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Abstract 

Introduction: Young male jockeys compromise bone health by engaging in caloric 

restriction and high volumes of physical activity during periods of musculoskeletal 

growth and development. Failure to attain peak bone mass (PBM) during growth can 

have adverse short and long term musculoskeletal effects, with numerous studies 

demonstrating inferior bone health in jockey populations. However, no study to date 

has addressed counteracting the deleterious effects that participation in this sport has 

on bone health. The purpose of this six-month double-blind randomised placebo 

controlled trial was to examine the efficacy of 800mg calcium and 400 IU vitamin D 

daily supplementation on improving bone mineral properties at the tibia (weight-

bearing) and radius (non-weight-bearing) using peripheral Quantitative Computed 

Tomography (pQCT) and blood-borne markers of bone turnover.  

Three inter-related studies were designed following the findings of a systematic review 

and meta-analysis examining the effects of calcium and vitamin D supplementation on 

bone mineral density in healthy males. Study one examined the effect that the 

protocol had on markers of bone metabolism and bone properties of the radius. Study 

two was designed to investigate the impact of six months supplementation on weight-

bearing bone while study three further explored alterations to radial and polar cortical 

bone properties at the tibial mid-shaft following the clinical trial. 

Methods: Twenty-nine male jockeys (age=20.18 ± 3.23yrs) were originally recruited to 

the study with 17 completing the intervention. Bone properties at the ultra-distal (4%) 

and proximal (66%) radius and tibia using pQCT and serum vitamin D, Procollagen type 

1 N propeptide (P1NP) and C-terminal telopeptide of type I collagen (CTx) were 



iii 
 

assessed at baseline and six months. Bone properties at the 66% tibial site were 

further analysed using BoneJ pQCT distribution plug-in. Polar and radial volumetric 

bone mineral density (vBMD) was measured in 36, ten degree cortical sectors (polar) 

and three concentric cortical divisions (radial). Polar distribution was further 

consolidated into four, 90 degree quadrants aligned to anatomical planes. Cortical 

mineral mass, endocortical and pericortical radii were also analysed.  

Results: After co-varying for height, body mass and baseline bone measurements, the 

analysis of co-variance (ANCOVA) results of these combined studies demonstrate that 

six months calcium and vitamin D supplementation stimulated a reduction in bone 

resorption together with significant improvements to bone material properties at the 

proximal tibia in the supplemented group. ANCOVA serum analysis indicated 

significantly higher vitamin D levels (18.1%, p=0.014) and lower CTx (ng/L) (-24.8%, 

p=0.011) in the supplemented group with P1NP unchanged. The supplemented group 

displayed greater post-intervention bone properties at the 66% proximal site with 

cortical content (mg·mm) 6.6% greater (p<0.001), cortical area (mm2) 5.9% larger 

(p<0.001), cortical density (mg·cm3) 1.3% greater (p=0.001), and total area (mm2) 4% 

larger (p=0.003). No alterations were observed to bone material properties at the 

radius, nor the ultra-distal tibia or bone strength indices.  

When cortical bone of the proximal tibia was examined in greater detail the 

supplemented group demonstrated greater endocortical vBMD in the posterior region 

of bone (1140.5 ± 6.3 vs 1116.2 ± 5.9; p=0.018) with a trend suggesting 

supplementation improved mineral mass and stimulated bone apposition in the 

posterior and lateral regions of the tibia. 
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Conclusion: This is the first randomised controlled trial to examine the efficacy of 

calcium and vitamin D supplementation in improving bone properties in a highly 

vulnerable, young athletic, weight-restricted population. Results indicate beneficial 

effects of supplementation on bone properties in as little as six months. Although the 

study size is small, this intervention appears promising as a strategy for improving 

bone health in young athletes in weight-restricted sports. 
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1 Introduction 

1.1 Introduction 

Horse racing requires jockeys to be slight in body mass in order to meet the 

handicap weight restrictions imposed on horses that they ride. Typically, jockeys 

commence their riding career with small, immature stature. Male apprentice jockeys in 

Australia require a body mass of between 45kg and 48kg (Racing-NSW, 2014) which 

places apprentice riders in the lowest 5th percentile for international weight-for-age 

scales (Kuczmarski et al., 2000). Despite a restricted body mass, jockeys must 

demonstrate strength, endurance, and balance in order to control animals ten times their 

body mass over distances ranging from 800m to 3,600m (flat riding) or up to 5,500m in 

jump races (Douglas, Price, & Peters, 2012; Hitchens, Blizzard, Jones, Day, & Fell, 2011; 

Trowbridge, Cotterill, & Crofts, 1995; Waldron-Lynch et al., 2010).  

Jockeys represent a unique group of weight-category athlete. Unlike other weight 

category sports which have competitive seasons, jockeys are required to maintain their 

restricted weight throughout a full calendar year (Hitchens et al., 2011). Jockeys can ride 

in multiple events each day and must weigh in both before and after each race. As such, 

they are not afforded the ability to rehydrate or increase energy levels prior to 

competing, especially when subsequent races require lower handicap weights (Dolan et 

al., 2011; Wilson, Drust, Morton, & Close, 2014). To remain within specific weight limits, 

jockeys often engage in unhealthy weight-loss behaviours that rely on rapid, short-term 

weight loss and include an increased propensity to engage in disordered eating (Leydon & 

Wall, 2002; Moore, Timperio, Crawford, Burns, & Cameron-Smith, 2002; Wilson et al., 

2015). Thus, there is a high risk of inadequate nutrition in an effort to maintain low body 
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weight. Increasing evidence indicates that maintaining a restricted weight can negatively 

impact on physiological and cognitive health. More specifically, participating in weight 

restricted activity can limit the attainment of peak bone mass (PBM) during growth and 

have damaging short and long term musculoskeletal effects (De Souza & Williams, 2005). 

Previous research has found jockeys to have low calcium intakes and subsequent 

indicators of compromised musculoskeletal health (Caulfield & Karageorghis, 2008; Dolan, 

McGoldrick, et al., 2012; Dolan et al., 2011; Greene, Naughton, Jander, & Cullen, 2013; 

Leydon & Wall, 2002; Moore et al., 2002; Waldron-Lynch et al., 2010; Warrington et al., 

2009). Evidence of vitamin D levels indicate young jockeys are vitamin D deficient 

(Guillemant et al., 2001; Wilson, Sparks, Drust, Morton, & Close, 2013). Approximately 

50% of jockeys demonstrate osteopenia as young as 20 years of age (Leydon & Wall, 

2002; Warrington et al., 2009) and apprentice riders display reduced bone strength 

(Greene et al., 2013).  

Biomechanical analysis of horse riding is very limited, however faster gaits 

adopted during racing force riders to utilise a riding positon which causes loading through 

a rider's legs rather than hips (Douglas et al., 2012). Generally, upper extremities are non-

weight bearing highlighting the action of muscle strain in improving bone strength 

(Nikander, Sievänen, Uusi-Rasi, Heinonen, & Kannus, 2006). Previous research has found 

jockeys to have positive bone adaptations at the forearm (Greene et al., 2013; Leydon & 

Wall, 2002) suggesting muscular forces incurred at the radius during riding may be in 

excess of common habitual loads. The additional strains incurred by jockeys through 

repetitive daily activities may result in excessive bone strain and increase fracture risk. 
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Consequently, lifestyle factors potentially place jockeys, particularly young apprentice 

riders, in a high risk group for poor bone health. 

The age of PBM for males is unclear, with some studies indicating 18-20 years of 

age for spine and hip PBM whilst others have found PBM to be 25-29 years (Boot et al., 

2010; Henry et al., 2010; Lorentzon, Mellström, & Ohlsson, 2005; Szulc, Marchand, 

Duboeuf, & Delmas, 2000). However, there is evidence supported by both dual energy x-

ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) 

indicating the long bones of limbs do not reach PBM until 40-50 years of age in males 

(Henry et al., 2010; Lorentzon et al., 2005; Szulc et al., 2000). This suggests bone-

optimising strategies should extend well beyond early adulthood in order to maximise 

bone mineral properties in males. 

One available strategy to potentially optimise the attainment of PBM in young 

jockeys involves calcium and vitamin D supplementation. Currently there is conflicting 

evidence about the beneficial effects of calcium and vitamin D supplementation on bone 

mineral density during growth and insufficient evidence relating to male populations 

(Abrahamsen et al., 2010; Chung et al., 2009; Cranney et al., 2007; Lips, Gielen, & van 

Schoor, 2014; Shea et al., 2002; Tang, Eslick, Nowson, Smith, & Bensoussan, 2007; 

Winzenberg, Shaw, Fryer, & Jones, 2010). However it appears populations who incur the 

greatest compromises to musculoskeletal health may also benefit the most from calcium 

and vitamin D supplementation (Winzenberg et al., 2010). Apprentice jockeys therefore 

represent an at-risk population who may potentially achieve a positive musculoskeletal 

response to a simple and effective intervention strategy.  
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To date DXA has predominantly been used to assess jockey bone health (Caulfield & 

Karageorghis, 2008; Dolan, McGoldrick, et al., 2012; Dolan et al., 2011; Leydon & Wall, 

2002; Moore et al., 2002; Waldron-Lynch et al., 2010; Warrington et al., 2009). This 

technology has a number of limitations, such as an inability to differentiate between 

cortical and trabecular bone or the assessment of bone size and shape with acceptable 

accuracy (Khan et al., 2001). Conversely, pQCT is able to distinguish between trabecular 

and cortical bone, provide measures of volumetric bone mineral density (vBMD) and 

assess bone size, strength and geometry (Khan et al., 2001). Minor alterations to the 

distribution of bone mass or bone structure may have considerable impact on bone 

strength without altering overall bone mineral density (BMD) (Nikander et al., 2010). 

Accordingly, pQCT should allow for more accurate assessments of potential changes in 

the structural properties of bone arising from supplementation. 

While BMD may take months or years to respond to stimuli, bone turnover markers 

(BTM) may begin to detect changes in bone metabolism within days or weeks (Vasikaran, 

Eastell, Bruyere, et al., 2011). A wide variety of BTMs has been used to assess bone 

turnover in jockeys with no consistency (Dolan, McGoldrick, et al., 2012; Waldron-Lynch 

et al., 2010; Wilson, Fraser, et al., 2013). The International Osteoporosis Foundation (IOF) 

recommends the use of serum procollagen type I N propeptide (s-PINP) and serum C-

terminal telopeptide of type I collagen (s-CTx) be adopted as markers of bone formation 

and bone resorption. Therefore, to standardise the assessment of BTMs in clinical trials, s-

P1NP and s-CTx should be utilised. 
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1.2 Study rationale 

Lifestyle factors place jockeys in a high risk group for poor bone health. In addition 

to compromised nutrition, young jockeys are exposed to the highest risks of 

musculoskeletal conditions by repetitive loading on bones. Injury-related data from 

around the world shows that majority of injuries sustained by jockeys are fractures 

(Foote, McIntosh, V’Landys, & Bulloch, 2011). Upper limb fractures are the most 

commonly reported fracture in both the USA and the UK/Ireland, and while Australian 

injury data is not well documented, recent reports indicated that 78% of all jockeys 

surveyed incurred a fracture due to riding (Foote et al., 2011). 

Recommended strategies to improve bone health are not feasible for jockeys as 

the weight restricted nature of horse racing prohibits the additional development of lean 

tissue mass that arises from resistance training. Furthermore, the introduction of a 

modified diet to increase calcium-rich food choices may be challenging given the daily 

demands of racing and propensity for disordered eating habits of jockeys.  

As such, the purpose of this thesis was to examine the efficacy of calcium and 

vitamin D supplementation on improving bone mineral properties at the tibia (weight-

bearing) and radius (non-weight-bearing) using pQCT and blood-borne markers of bone 

turnover. A combination of weight-bearing and non-weight-bearing bones were selected 

to control, in part, the influence of habitual daily loading. 

1.3 Thesis Overview 

The primary aim of this thesis was to examine the effectiveness of 800 mg calcium 

(citrate and carbonate) and 400 IU vitamin D supplementation daily for six months in 
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improving bone material properties and blood borne markers of bone turnover in young 

male jockeys. 

Secondary aims were to: 

(i) compare the effects of supplementation on weight-bearing (tibia) and non-

weight bearing (radius) bones 

(ii) elucidate the way in which physical loading affects alterations to bone 

material properties in conjunction with calcium and vitamin D 

supplementation. 

1.4 Intervention studies and hypotheses  

The intervention studies undertaken were as follows: 

1.4.1 Study One 

Effect of calcium and vitamin D supplementation on bone turnover markers and 

radial bone properties in young male jockeys: A Randomised Controlled Trial.  

 Aim 

This study aimed to examine the effectiveness of calcium and vitamin D 

supplementation to positively alter bone metabolism, in order to improve the 

bone material properties of non-weight bearing bone (radius). 

 Hypotheses 

i. Calcium and vitamin D supplementation will be an effective and feasible 

strategy for improving bone material properties of the non-weight 

bearing radius in young male jockeys; 

ii. Calcium and vitamin D supplementation will result in improved blood-

borne markers of bone metabolism. 
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1.4.2 Study Two   

Tibial bone responses to 6-month calcium and vitamin D supplementation in young 

male jockeys: A randomised controlled trial. 

 Aim 

This study aimed to examine the effectiveness of calcium and vitamin D 

supplementation to positively improve the bone material properties of weight 

bearing bone (tibia). 

 Hypothesis 

Calcium and vitamin D supplementation will be an effective and feasible strategy 

for improving bone material properties of the tibia in young male jockeys. 

1.4.3 Study Three   

Cortical bone distribution at the tibial shaft in young male jockeys after 6-months 

calcium and vitamin D supplementation: A randomized controlled trial. 

 Aim 

To compare the polar and radial cortical vBMD distribution at the tibial mid-shaft 

in young male jockeys exposed to 6-months calcium and vitamin D 

supplementation with age- and gender-matched jockeys receiving a placebo. 

 Hypothesis  

Calcium and vitamin D supplementation is associated with reduced cortical 

vBMD, particularly at the mid- and pericortical bone divisions. 

1.5 Limitations 

The following limitations to the study are acknowledged: 

1. The number of participants initially recruited and completing the study 

were lower than originally anticipated.  
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2. The length of the intervention was short in comparison to a number of 

other calcium and vitamin D intervention studies. A longer study length 

may have resulted in more clarity in relation to alterations in bone 

strength. However, to maximise compliance and participant retention, a 

longer intervention period may have proven impractical. 

3. Regulating dietary intake was beyond the control of the study. Estimates of 

total energy intake as well as calcium and vitamin D intake were monitored 

through the completion of dietary intake questionnaires; however, control 

over actual intakes each day were beyond the scope of the study. 

4. Measuring energy expenditure was not feasible. For safety and 

competition reasons, jockeys are not permitted to wear equipment that 

would estimate energy expenditure during racing or training. 

5. The influence of muscular strain on bone properties due to the actions of 

horse racing have not been elucidated. Equipment required to measure the 

biomechanical strain would be unsafe during racing or training. 

6. Genetics are known to influence bone mineral density. Controlling for 

genetics fell outside of the scope of the study; however, the randomised 

controlled nature of the study assisted in reducing selection bias and 

minimise genetic influences. 

7. The study did not measure parathyroid hormone (PTH) levels pre- or post- 

intervention. PTH levels influence both osteoclastic and osteoblastic 

activity and work in concert with vitamin D in order for the body to 
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maintain calcium homeostasis. Levels of PTH are usually adequate when 

vitamin D levels are also adequate. We have monitored serum vitamin D 

levels.  

8. Efforts were taken to monitor compliance, however, despite a number of 

attempts to obtain the remaining tablet containers, we were unable to do 

so. Compliance was verbally provided at the time of data collection and 

evidenced by alterations to serum vitamin D levels in the supplemented 

group. 

1.6 Delimitations 

The following delimitations were implemented: 

1. Only male Apprentice jockeys undertaking a Certificate IV in Racing in New 

South Wales (NSW) or Victoria (VIC) were recruited to the study.  

2. All participants were required to be in good health with no known history 

of fracture in the scanned limbs, no known history of metabolic bone or 

muscle disease and not taking medications or other supplements that may 

influence bone metabolism.  

3. Data collection was delimited to two testing sessions, six months apart 

with data collection times scheduled for the same time period at each 

testing session. 

4. Musculoskeletal assessment was restricted to the use of bone imaging 

techniques of pQCT (XCT 2000, Stratec Medizintechnik, Pforzheim, 

Germany). 
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5. Further analysis of the bone scans obtained from the pQCT was restricted 

to the pQCT distribution plug-in available in BoneJ (Doube et al., 2010; 

Rantalainen, Nikander, Heinonen, Daly, & Sievänen, 2011). 

6. Blood borne markers of bone turnover were delimited to s-P1NP and s-CTx 

as recommended by the IOF.  

7. Anthropometric data was collected in accordance with procedures 

approved and described by the International Society for the Advancement 

of Kinanthropometry (ISAK) (Stewart, Marfell-Jones, Olds, & de Ridder, 

2011) 

1.7 Assumptions 

The following assumptions have been made: 

1. All participants completed the questionnaires accurately and in full detail. 

2. Any previous injuries or medical conditions were declared and did not 

affect the results of the study. 

3. Participants consumed the active or placebo tablets as instructed for the 

duration of the study period. 

4. Participants did not take any other supplements or medications during the 

study period that would conflict with the results. 

1.8 Thesis Presentation 

This thesis is presented in eight chapters. Chapter Two presents a narrative review 

of both generalised and jockey-specific literature pertaining to bone and influences on 
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bone health. Chapter Three presents a published systematic review and meta-analysis of 

the effect of calcium or calcium and vitamin D supplementation on bone mineral density 

in healthy males, the results of which informed the three clinical trial studies. Methods 

applicable to all three intervention studies are described in Chapter Four. The three 

intervention studies follow in Chapters Five, Six and Seven and the final chapter presents 

discussion. 
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2 Narrative Review of the Literature 

2.1 Bone anatomy 

Human skeletons are living dynamic tissue structures containing 206 bones once 

adulthood is reached (Marieb, 2000). Bone undergoes constant change throughout the 

lifespan and plays an important metabolic role in calcium homeostasis. Modelling and 

remodelling occurs in order to help the skeleton adapt to biomechanical stresses and 

remove damaged bone, replacing it with new bone in order to preserve bone strength 

(Clarke, 2008). Four broad categories of bone type exist:  

Type of bone Examples 

Short Carpal, Tarsal, Patellae 

Long Radius, Tibia, Femur, Humerus 

Irregular Vertebrae, Coccyx 

Flat Ilium, Skull, Mandible 

  

While each type of bone serves differing structural functions, they all contribute to 

mineral homeostasis, acid-base balance and provide growth factors directly associated 

with red blood-cell formation (Taichman, 2005). Long bones, such as the tibia and radius, 

primarily act as levers and allow for locomotion through their ability to transfer loads.  

2.1.1 Macroscopic structure of long bones 

Long bone structures have a distinct macroscopic shape with clearly defined 

regions comprised of differing bone tissue and having specific functions (refer Figure 2-1). 

The end region of the bone is referred to as the epiphysis and the middle region is called 

the diaphysis (bone shaft). Located in the middle of the diaphysis is the medullary cavity 

which is filled with both red marrow (responsible for production of red blood cells) and 

yellow marrow (fat storage) (White & Folkens, 2005). The flared region between the 
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epiphysis and diaphysis is known as the metaphysis. Located between the metaphysis and 

the epiphysis is the epiphyseal disk (or growth plate), the region responsible for 

longitudinal bone growth. The epiphysis is the location where bones meet to form joints, 

allowing for movement. Articular cartilage coats the epiphysis, allowing for shock 

absorption and reducing friction between the two bones. This cartilage contains 

osteogenic cells (refer 2.2), blood and nerve fibres (Clarke, 2008). 

 
 
Figure 2-1: Labelled diagram of a human tibia showing gross anatomy of long bone.  
Reprinted from The Human Bone Manual (p. 41), by T White and P Folkens, 2005, 
Burlington, MA: Elsevier Academic Press. Copyright 2005 by Elsevier Inc. Reprinted with 
permission.  

