Personal Measurements and
Mobility-Based Estimate Models (i.e., Models 1, 2, and 3)
Adjusted for Different Factorsa,b,c,d

mobility-based estimates ICC (95%CI) Bnmbf (Enmaef)

PM2.5 model 1 0.41 (0.24, 0.55) 0.46 (0.64)
model 2 0.64 (0.56, 0.75) 0.05 (0.30)
model 3 0.64 (0.54, 0.74) 0.06 (0.31)

BC model 1 0.45 (0.27, 0.56) 0.43 (0.58)
model 2 0.52 (0.37, 0.65) 0.24 (0.46)
model 3 0.52 (0.40, 0.66) 0.27 (0.47)

aICC = Intraclass correlation coefficient; Bnmbf (Enmaef) = Normalized
mean bias factor (Normalized mean absolute error factor). bModel 1
= LUR model + temporal adjustment factor. cModel 2 = LUR model
+ temporal + microenvironmental adjustment factors. dModel 3 =
LUR model + temporal + microenvironmental + travel mode
adjustment factors.
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based exposure assessments typically involve more participants
at a lower cost than mobility-based assessments, a small
improvement in terms of validity does not justify the use of
mobility-based estimates. However, if additional data (e.g.,
microenvironment adjustment factors) are also available, our
results support the use of mobility-based over home-based
estimates as the improvement in exposure assessment is
significant. However, we need to stress that our results
originated from the analysis of older people and transferring
these findings to the general population must be done with
care.

To have a better understanding of the use of exposure
assessment methods, several implications are suggested for
future studies. First, it is advocated to explore if LUR-based air
pollution maps can contribute to more improvements in the
validity of exposure assessment. For example, air pollution
maps at finer temporal scales (e.g., hourly) may result in more
accurate personal exposure estimates than using yearly
averages. Second, it is of particular interest to investigate to
what extent an improvement in the validity of exposure
assessment can translate into significant improvements in
estimated effect sizes on health. This would shed light on how
to determine the balance between costs and gains in mobility-
based exposure assessments. Third, mobility-based estimates
used in our study can be improved further. The microenviron-
ment adjustment could go beyond simply distinguishing
between indoor and outdoor environments. Penetration rates
between indoor and outdoor particles differ by the type or
quality of dwellings. For example, houses using mechanical
ventilation systems with air filters have lower penetration rates
than those not.42 Consequently, varying penetration ratios
would benefit the conversion of the indoor/outdoor particle
concentrations in mobility-based estimates. However, these
improvements would necessitate additional data (e.g., charac-
teristics of dwellings) for personal exposure assessments, and
obtaining or measuring these data may encounter challenges.
Especially for ethical issues, ensuring the anonymity of
participants, secure storage of GPS data, and avoiding misuse
and unauthorized access are concerns.58,59 Besides, geo-
locational privacy should be carefully protected in the research
and publication, as spatiotemporal movements are highly
personalized, to avoid spatial reidentification of individuals.59

This study had several limitations. First, we used a relatively
small sample of older people. Given that young adults likely
visit more activity locations throughout the day and travel
more actively than older adults,30 our study might under-
estimate the performance of applying mobility-based estimates
to the general population. In addition, our participants were
not equally sized in different sex groups. Given the discrepant
mobility patterns between males and females,60 the validity of
the mobility-based exposure assessment method could vary by
sex. To generalize our findings, we thus recommend
replications in other population groups. Second, the LUR
model-based air pollution maps used in this study predate GPS
tracking. Though we used a time series of air pollutant
measurements from the Dutch National Air Quality Monitor-
ing Network for temporal exposure adjustment, the network
may not accurately characterize the actual air pollution
concentration across cities.52 However, the Netherlands can
be regarded as one airshed, and temporal patterns between
fixed-site measurement stations are high. As such, we regard
the temporal adjustment that we did as sufficient. Third,
personal measurements are affected by housing characteristics

and indoor sources of PM2.5 and BC. Personal air pollution
exposure is affected by outdoor and indoor sources, which
makes it difficult to only capture personal exposure to ambient
air pollution. There is, therefore, a discussion on whether
personal measurement is a gold standard. However, given
participants did not smoke at home, which is one of the major
indoor sources, and we only monitored for 24 h each time, we
think the influence of indoor sources is reduced. Fourth,
measurement errors could influence the comparison of the
methods. Different measurement methods and instruments
were used to assess air pollution on various occasions in this
study, and measurement errors are inevitable, possibly affecting
the comparisons between methods. However, these measure-
ment methods are calibrated and validated elsewhere;36,37,61

thus, the influence is likely minor. Fifth, participants were
monitored for only 3 days. Short-term monitoring raises the
possibility that participants were engaged in nondaily routine
activities. However, this possibility is attenuated because our
participants were randomly assigned to three different days
across different seasons. Replication of our findings using long-
term monitoring is urged. Sixth, personal and outdoor home
measurements were performed with the same instrumentation,
but fixed-site measurements and the LUR model were based
on different instruments. Thus, differences in the absolute level
in comparisons of different methods with personal measure-
ments can be partly due to different instruments. The ICC is
likely affected less than the bias. The comparisons in Figures 3
and 4 between personal measurements with outdoor home
measurements and fixed-site measurements suggest that
differences in level due to instrument were modest.

In conclusion, we used several statistical analyses that allow
the quantification of the validity of typical air pollution
assessment methods using an older adult sample. Our results
suggest an improvement in the validity of estimating personal
exposure to air pollution using a mobility-based approach over
a home-based assessment, by 64% for PM2.5 and 21% for BC.
Adjusting indoor-outdoor air pollution concentration differ-
ences improves the validity of the mobility-based approach by
56% for PM2.5 and 16% for BC than those not, while no added
value was observed from adjustments for travel modes. The
mobility-based assessment is an easy and relatively accurate
exposure assessment approach for participants and researchers
since participants typically carry smartphones throughout the
day. Since most European countries currently give free access
to the governmental air pollution monitoring network and
some LUR-modeled air pollution maps are publically available
(e.g., ELAPSE project; http://www.elapseproject.eu/), the
mobility-based method is easy to implement for other studies
and is not affected by anecdotic exposures, unlike direct
dynamic methods. Consequently, mobility-based estimates
offer a way forward for obtaining more accurate person-centric
estimates of ambient air pollution exposure.
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