Long bones are covered by two layers of dense connective tissue known as the 

periosteum. The outer layer is comprised of fibroblasts and collagen fibres whilst the 
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inner layer contains osteogenic cells (Standring, 2008). The internal surface of the bone is 

lined with a cellular structure known as the endosteum and contains blood vessels, 

osteoclasts and osteoblasts (refer 2.2) (White & Folkens, 2005). 

2.1.2 Bone composition 

Subject to site specificity, two types of tissue may exist within the bone: woven 

tissue and lamellar tissue (Khan et al., 2001). Woven tissue is immature bone with 

collagen arranged in random formation within the tissue. It is the predominant type of 

bone at birth, at fracture sites or sites of extreme mechanical loading. Woven tissue is 

formed by active osteoblasts and stimulated by fracture or growth factors (Standring, 

2008). Lamellar tissue has collagen arranged along lines of force in alternating directions, 

giving bone its strength (Clarke, 2008). Both tissue types are organised into 

compartments of either cortical or trabecular bone. Lamellar tissue is predominately 

arranged in cylindrical structures known as Haversian canals which form the osteons, or 

basic units of bone (Standring, 2008). 

Bones consist of two different structural components: trabecular (or spongy) bone 

and cortical (or compact) bone (refer Figure 2-1). Cortical bone is typically 80% - 90% 

calcium salts whilst calcium only accounts for approximately 15-25% of the bone volume 

of trabecular bone (Khan et al., 2001). The cellular and molecular structure of both types 

of bone is similar however they differ in their degree of porosity (White & Folkens, 2005). 

Most bone tissue of epiphyses and metaphyses are comprised of trabecular bone. It 

consists of lamellae arranged in an irregular latticework of thin plates of bone called 

trabeculae, giving it a spongy, porous structure. The spaces between trabeculae are filled 

with red bone marrow. Cortical bone has a high mineral content, making it very dense, 
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and is also less metabolically active than trabecular bone (Clarke, 2008). The structure of 

cortical bone is based on Haversian systems (cortical osteons) which are located in the 

diaphysis (see Figure 2-2). Cortical bone also covers trabecular bone in the epiphyses. The 

functions of Haversian systems are to protect, support, and resist stress. Human adults 

have more trabecular area than cortical area. There are approximately 14 x 106 trabecular 

osteons with a total area of 7m2, whilst there are estimated to be 21 x 106 cortical 

osteons with a total Haversian modelling area of 3.5m2 (Clarke, 2008). 

 

Figure 2-2: Main features of the microstructure of mature lamellar bone. Areas of 
compact and trabecular (cancellous) bone are included. 
Reprinted from Gray’s Anatomy (40th Ed) (p. 89), by S Standring (Editor-in-Chief), 2008: 
Churchill Livingstone Elsevier. Copyright 2008 by Elsevier Inc. Reprinted with permission. 
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2.2 Microstructure of bone 

2.2.1 Bone cells 

Three main cell types are responsible for the formation and maintenance and 

remodelling of bone tissue: osteoblasts, osteocytes and osteoclasts (Khan et al., 2001; 

Standring, 2008; White & Folkens, 2005).  

 Osteoblasts 

Osteoblasts are created from osteoprogenitor cells located in the bone marrow 

and other bone connective tissue such as periosteum and endosteum (Standring, 2008). 

Osteoblasts are seen on the surfaces of growing or (re)modelling bone and function as 

the bone formation cells, producing and laying down bone material. Osteoblastic function 

is hormonally driven, primarily by parathyroid hormone (PTH), vitamin D3 (1,25(OH)2D3) 

and growth hormone (Khan et al., 2001). Activity of osteoblasts, particularly during 

growth, influences bone shape and size in response to mechanical loading, otherwise 

known as bone modelling. In adults, osteoblasts are primarily located on endosteal rather 

than periosteal surfaces, and are also found deep within cortical bone where osteons are 

remodelled (Standring, 2008). Osteoblasts produce large amounts of pre-bone tissue 

(osteoid), an un-calcified collagen matrix. Osteoids contain type-I collagen as well as 

glycoproteins such as osteocalcin (Standring, 2008). Calcification occurs when 

hydroxyapatite (refer 2.2.2.1) is deposited into the osteoid matrix through the actions of 

osteocalcin which binds calcium molecules (White & Folkens, 2005). Once the osteoblasts 

are surrounded by the bony matrix and embedded they become osteocytes. 

Osteoblasts also play an important role in bone resorption, expressing receptors 

for 1,25(OH)2D3, parathyroid hormone (PTH) and other bone resorption proteins. The 
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osteoblasts directly stimulate osteoclast differentiation through the PTH receptors, and 

conversely down-regulate osteoclast activity when conditions favour bone deposition 

(Standring, 2008).  

 Osteoclasts 

Osteoclasts are specialised cells derived from the macrophage family and are 

responsible for bone resorption (removal) (Teitelbaum, 2000). These cells are directly 

involved in modelling and remodelling of bone and hence, maintenance of bone mass. 

They are large, multi-nucleated cells which function by destroying bone matrix to allow 

for the repair and geometric optimisation, and therefore strength, of the bone (Clarke, 

2008; Khan et al., 2001). Osteoclasts remove local bone during growth and remodelling of 

osteons and surface bone. Osteoclasts attach to bone, releasing enzymes to create an 

acidic environment which demineralises the bone. Following this, enzymes are also 

released to destroy the organic collagen matrix (Clarke, 2008). Upon completion, the 

osteoclasts then move to the next bone degradation site (Teitelbaum, 2000). These cells 

are stimulated by various influences including osteoblastic signalling and hormones such 

as PTH and 1,25(OH)2D3, while calcitonin produced by the thyroid gland reduces 

osteoclastic activity (Standring, 2008). 

 Osteocytes 

Osteocytes are mature bone cells located within osteons (see Figure 2-2). They are 

derived from osteoblasts and are essential for bone maintenance. Mature bone cells do 

not divide, nor do they secrete new bone matrix. Each osteocyte maintains contact with 

adjacent osteocytes allowing for inter-cellular communication within each osteon; 

however, they do not communicate with neighbouring osteon systems. Osteocytes 
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release biochemical signals in response to mechanical strain or a lack of strain, thereby 

recruiting osteoblasts or osteoclasts to regulate and repair bone mass (Hughes & Petit, 

2010). Osteocytes are responsive to 1,25(OH)2D3 and PTH, and may be involved in mineral 

exchange at adjacent bone surfaces (Standring, 2008). Osteocytes have a long lifespan 

which is measured in years and influenced by the metabolic activity of the individual bone 

(Standring, 2008). Their function has been shown to be affected by limitations to calcium 

availability, which may suppress bone formation in response to loading and therefore 

affect remodelling when osteocytes die (Hughes & Petit, 2010).  

2.2.2 Bone matrix  

Bone is a strong organic matrix comprised of around 70% calcium hydroxyapatite 

and 30% collagen fibres and non-collagenous proteins (Khan et al., 2001; Standring, 

2008). The combination of mineral and collagen fibres enables bones to be both stiff and 

flexible in order to accommodate constant loading in a variety of planes (White & 

Folkens, 2005). Calcium in bone provides compressional strength; collagen fibres 

contribute to tensile strength; and proteins play an important role in bone remodelling 

(Khan et al., 2001; Seeman & Delmas, 2006).  

 Bone minerals 

The mineral substance found in bone is commonly referred to as hydroxyapatite 

and provides rigidity and strength to bone. (White & Folkens, 2005). Bone mineral is 

predominantly calcium, phosphate, hydroxyl and carbonate with trace elements of other 

minerals such as iron, zinc, magnesium, sodium and potassium also being present (Clarke, 

2008; Standring, 2008). The hydroxyapatite is deposited with the gaps in the collage 

matrix with the help of a number of phosphate- and calcium-binding proteins (Clarke, 
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2008). In immature osteons, the mineral content is low but this increases with age and is 

highest in older more peripheral regions (Standring, 2008). 

 Collagen 

Around 85% to 90% of bone proteins are collagens which form slightly elastic, 

flexible fibres enabling bones to bend without breaking under loading and providing 

compressive and tensile strength (White & Folkens, 2005). Of the differing types of 

collagen found in bone, the predominant form is type 1 collagen, although it’s structure in 

bone differs from other parts of the body (Standring, 2008). Osteoblasts synthesise 

collagen fibres, which have a cross-linkage structure that provides strength and space for 

mineral deposits within the spaces formed by this structure. Around 2/3 of all mineral 

deposits in bone are found within collagen fibrils (Standring, 2008).  

 Other organic compounds 

Other non-collagenous proteins comprise around 10-15% of the extracellular bone 

proteins, such as serum proteins and growth factors which are thought to assist in 

mineralisation of the bony matrix and regulation of bone cell production (Clarke, 2008). 

Osteocalcin is released by both osteoblastic and osteoclastic activity and is thought to 

inhibit bone formation, whist osteonectin (the most prevalent protein) affects osteoblast 

proliferation and mineralisation of the bone matrix (Clarke, 2008). 

2.3 Bone growth, modelling and remodelling 

Growth refers to lengthening and thickening of the entire skeleton through a 

process of continual bone tissue deposition while modelling refers to the process which 

changes the shape of bones in response to mechanical loading or physiological influences. 
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Remodelling is the continual process of bone renewal in order to maintain bone strength 

and mineral homeostasis (Clarke, 2008).  

2.3.1 Growth 

Bone growth involves two simultaneous processes: appositional growth, which 

allows for the enlargement of shaft diameters; and longitudinal growth, which refers to 

the lengthening of the skeleton. Appositional growth occurs through a process whereby 

osteoblasts located in the periosteum deposit new bone, while osteoclasts situated in the 

endosteum remove older bone tissue, allowing the bone diameter bone to increase while 

maintaining a central cavity (White & Folkens, 2005). Lengthening of the skeleton occurs 

by replacing cartilage cells produced on the epiphyseal side of the growth plate with bone 

cells on the diaphyseal side in a process known as endochondral ossification (White & 

Folkens, 2005). This replacement process allows bone to increase in length while 

maintaining epiphyseal plate thickness. Eventually cartilage cells stop dividing and 

cartilage is replaced by bone, producing a new structure called the epiphyseal line (Khan 

et al., 2001). 

 Attainment of peak bone mass 

During bone growth, bone mass increases through the mineralisation of the bone 

matrix. Approximately 25% of PBM is gained in the two year period surrounding peak 

height velocity during adolescence with bone mineral accrual lagging behind linear 

growth by approximately 6-12 months (Bailey, Faulkner, & McKay, 1996). At peak height 

velocity, adolescents have reached approximately 90% of adult height but only 57% of 

their adult bone mineral content (BMC) (Bailey, 1997; Bailey, McKay, Mirwald, Crocker, & 

Faulkner, 1999). Following linear growth, bone modelling continues, so that 
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approximately 90% of PBM is acquired by 18 years of age (Baxter-Jones, Mirwald, McKay, 

& Bailey, 2003).  

Substantial increases in total body, radial, femoral neck and lumbar spine aBMD 

have been reported with advancing sexual maturity in male and females during growth 

(Blimkie et al., 1996). In males, radial and lumbar spine aBMD continues to increase from 

late puberty into early adulthood (Blimkie et al., 1996). Males generally have slightly 

higher radial, femoral neck and lumbar spine aBMD than females by full sexual maturity 

during the later years of adolescence due to males generally having larger bone size 

(Wren, Liu, Pitukcheewanont, & Gilsanz, 2005). 

Similar to results found using dual x-ray absorptiometry (DXA), Schoenau, Neu, 

Rauch, and Manz (2001), used pQCT to demonstrate that for any given cortical bone 

mass, males have stronger bones than females during growth. Males deposit bone on the 

periosteal surface while females deposit bone on the endocortical surface. It is suggested 

that female bone deposits have a small effect on bone stability in order to provide a 

source of calcium during child-bearing (Schoenau et al., 2001). However, it is plausible 

that male bones require more strength as a result of higher muscle mass generating 

greater mechanical strain on bone.  

Bone area has been shown to peak around two years before BMC (Baxter-Jones, 

Faulkner, Forwood, Mirwald, & Bailey, 2011). Literature regarding age of attained PBM 

for males is equivocal, with some studies indicating that PBM of lumbar spine and hip is 

not achieved until 25-29 years of age (Szulc et al., 2000), whilst others indicate PBM of 

lumbar spine, and femoral neck in males is reached by 18-20 years (Boot et al., 2010; 

Henry et al., 2010; Lorentzon et al., 2005). There is evidence to suggest, however, that 
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PBM of the long bones of limbs and whole body does not occur until 40-50 years of age in 

males, supported by both DXA and pQCT (Henry et al., 2010; Lorentzon et al., 2005; Szulc 

et al., 2000). Consolidation of long bone PBM is achieved through increased cortical 

thickness and further mineralisation of cortical bone (Lorentzon et al., 2005).  

2.3.2 Modelling 

Modelling refers to the actions of osteoblasts and osteoclasts in order to optimise 

bone shape and size in response to growth and mechanical loading. The Mechanostat 

theory suggests the existence of a homeostatic regulatory mechanism which is 

responsible for creating or resorbing bone in response to mechanical loading or unloading 

(Frost, 1987). The theory proposes that modelling and remodelling are two separate 

mechanisms within bone (Frost, 1998, 2004; Jee, 2000). When strain exceeds a threshold, 

bone formation occurs on the existing structure to increase bone strength and repair 

micro-damage within the bone (Frost, 2004). Modelling occurs through “drifts” involving 

independent actions of osteoblasts and osteoclasts. Formation drifts control osteoblastic 

activity, adding bone to periosteal surfaces while resorption drifts remove bone from 

endocortical surfaces (Frost, 2004). These drifts are also crucial to reshaping bones as 

they lengthen during growth (Hughes & Petit, 2010), refer Figure 2-3. 
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Figure 2-3: Modelling and remodelling of bone. Modelling can be seen to occur on both 
the periosteal and endosteal surfaces of the bone allowing for growth. Remodelling 
occurs on one surface, with old bone removed and replaced with new bone.  
Reprinted from “Methods for measurement of paediatric bone,” by Binkley, Berry, & 
Specker, 2008, Reviews in Endocrine and Metabolic Disorders, 9(2), 95-106. Copyright 
2008 by Springer. Reprinted with permission. 

Bone modelling occurs in response to muscular contraction as well as external 

physical loading in order to optimise bone strain (Frost, 1998; Schoenau & Frost, 2002). 

Bone undergoes modelling via a negative feedback loop in response to strain and bone 

strength (Frost, 1998). The effects of activity on bone are site specific, so that only bone 

exposed to physical loading will undergo modelling. Persistent strain above the stress 

thresholds can accumulate, causing stress fractures in athletes. Studies in athletic 

populations have demonstrated that physical loading can increase site-specific bone 

strength (Greene, Naughton, Bradshaw, Moresi, & Ducher, 2012; Jürimäe, Purge, Jürimäe, 

& Duvillard, 2006) and that non-weight bearing physical activity can have a negative 

impact on bone density (Smathers, Bemben, & Bemben, 2009). Macdonald, Cooper, and 

McKay (2009) found that physical activity improved bone strength at the tibial shaft in 

young boys. Further, their results suggest that observed alterations occur in different 
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quadrants of the bone shaft, reflecting bone adaptation directly in response to site-

specific physical loading. 

2.3.3 Remodelling 

 Bone remodelling is a localised surface-based phenomenon that first involves the 

removal of ‘old’ bone via the actions of osteoclasts, followed by the deposition of ‘new’ 

bone via osteoblasts at the same site (Hughes & Petit, 2010) (Figure 2-3). Remodelling 

continues throughout the lifespan to maintain skeletal mechanical integrity by repairing 

micro-damage within the bone (Clarke, 2008; Dalsky, 1990). In healthy populations, 

remodelling is directly related to both calcium homeostasis and mechanical strain (Rizzoli, 

Bianchi, Garabédian, McKay, & Moreno, 2010). Calcium loss from bone is influenced by 

site-specific mechanical loading with bone exposed to the highest mechanical loads 

experiencing less bone mineral loss than non-loaded sites (Harada & Rodan, 2003).  

2.4 Other influences on bone 

While the Mechanostat theory has been adopted as the most significant influence 

on bone strength and development, there are a number of other important influences on 

bone, without which, bone strength cannot be achieved or maintained. The most 

important of these is interlinked actions of calcium, vitamin D and PTH which affects 

calcium absorption, and bone mineralisation.  

2.4.1 Influence of Calcium on bone health 

Calcium is the most abundant mineral in the human body, comprising the main 

structural element of teeth and bones and playing a vital role in physiological functioning. 

Calcium is involved in: muscle contraction, blood vessel regulation, nerve impulse 

transmission, hormone secretion, and is required as a coenzyme for a number proteins 
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and enzymes (Higdon & Drake, 2011). In order to maintain normal physiological 

functioning, serum and fluid calcium levels are maintained within strict range through the 

actions of the parathyroid gland and vitamin D (refer Figure 2-4). 

 
 

Figure 2-4: The regulation of serum calcium via the actions of 1-25 (OH)2D3 vitamin D 
(Calcitriol) and parathyroid hormone (PTH). Both PTH and Calcitriol act directly on bone to 
release calcium in order to regulate serum and fluid calcium levels.  
Reprinted from An Evidence-Based Approach to Vitamins and Minerals: health benefits 
and intake recommendations (p. 72), by Higdon, J., & Drake, V. (2011): New York, NY: 
Thieme. Copyright 20011 by Thieme. Reprinted with permission.   

 
Maintenance of calcium homeostasis overrides all other functions of the skeleton 

(Harada & Rodan, 2003) and is regulated primarily by PTH and vitamin D (Raisz, 1999). 

When blood calcium concentrations fall below normal levels, PTH is released by the 

parathyroid gland which in turn stimulates production of 1,25(OH)2D3 by the kidneys 

(Khan et al., 2001). Together these hormones activate osteoclasts which stimulate bone 

resorption and the release of calcium into the bloodstream. Similarly, when serum levels 

of 1,25(OH)2D3 fall below 30ng·mL-1, PTH levels increase, stimulating osteoclastic bone 

activity (Angeline, Gee, Shindle, Warren, & Rodeo, 2013). Conversely, as serum calcium 
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levels rise the thyroid gland releases calcitonin which inhibits osteoclastic activity, 

although this is thought to have a minor effect on calcium homeostasis (Khan et al., 2001; 

Raisz, 1999).  

 Calcium requirement 

Adequate calcium intake is considered one of the most important preventative 

interventions contributing to optimal bone health in young adults (Nattiv & Armsey, 

1997). Recommended dietary intakes for calcium ensure gains in bone mass during 

adolescence and minimise bone loss that occurs with ageing (Bachrach, 2001). The 

skeleton of a new-born contains approximately 25 grams of calcium increasing to over 

1000 grams in a healthy adult. Increasing calcium demands of the growing skeleton must 

be provided from dietary sources for essential increases in calcium between birth and 

adulthood (Heaney et al., 2000). Calcium is stored in bone tissue, however excess intake 

cannot be maintained, as bone is regulated by mechanical stimulus. Greater calcium 

intake results in a higher level of PBM acquisition; however, calcium behaves as a 

threshold nutrient (Heaney et al., 2000) with a regulatory system in place limiting bone 

growth and resulting in higher levels of urinary calcium output if exceeded (Vicente-

Rodríguez et al., 2008). It appears that stimulation of bone acquisition may only occur in 

those with inadequate calcium intakes (Lee et al., 1994).  

 Calcium intake 

Collectively, calcium and vitamin D contribute between 3% and 10% of bone 

strength (Schoenau & Frost, 2002). During adolescence, when peak bone mineral accrual 

occurs, males have calcium accretion rates of approximately 359mg·day-1 (Bailey, Martin, 

McKay, Whiting, & Mirwald, 2000). Based on DXA scans taken over a period of six years, 
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Bailey (1997) demonstrated that around 36% of total body BMC is accrued in the 4 year 

period surrounding peak height velocity.  

To provide adequate supplies of calcium in bone and maintain bone integrity 

throughout adulthood, nutrition guidelines recommend a daily calcium intake of 

1,300mg·day-1 for males 12-18 years of age and 1,000mg·day-1 for 19-30 year old males 

(National Health and Medical Research Council, 2006a). The higher adolescent 

requirement reflects the large accrual of calcium in bones during the two-year period 

surrounding PBM. Young adults (18-30 years) do not experience longitudinal growth of 

the skeleton; however, consolidation of PBM occurs (refer section 2.3.1.1). It is estimated 

that approximately 10-15% of adult total calcium accretion occurs during this period 

(Heaney et al., 2000), suggesting that there is an opportunity to maximise skeletal 

consolidation provided calcium intakes are also optimised during young adulthood. It 

should be noted, however, that without adequate levels of vitamin D (refer section 2.4.2) 

calcium will not be optimally absorbed (Heaney, 2008). 

Previous meta-analyses show that calcium supplementation with or without 

vitamin D has a small but positive effect on bone strength and a reduction in fracture risk 

(Abrahamsen et al., 2010; Chung et al., 2009; Cranney et al., 2007; Lips et al., 2014; Shea 

et al., 2002; Tang et al., 2007; Winzenberg et al., 2010). However, the majority of studies 

have used children or exclusively female populations and few studies have examined the 

effects such supplementation may have on BMD in men.  

2.4.2 Influence of vitamin D on bone health 

Vitamin D is a complex fat soluble vitamin which has physiological actions similar 

to hormones. Through a complex process, sunlight converts cholesterols into vitamin D 
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precursors which are converted via the liver to 25(OH) vitamin D (calcidiol). Parathyroid 

hormone then stimulates the conversion of calcidiol by the kidney, into the biologically 

active form of 1,25(OH)2D3 or calcitriol (Higdon & Drake, 2011). Vitamin D facilitates the 

absorption of calcium through digestion and is essential for optimal bone health in 

children, ensuring adequate mineralisation of developing bones (Bouillon, Bischoff-

Ferrari, & Willett, 2008; McCann & Ames, 2008; Rovner & O'Brien, 2008; Stewart & 

Rittweger, 2006). In adult populations, deficiency can lead to increased bone turnover 

and osteoporosis, with severe vitamin D inadequacy resulting in osteomalacia, a condition 

whereby the ratio of collagenous bone matrix increases as a result of bone 

demineralisation (Higdon & Drake, 2011).  

Vitamin D in both calcidiol and calcitriol forms are required for optimal absorptive 

functioning (Heaney, 2008). The 1,25(OH)2D form of vitamin D appears to act specifically 

to regulate serum calcium homeostasis by acting on calcium absorption and also 

stimulating bone resorption in order to release calcium when required. Conversely, 

25(OH)D appears to act solely on calcium absorption, correlating to absorptive efficiency 

whilst serum 1,25(OH)2D levels do not (Heaney, Barger-Lux, Dowell, Chen, & Holick, 

1997). Highlighting the tight interaction between vitamin D, calcium and PTH, it has been  

demonstrated that (i) PTH levels will be within ideal ranges if vitamin D levels are 

adequate even with calcium intakes are lower than 800mg·day-1 and (ii) intakes of calcium 

over 1,200mg·day-1 permits a lower serum 25(OH)D in order to maintain PTH levels 

(Steingrimsdottir, Gunnarsson, Indridason, Franzson, & Sigurdsson, 2005). 

Adequate intake levels for vitamin D in Australia is set at 5 µg·day-1 (200IU) for 

adult men aged 18-30 years, equating to the amount required to maintain serum 
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25(OH)D at a level of at least 27.5 nmol·L-1 with minimal exposure to sunlight (National 

Health and Medical Research Council, 2006b). Others recommend serum levels should be 

maintained at a minimum of 50 nmol·L-1 (Osteoporosis Australia Medical & Scientific 

Advisory Committee, 2014). However, these levels may not be adequate to optimise 

calcium absorption. In post-menopausal women, it has been demonstrated that calcium 

absorption effectiveness was between 45% to 65% higher when 25(OH)D were at 86.5 

nmol·L-1 compared to 50 nmol·L-1; however, levels above 86.5 nmol·L-1 did not elicit a 

greater response (Heaney, Dowell, Hale, & Bendich, 2003). A recent review of vitamin D 

intakes to optimise all health outcomes recommends serum concentrations of 25(OH)D 

begin at 75 nmol·L-1 and suggests optimal bone health outcomes are achieved between 

90 and 100 nmol·L-1 (Bischoff-Ferrari, Giovannucci, Willett, Dietrich, & Dawson-Hughes, 

2006) and others suggest a minimum of 70 nmol·L-1 (Vieth, 2004). This has prompted a 

revision of the recommended daily intake of vitamin D for all adults to be 1000 IU·day-1 

(25µg) vitamin D (cholecalciferol) in order to bring 25(OH)D concentrations up to 75 

nmol·L-1 (Bischoff-Ferrari et al., 2006). 

Concerns for vitamin D status in the general population have recently been 

extended to young athletes (Willis, Peterson, & Larson-Meyer, 2008). Some young 

athletes are at high risk of vitamin D insufficiency due to lack of sun exposure and/or low 

energy intake (and therefore low vitamin D intake) in disciplines emphasizing a lean 

physique. Examples include young people who undertake horse riding, ballet dancing, 

running or gymnastics. Recent studies conducted in Australia and New Zealand showed 

that 30 to 70% of male adolescents present with vitamin D insufficiency (25(OH)D < 50 

nmol·L-1) (Jones, Dwyer, Hynes, Parameswaran, & Greenaway, 2005; Rockell et al., 2005).  
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2.4.3 Influence of physical activity on bone health  

Mechanical stressors act on bone to illicit a response however, loading must be 

beyond habitual levels for an osteogenic response to occur (Frost, 1998). For the lower 

extremities, such as the tibia, a combination of muscle contractions, ground reaction 

forces, and body mass contribute to bone adaptations (Nikander et al., 2006). Physical 

activity under varying loading conditions has been shown to have differing impact on the 

tibia. In athletic pursuits which involve weight-bearing, such as gymnastics, soccer or 

volleyball, greater distal (5% site) and tibia shaft (50% site) adaptations have been found, 

whereas non-weight bearing pursuits such as swimming and water polo do not impart 

greater adaptations compared to controls (Greene, Naughton, Bradshaw, et al., 2012; 

Nikander et al., 2006). As athletic populations regularly engage in loading it is accepted 

that additional stimuli such as additional calcium or muscular force is required for 

(re)modelling to occur.  

The radius is considered a load-bearing bone; however, it is not habitually weight-

bearing for most individuals. General populations who undertake high levels of physical 

activity show little difference in bone strength at the radius than those undertaking low 

levels of habitual physical activity (Duckham et al., 2014). Conversely, elite athletes such 

as tennis players and young gymnasts who undergo regular impact loads and strain at the 

radius demonstrate greater bone properties at the radius (Dowthwaite, Kanaley, Spadaro, 

Hickman, & Scerpella, 2009; Haapasalo et al., 2000; Ireland et al., 2013). In tennis players, 

the adaptations at the radius are observed to result in a larger bone size, without a 

concurrent increase in volumetric bone density except at the distal radius where there 

was a significant positive difference in the dominant arm (Haapasalo et al., 2000). 
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Similarly, jockeys have been found to demonstrate positive bone effects in the 

forearm (Greene et al., 2013; Leydon & Wall, 2002). Greater trabecular density at the 

distal radius and greater bone strength (SSI) at the proximal radius is evident in jockeys 

using pQCT (Greene et al., 2013). Differences in distal radius aBMD as compared to whole 

body, spine and hip measures have been observed using DXA (Leydon & Wall, 2002). 

2.4.4 Influence of energy restriction on bone health  

Bone turnover and bone mass are directly influenced by nutritional habits (Heaney 

et al., 2000). The interaction of loading and nutrition may ultimately enhance skeletal 

integrity of active individuals. Osteogenic responses to mechanical loading are typically 

site specific whereas the influence of diet is more diffuse, acting on the whole skeleton. 

Physically active individuals experience greater energy expenditure and if this exceeds 

energy intake, an energy deficit will result. It has been suggested that energy intakes 

below 125.6 kJ·kgbw·day-1 (30 kcal) is insufficient to maintain normal physiological 

functioning in athletes (Loucks, 2007). Prolonged periods of energy deficit culminate in 

reduced body weight, altered body composition, a reduction in bone mass and 

disturbances in endocrine function (Hotta et al., 2000; Hotta, Shibasaki, Sato, & Demura, 

1998; Warren et al., 2002).  

Bone loss due to increased bone turnover can result from endocrine changes that 

mobilize stored fuels. Prolonged energy expenditure resulting from physical activity 

places as a greater demand muscle and liver glycogen (Brooks & Mercier, 1994; 

Hagerman, 1992). Depletion of glycogen results in an attenuation of insulin release during 

prolonged physical activity. Coupled with inadequate energy intake, this results in 

increasing quantities of tissue protein being used as a substrate for gluconeogenesis 
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(Wagenmakers et al., 1991). A subsequent decrease in plasma levels of insulin and insulin-

like growth factor 1 (IGF-1) with a concomitant increase in plasma concentrations of 

cortisol and growth hormone (GH), exerts a direct effect on the function of bone cells. 

Osteoblast function is retarded while osteoclast activity is accelerated (De Souza et al., 

2008; Ihle & Loucks, 2004). 

Female athlete triad is a recognised condition, resulting in reproductive disorders 

and demineralisation of the skeleton. These athletes demonstrate a number of metabolic 

and substrate abnormalities including mobilisation of fat stores, declining glucose 

utilisation, and a reduced metabolic rate (Loucks, 2007). Similar abnormalities have been 

observed in male athletes in weight-restricted and endurance sports (Loucks, 2004). 

Disturbances to GH, IGF-1 and testosterone have been observed in male wrestlers 

preparing for a season of wrestling (Loucks, 2004). 

 Poor bone health through excessive energy expenditure coupled with restricted 

energy intake, is typical of a number of athletic populations (Ebeling, 2008; Fredericson et 

al., 2007; Greene et al., 2013; Nichols & Rauh, 2011; Rector, Rogers, Ruebel, & Hinton, 

2008; Smathers et al., 2009). Studies specifically examining males relating to energy 

deficit and bone health are limited, however male long distance runners and cyclists have 

displayed compromised bone health (Fredericson et al., 2007; Rector et al., 2008; 

Smathers et al., 2009). It is suggested this may be due to energy imbalance, as endurance 

athletes undertake activity that consistently and cumulatively loads their bones. Male 

endurance runners have similarly low aBMD to female long distance runners (Hind, 

Truscott, & Evans, 2006). Further, Zanker and Swaine (2000) found markers of bone 
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formation were suppressed when male distance runners were placed on an energy 

restricted diet.  

2.5 Assessment of bone health  

Various methods of assessment are used to examine bone health. Whole bone 

testing provides the most accurate measure of bone strength, however this method is 

impractical in vivo (Donnelly, 2011). As a result, imaging techniques must be employed to 

examine bone strength and structural properties. Most frequently, DXA has been 

considered the ‘gold standard’ (Lee & Gallagher, 2008), mainly due to low cost and ease 

of use however, DXA has a number of inherent weaknesses limiting its ability to fully 

explore bone health (Binkley, Berry, & Specker, 2008). Peripheral QCT provides a three-

dimensional assessment of bone properties, allowing for a more detailed analysis of bone 

health (Sievänen et al., 1998).  

2.5.1 Variables examined when determining bone health 

Ultimately, bone health is determined by the structural integrity of the bone. This 

comprises total bone mass, bone geometry, and properties of bone tissue (Donnelly, 

2011). Although a number of different factors contribute to bone strength, alterations to 

bone mineral properties are commonly reported as changes to bone mineral density 

measured by DXA (aBMD). However, this overall measure has reduced capacity to identify 

structural changes occurring within the bone (Donnelly, 2011). Changes in bone geometry 

caused through modelling and remodelling have transient or permanent effects on bone 

health. For example, alterations to cortical thickness and total cross-sectional area result 

from modelling whilst vBMD is a function of both modelling and remodelling (Binkley et 

al., 2008). In the short term, it may be that changes due to remodelling resulting in 
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modifications to bone geometry play a greater role than alterations to bone mass 

(Heaney & Weaver, 2005). Bone mineral density is determined by both mass and volume 

and these differ in trabecular and cortical compartments of the bone (Rauch & Schoenau, 

2001).  

2.5.2 Dual energy x-ray absorptiometry (DXA) 

Studies examining bone density have predominantly used DXA to assess bone 

health. In clinical populations, DXA is widely used for diagnosing osteoporosis and 

osteopenia; however, concerns regarding technical limitations of DXA-based 

measurements, particularly the assessment of aBMD, have been highlighted in recent 

years (Faulkner, 2000; Lee & Gallagher, 2008; Schoenau, Neu, Beck, Manz, & Rauch, 2002; 

Seeman, 2002). Dual energy x-ray absorptiometry measures BMC in grams and bone area 

(cm2) which are then combined to approximate ‘areal’ BMD in grams·cm2. The planar 

two-dimensional assessment capabilities of DXA present difficulties in accurately scanning 

a three dimensional bone structure. Attempts to adjust aBMD in order to reflect 

volumetric BMD have been made, including bone mineral apparent density (BMAD) for 

the femoral neck and spine (Binkley et al., 2008). Although bone length and width can be 

measured, depth can only be estimated by DXA technology. An increase in “density” may 

be due to greater bone size and not necessarily an increase in mass per unit volume of 

bone (Seeman, 2002). Concerns about bone size are most relevant when research 

involves participants of varying size or where bone size may change rapidly during a 

study, such as studies of growing children and adolescents (Haapasalo et al., 2000). Areal 

BMD is therefore size dependent, particularly in children. In addition, DXA is unable to 

differentiate between cortical and trabecular bone and due to its two dimensional nature, 

bone size and shape is difficult to quantify with acceptable accuracy (Khan et al., 2001). 
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Small alterations in the distribution of bone mass or bone structure may have 

considerable impact on bone strength without altering overall BMD (Nikander et al., 

2010) 

2.5.3 Peripheral quantitative computed tomography (pQCT) 

Unlike DXA, pQCT is a three dimensional imaging device capable of assessing bone 

size, strength and geometry (Khan et al., 2001). Specifically, pQCT is able to differentiate 

between trabecular and cortical bone and determine endosteal and periosteal 

circumferences. The technology provides a measure of vBMD in the peripheral skeleton, 

and quantifies cross sectional area (CSA) of bone. Furthermore, pQCT provides surrogate 

measures of bone strength: strength-strain index (SSI) and bone strength index (BSI) 

(Binkley et al., 2008). The SSI combines bone geometry with properties of cortical bone 

(cortical vBMD) and has been validated in both animal and human studies (Rauch & 

Schoenau, 2008). Research shows that up to 80% of low-trauma fractures occur in normal 

or osteopenic, not osteoporotic, individuals indicating it may be structure, not necessarily 

BMD, that is the cause for weakness (Nikander et al., 2010). Thus, pQCT allows for a more 

detailed assessment of bone properties and is an important assessment tool for 

estimating fracture risk.  

Despite pQCT’s superior ability to differentiate between trabecular and cortical 

bone compartments and its ability to precisely examine bone geometry, limitations 

derived from in vitro and in vivo precision studies exist (Augat, Gordon, Lang, Iida, & 

Genant, 1998; Grampp et al., 1995; Sievänen et al., 1998). A lack of spatial resolution 

prevents the precise identification of areas where a thin cortical rim of bone exists, such 

as at the ultra-distal radius. Standard geometric analysis assigns the outer 55% of the 
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radial cross-section as “cortical and subcortical” bone and the remaining area is 

considered trabecular bone. As actual cortical thickness in adults is considerably smaller, 

the percentage of CSA consisting of cortical bone is much lower than 55%. Determining 

cortical vBMD at the ultra-distal region appears subject to analysis imprecision (Neu, 

Manz, Rauch, Merkel, & Schoenau, 2001). 

2.6 Other indicators of bone health 

Calcium supplementation appears to have a transient effect on bone remodelling 

producing reductions in bone fragility well before augmentation of bone mass can be 

measured (Heaney & Weaver, 2005). Biochemical markers of bone turnover provide a 

means of detecting and monitoring osteoblastic and osteoclastic activity in the absence 

of, and complimentary to, BMD data (Vasikaran, Eastell, Bruyere, et al., 2011). These 

include blood-borne markers of bone turnover and vitamin D status. 

2.6.1 Blood borne markers of bone turnover 

To date, multiple biochemical markers have been used for clinical and research 

purposes with limited consistency. Further, rather than identifying bone formation and 

bone resorption separately, some markers may reflect both, and most are present in 

other tissue besides bone (Delmas, Eastell, Garnero, Seibel, & Stepan, 2000). Each marker 

has its benefits and inherent weaknesses. Consequently, the International Osteoporosis 

Foundation (IOF) and the International Federation of Clinical Chemistry and Laboratory 

Medicine (IFCC) have recommended that one standard marker be used for each bone 

formation and resorption for clinical studies: serum procollagen type 1 N propeptide (s-

P1NP) for bone formation and serum C-terminal telopeptide of type I collagen, (s-CTx) for 

bone resorption (Vasikaran, Eastell, Bruyere, et al., 2011). 
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Procollagen type 1 N propeptide is cleaved from type 1 collagen molecules during 

the process of incorporating collagen into the bone matrix while CTx is released when 

collagen within the bone is broken down (Szulc, Kaufman, & Delmas, 2007). Gender 

differences are apparent in P1NP and CTx levels, with males having higher levels of bone 

metabolism markers than females between 20-40 years due to persistent bone activity in 

the long bones (Delmas et al., 2000). Circadian rhythms are also known to affect bone 

turnover markers, peaking between 2am and 6am and reaching their lowest points 

between 1pm and 11pm. CTx levels may be twice as high at the peak compared to the 

lowest levels, whereas P1NP may vary by around 20%, highlighting the need to regulate 

blood collection times (Delmas et al., 2000). Serum CTx is also influenced by renal and 

kidney function and diet (Vasikaran, Eastell, Bruyere, et al., 2011). Exercise may also 

effect bone turnover markers through both acute and chronic effects although this is 

highly dependent on the age of participants and type of activity (Delmas et al., 2000; 

Rantalainen et al., 2009; Vasikaran, Eastell, Bruyere, et al., 2011). 

Serum levels of both CTx and P1NP for male cohorts aged between 20-29  have 

been reported, averaging 528 (453–676) ng/mL for CTx and 61 (45–78) µg/L for P1NP 

respectively (Jenkins et al., 2013). These levels compare to levels reported in French men 

aged 19-30 of 600 ng/mL for CTx and 74 ng/ml for P1NP (Szulc, Garnero, Munoz, 

Marchand, & Delmas, 2001). 

2.6.2 Serum vitamin D 

It is recommended that vitamin D status be assessed using serum 25(OH)D as this 

measure accounts for both subcutaneous and dietary sources of the vitamin (National 

Health and Medical Research Council, 2006b). Current classifications of deficiency for 
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Australian adults are defined as: mild (25 and 50 nmol·L-1); moderate (12.5 and 25 

nmol·L-1) and, severe (<12.5 nmol·L-1) (Diamond et al., 2005). As discussed in section 

2.4.2, recommendations regarding the optimal range of serum 25(OH)D are equivocal. 

Levels of 25(OH)D are currently recommended to be around 50 nmol·L-1 (Osteoporosis 

Australia Medical & Scientific Advisory Committee, 2014) with others calling for minimum 

recommendations to be as high as 90 and 100 nmol·L-1 to achieve optimal bone health 

outcomes (Bischoff-Ferrari et al., 2006; Dawson-Hughes et al., 2005). When 

concentrations of 25(OH)D concentrations are in the deficient range, serum PTH levels 

are inversely proportional to 25(OH)D levels, and can therefore also be a valuable 

indication of inadequate vitamin D status. 

2.7 Jockeys: current literature 

2.7.1 Bone health assessment of jockeys 

A number of studies have examined the bone health of jockeys (see Table 2-1). 

With the exception of the study by Greene et al. (2013), all studies have utilised DXA to 

assess bone health. Previous studies have demonstrated that jockeys have compromised 

bone health, with smaller, flat jockeys having inferior bone health compared to larger 

jockeys. Evidence of osteopenia in whole body, spine and hip measures were found in 

apprentices, flat and national hunt jockeys (Dolan, McGoldrick, et al., 2012; Leydon & 

Wall, 2002; Warrington et al., 2009). One criticism of DXA technology is the 

underestimation of aBMD in smaller individuals. This is predominantly of concern where 

height is not controlled for, or in longitudinal studies where growth may be a factor. 

While height may be a limitation of the DXA outcomes reported in previous jockey 

research (see Table 2-1), all of the studies either used subjects of similar stature or 

controlled for differences in body size. Using pQCT, Greene et al. (2013) found evidence 
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of compromised bone health in jockeys compared to age- and gender-matched controls. 

Specifically, apprentice jockeys displayed reduced BMC, cortical area and bone strength 

at the distal tibia and radius compared to controls. While DXA and pQCT outcomes are 

not directly comparable, jockeys assessed by both Leydon and Wall (2002) and Greene et 

al. (2013) demonstrated positive bone effects at the forearm. Leydon and Wall (2002) 

reported a significantly positive difference in distal wrist aBMD as compared to whole 

body, spine and hip measures while Greene et al. (2013) found greater trabecular density 

at the distal radius and greater bone strength (SSI) at the proximal radius in jockeys 

compared to controls. It is postulated that muscular forces incurred at the radius during 

riding may be in excess of common habitual loads and therefore provide a positive 

osteogenic benefit. 

2.7.2 Assessment of markers of bone turnover in jockeys and vitamin D status 

Typically, jockeys have high bone turnover (Dolan, McGoldrick, et al., 2012; 

Waldron-Lynch et al., 2010; Wilson, Fraser, et al., 2013) linked to low energy and calcium 

intakes. Examination of CTx levels in jockeys have found them to be low but within 

normal reference ranges (bottom 5th percentile for age) (Jenkins et al., 2013; Wilson, 

Fraser, et al., 2013). This contrasts with other findings showing elevated levels of bone 

resorption urinary cross linked N-telopeptides of type 1 collagen (NTx) and free 

deoxypyridinoline crosslinks (fDPD) (Dolan, McGoldrick, et al., 2012; Waldron-Lynch et al., 

2010). High levels of serum P1NP have been found by previous research examining jockey 

bone turnover (Dolan, McGoldrick, et al., 2012; Waldron-Lynch et al., 2010).  

Previous investigations of serum vitamin D levels in young male jockeys highlight 

70% of riders being vitamin D deficient (serum (25(OH)D < 25 nmol·L-1) in winter 
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(Guillemant et al., 2001; Wilson, Fraser, et al., 2013). Jump and flat jockeys from the 

United Kingdom recorded serum levels of 25(OH)D averaging 35 nmol·L-1 and 38 nmol·L-1 

during winter (Wilson, Sparks, et al., 2013). In another study, jockeys sampled during 

winter had serum 25(OH)D levels below 50 nmol·L-1 whilst those measured in the summer 

exceeded 90 mmol·L-1 (Waldron-Lynch et al., 2010).  
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Table 2-1: Existing literature examining bone mineral density in jockeys 

Study Subjects  Gender No of 
subjects 

Age 
(mean) 

Weight 
(mean) 

Height 
(mean) 

Scan 
equipment 

Sites 
scanned 

Outcomes 
(mean value) 

Comments 

Leydon and 
Wall (2002)  
(New 
Zealand) 

Apprentices (a) 
Seniors (s) 
All flat racing 
 
 

Male & 
Female 

2 (a); 4 
(s) 
9 (a); 5 
(s) 

20.5 (a) 
28.7 (s) 
 

49.6 (a) 
51.3 (s) 

157.5 
(a) 
158.7 
(s) 

DXA Whole body 
Lumbar 
spine 
Hip 
Distal wrist 

Reported for all jockeys 
combined: 
T-scores 
Whole body: -1.80 ± 0.76 
Lumbar spine: -0.36 ± 1.0 
Hip: -0.54 ± 1.1 
Distal wrist: 0.26 ± 1.0 

Overall 44% of jockeys classified 
as osteopenic, 60% of apprentices 
and 25% of seniors. 2 males 
osteopenic (33%) 
 
Actual values not reported 

Warrington 
et al. (2009) 
 
(Ireland) 

Flat (f) 
National Hunt 
(h) 
 
 

Male 17 (f) 
10 (h) 

26.7 (f) 
28.3 
(h) 

53.1 (f) 
66.2 (h) 

1.60 (f) 
1.73 (h) 

DXA Whole body 
Lumbar 
spine 
Hip 

aBMD(g·cm2): 
Whole body: 
1.05 ± 0.07 (f) 
1.21 ± 0.06 (h) 
Lumbar spine: 
1.12 ± 0.11 (f) 
1.22 ± 0.15 (h) 
Hip: 
0.99 ± 0.1 (f) 
1.08 ± 0.13 (h) 

Whole body: flat jockeys 53% 
osteopenia, 12% osteoporotic; 
hunt jockeys 10% osteopenia 
Hip: flat jockeys 41% osteopenia, 
hunt jockeys 20% osteopenia 
Spine: flat jockeys 35% 
osteopenia; hunt jockeys 40% 
osteopenia 
 

Hitchens et 
al. (2011) 
(Australia) 

Jockeys (j) 
Track-work 
riders (t) 

Male & 
Female 

5 (j) 
6 (t) 

27 (j) 
36 (t) 

51.7(j) 
65.9 (t) 

163.4 (j) 
168.2 (t) 

DXA Whole body aBMD(g·cm2): 
1.157 ± 0.07 (j) 
1.312 ± 0.10 (t) 

T-scores not reported 

Dolan, 
Crabtree, et 
al. (2012) 
 
(Ireland) 

Flat (f) 
National Hunt 
(h) 
Boxers (b) 
Control (c) 
 

Male 14 (f) 
16 (h) 
14 (b) 
14 (c) 

25 (f) 
25 (h) 
21 (b) 
23 (c) 

54.6 (f) 
64.3 (h) 
65.3 (b) 
69.2 (c) 

1.65 (f) 
1.72 (h) 
1.74 (b) 
1.79 (c) 

DXA Whole body 
Lumbar 
spine 
Hip 

aBMD(g·cm2): 
Whole body: 
1.09 ± 0.6 (f) 
1.17 ± 0.05 (h) 
1.29 ± 0.1 (b) 
1.26 ± 0.06 (c) 
Lumbar spine: 
1.10 ± 0.09 (f) 
1.15 ± 0.1 (h) 
1.48 ± 0.16 (b) 
1.26 ± 0.14 (c) 
Hip: 
1.05 ± 0.07 (f) 
1.07 ± 0.11 (h) 
1.25 ± 0.11 (b) 
1.19 ± 0.5 (c) 

Authors utilised equations in 
order to calculate an apparent 
volumetric bone density that DXA 
does not provide. This was done 
to determine whether jockeys 
physical size had an effect on 
bone density as compared to 
other populations.  
 
The findings indicated that 
irrespective of measure used, 
jockeys displayed lower bone 
mass than boxers or control 
group. 
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Study Subjects  Gender No of 
subjects 

Age 
(mean) 

Weight 
(mean) 

Height 
(mean) 

Scan 
equipment 

Sites 
scanned 

Outcomes 
(mean value) 

Comments 

Dolan, 
McGoldrick, 
et al. (2012) 
 
(Ireland) 

Mixed group of 
jockeys (j) 
Control (c) 

Male 20 (j) 
20 (c) 

25.9 (j) 
23.9 (c) 

61.1 (j) 
69.5 (c) 

1.7 (j) 
1.78 (c) 

DXA Whole body 
Lumbar 
spine 
Hip 

aBMD(g·cm2): 
Whole body: 
1.134 ± 0.05 (j) 
1.27 ± 0.06 (c) 
Lumbar spine: 
1.11 ± 0.08 (j) 
1.28 ± 0.12 (c) 
Hip: 
1.06 ± 0.09 (j) 
1.15 ± 0.13 (c) 
 

Blood and urine markers of bone 
turnover were also included in the 
study. 
Findings indicated: 
(i) jockeys had lower aBMD than 
controls but when adjusted for 
height, jockeys have wider bones 
(ii) blood and urine markers 
indicate an elevated rate of bone 
loss in jockeys. 

Greene et 
al. (2013) 
 
(Australia) 

Apprentice 
jockeys (j) 
Controls (c) 

Male & 
Female 

25 (J) 
25 (c) 

20.2 (j) 
20.1 (c) 

48.9 (j) 
72.7 (c) 

155.7 (j) 
168.6 
(c) 

pQCT Tibia 
Radius 

Tibia: 
Cortical area (mm2) 
66 % proximal  
311.4 (40.5) (j) 
351.6 (66.9) (c) 
SSI (mm3) 
4 % distal  
1 683.3 (123.7) (j) 
1 998.1 (117.5) (c) 
66 % proximal  
1 953.9 (326.8) (j) 
2 501.8 (481.6) (c) 
Radius: 
Cortical area (mm2) 
66 % proximal  
81.4 (16.7) (j) 
82.4 (17.2) (c) 
SSI (mm3) 
4 % distal  
391.9 (69.4) (j) 
423.4 (75.3) (c) 
66 % proximal  
297.3 (88.3) (j) 
261.2 (81.9) (c) 

Overall results indicate that 
jockeys have reduced bone 
density compared to controls, 
with the exception of trabecular 
density at the distal radius and a 
higher stress strain index at 
proximal radius. 
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2.7.3 Energy intake of jockeys  

Jockeys show evidence of disordered eating characteristics and unhealthy weight 

loss practices in order to achieve race weight (Cotugna, Snider, & Windish, 2011; Dolan et 

al., 2011; Greene et al., 2013; Leydon & Wall, 2002; Moore et al., 2002). Table 2-2 shows 

dietary analyses of daily energy intake and bone related micronutrients.  

Table 2-2: Dietary intake for flat and jump jockeys  

Author Jockey Weight 
(kg) 

Total Energy 
(kg·day-1) 

Est. energy 
(kj·kgbw·day-1) 

Calcium 
(mg·day-1) 

Dietary 
Vitamin D 
(µg·day-1) 

Dolan et al. (2011) Flat (m) 
Jump (m) 

53.1 ± 4.1 
66.2 ± 2.9 

7012 ± 1824 
8462 ± 2979 

132.1 
127.8 

619 ± 295 
(total) 

1.5 ± 0.8 
(total) 

Greene et al. (2013) Flat (m & 
f) 

48.9 ± 2.8 7516 ± 2272 153.7 775 ± 68.4 NR 

Leydon and Wall 
(2002) 

Flat (m & 
f) 

52.8 ± 2.4 
(m) 
49.3 ± 3.4 
(f) 

6359 ± 1671 124.6 449 ± 158 NR 

Waldron-Lynch et 
al. (2010) 

Flat and 
Jump (m) 

NR 7369 ± 1184 n/a 541 ± 106 1.4 ± 0.8 

Wilson, Fraser, et al. 
(2013) 

Flat (m) 
Jump (m) 

56.1 ± 2.9 
65.3 ± 2.5 

6111 ± 1,250 
7470 ± 830 

108.9 
114.4 

557 ± 240 
758 ± 193 

1.6 ± 1.6 
2.3 ± 1.6 

* Values shown as mean ± SD; kgbw: kilograms of body weight; f: female; m: male; NR: 
not reported. 

Total energy intake consistently reveals estimates well below estimated daily 

requirements with reported intakes ranging between 6,111 ± 1,671 kJ and 7,516 ± 2,272 

kJ per day. Recommended daily minimum energy intakes of approximately 188-210 

kj·kgbw·day-1 are prescribed for athletes (Sundgot-Borgen & Garthe, 2011), whilst jockeys 

average between 108 kj·kgbw·day-1 and 153 kj·kgbw·day-1. Jockeys spend approximately 4 

hours per day (24.6 hrs per week with an assumed day off) training (Greene et al., 2013) 

in activities involving riding horses for exercise and fast paced work, cleaning stables, 

washing and feeding horses (Wilson, Sparks, et al., 2013). There is some inference that a 

habitually low energy intake may result in a suppressed metabolic rate (Dolan et al., 
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2011), however the physical and energy demands of horse racing and training remain 

under investigated. 

In addition to severe energy intake restrictions, jockeys habitually undertake a 

variety of dehydration practices in order to make weight such as exercising to sweat, 

saunas and vomiting (Cotugna et al., 2011; Dolan et al., 2011; Moore et al., 2002). 

Researchers have reported moderate levels of dehydration on non-race days 

(1.022+0.005 Usg), increasing on race days to 1.028+0.005 Usg, with over 50% of jockeys 

competing in a severely dehydrated state (Usg>1.030) (Warrington et al., 2009). 

 Calcium and vitamin D intake 

Average calcium intake for jockeys have been found to range between 450 

mg·day-1 and 775 mg·day-1 (refer Table 2-2) well below nutritional guidelines (National 

Health and Medical Research Council, 2006a). Dietary intake of vitamin D ranged between 

1.4 µg·day-1 to 2.3 µg·day-1 being reported in some UK based jump jockeys. Again, this is 

well below minimums of 5 µg·day-1 which may also be insufficient in the absence of 

adequate sunlight (refer section 2.4.2). 

2.7.4 Energy expenditure 

Assessment of energy balance in jockeys has been difficult to achieve to due 

numerous safety and regulatory restrictions with the sport of horse racing. Standard 

equipment used to assess energy expenditure has not been permitted in research during 

race conditions (Wilson et al., 2014).  

Early studies examining energy expenditure of experienced equestrian riders has 

focussed on oxygen uptake, which has been shown to vary with horse gaits (Devienne & 
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Guezennec, 2000; Westerling, 1983). Rider VO2 is seen to vary between 0.5 L.min-1 when 

the horse is walking to 1.9 L·min-1 when cantering, representing a maximum of 

approximately 75% VO2max (Devienne & Guezennec, 2000). Work by Trowbridge et al. 

(1995) examined heart rate and blood lactate levels of National Hunt jockeys who 

typically race up to six races per day. Heart rates were seen to range between 136 and 

188 beats·min-1 in the first race of the day and remained elevated above resting levels at 

the commencement of each subsequent race. Recent work by Hitchens et al. (2011) 

compared VO2max in a group of Australian jockeys and track-work riders. Results showed 

jockeys had a mean VO2 of 48.55ml·kg-1·min-1 compared to 43.18ml·kg-1·min-1 for track-

work riders. The study, however, was conducted in laboratory conditions and does not 

give an accurate indication of oxygen consumption during races or track work. Results are 

comparable to Westerling (1983) who found mean VO2max of approximately 

43.8ml·kg-1·min-1 using an ergometer.  

Wilson, Sparks, et al. (2013) simulated race conditions for a group of National 

Hunt jockeys using a mechanical “push” horse to estimate energy expenditure during race 

time using respiratory gas analysis and a commercial heart rate monitor (HRM). Energy 

expenditure for a typical day (24hr) was measured using a HRM, while energy intake was 

recorded using 7-day self-reported food record diaries. Findings suggest that energy 

expenditure is approximately 1,800kJ per race and typical non-race energy expenditure is 

approximately 11,260 kj.day-1. Energy intake was found to be approximately 7,240kj.day-1 

which is in agreement with other studies that examined energy intake (Dolan et al., 2011; 

Leydon & Wall, 2002). National Hunt jockeys, however, are typically around 10kg heavier 

than apprentice and flat jockeys and the race style differs from flat racing. 
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2.8 Conclusion 

The review of literature indicates bone health is influenced through a combination 

of factors: mechanical stressors which influence bone modelling and remodelling; 

adequate energy intake; and adequate vitamin and mineral intakes. It is apparent that 

sufficient calcium is required in order to maintain bone integrity and that this is facilitated 

by vitamin D. However, at the present time there are equivocal recommendations in 

relation to vitamin D status and bone health.  

The literature to date indicates jockeys have compromised health status in a 

number of areas related to prolonged inadequate energy intake as a result of the weekly 

cycles of making weight in order to compete. Jockeys have consistently been shown to 

have inadequate energy intakes with calcium intakes well below adequate levels. Whilst 

findings to date pertaining to the bone health status of jockeys shows compromised bone 

health, research has heavily relied on DXA technology which has inherent weaknesses, 

particularly in relation to body size and aBMD.  Further, numerous methods of assessing 

bone turnover markers have been utilised, leaving inconsistencies in interpretation.  
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3 The Effect of Calcium or Calcium and Vitamin D Supplementation 
on Bone Mineral Density in Healthy Males: A Systematic Review 
and Meta-analysis  

As published in: International Journal of Sport Nutrition and Exercise Metabolism, (2015) 

vol. 25 (5) pp. 510-524. Authors: Silk, L.N, Greene, D.G and Baker, M.K. 

3.1 Abstract 

Research examining the preventative effects of calcium and vitamin D 

supplementation has focused on children and females, leaving the effects on male bone 

mineral density (BMD) largely unexplored. Thus, the aim of this systematic review and 

meta-analysis is to examine the efficacy of calcium supplementation, with or without 

vitamin D for improving BMD in healthy males. Medline, EMBASE, SPORTDiscus, 

Academic Search Complete, CINHAHL Plus and PubMed databases were searched for 

studies including healthy males which provided participants calcium supplementation 

with or without vitamin D and used changes to BMD as the primary outcome measure. 

Between trial standardised mean differences of percentage change from baseline in BMD 

of femoral neck, lumbar spine, total body and total hip sites were calculated. Nine studies 

were included in the systematic review with six references totalling 867 participants 

contributing to the meta-analysis. Significant pooled effects size (ES) for comparison 

between supplementation and control groups were found at all sites included in the 

meta-analysis. The largest effect was found in total body (ES=0.644; 95% CI=0.406 to 

0.883; p=0.000), followed by total hip (ES=0.483, 95% CI= 0.255 to 0.711, p=0.000), 

femoral neck (ES=0.402, 95% CI=0.233 to 0.570, p=0.000) and lumbar spine (ES=0.306, 

95% CI=0.173 to 0.440, p=0.000). Limited evidence appears to support the use of calcium 

and vitamin D supplementation for improving BMD in older males. There is a need for 

high quality randomised controlled trials, especially in younger and middle-aged male 
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cohorts and athletic populations to determine whether supplementation provides a 

preventative benefit. 

KEYWORDS: Musculoskeletal, Randomised controlled trials, prevention 

3.2 Introduction 

Osteoporosis is commonly associated with females, remaining an under-diagnosed 

and under-treated disorder men (Briot et al., 2009). The incidence of osteoporosis varies 

by world-wide geographical regions with higher rates in developed nations, such as the 

USA, Europe and Australia (Dhanwal, Dennison, Harvey, & Cooper, 2011). The primary 

outcome of osteoporosis is fragility fractures. Globally, the residual lifetime risk of 

osteoporotic fracture for males is currently estimated to be 27% (Cooley & Jones, 2001). 

In 2000, 39% of total fragility fractures and approximately 33% of all hip fractures 

occurred in men (Ebeling, 2014; Johnell & Kanis, 2006). Mortality rates for male fragility 

fractures are two to three times higher than seen in females (Briot et al., 2009). Whilst 

ageing is the primary cause of bone weakness in males, common secondary causes 

include inadequate vitamin D and calcium intakes (Ebeling, 2008). It is therefore 

worthwhile exploring the potential benefits of calcium and vitamin D supplementation on 

bone density in healthy adult males as a primary prevention strategy, prior to the onset of 

osteoporosis. 

 Male fracture incidences have two peaks, one occurs during the ages of 15-45 

years and the other after 70 (Briot et al., 2009). Low body mass index (BMI) and excessive 

exercise, as often found in athletes, also contribute to osteoporosis (Ebeling, 2008). 

Studies on male athletic populations have demonstrated that non-weight bearing physical 

activity can have a negative impact on bone density (Smathers et al., 2009). Low BMD has 
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been observed in both weight and non-weight bearing male athletic populations such 

jockeys, cyclists and endurance runners (Fredericson et al., 2007; Greene et al., 2013; 

Nichols & Rauh, 2011; Rector et al., 2008; Smathers et al., 2009)  

The recommended dietary intakes for calcium focus on maximizing bone mass 

accretion during adolescence and minimising bone loss during ageing (Bachrach, 2001). 

Vitamin D is essential for optimal bone health, ensuring adequate mineralisation of bones 

(Higdon & Drake, 2011). Without adequate levels of vitamin D, calcium absorption is 

limited to around 12.5% of dietary intake (Aloia et al., 2010). The combination of weight-

bearing exercise, adequate dietary calcium and vitamin D intakes, as well as appropriate 

sun exposure to ensure vitamin D levels maintain or improve BMD are not always 

practical or possible, especially for athletic populations. These individuals already 

undertake high amounts of physical activity and may have dietary restrictions related to 

competition. Supplementation is recommended for improving bone health for 

populations unable to meet daily recommended intakes of calcium and vitamin D through 

diet alone (Rizzoli et al., 2008).  

Previous meta-analyses show that calcium and vitamin D supplementation has a 

small but positive effect on bone strength and a reduction in fracture risk (Abrahamsen et 

al., 2010; Chung et al., 2009; Cranney et al., 2007; Lips et al., 2014; Shea et al., 2002; Tang 

et al., 2007; Winzenberg et al., 2010). However, the majority of studies have used 

children or exclusively female populations and few studies have examined the effects of 

calcium supplementation, with or without vitamin D on BMD in men. The aim of this 

systematic review and meta-analysis is to examine the efficacy of calcium and vitamin D 
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supplementation on improving bone mineral density in otherwise healthy males across 

the adolescent and adult lifespan. 

3.3 Methods 

3.3.1 Eligibility criteria for study inclusion/exclusion 

Studies that were trials of calcium or calcium and vitamin D supplementation 

without an exercise intervention conducted with healthy males aged 16 years and over as 

participants were eligible for inclusion. Athletes were included provided the study did not 

require additional exercise beyond habitual training or exercise. Participants were 

required to be healthy, showing no signs of osteoporotic fractures and not taking any 

medications that would influence bone metabolism.  

All studies required a minimum of baseline and post-intervention bone density 

measurements in the form of areal or volumetric BMD or BMC as measured by DXA, 

ultrasound, QCT or peripheral quantitative computed tomography (pQCT). Studies must 

have provided participants with calcium supplementation, or a combination of calcium 

and vitamin D supplementation in the form of supplement, dietary interventions or both 

for a minimum of six months. Trials which included an exercise intervention were 

included in the analysis provided they also included a non-exercise supplementation 

group in addition to a placebo or control group. In these studies, the exercise intervention 

groups were excluded from analysis.  

3.3.2 Data Sources 

A comprehensive, systematic search was conducted on 16 April 2013 for 

manuscripts, using Ovid MEDLINE 1946 to April week 2 2013, Ovid EMBASE 1974 to 2013 

April 15, EBSCO SPORTDiscus, Academic Search Complete, CINHAHL Plus and PubMed 
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databases. Searches were conducted, without language restrictions, using the following 

four groups of keyword terms for Ovid: (i) Calcium, calcium carbonate, calcium citrate, 

caltrate, Ca2+, calcium adj 3 diet, calcium supplement, (ii) vitamin D, vitamin D2, vitamin 

D3, 25-OH, 1, 25-OH, calcitriol, cholecalciferol, ergocalciferol, (iii) bone adj 5 density, bone 

mineral density, BMC, BMC, BMD, aBMD, vBMD , (iv) men , male, adolescent adj 4 male, 

male adj 4 athlete. Adjustments made to the Boolean phrases for the EBSCO searches. 

Terms in each group of keywords were combined with OR and the final four groups were 

combined with AND. All titles were then manually searched and review articles were 

examined for further references for possible inclusion in the review. 

3.3.3 Design 

 Data extraction and synthesis 

Studies selected for inclusion into the review were assessed for quality based 

upon a modified Delphi list (Verhagen et al., 1998). Quality criteria extracted included 

reporting of eligibility criteria, randomisation, allocation concealment, blinding of 

treatment, compliance and drop-out rates, power calculations, type of analysis 

undertaken and statistical analysis.  

Two reviewers (LS, DG) developed the review protocol and determined inclusion 

and exclusion criteria. The articles extracted were independently assessed by two 

reviewers (LS, DG) for potential inclusion into the review. A third reviewer (MB) was 

available if consensus on inclusion could not be reached. Data relating to: age, baseline 

calcium and vitamin D intakes and /or serum levels, type and dosages of calcium and/or 

vitamin D supplements given, compliance rates, baseline BMC and/or BMD and 
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percentage change from baseline were extracted for analysis. Where data was 

incomplete, authors were contacted for further information if possible. 

 Outcome measures 

Changes to BMD were used as the outcome measure for this review. Data was 

extracted on BMC, aBMD and vBMD yielding data on 8 different measurement sites. 

Sufficient pre to post change bone mineral data was available to conduct meta-analysis 

on the following sites: lumbar spine, femoral neck, total hip, and total body.  

3.3.4 Statistical analysis 

Between-trial standardised mean differences, or effect size (ES) were calculated 

using Hedges g and 95% confidence interval at each site where there was sufficient data. 

Variability between studies was examined using the I2 measure of inconsistency to 

provide an indication of how much variability between studies was due to heterogeneity 

rather than chance. Funnel plot asymmetry was not assessed as there were fewer than 10 

studies in the meta-analysis (Sterne et al., 2011). No meta-regression was performed, due 

to the limited number of studies available.  

3.3.5 Meta-analyses 

Pooled estimates of the effect of supplementation on bone mineral density at the 

femoral neck, lumbar spine, total body and total hip, using the percentage change from 

baseline as the outcome measure, were obtained using a random-effects model. Analysis 

of these site was also conducted excluding the young age cohort (Prentice et al., 2005). 

Sub-group analysis examining: duration of study less than or greater than one year; low 

baseline calcium intake (defined as below 1000mg.day-1); Participants’ age, and whether 

the study included vitamin D were conducted to determine whether any of the factors 
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have had an effect on supplementation. This was limited to the lumbar spine site due to 

sufficiency of data. One study had more than one supplement group (Reid, Ames, Mason, 

& et al., 2008). In this instance, only control and the higher supplement groups were 

included in the meta-analysis. All analyses were conducted using Comprehensive Meta-

Analysis v2 (Biostat Inc, Englewood, NJ, USA).  

3.4 Results 

3.4.1 Study inclusion/exclusion 

The process for study inclusion is shown in Figure 3-1. The initial search strategy 

yielded a total of 3930 references after duplicates were removed of which 3898 were 

excluded during the initial screening of the titles and abstracts. Thirty-two articles were 

included for a full text review, of which 11 references to 9 studies were included in the 

systematic review. Two studies presented results for QCT and DXA in separate papers 

although participants were either a sub-set of the initial study (Daly, Bass, & Nowson, 

2006) or the same participants after an extension of the study period (Kukuljan et al., 

2011). These were not included in the meta-analysis. The main reason studies were 

excluded was that the participants were too young (n=6). Other reasons for exclusion 

were: no bone measures/ no post-study measures (n=2), participants had osteoporotic 

fractures (n=2), conference abstract only (n=3), or study included exercise intervention 

with no control group (n=1). Two studies (Dawson-Hughes, Harris, Krall, & Dallal, 1997; 

Peacock et al., 2000) included both males and females; however, the results were 

reported separately allowing inclusion of the male data in this analysis. One study 

(Kukuljan, Nowson, et al., 2009; Kukuljan et al., 2011) included exercising groups as well 

as supplementation and control groups. Only the supplementation and control groups 
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have been included in this analysis. Additional data was provided from one author (Reid 

et al., 2008). Three studies were analysed for study quality; however, they were excluded 

from the subsequent meta-analysis due to inadequate reporting of final results and/or 

the absence of a control group (Barry & Kohrt, 2008; Klesges et al., 1996; Peacock et al., 

2000). This resulted in 6 studies including 867 participants being included in the meta-

analysis. 

 

Figure 3-1: Study inclusion flow diagram.  
(Moher, Liberati, Tetzlaff, Altman, & Group, 2009) 
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3.4.2 Study quality/Bias risk 

Studies were assessed for quality on a range of criteria which is presented in Table 

3-1. With the exception of one study (Klesges et al., 1996), treatment allocation was 

randomised with the majority of studies using computer generated randomisation 

sequence for allocation into groups. Five studies were conducted as double-blind, placebo 

controlled studies although the blinding process was not fully described. Two studies used 

a non-placebo control group (Daly, Brown, Bass, Kukuljan, & Nowson, 2006; Kukuljan, 

Nowson, et al., 2009) and two studies used varying amounts of supplementation without 

a control group (Barry & Kohrt, 2008; Klesges et al., 1996). Results were complete in all 

but two studies (Klesges et al., 1996; Peacock et al., 2000); however, not all studies 

reported bone measurements at all data points. Analysis was evenly divided between 

intention to treat and per protocol. With the exception of two studies (Barry & Kohrt, 

2008; Klesges et al., 1996) compliance rates, drop-out rates and missing data were 

reported. Based on study quality and/or duplication of cohorts, 5 trials were eliminated 

from the subsequent meta-analysis (as indicated in Table 3-1). 

3.4.3 Participant characteristics 

Extracted participant characteristics are shown in Table 2. Participants included in 

all studies were considered to be healthy male adults without evidence of osteoporotic 

incidence. Exclusions were related to known osteoporotic fractures; bone related 

diseases or treatments which affect bone metabolism; previous calcium/vitamin D 

supplementation usage; smoking and alcohol intake. Subjects ranged in age from 

adolescent males (16 to 18 years) through to elderly men (67 to 84 years). The majority of 

subjects fell within an age range of 42 to 70 years of age. One study specifically recruited 

males over 65 years of age (Dawson-Hughes et al., 1997). In the majority of studies, the 
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participants’ average ages were between 55 and 63 years. Baseline calcium intakes 

ranged from a low of 629mg/d to 1159mg/d. Serum vitamin D concentrations were not 

reported for two studies (Dawson-Hughes et al., 1997; Prentice et al., 2005). Reporting of 

baseline vitamin D levels varied between serum concentrations and intake, with studies 

reporting serum vitamin D concentrations ranging from 52 to 85.7nmol/L. 
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Table 3-1: Study Quality 

Author Orwoll, 
Oviatt, 
McClung, 
Deftos, and 
Sexton (1990) 

Klesges 
et al. 
(1996) 

Dawson-
Hughes et 
al. (1997) 

Peacock 
et al. 
(2000) 

Prentice 
et al. 
(2005) 

Daly, Brown, 
et al. (2006) 

Daly, 
Bass, et 
al. (2006) 

Barry 
and 
Kohrt 
(2008) 

Reid et al. 
(2008) 

Kukuljan, 
Nowson, et 
al. (2009)  

Kukuljan et 
al. (2011) 

Eligibility 
criteria 
specified 

●   ● ● ● ● ● ● ● ● ● 

Baseline 
characteristics 
reported 

● ● ● ● ● ● ● ● ● ● ● 

Treatment 
allocation 
randomised 

●   ● ● ● ● ● ● ● ● ● 

Double 
blinded?  

●   ● ● ●       ●     

Placebo/ 
control group 

●   ● ● ● ● ●   ● ● ● 

Power 
calculations 

●       ●       ●     

Full results 
reported 

●   ● ● ● ● ● ●   ● ● 

Type of Analysis  PP PP ITT ITT ITT PP PP PP ITT ITT ITT 

Missing data 
accounted for 

●   ● ● ● ● 
 

● 
 

  ● ● ● 

Compliance 
reported 

    ● ● ● ● ●   ● ● ● 

Drop outs 
reported 

●   ● ● ● ● ● ● ● ● ● 

Statistical 
analysis 
 

ANCOVA, 
linear 
regression 

ANOVA Two 
sample t-
tests, 
ANCOVA 

ANOVA ANOVA 
ANCOVA 

Pooled time 
series 
regression 
with random 
effects models 

t-tests, 
ANCOVA 

t-tests, 
ANOVA 

Mixed 
model 
repeated 
measures 

ANOVA Pooled time 
series 
regression 
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Author Orwoll, 
Oviatt, 
McClung, 
Deftos, and 
Sexton (1990) 

Klesges 
et al. 
(1996) 

Dawson-
Hughes et 
al. (1997) 

Peacock 
et al. 
(2000) 

Prentice 
et al. 
(2005) 

Daly, Brown, 
et al. (2006) 

Daly, 
Bass, et 
al. (2006) 

Barry 
and 
Kohrt 
(2008) 

Reid et al. 
(2008) 

Kukuljan, 
Nowson, et 
al. (2009)  

Kukuljan et 
al. (2011) 

SD or CI CI CI SD SD SD, SE SD and 95% CI SD and 
95% CI 

SD and 
95% CI 

SE and 95% 
CI 

SD and 
95% CI 

SD and 95% 
CI 

Bone measures 
at all data 
points 

        ● ● ● ● ● ●   

Included in 
meta-analysis 

●  ●  ● ●   ● ●  

Key: ● = Yes; ANOVA= analysis of variance; ANCOVA=analysis of covariance; CI=confidence intervals; ITT= intention to treat; PP = per protocol; SD=standard deviation; 
SE=standard error 
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3.4.4 Study interventions 

Study interventions are reported in Table 3-2. Intervention length ranged from 1 

year to 4 years, with the largest study (by number of participants) being 2 years in 

length(Reid et al., 2008). Four studies utilised both calcium and vitamin D 

supplementation, the others using calcium only. Calcium dosages ranged from 500mg/d 

to 1200mg/d and were in the form of calcium carbonate, calcium citrate malate, and milk 

fortified with calcium salts derived from fresh whey. All studies supplementing with 

vitamin D used vitamin D3 (cholecalciferol) in dosages ranging from 400IU/d to 1000IU/d 

and supplements were generally provided twice daily. One study (Reid et al., 2008) 

included two different supplement groups. The high supplement group was analysed in 

the meta-analysis as the results could not be pooled. 
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Table 3-2: Participant characteristics and study interventions 

Author Orwoll et al. 
(1990) 

Dawson-
Hughes et 
al. (1997) 

Prentice et 
al. (2005) 

Daly, 
Brown, et 
al. (2006) 

Reid et al. 
(2008) 

Kukuljan, 
Nowson, et al. 
(2009)  

Participants Healthy 
adult males 

Healthy, 
ambulatory, 
over 65 
years of age. 

Male sixth 
form 
students 
aged 
between 16 
and 18 years 
of age. 

Males > 50 
years 
Community 
living 

Men over 40 
years in good 
general health 

Males aged 50-
79 
Community 
dwelling 
Normal to 
below average 
BMD  

Number of 
Male 
participants 

41 (s) 
36 (p) 
 

86 (s) 
90 (p) 

73 (s) 
70 (p) 

85 (s) 
82 (c) 

107 (p) 
108 (600) 
108 (1200) 

45 (s) 
44 (C) 

Age 60 ± 12 (s) 
55 ± 13 (p) 

70 ± 4 (s) 
71 ± 5 (p) 

16.8 ±0.5 (p) 
16.8 ± 0.4(s) 

62.1 ± 7.7 
(s) 
61.7 ± 7.7 
(c) 

57 ± 10 (p) 
55± 10 (600) 
57 ± 10 (1200) 

61.7 ± 7.7 (s) 
59.9 ± 7.4(c) 

Baseline 
calcium 
intake(mg/d) 
or serum 
(mmol/L) 

Intake for 
group: 1159 
± 576 
Serum: 2.35 
± 0.1 (s); 
2.37 ± 0.1 
(p) 
 

Intake: 
748 ± 391 (s) 
673 ± 349 
(p) 

Intake: 
1197 ± 463 
(s) 
1199 ± 437 
(p) 

Serum: 
2.35 ± 0.12 
(s) 
2.37 ± 0.13 
(c) 
 

Intake: 
800 ± 360 (p) 
870 ±470 
(600) 
930 ± 510 
(1200) 

Intake: 
1039 ± 455 (s) 
996 ± 293 (c) 
Serum: 
2.39 ± 0.16 (s) 
2.41 ± 0.18 (c) 
 
 

Baseline 
vitamin D 
intake or 
serum  
 

Serum 
25(OH)D 
(nmol/L): 
60 ± 17 (s);  
52 ± 15 (p) 
Serum 1,25 
(OH) D 
(pg/mL):  
33 ± 18 (s);  
33 ± 17 (p) 

Intake (IU): 
202 ± 104 (s) 
197 ± 117 
(p) 

NR Serum 
25(OH)D 
(nM): 
77.2 ± 22.6 
(s) 
76.1 ± 23.5 
(c) 

Intake (µg/d): 
3.2 ± 4.8 (p) 
2.7 ± 3.3 (600) 
2.9 ± 3.2 
(1200) 
Serum 
25(OH)D 
(ng/mL): 
38 ± 13 (p) 
38 ± 14 (600) 
35 ± 12 (1200) 

Serum 
25(OH)D 
(nmol/L): 
83.6 ± 32.7 (s) 
85.7 ± 40.3 (c) 

Length of 
intervention 

3 years 3 years 13 months 2 years 2 years 12 months 

Total calcium 
supplement 
amount 

1000mg/d 500mg/d 1000mg/d 
(500mg/tabl
et) 

1000mg/d 
(500mg/ 
200ml) 

1200mg/d (h) 
or 600mg/d (l) 
 

1000mg/d 
(500mg/ 
200ml) 

Total vitamin 
D supplement 
amount 

25µg/d 
(1000IU/d) 

700IU/d N/A 800 IU/d 
(400IU/200
ml) 
 

N/A 800 IU/d 
(400IU/200ml) 
 

Key: 25(OH)D = 25-hydroxyvitamin D; BMD: bone mineral density; c= control group; ca= calcium; NR=not 
reported; p=placebo; s=supplement; t=total; vD=vitamin D  
International Reference values (Ross et al., 2011):  
Calcium- males aged 19-50: 1,000 mg.day-1, 51+: 1,200 mg.day-1 
Vitamin D- males up to 70yrs: 15 µg.day-1 or 600 IU.day-1, 71+: 20 µg.day-1 or 800 IU.day-1, Serum 25(OH)D- 
20ng/mL or 50nmol/L 



61 
 

3.4.5 Study Outcomes 

Study outcomes are detailed in Table 3. Studies utilized DXA for bone density 

measures, with a wide variation in the sites measured. However, the majority of studies 

took measurements at lumbar spine and hip. Bone density was most commonly 

measured every six months although only half the studies reported measurements at 

each data point. Results relating to bone density were, in all cases, reported as a 

percentage change from baseline. Confidence intervals (CI) were reported in four studies, 

whereas standard deviation and effect size with CI were reported in two. In all but one of 

the studies included in the meta-analysis (Orwoll et al., 1990), supplement compliance 

rates were reported, ranging between 65.2% and 92%. 

The supplemented group in the young age cohort (Prentice et al., 2005) 

demonstrated significant higher gains in bone density over the control group at the total 

body, total hip and femoral neck sites, with non-significant improvement at the lumbar 

spine. Among the older age cohorts there were mixed results. Two studies reported 

significant positive improvements in bone density at the lumbar spine (Dawson-Hughes et 

al., 1997; Kukuljan, Nowson, et al., 2009) one reported a lesser decrease in bone density 

for total body (Dawson-Hughes et al., 1997), one reported a significant positive 

improvement at the total hip (Kukuljan, Nowson, et al., 2009) and two showed significant 

improvements in bone density at the femoral neck (Daly, Brown, et al., 2006; Dawson-

Hughes et al., 1997). Other studies showed non-significant changes at the lumbar spine 

(Daly, Brown, et al., 2006; Orwoll et al., 1990), total hip (Orwoll et al., 1990) and femoral 

neck (Kukuljan, Nowson, et al., 2009), with one study not reporting significance (Reid et 

al., 2008). 
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Table 3-3: Outcomes reported by studies included in the meta-analysis 

Study Name Bone density 
equipment 

Outcome 
reported 

Supplement 
compliance 
(mean rate) 

Pre-
intervention 

Post-intervention P value 

Orwoll et al. 
(1990) 

Radial: single 
photon 
absorptiometry; 
Lumbar: CT 

BMC (g/cm 
- radial) 
(mg/cm3 – 
vertebrae) 

NR Vertebral 
(mg/cm3):  
112 ± 32 (s) 
121 ± 27 (p) 
Proximal radius 
(g/cm): 
1.24 ± 0.18 (s) 
1.29 ± 0.14 (p) 
Distal radius 
(g/cm):  
1.32 ± 0.14 (s) 
1.28 ± 0.25 (p) 
 

Vertebral: 
-2.5 (-3.3 to - 1.7) 
(s) 
-2.1 (-2.7 to -1.5) 
(p) 
Proximal Radial:  
-0.9 (-1.2 to -0.55) 
(s) 
-1.3 (-1.8 to -0.55) 
(p) 
Distal Radial: 
-1.1 (-1.7 to -0.53) 
(s) 
-0.8 (-1.3 to -0.29) 
(p) 
 
Reported as % 
change 

0.41 
 
 
0.29 
 
 
0.46 
 

Dawson-
Hughes et al. 
(1997) 

DXA BMD 
(g/cm2) 

92% ± 10 
calcium 
tablet 
93% ± 10 
vitamin D 
tablet 

Total body: 
1.22 ± 0.09 (s) 
1.19 ± 0.09 (p) 
Spine: 
1.32 ± 0.21 (s) 
1.27 ± 0.20 (p) 
Femoral neck: 
0.99 ± 0.14 (s) 
0.95 ± 0.12 (p) 
 

Total body: 
0.34 ±1.40 (s) 
-0.85 ± 1.53 (p) 
Spine:  
2.93 ±3.42 (s) 
1.74 ±3.85 (p) 
Femoral neck:  
0.95 ± 4.07 (s) 
-1.35 ±4.70 (p) 
 
Reported as % 
change 

<0.001 
 
 
0.03 
 
 
<0.001 
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Study Name Bone density 
equipment 

Outcome 
reported 

Supplement 
compliance 
(mean rate) 

Pre-
intervention 

Post-intervention P value 

Prentice et 
al. (2005) 

DXA BMD 
(g/cm2) 

65.2% ± 27.9 
calcium 
tablet 
52.2% ± 32 
placebo 

Total body: 
1.17 ± 0.10 (s) 
1.18 ± 0.10 (p) 
Lumbar spine: 
1.00± 0.11 (s) 
0.99 ± 0.11 (p) 
Total hip: 
1.10 ± 0.12 (s) 
1.12 ± 0.13 (p) 
Femoral neck: 
0.91 ± 0.13 (s) 
0.99 ± 0.12 (p) 
Trochanter: 
0.86 ± 0.11 (s) 
0.87 ± 0.12 (p) 
Intertrochanter: 
1.246 ± 0.14 (s) 
1.27 ± 0.16 (p) 
UD radius: 
0.44 ± 0.06 (s) 
0.44 ± 0.05 (p)  
33% radius: 
0.67 ± 0.05 (s) 
0.69 ± 0.06 (p) 

Total body: 
1.27 ± 0.55 
Lumbar spine: 
2.51 ± 0.86 
Total hip: 
2.32 ± 0.92  
Femoral neck: 
2.36± 1.03  
Trochanter: 
1.10 ± 1.24 
Intertrochanter: 
2.66 ± 1.05 
UD radius: 
0.39 ± 0.91 
33% radius: 
0.76± 0.51 
 
Intervention 
effect (%) 
reported to 
account for 
skeletal growth S 
vs P 
± SE  

 
<0.05 
 
NS 
 
<0.01 
 
<0.05 
 
NS 
 
<0.01 
 
NS 
 
NS 

Daly, Brown, 
et al. (2006) 

DXA BMD 
(g/cm2) 

85.1% Lumbar spine: 
1.22 ± 0.16 (s) 
1.21 ± 0.16 (c) 
Total hip: 
1.02 ± 0.12 (s) 
1.04 ± 1.12 (c) 
Femoral neck: 
0.95 ± 0.11 (s) 
0.95 ± 0.1 (c) 
UD radius: 
0.42 ± 0.05 (s) 
0.42 ± 0.05 (c) 
33% radius: 
0.79 ± 0.07 (s) 
0.78 ± 0.07 (c) 

Lumbar spine: 
0.69 (-0.33, 1.72) 
Total hip: 
0.90 (-0.04, 1.84) 
Femoral neck: 
1.51 (0.55, 2.48) 
UD radius: 
1.57 (0.79, 2.35) 
33% radius: 
0.40 (-0.24, 1.05) 
 
Mean difference 
between groups, 
95% CI 

 
0.08 
 
0.05 
 
0.001 
 
0.001 
 
NS 

Reid et al. 
(2008) 

DXA BMD 
(g/cm2) 

85% (p) 
86% (l) 
83% (h) 

Total body: 
1.26 ± 0.10 (p) 
1.25 ± 0.08) (l) 
1.26 ± 0.10 (h) 
Lumbar spine: 
1.24 ± 0.16 (p) 
1.25 ±0.15 (l) 
1.26 ± 0.18 (h) 
Total hip: 
1.08 ± 0.13 (p) 
1.07 ± 0.13 (l) 
1.09 ± (h) 
 

Total body: 
-0.13 ± 1.26 (p) 
-0.11 ± 1.19 (l) 
0.74 ± 1.17 (h) 
Lumbar spine: 
0.79± 3.04 (p) 
0.43 ±2.70 (l) 
1.48 ± 2.44 (h) 
Total hip: 
-0.42 ± 1.79 (p) 
-0.19 ± 1.43 (l) 
0.89± 1.61 (h) 
 
% change. 24mth 
results (SD) 

 
NR 
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Study Name Bone density 
equipment 

Outcome 
reported 

Supplement 
compliance 
(mean rate) 

Pre-
intervention 

Post-intervention P value 

Kukuljan, 
Nowson, et 
al. (2009) 

DXA aBMD 
(g/cm2) 

87% Lumbar spine: 
1.21 ± 0.15 (s) 
1.24 ± 0.17 (c) 
Total hip: 
1.00 ± 0.08 (s) 
1.01 ± 1.12 (c) 
Femoral neck: 
0.92 ± 0.08 (s) 
0.93 ± 0.08 (c) 
Trochanter: 
0.88 ± 0.09 (s) 
0.89 ± 0.12 (c) 

Lumbar: 
2.1 (1.1, 3.0) (s) 
0.6 (-0.1, 1.3) (c) 
Total hip: 
1.2 (0.7, 1.8) (s) 
0.5 (0.0, 1.0) (c) 
Femoral neck:  
-0.4 (-1.1, 0.3) (s) 
-0.2 (-0.9, 0.6) (c) 
Trochanter: 
1.6 (0.7, 2.5) (s) 
0.8 (0.0, 1.5) (c) 
 
Mean % change 
(95% CI) 

 
0.001 
NS 
 
0.001 
NS 
 
NS 
NS 
 
0.001 
NS 
 
within 
group  

 
Key: BMC= bone mineral content; BMD = bone mineral density; c= control group; ca= calcium only group; 
DXA=dual energy x-ray absorptiometry; h= high calcium supplement; Ipolar = density-weighted polar moment 
of inertia; l= low calcium supplement; NR=not reported; NS= not significant; QCT = quantitative computer 
tomography; p=placebo group; s=supplement group; t=total; UD= ultra-distal; vBMD= volumetric bone 
mineral density; vD=vitamin D only group. 
 

3.4.6 Effects of Supplementation on bone mineral density (meta-analyses) 

The effect of calcium or calcium and vitamin D supplementation on bone mineral 

density is shown in Figure 3-2. Moderate (non-significant) heterogeneity was observed 

among studies for total body (I2 =46.233%, p=0.156) and total hip (I2=48.842%, p=0.118). 

Given the low number of studies, a random effects model was used to account for 

variability which may have arisen from differences in: age, baseline calcium intakes, 

baseline bone mineral density, supplementation dosages and duration. Overall, significant 

pooled ES for comparison between supplementation and placebo/control groups at all 

sites included in the meta-analyses was found. The largest effect was found in total body 

(ES=0.644; 95% CI=0.406 to 0.883; Z=5.302; p=0.000), followed by weight bearing sites of 

total hip (ES=0.483; 95% CI=0.255 to 0.711; Z=4.156; p=0.000) and femoral neck 

(ES=0.402; 95% CI=0.233 to 0.570; Z= 4.667; p=0.000). Supplementation had the least 

effect on the lumbar spine (ES=0.306; 95% CI=0.173 to 0.440; Z= 4.499; p=0.000). 
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Figure 3-2: Forest plots of main effects of calcium or calcium and vitamin D 
supplementation on bone mineral density of lumbar spine, femoral neck, hip and total 
body. 
 

The results for the lumbar spine, femoral neck, hip and total body excluding the 

young age cohort (Prentice et al., 2005) showed significant pooled ES for comparison 

between supplementation and placebo/control groups at all sites. Total body was based 

on two studies (Dawson-Hughes et al., 1997; Reid et al., 2008), demonstrating a larger 

effect size than when the younger group was included (ES=0.755; 95% CI=0.551 to 0.960; 

Z=7.237.302; p=0.000). Total hip was also larger (ES=0.493; 95% CI=0.183 to 0.814; 

Z=3.099; p=0.002). The femoral neck (ES=0.395; 95% CI=0.154 to 0.636; Z= 3.213; 

p=0.001) and lumbar spine (ES=0.271; 95% CI=0.126 to 0.417; Z= 3.649; p=0.000) sites 

were lower without the younger cohort, but demonstrated similar effect sizes. 



66 
 

3.4.7 Sub-group analyses 

Sub-group analyses of study duration, age of participants, baseline calcium intake 

and inclusion of vitamin D in supplementation regime is presented for the lumbar spine 

region (Figure 3-3). The effect size for participants with low baseline calcium was found to 

be smaller than the group with adequate baseline calcium levels. As can be seen in Table 

3-2, this also included the group with the lowest supplementation level (Dawson-Hughes 

et al., 1997). A small difference was seen between the participants who received vitamin 

D in conjunction with calcium (ES=0.281; 95% CI=0.107 to 0.455; p=0.002) and those 

receiving calcium only (ES=0.347; 95% CI=0.119 to 0.574; p=0.003). Despite a paucity of 

research, it appears the age of participants had a greater influence on the bone mineral 

density outcome at the lumbar spine with younger participants demonstrating a greater 

ES. Furthermore, results also suggest that additional years of supplementation have no 

additional benefit although this may be affected by age. Sub group analyses at other sites 

showed similar trends however there were fewer studies to compare, weakening the 

analysis. 

 
 
Figure 3-3: Forest plots of subgroup analysis of the effect of inclusion of vitamin D, study 
duration and age of participants on bone mineral density of lumbar spine. 
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3.5 Discussion 

Calcium and vitamin D supplementation has previously shown a positive effect on 

bone strength in females and children (Abrahamsen et al., 2010; Chung et al., 2009; 

Cranney et al., 2007; Shea et al., 2002; Tang et al., 2007; Winzenberg et al., 2010), 

however the preventative effects of supplementation on healthy male bone remaining 

largely unexplored. This is the first systematic review and meta-analysis to examine the 

effects of calcium supplementation with or without vitamin D on BMD in healthy adult 

male populations. The data appears to demonstrate that, when compared to a control 

intervention, calcium supplementation with or without vitamin D has a small to moderate 

effect on bone mineral density at the femoral neck, lumbar spine, total body and total 

hip. Total body bone mineral density demonstrated the greatest impact of 

supplementation followed by the weight bearing sites of total hip and the femoral neck, 

with the smallest impact observed at the lumbar spine region. For the younger cohort, 

this resulted in positive acquisition of bone, while in older cohorts this resulted in an 

attenuation of the rate of bone loss.  

The meta-analysis included six studies involving a total of 867 participants (435 in 

control groups and 432 in supplemented groups) ranging in age from 16 years to 84 years 

of age with the average age of participants was over 55 years. Baseline calcium intakes 

reported in the majority of studies were below recommended daily intake levels being 

1,000-1,200 mg.day-1 (National Health and Medical Research Council, 2006a; Ross et al., 

2011). Intake levels ranged from a low of 629mg.day-1 to 1159mg.day-1. Sub group analysis 

indicated that lower baseline calcium intake resulted in a lower effect size at the lumbar 

spine. Others have found that treatment effect is higher in groups whose daily calcium 
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intake is low (Tang et al., 2007). These results must be interpreted with caution, however, 

given the low number of studies available for inclusion in the analysis. There was a wide 

variation in individual calcium intakes amongst participants in all studies as well as 

variation in the amount of supplement provided. One study included in the low baseline 

group also provided the lowest daily calcium supplement of 500mg.day-1 (Dawson-Hughes 

et al., 1997). A lack of sufficient data makes it difficult to determine whether the results 

may have been different at other sites. 

Similarly, sub group analysis indicates that the addition of vitamin D did not 

enhance bone outcomes at the lumbar spine which may be due to the initial adequacy of 

vitamin D levels in the participants included in the meta-analysis in all but one study 

(Dawson-Hughes et al., 1997), being 50nmol/L or above (National Health and Medical 

Research Council, 2006b; Ross et al., 2011). Again, the power to detect such differences 

may be low given the small number of studies available for inclusion in the analysis. 

Meta-analysis examining vitamin D supplementation in children has shown vitamin D to 

be effective in improving bone density when serum levels are low, but not when they are 

at normal levels (Winzenberg, Powell, Shaw, & Jones, 2011). It is suggested that vitamin D 

supplementation for healthy adults, defined as 20-65 years of age, needs to be in the 

range of 2000IU per day in order to achieve improvements to BMD (Ebeling et al., 2013). 

Aloia et al (2010) examined the effect of 1,200 mg.day-1 calcium supplementation with or 

without 100µg.day-1 vitamin D (4000IU) on bone turnover markers in healthy adults aged 

20-80 years of age over a three - month period. The research found that the increased 

calcium intake lowered markers of bone turnover whilst the vitamin D alone or together 

with the calcium, had no effect on bone turnover markers. While some report modest 

reductions in fracture risk in older adults with a combination of calcium and vitamin D 
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supplementation (Ebeling et al., 2013), most report vitamin D alone does not appear to 

significantly influence fracture risk (Lips et al., 2014), nor bone mineral density, with a 

recent meta-analysis finding a small positive effect at the femoral neck only, in older, 

predominantly female adults (Reid, Bolland, & Grey, 2014) Further, a recent meta-

analysis assessing the reduction of fracture risk associated with vitamin D and/or calcium 

supplementation showed similar results to this meta-analysis with no difference found 

between calcium only and calcium plus vitamin D groups (Tang et al., 2007). As such, 

current evidence suggests that calcium supplementation may be more important than 

vitamin D in improving BMD, however, some caution should be applied due to the paucity 

of results. 

Amongst the studies there was inconsistency in intervention length. Not all 

measurements were reported at each data point, making it difficult to determine at 

which stage supplementation began to have an effect on bone density. Furthermore, sub-

group analysis showed little benefit in supplementation extending beyond one year at the 

lumbar spine site, however this is limited by the low effect size at the lumbar spine site. 

Other sub-group analyses indicated a higher benefit but are limited by the numbers of 

studies included. While supplementation beyond one year does not appear to provide an 

additional improvement, follow-up research suggests that continued supplementation 

maintains the initial benefit of the supplementation (Dawson-Hughes, Harris, Krall, & 

Dallal, 2000). 

3.5.1 Limitations 

Consideration of several limitations should be made when interpreting these 

results. First and foremost is the limited data available to examine the effectiveness of 
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supplementation. This has an impact in both the overall effects of supplementation for all 

age groups as well as being able to fully assess the impact that differing dosages, baseline 

intakes, age, supplementation length, vitamin D all may have on the effectiveness of the 

supplementation. 

Only one study included adolescent males, demonstrating improvements in bone 

density in the supplementation group beyond the normal growth related acquisition. 

While included in the systematic review, the two studies examining athletic male 

populations (young adult males) were unable to be incorporated into the meta-analysis 

due to the absence of control groups. This makes it unclear of the effects of calcium 

supplementation on growing bone in male populations. While approximately 90% of PBM 

is acquired by 18 years of age (Baxter-Jones et al., 2003), peak BMD appears to be 

achieved by the end of the 20’s or early 30’s (Baxter-Jones et al., 2011). Further, in 

athletic male populations with low BMD, it is unclear whether supplementation would be 

an effective and feasible strategy for improving BMD. In addition, there was variation in 

baseline BMD of the participants, baseline calcium intakes and vitamin D status, as well 

the dosages of supplementation provided.  

It is worth noting that the studies in this meta-analysis used DXA to measure 

changes in BMD at a variety of sites. The inherent limitations of two-dimensional DXA 

technology are well known. Peripheral quantitative computed tomography (pQCT) 

provides measures of volumetric bone mineral density and bone geometry in the arms 

and legs, and therefore represents a viable alternative to address the question of skeletal 

adaptations to calcium and vitamin D supplementation, particularly in healthy 

populations. 
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Despite these limitations, our results indicate that supplementation provides small 

to moderate benefits in slowing the rate of bone loss in older male populations. Research 

in healthy young male populations is required to assess the impact of supplementation on 

BMD in cohorts that have not fully reached PBM. Further, research with athletic cohorts 

known to have low BMD is also necessary to establish whether supplementation would 

be an effective intervention. Follow-up studies would be beneficial to establish whether 

supplementation provides lasting or transitory benefits. 

3.6 Conclusion 

With the growing incidence of male osteoporosis, the results of this paper may be 

relevant when considering the primary prevention strategies to curtail future 

osteoporotic fracture. The available evidence shows that when compared to a control 

intervention, supplementation with calcium, in combination with vitamin D, has a small to 

moderate effect on bone mineral density at the femoral neck, lumbar spine, total body 

and total hip in healthy males. For the younger cohort, this resulted in positive acquisition 

of bone over normal growth related bone acquisition, while in older cohorts this resulted 

in an attenuation of the rate of bone loss. However, caution should be applied when 

interpreting these results. There is a very limited number of studies on male participants 

to adequately determine the efficacy of vitamin D and/or calcium supplementation, and 

there are no studies of any sufficient quality examining supplementation in athletic 

populations although evidence of compromised bone health exists. 

Novelty statement  
Provides the first meta-analysis examining the effects of calcium and vitamin D 

supplementation exclusively on healthy male BMD.  
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Practical application 
The very limited evidence appears to support calcium and vitamin D supplementation for 

improving BMD in older males. Available research examining male cohorts do not provide 

an estimate of fracture risk reduction, and the paucity of research highlights the need for 

high quality research in all male age cohorts and male athletic populations. 
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4 Methodology 

This chapter describes the protocols and procedures generic to all results chapters 

within this thesis. 

4.1 Study Design 

The study was developed as a prospective double-blind placebo controlled trial of 

calcium and vitamin D supplementation with repeated measures taken at baseline and six 

months in order to examine the efficacy of supplementation to illicit positive skeletal 

adaptations at the tibia and radius in young male jockeys. A six-month intervention period 

was selected based upon previous research undertaken by ACU Researchers (Greene & 

Naughton, 2011). 

4.2 Ethics Approval 

Approval was obtained from the Human Research Ethics Committee at the 

Australian Catholic University (ACU) (Approval number 2012-114N) prior to 

commencement of the study (Appendix 2: Ethics Approval).  

4.3 ANZ Clinical Trials Registration 

The study was registered with the Australian New Zealand Clinical Trials Registry 

(registration no: ACTRN126000374864) (Appendix 1: ANZ Clinical Trials Registration). 

4.4 Participants 

Participants were male Apprentice Jockeys aged 16 to 34 years who were 

currently completing a Certificate IV in Racing in New South Wales (NSW) and Victoria 

(VIC). Of the available pool of Apprentices, approximately one-third was female; however, 

dietary supplementation in young males and females would be unlikely to have a 
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homogeneous response and therefore females were excluded from recruitment. Results 

would be difficult to interpret and the number of female jockeys was insufficient to 

provide power for a sub-group analysis. Apprentice jockeys were selected over licenced 

jockeys due to the difficulty in recruiting large numbers of licenced jockeys. Whilst the 

jockeys do have an industry Association, they are individually employed, making 

recruitment difficult. Further, they work and race in a variety of locations and no 

convenient central location to test large numbers of jockeys was available. 

To control for selection bias, specific inclusion and exclusion criteria was used: 

1. In good health with no systemic illness lasting more than 2 weeks in last 6 

months. 

2. No known history of fracture or recurrent fracture complications in last 6 

months. 

3. No known history of metabolic bone or muscle disease.  

4. No medication, hormones, calcium or vitamin D preparations in preceding 

6 months and willing to remain free of such medications for the 6 months 

of data collection.  

4.5 Power Analysis 

The sample size of 15 per group will allow detection of a significant difference if 

the mean key outcome variable (bone strength index (BSI) at 4% sites and stress strain 

index (SSI) at 66% sites) for the supplemented group is at least 1.5 SD higher than the 

mean value in the control group. This sample size allows for a 35% drop out (power = 

80%, p>0.05) (Peat & Barton, 2005).  
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4.6 Recruitment of Participants 

The Australian Jockey Association, with support from the Australian Racing Board 

assisted with participant recruitment. The jockeys were available for testing on 

“Apprentice Day” held once per month at TAFE NSW and Racing Victoria. Unforeseen 

relocations and requirements to race at short notice reduced the original pool of 40 

jockeys to 30 available for initial participation in the study (refer Figure 4-1). A total of 29 

participants were recruited for the study, after excluding one jockey for health reasons, 

and were randomised into either the intervention or placebo groups. All participants 

were provided with an information statement and informed consent was obtained from 

all participants prior to participation in the study (Appendix 4: Information statement and 

Appendix 5: Informed consent). Where participants were under 18 years of age, 

permission was obtained from a parent or guardian. 
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Figure 4-1: Number of participants available at each stage of the intervention 

4.7 Randomisation and blinding 

Participants were randomly allocated into the active or placebo group using a 

computerised four block randomisation process (www.sealedenvelope.com). Active and 

placebo supplements were in tablet form and were identical in colour, taste, texture and 

appearance (Figure 4-2). The tablets were provided in opaque plastic containers which 

were placed in envelopes labelled A or B and group allocation was recorded for later 

analysis. Participants were provided with enough tablets to last the duration of the study. 

Both researchers and participants were blinded to group allocation and remained blinded 

until after the data analysis had been completed. 
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Figure 4-2: Tablets and containers used for active and placebo groups.  

4.8 Calcium and Vitamin D supplement 

The active group received 800 mg calcium and 400 IU vitamin D in tablet form per 

day for a period of six months (USANA Pty Ltd, Sydney, Australia) divided into two tablets 

taken twice per day (morning and evening). The placebo comprised predominantly 

cellulose (Microcrystalline cellulose 814.42mg·g-1). The full list of ingredients appears in 

Table 4-1.  

Table 4-1: List of ingredients contained in both active and placebo tablets. 

Active tablet Placebo tablet 

Calcium (equiv 200 mg) as: 
Calcium citrate hydrate 371 mg 
Calcium carbonate 304 mg 

Magnesium (equiv 100 mg) as: 
Magnesium citrate 370 mg 
Magnesium amino acid chelate 83 mg 
Magnesium oxide 82 mg 

Cholecalciferol (vitamin D3, 100 IU) 2.5 µg 
Phytomenadine (Vitamin K) 15 µg 

Microcrystalline cellulose 814.42mg 
Pre-gelatinised starch 56.82mg 
Croscarmellose sodium 37.88mg 
Ascorbyl palmitate 18.94mg 
Colloidal silicon dioxide 18.94mg 
Dextrin 6.90mg 
Dextrose 0.96mg 
Lecithin 0.95mg 
Sodium CMC 0.47 mg 
Sodium citrate 0.19 mg 
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Participants were sent identical reminders via text messaging, every second day 

for two weeks, then twice per week for one month, followed by weekly reminders until 

the end of the third month. From months three to six, fortnightly reminders were sent. 

4.9 Data Collection Overview 

Data collection was undertaken at baseline and six months using equipment from 

the Exercise Science laboratory of ACU Strathfield campus. NSW jockeys were tested at 

Canterbury Race Course during their monthly TAFE Apprentice course. Victorian jockeys 

were tested at Racing Victoria Apprentice School located at Flemington Race Course. At 

baseline, information such as date of birth and contact details were collected to allow 

reminder messages to be sent during the trial. At both baseline and six months, the 

following data was collected: 

 Anthropometric data 

 Bone geometry, density and strength at both radius and tibia 

 Serum for analysis of bone turnover markers and vitamin D status 

 Hydration status 

 Dietary questionnaire 

 Health and lifestyle questionnaire 

 
At the six-month data collection date, participants were requested to return any 

unconsumed tablets in their containers. Jockeys were not compliant in returning the 

containers and were agreeable to returning them by mail. A letter and pre-paid, pre-

addressed envelope was forwarded to each jockey which was then followed-up by text 

message. 
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4.9.1 Anthropometric characteristics 

Body mass was measured using an electronic scale accurate to 500 g (Wedderburn 

UW150, Sydney, Australia) with participants dressed in light clothing and without shoes. 

Participants were instructed to have their feet evenly placed on the scales, with mass 

evenly distributed, ensuring they were looking straight ahead. 

Standing and seated height were measured to 0.1 cm using a stadiometer (SECA 

height rod model 220, Hamburg, Germany). Participants were required to stand in 

anatomical position, with heals together and back against the rod of the stadiometer. The 

head was placed in the Frankfort plane and standing height was then recorded as the 

maximal distance from the floor to the vertex of the skull. To take seated height, 

participants were required to be seated in an erect position on a flat chair. Again the head 

was positioned in the Frankfort plane and the maximal distance from the floor to the 

vertex of the skull was recorded. To calculate seated height, the height of the chair 

(47cm) was deducted from the recorded height. 

Anthropometric measures (Figure 4-3) included: 

 Skinfolds: triceps, subscapular, supraspinale, abdominale, front thigh and 

calf  

 Girths: head, arm relaxed, arm flexed, forearm, wrist, chest, waist, gluteal, 

upper thigh, mid-thigh, calf and ankle. 

 Bone breadths: biacromial, biiliocristale, transverse chest, A-P chest depth, 

biepicondylar humerus, wrist, biepicondylar femur and ankle. 
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 Bone lengths: radial length (ulnar styloid and olecranon processes) and 

tibial length (tibilale mediale to malleolus mediale) were made.  

These measures were taken using Harpenden skinfold callipers (Baty International, 

UK), flexible steel tape measure (Lufkin W606PM), segmometer (University of Western 

Australia), large and small sliding bone callipers (Rosscraft, Inc. Canada). All measures 

were taken twice and made in accordance with International Society for the 

Advancement of Kinanthropometry (ISAK) guidelines (Stewart et al., 2011) by an 

accredited Level 3 ISAK Anthropometrist (LS).  

A  

 

B   

 

  Figure 4-3: Anthropometric assessment. 

4.9.2 Bone material properties and fracture risk 

The non-dominant radius and tibia were measured using a Stratec XCT-2000L 

pQCT bone scanner (Stratec Medizintechnic, Pforzheim, Germany) with software version 

5.50d. The scanner was positioned at the anatomical reference line (cortical end plate) of 

the radius that corresponded to 4% (distal) and 66% (proximal) of radial length (Figure 
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4-4). Radial length was measured externally as the distance between the mid-point of the 

ulnar styloid and olecranon processes. For the tibia, the scanner was positioned at the 

anatomical reference line (cortical end plate) of the tibia that corresponded to 4% (distal) 

and 66% (proximal) of tibial length (Figure 4-4). Tibial length was measured externally as 

the distance between the mid-point of the distal medial malleolus and the proximal 

medial tibial plateau landmarks. 

A planar scout scan was first conducted to determine the anatomical reference 

line for both the radius and tibia. Tomographic slices of 1 mm thickness were obtained at 

the 4% and 66% sites measured distally. Scan speed and voxel size were 30 mm/s and 0.5 

mm respectively. A contour mode with a threshold of 180mg/cm3 was used to separate 

soft tissue and bone in order to analyse trabecular bone. Cortical bone was identified and 

removed using a constant default threshold of 711mg/cm3. Muscle cross-sectional area 

was assessed using contour mode 3, peel mode 2, and with a threshold of 40 mg/cm3. A region 

of interest (ROI) to identify the radius and tibia within each scan were automatically 

identified with manual adjustments made as necessary to ensure the entire radial ROI 

was enclosed. Volumetric BMD, bone geometry, bone strength, and muscle cross-

sectional areas were assessed at the two scanned sites 
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A  

 

B 

  
 

Figure 4-4: Positioning of participants for measurement of radius (A) and tibia (B) in pQCT. 
 

Outcome measures for both the radius and tibia automatically calculated by the 

pQCT are shown in Table 4-2 below. Estimates of compressional bone strength (bone 

strength index in mg2·mm4) were subsequently calculated using the formula: total area x 

(total density x 0.001)2 at the 4% site (Kontulainen et al., 2008). 

Table 4-2: Outcome variables assessed at 4% and 66% sites for both Radius and Tibia 

Radius Tibia 

4% distal site 4% distal site 
Total Area (mm2)  
Total density (mg·cm3)  
Trabecular area (mm2) 
Trabecular density (mg·cm3) 
Bone strength Index (mg2·mm4) 

Total Area (mm2)  
Total density (mg·cm3)  
Trabecular area (mm2) 
Trabecular density (mg·cm3) 
Bone strength Index (mg2·mm4) 

66% proximal site 66% proximal site 
Cortical area (mm2) 
Cortical density (mg·cm3) 
SSI-Polar 66% (mm3) 
Total Bone Area (mm2) 
Muscle Area (mm2) 
Endocortical circumference (mm) 
Pericortical circumference (mm) 
 
 

Total area (mm2) 
Cortical area (mm2) 
Cortical content (mg.mm) 
Cortical density (mg.cm3) 
Cortical thickness (mm) 
SSI-Polar 66% (mm3) 
 

Figure 4-5 provides a pictorial overview of scan sites, measurement variables and 

range of interest identified in the scans. The precision of repeat measurements on the 

pQCT in the ACU laboratory is 0.7% to 1.4% radius and 0.8% to 2.9% tibia after 
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repositioning in eight adults. (Greene et al., 2013). Scans were performed at baseline and 

6-months by the same investigator. 

 
 

Figure 4-5: Location of bone scan sites at tibia and radius, together with variables 
measures at each scan site and range of interest examples provided. 
 
4.9.3 Bone shape analysis 

Bone shape analysis was performed using ImageJ 1.47v Medical Research 

Software (National Institutes of Health, USA) BoneJ plug-in, pQCT distribution analysis 

(Doube et al., 2010; Rantalainen, Nikander, Heinonen, et al., 2011). Images derived from 

pQCT scans were further analysed using standard settings in BoneJ (Figure 4-6). 

Endocortical and pericortical radii (mm) measured as the distance from the centroid to 

the endocortical and pericortical edge, together with mineral mass (mg) was assessed at 

the 66% tibial site for 36 x 10 ten degree sectors. Polar cortical vBMD (mg·cm3) was 

assessed using 36 x 10 degree sectors, whilst radial cortical vBMD (mg·cm3) was assessed 

using 3 concentric rings equally spaced from the centroid (Figure 4-6). 
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Figure 4-6: pQCT image as treated by BoneJ pQCT distribution plug-in (A), an illustration 
of the radial and polar distribution (B) and the location of the anterior, posterior, lateral 
and medial planes (C).  
Source: Images B and C adapted from Rantalainen, Nikander, Heinonen, et al. (2011) 
 

The cortical cross-section was further consolidated into four 90o polar sectors and 

three cortical radial divisions representing the anterior, posterior, lateral and medial 

anatomical planes (Figure 4-6). Mean endocortical and pericortical radii (mm), mean 

mineral mass (mg) and mean polar cortical and radial vBMD (mg·cm3) was calculated for 

each 90o sector by averaging the sum of each 10o sector within the defined planes. 

4.9.4 Markers of bone turnover and Vitamin-D 

Blood samples were collected by a qualified phlebotomist at the same time of day 

at each data collection period. Ten ml blood was drawn using a lithium heparin collection 

tube and each sample was centrifuged within 15 minutes at 4000 rpm using a Centurion 

centrifuge (Scanspeed406G, Labogene, Scandanavia). Immediately following separation, 

clear plasma was transferred into three eppendorf tubes with aliquot which were labelled 

with names and dates and then placed in an ice box. The samples were transferred to 

freezers at -80o C within six hours of blood draw. Serum P1NP has been shown to be 

stable at both room (20o C) and refrigerator temperatures (2o to 8o C) for up to 7 days 

while serum CTx separated in lithium heparin is stable for less than 24 hours at 
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refrigerator temperatures (Stokes, Ivanov, Bailey, & Fraser, 2011). A number of studies 

have found that vitamin D is stable at both room and refrigerator temperatures for up to 

72 hours, as well as multiple freeze-thaw cycles and light exposure (Wielders & Wijnberg, 

2009; Zerwekh, 2008). However, the most consistent results for vitamin D status were 

achieved when serum was stored in the dark and at refrigerator temperatures if freezing 

was unavailable. 

Frozen blood samples were subsequently collected by an external NATA 

accredited laboratory (Melbourne Pathology, Victoria, Australia) and analysed for 

Procollagen type 1 N propeptide (P1NP) (ug/L), C-terminal telopeptide of type 1 collage 

(CTx) (ng/L), and serum 25-hydroxy vitamin D [25(OH)D] (nmol/L). A DIALAB 25-OH 

Vitamin D total ELISA kit, using a solid phase enzyme-linked immunosorbent assay was 

used to measure 25(OH)D (nmol/L). Using a denaturation buffer to extract 25(OH)D from 

Vitmin D binding protein (VDBP), samples were pretreated in separate vials. After mixing 

with enzyme conjugate and enzyme complex, the samples were transferred to microtiter 

plate wells. Incubation for 60 minutes at 37 degrees was followed by a washing step and a 

colour reaction was stopped after 15 minutes at room temperature. All wells were read 

within 10 minutes after the addition of the stop solution. Intra-assay coefficient of 

variation (CV) was 3.2% (n=20) and the inter-assay CV was 6.9% (n=30). Bone markers 

were analysed using enzyme-linked immunosorbent assay kits (Cloud-Clone Corp., USA) 

for cross linked c-telopetide type I collagen (CTx) and procollagen 1 N-terminal 

propeptide (P1NP). Intra-assay coefficient of variation (CV) for CTx and P1NP were <10% 

(3 samples tested 20 times on one plate) and the inter-assay CV was <12% (3 samples 

tested on 3 different plates, 8 replications in each plate).  



86 
 

 

Figure 4-7: Blood collection and hydration equipment including centrifuge (1), collection 
tubes (2), refractometer (3) and ice-box (4). 

 
4.9.5 Hydration 

Urine specific gravity (Usg) was analysed using a handheld refractometer (MASTER 

URC/NM, Atago Co. Ltd, Japan. This method of field testing has been demonstrated to be 

a viable method of determining hydration status (Oppliger, Magnes, Popowski, & Gisolfi, 

2005). Participants were provided with urine sample jars and instructions to provide a 

“first morning” urine sample at each data collection point. Usg was assessed at the time 

of sample collection using standard refractometer procedures to determine dehydration 

status. Samples stored at room temperature for up to four hours after collection have 

been shown to provide accurate results (Veljkovic et al., 2012).  

1 

4 

2 

3 
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The refractometer was calibrated prior to testing and after every ten samples by 

placing distilled water on the glass as the sample, and adjusting the scale to read 1.000 to 

ensure that the calibration remained accurate. A small drop of urine was placed on the 

glass plate after ensuring it is cleaned and dried. After closing the flap, the Usg is read off 

the scale located inside the eyepiece by holding the refractometer up to natural light. The 

specific gravity reading was located at the point where the light and dark areas intersect 

the scale. 

The results were recorded on a collection sheet for later analysis. Hydration status 

was determined based upon the findings of Armstrong et al. (1994), defined as: well-

hydrated:  Usg < 1.013; euhydrated: Usg 1.013-1.029; hypohydrated: Usg > 1.029. 

4.9.6 Health and Lifestyle Questionnaire 

A modified version of a diet, health and lifestyle questionnaire designed using 

focus groups and pilot testing with approximately 100 Australian Professional jockeys by 

University of Sydney was administered (Dolan et al, 2011) (Appendix 6: Lifestyle 

questionnaire). The questionnaire contains 16 open- and closed-ended questions 

pertaining to training volume, physical activity outside of racing, current injuries and 

injury history, fluid intake, smoking, alcohol consumption and medications or 

supplements. Jockeys who required assistance completing the lifestyle questionnaire had 

the questions read out to them and their responses were recorded. 

4.9.7 Dietary intake estimation 

A Dietary Questionnaire for Epidemiological Studies (DQES) was administered to 

assess dietary calcium (mg), vitamin D and energy intake (kJ). Appendix 7 shows an 

uncompleted form. The DQES form is designed to be self-administered and has adequate 
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reliability (Hodge et al, 2000). The participants were required to complete each answer in 

pencil. Jockeys who required assistance completing the DQES had the questions read out 

to them and their responses were recorded. Upon completion, the DQES were forwarded 

to the Cancer Council of Victoria for processing and raw data (in excel spreadsheet 

format) was returned for analysis. Calcium and energy intake was calculated as absolute 

daily intake and expressed as a mean daily value. 

4.10 Statistical Analysis 

All statistical analyses were performed using SPSS version 22.0 (SPSS, Chicago, IL, 

USA). Independent samples t-tests were performed on all baseline descriptive 

characteristics. Homogeneity of variance was tested using Levene’s Test for Equality of 

Variances and where this was significant, the 2-tailed significance of the t-tests for 

equality of means was determined using the assumption that variances were not equal. 

Baseline descriptive data are reported as mean ± SD as applicable. 

Bone variables were compared using analysis of covariance (ANCOVA) after 

controlling for weight, body mass and baseline bone measurements to derive regression 

equations to measure the effect size and probability of between-group differences 

(Vickers & Altman, 2001). Blood variables were controlled for baseline blood variables. All 

data were first checked for normality using Shapiro-Wilk test, described as the most 

appropriate normality test for small sample sizes (Field, 2013). Where data were found to 

violate the assumption of normality, they were log10 transformed prior to parametric 

testing and completing the ANCOVA analysis. Following the normality tests, the data were 

tested for homogeneity of regression by comparing group*baseline variable interactions. 

Homogeneity of variance assumes that the variance of one variable is relatively similar to 
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all levels of another variable (Field, 2013). Where this result was significant, 

heterogeneity of regression is found, meaning the error rate of the test is overstated and 

the ability to test effects is not maximized (Field, 2013). In these instances, ANCOVA 

should not be performed. Post-hoc Bonferroni analysis were used in pair-wise 

comparisons to compute confidence intervals. 

Normally distributed data are presented in mean ± standard deviations (SD) 

throughout the results presented and have been treated with parametric analysis. 

ANCOVA results are presented as adjusted group means (± SE) together with adjusted 

mean differences (± SE). Statistical significance was set at an alpha level of 0.05 for all 

tests with the exception of ANCOVA where both the Levene’s test for equality of 

variances and the group differences were significant. As the sample size was small and 

the group sizes were uneven, significance was set at an alpha level of 0.02. Effect size for 

the treatment is presented as partial η2 where define small, medium, and large effects are 

defined as being based upon values of F statistic that correspond to values of partial η2 of 

0.0099, 0.0588, and 0.1379 (Richardson, 2011). 
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5 Effect of calcium and vitamin D supplementation on bone 
turnover markers and radial bone properties in young male 
Jockeys: A Randomised Controlled Trial 

As submitted to Journal of Sports Sciences, January 2016. Authors: Silk, L.N, Greene, D.A, 

Baker, M.K and Jander, C.B. 

5.1 Abstract 

Purpose: Engagement in high volumes of physical activity coupled with energy 

restriction during periods of musculoskeletal development may compromise bone health. 

Young male jockeys regularly limit caloric intakes from their teens. The aim of this trial 

was to establish whether calcium and vitamin D supplementation would improve bone 

turnover markers (BTM) and non-weight bearing bone properties of young male jockeys. 

Methods: Two groups of apprentice jockeys (age=20.18 ± 3.23yrs) were supplemented 

with 800mg of calcium and 400IU of vitamin D (n=8) or a placebo (n=9) daily. Bone 

properties at the ultra-distal (4%) and proximal (66%) radius using pQCT and serum 

vitamin D, P1NP and CTx were assessed at baseline and six months. Results: ANCOVA 

indicated higher vitamin D levels (18.1%, p=0.014) and lower CTx (ng/L) (-24.8%, p=0.011) 

in the supplemented group with P1NP unchanged. No differences were observed in bone 

properties post-intervention. Conclusion: This trial is the first examining the efficacy of 

calcium and vitamin D supplementation in improving non-weight bearing bone properties 

in a young male athletic population. Analysis indicated positive alterations to bone 

metabolism, however longer duration appears required to detect changes in bone 

properties at the radius. Further examination of such interventions in weight-restricted 

athletes is warranted. 
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5.2 Introduction 

Jockeys represent a unique group of weight-restricted athletes who engage in 

repetitive energy restriction, often from their late teens. Failure to attain PBM during 

growth can have adverse short and long term musculoskeletal effects (De Souza & 

Williams, 2005). Opportunities to maximise loading during growth are therefore essential; 

however, when excessive loading is coupled with inadequate nutrition, compromised 

bone health can occur (Ebeling, 2008; Rantalainen, Nikander, Heinonen, Suominen, & 

Sievänen, 2010). As a consequence, there is increasing evidence of compromised 

musculoskeletal health in this at-risk population (Dolan, McGoldrick, et al., 2012; Greene 

et al., 2013; Warrington et al., 2009).  

Unlike other weight-restricted sports with defined off-seasons, jockeys are 

required to maintain a specific riding weight throughout a full calendar year (Hitchens et 

al., 2011). Additionally, strategies to maximise PBM such as resistance training and/or the 

addition of calcium-rich foods may be incongruous with effective weight management. 

One strategy available to jockeys to improve bone health involves calcium and vitamin D 

supplementation which has been found to elicit a positive response at the weight-bearing 

tibia in young jockeys (Silk, Greene, Baker, & Jander, 2015). Whilst load-bearing,upper 

extremities are generally not weight-bearing, highlighting the action of muscle strain in 

improving bone strength (Nikander et al., 2006). Previous research has found jockeys to 

have overall compromised bone health with positive bone adaptations at the forearm 

(Greene et al., 2013; Leydon & Wall, 2002) suggesting muscular forces incurred at the 

radius during riding may be in excess of common habitual loads. Thus, the addition of 
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calcium through supplementation combined with the use of forearms during riding, may 

provide the stimulus to improve bone properties at the radius.  

Minor alterations to the distribution of bone mass or bone structure may have 

considerable impact on bone strength without altering overall bone mineral density 

(BMD) (Nikander et al., 2010). Further, measures of BMD are less responsive to loading 

than cortical bone (Nikander et al., 2006). Assessment of cortical bone is possible via 

peripheral quantitative computed tomography (pQCT) together with measures of bone 

size, strength and geometry. Specifically, pQCT is able to distinguish between trabecular 

and cortical bone, provide measures of volumetric BMD (vBMD) and quantify cross 

sectional area (CSA) (Khan et al., 2001). To date, however, dual energy x-ray 

absorptiometry (DXA) has predominantly been used to assess jockey bone health (Dolan, 

McGoldrick, et al., 2012; Leydon & Wall, 2002; Warrington et al., 2009). The use of DXA 

has a number of limitations, such as an inability to differentiate between cortical and 

trabecular bone or the assessment of bone size and shape with acceptable accuracy 

(Khan et al., 2001). Thus pQCT should allow for a more accurate assessment of potential 

changes in the structural properties from supplementation.  

While BMD may take months or years to respond to stimuli, bone turnover 

markers (BTM) may detect change within days or weeks of commencing treatment 

(Vasikaran, Eastell, Bruyère, et al., 2011). In order to detect possible stimulus in bone 

turnover through supplementation, changes in BTMs should be concurrently assessed. A 

wide variation in both markers and methods has been used to assess bone turnover in 

jockeys (Dolan, McGoldrick, et al., 2012; Waldron-Lynch et al., 2010; Wilson, Fraser, et al., 

2013). To standardise the assessment of BTMs it is recommended by the International 



93 
 

Osteoporosis Foundation (IOF) that the use of serum procollagen type I N propeptide (s-

PINP) and serum C-terminal telopeptide of type I collagen (s-CTx) be adopted as markers 

of bone formation and bone resorption (Vasikaran, Eastell, Bruyère, et al., 2011).  

Apprentice jockeys represent a vulnerable population who may potentially achieve 

a positive musculoskeletal response to a simple and effective intervention strategy. 

However, little is known about the effectiveness of calcium and vitamin D 

supplementation on improving BTMs and bone properties in male athletes (Silk, Greene, 

& Baker, 2015). Therefore, the aim of this study was to assess the efficacy of six months 

calcium and vitamin D supplementation in young male jockeys in improving BTMs and 

bone properties at the radius. 

5.3 Methods 

5.3.1 Participants  

The present study is a further exploration of data obtained from young male 

jockeys who participated in a six month randomised double-blind placebo controlled trial 

of calcium and vitamin D supplementation (Silk, Greene, Baker, et al., 2015). Twenty-nine 

apprentice male jockeys (mean age 20.2± 3.2) completing a Certificate IV in Racing in New 

South Wales or Victoria, Australia (3 first year, 5 second year and 21 third year 

apprentices) were originally recruited for the study. Participants were available for testing 

on Apprentice School days, held one day each month. To control for selection bias, 

specific inclusion and exclusion criteria was used: in good health in last six months with 

no systemic illness lasting more than 2 weeks; no known history of fracture or recurrent 

fracture complications in last six months; no known history of metabolic bone or muscle 

disease; and no medication, hormones or calcium and/or vitamin D preparations in 
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preceding six months and willing to remain free of such medications for the six months of 

data collection. All participants provided written informed consent with parental consent 

provided for those under 18 years of age. Ethical approval was granted by the Human 

Research Ethics Committee at the Australian Catholic University (2012 114N) and the 

study was registered with the Australian New Zealand Clinical Trials Registry (registration 

no: ACTRN126000374864). 

5.3.2 Research design  

A double-blind placebo controlled trial was used to assess the effect of six-months 

calcium and vitamin D supplementation on bone material properties. Data was collected 

at baseline (May) and at six months (November). Participants were randomly allocated 

into the active (S) or placebo (P) group using a computerised four block randomisation 

process (www.sealedenvelope.com). Active and placebo supplements were in tablet form 

and were identical in colour, taste, texture and appearance. Participants were each 

provided with enough tablets to last the duration of the study. The active group received 

800 mg calcium (citrate and carbonate) and 400 IU vitamin D together in tablet form per 

day (USANA Pty Ltd, Sydney, Australia) divided into two doses (morning and evening). 

Participants were instructed to take a double dose if they missed the morning or evening 

dose. At completion of the study, all used and unused containers were required to be 

returned in order to assess compliance. Researchers and participants were blinded to 

group allocation and remained blinded until after the trial was completed.  

5.3.3 Anthropometric and descriptive characteristics 

Standing and seated height was measured to 0.1 cm using a stadiometer and body 

mass was measured using an electronic scale accurate to 500g (Wedderburn UW150, 
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Sydney, Australia) with participants dressed in light clothing and without shoes. Skinfolds 

(triceps, subscapular, supraspinale, abdominale, front thigh and calf), girths (forearm and 

wrist), bone breadths (biepicondular humerus and wrist), and radial length (ulnar styloid 

and olecranon processes). These measures were taken using Harpenden skinfold calipers 

(Baty International, UK), flexible steel tape measure (Lufkin W606PM), segmometer 

(University of Western Australia), large and small sliding bone calipers (Rosscraft, Inc. 

Canada). All measures were made in accordance with ISAK guidelines by an accredited 

Level 3 ISAK Anthropometrist (LS).  

A Dietary Questionnaire for Epidemiological Studies (DQES) was administered to 

assess dietary calcium (mg), and energy intake (kJ). The DQES form is designed to be self-

administered and has adequate reliability (Hodge, Patterson, Brown, Ireland, & Giles, 

2000). In addition, a modified version of a diet, health and lifestyle questionnaire 

previously used with jockeys (Dolan et al., 2011) was completed by each participant. Each 

participant was given instructions on how to complete the questionnaires and where 

assistance was required, questions were read out to the participant for them to answer. 

5.3.4 Musculoskeletal parameters 

The non-dominant radius was measured using a Stratec XCT-2000L peripheral 

Quantitative Computed Tomography (pQCT) bone scanner (Stratec Medizintechnic, 

Pforzheim, Germany) using software version 5.50d. The scanner was positioned at the 

anatomical reference line (cortical end plate) of the radius that corresponded to 4% 

(distal) and 66% (proximal) of radial length. Radial length was measured externally as the 

distance between the mid-point of the ulnar styloid and olecranon processes. A planar 

scout scan was conducted to determine an anatomical reference line. Tomographic slices 
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of 1 mm thickness were obtained at the 4% and 66% tibia measured distally. Scan speed 

and voxel size were 30 mm/s and 0.5 mm respectively. Contour mode 1 with a threshold 

of 180mg/cm3 was used to separate soft tissue and bone in order to analyse trabecular 

bone. Cortical bone was identified and removed using a constant default threshold of 

711mg/cm3. A region of interest (ROI) to identify the radius was automatically identified 

with manual adjustments made as necessary to ensure the entire radial ROI was 

enclosed. The precision of repeat measurements on the pQCT in our laboratory is 0.7% to 

1.4% radius after repositioning in eight adults (Greene et al., 2013). Scans were 

performed at baseline and six months by the same investigator (DG). 

5.3.5 Markers of bone turnover and vitamin-D 

Blood samples were collected by a qualified phlebotomist (CJ) at the same time of 

day at each data collection period. Ten ml blood was drawn using a lithium heparin 

collection tube and each sample was centrifuged within 15 minutes at 4000 rpm using a 

Centurion centrifuge (Scanspeed406G, Labogene, Scandanavia). Clear plasma was 

transferred into three eppendorf tubes with aliquot, housed temporarily in an ice box and 

then stored at -80oC within six hours of blood draw. Blood samples were analysed for 

Procollagen type 1 N propeptide (P1NP) (ug/L), C-terminal telopeptide of type 1 collage 

(CTx) (ng/L), and serum 25-hydroxy vitamin D [25(OH)D] (nmol/L).  

All blood samples were tested by a NATA accredited external laboratory 

(Melbourne Pathology, Victoria, Australia). A DIALAB 25-OH Vitamin D total ELISA kit, 

using a solid phase enzyme-linked immunosorbent assay was used to measure 25(OH)D 

(nmol/L). Intra-assay coefficient of variation (CV) was 3.2% (n=20) and the inter-assay CV 

was 6.9% (n=30). Bone markers were analysed using enzyme-linked immunosorbent assay 
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kits (Cloud-Clone Corp., USA) for cross linked c-telopetide type I collagen (CTx) and 

procollagen 1 N-terminal propeptide (P1NP). Intra-assay coefficient of variation (CV) for 

CTx and P1NP were <10% and the inter-assay CV was <12%. 

5.3.6 Statistical methods 

Data were tested for normality using Shapiro-Wilk test and t-tests were performed 

on baseline characteristics. Normally distributed data are presented in mean ± standard 

deviations (SD) and treated with parametric analysis. Baseline descriptive data are 

reported as mean ± SD as applicable. Bone variables were compared using analysis of 

covariance (ANCOVA) to derive regression equations to measure the effect size and 

probability of between-group differences after controlling for body mass, height and 

baseline bone measurements. Data used in ANCOVA was tested for homogeneity of 

regression. Statistical analyses were performed using SPSS version 22.0 (SPSS, Chicago, IL, 

USA). A sample size of 9 per group enabled detection of a significant difference if the 

mean key outcome variable (BSI at 4% and SSI at 66% sites) for the supplemented group 

was at least 1.5 SD higher than the mean value in the control group. To allow for a 35% 

drop out, at least 15 jockeys were allocated to each group (power = 80%, p>0.05). 

5.4 Results 

5.4.1 Descriptive results 

Twenty-nine jockeys were originally recruited to the study and subsequently 

randomised into either the placebo or intervention group. Of the original 29 participants, 

17 were available for follow-up measurements. A number of jockeys had relocated 

outside of data collection areas or were required to race on the assigned data collection 

day. All other jockeys completed the six month intervention (refer Figure 4-1). 
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Baseline characteristics indicate the two groups were homogenous, with no 

significant differences in age, height or body mass (Table 5-1). Anthropometric 

characteristics reveal a high degree of similarity between forearm characteristics of the 

two groups with no differences found at baseline or six months. Similarly, no differences 

between groups were observed in either body mass index (BMI) or sum of six skinfolds. 

Dietary analysis revealed wide variations in total kilojoules in both groups; however, 

mean values were not statistically different.  Mean calcium intake (excluding 

supplementation) in each group was well below standard dietary recommendations of 

1,000 mg per day (National Health and Medical Research Council, 2006a) while baseline 

serum vitamin D was above minimum recommendations of 50 nmol/L (National Health 

and Medical Research Council, 2006b).  

Table 5-1: Characteristics for participants completing the study 

 Baseline  Six months  
 Supplement 

group (n=8) 
Placebo group 

(n=9) 
 Supplement 

group (n=8) 
Placebo group 

(n=9) 
 

 Mean (SD) Mean (SD) p Mean (SD) Mean (SD) p 

Age (yrs) 22.3 (5.0) 19.3 (1.8) 0.152 22.9 (5.0) 19.9 (1.8) 0.151 
Height (cm) 165.6 (4.4) 167.3 (4.3) 0.517 166.3 (4.8) 167.7 (4.1) 0.521 
Body mass (kg) 52.7 (3.6) 52.6 (3.3) 0.453 53.7 (3.6) 53.8 (3.9) 0.933 
BMI (kg·m2) 19.3 (1.7) 18.8 (1.1) 0.507 17.3 (6.7) 19.1 (1.3) 0.429 
Sum of six skinfolds 
(mm) 34.4 (5.9) 32.9 (5.1) 0.588 36.4 (7.0) 34.6 (7.2) 0.602 
Forearm girth (cm) 25.0 (0.7) 24.7 (0.8) 0.490 25.1 (0.5) 24.9 (0.3) 0.596 
Wrist girth (cm) 15.5 (0.4) 15.8 (0.5) 0.243 15.4 (0.4) 15.6 (0.4) 0.359 
Biepicondular 
humerus (cm) 6.6 (0.3) 6.7 (0.3) 0.848 6.7 (0.4) 6.8 (0.3) 0.405 
Wrist breadth (cm) 5.5 (0.2) 5.6 (0.2) 0.476 5.6 0.3) 5.6 (0.2) 0.720 
Hydration levels (Usg) 1.022 (0.01) 1.020 (0.01) 0.348 1.020 (0.01) 1.019 (0.01) 0.705 
Energy intake (kJ·day-1) 7,723 (2,974) 8700 (2,454) 0.469 9,035 (6,044) 9,626 (4,758) 0.825 
Alcohol consumption 
(g·day-1) 16.1 (18.7) 3.2 (2.7) 0.092 17.3 (17.7) 12.1 (14.8) 0.518 
Calcium intake 
(mg·day-1) 669.7 (274.3) 790.4 (423.9) 0.503 740.3 (481.5) 888.7 (363.6) 0.481 
25OH Vit D (nmol·L-1) 64.6 (19.5) 81.2 (24.4) 0.146 75.6 (20.8) 73.4 (20.8) 0.832 
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Three-quarters (n=21) of the jockeys had been training for three years. Results 

from the health and lifestyle questionnaire revealed that 90% (87% S, 93% P) reported 

completing in excess of six or more hours training per week. One third reported engaging 

in additional physical activity outside of training. Sixty per cent of the jockeys reported 

having previous fractures, with half of the supplemented group and one third of placebo 

group experienced fractures due to a riding injury. Approximately 87% of supplemented 

group and 57% of placebo group reported drinking alcohol. Smoking habits showed 40% 

of the supplemented group and 14% of placebo group smoked on a daily basis 

5.4.2 Bone variables 

Radial bone variables were evaluated at the 4% distal and 66% proximal sites. 

Group means (± SD) for baseline and six months together with adjusted mean differences 

(± SE) and 95% confidence intervals for mean differences are presented for both sites 

(Table 5-2). After controlling for any variations in baseline height, body mass or bone 

variability, no post-intervention differences were observed in trabecular, cortical or total- 

area, content or density; total bone area; pericortical or endocortical circumferences. 

Similarly, no significant post-intervention differences were found in muscle area or in 

bone strength indices at either the 4% or 66% sites.  

5.4.3 Bone turnover markers and vitamin D 

Serum Vitamin D levels were higher in the placebo group at baseline (81.2 ±24.4 

nmol·L-1 vs 64.6 ±19.5 nmol·L-1), however this was not significantly different (p=0.146). At 

six months, unadjusted values for 25(OH)D had increased to 75.6 (±20.8) nmol·L-1 for the 

supplemented group while unadjusted the placebo groups levels fell slightly to 73.4 
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(±20.8) nmol·L-1. At six months, ANCOVA indicated 25OH(D) levels were 18% higher in the 

supplemented group than the placebo group (p= 0.014).  

No difference in BTMs was evident between groups at baseline. Bone resorption 

marker levels (CTx) decreased, both in absolute terms and on an adjusted mean basis in 

the supplemented group. Baseline values were similar at 371.3± 201.0 (S) vs 380.0 ± 

141.1 (P) while at six months they had fallen in the supplemented group and increased in 

the placebo group. Between group differences showed CTx to be almost 25% lower in the 

supplemented group (p=0.011) while no post-intervention differences were observed in 

the bone formation marker, P1NP between groups (refer Table 5-3).  

 



101 
 

Table 5-2: Baseline and adjusted six month bone variables at the 4% distal site and 66% proximal radius for supplemented (S) and 
placebo (P) groups after covarying for baseline height, weight and bone variables. 

 Baseline values Six mth values ANCOVA results six months  

 
S group (n=8) 

mean (SD) 
P group (n=9) 

mean (SD) 
S group (n=8) 

mean (SD) 
P group (n=9) 

mean (SD) 
Adj Mean diff 

(SE) 95% CI for diff p-value 

Distal radius 4% site        

Trabecular area (mm2) 207.49 (27.69) 205.17 (17.50) 206.74 (32.29) 204.50 (17.03) 2.65 (5.17) -8.61 to 13.91 0.618 

Trabecular density (mg·cm3) 239.11 (43.57) 226.59 (46.80) 231.21 (34.70) 215.43 (40.82) 4.88 (11.27) -19.66 to 29.44 0.672 

Total content (mg.mm) 149.50 (19.30) 145.87 (19.35) 149.87 (22.27) 149.00 (18.86) -3.94 (5.56) -16.19 to 8.32 0.495 

Total area (mm2) 461.34 (61.52) 456.14 (38.88) 459.67 (71.78) 454.75(37.84 5.81 (11.50) -19.25 to 30.88 0.623 

Total density (mg·cm3) 338.05 (40.82) 317.95 (43.41) 336.71 (47.20) 315.85 (33.48) 1.37 (8.82) -17.83 to 20.59 0.879 

Bone strength index (mg2·mm4) 52.66 (11.45) 46.63 (12.31) 51.71 (11.40) 45.84 (10.66) 0.65 (2.86) -5.58 to 6.88 0.825 

Proximal radius 66% site        

Cortical area (mm2) 85.55 (12.81) 80.68 (8.71) 85.75 (11.64) 80.57 (8.63) 0.57 (0.66) -0.867 to 2.01 0.404 

Cortical density (mg·cm3) 1119.87 (43.66) 1114.28 (16.00) 1132.62 (38.46) 1121.27 (23.87) 10.05 (11.80) -15.66 to 35.78 0.411 

Cortical content (mg.mm) 111.87 (17.77) 106.37 (12.18) 111.25 (18.1) 106.37 (11.55) -0.52 (1.24) -3.25 to 2.22 0.685 

Total bone area (mm2) 305.77 (28.40) 310.32 (45.61) 305.33 (22.60) 311.84 (46.40) -5.79 (8.72) -24.79 to 13.21 0.519 

SSI-Polar (mm3) 302.55 (64.43) 302.63 (84.23) 328.73 (155.65) 363.15 (126.33) -31.09 (61.50) -165.09 to 102.90 0.622 

Muscle Area (mm2) 4141.91 (281.41) 4127.49 (219.55) 4189.00 (256.25) 4138.82 (378.00) -5.4 (109.24) -243.38 to 232.58 0.961 

Endocortical circumference (mm) 26.12 (2.24) 28.18 (4.04) 26.62 (3.62) 28.27 (3.99) -1.54 (2.17) -6.22 to 3.32 0.517 

Pericortical circumference (mm) 41.95 (2.67) 42.70 (3.67) 42.25 (2.84) 42.87 (3.53) -0.32 (1.78) -4.24 to 3.59 0.859 
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Table 5-3: Baseline and six month mean values together with adjusted mean differences (95% CI) in blood variables: vitamin D levels, CTx 
and P1NP between supplemented (S) and placebo (P) groups after covarying for baseline blood variables. 

 Unadjusted baseline values  ANCOVA six-months adjusted values  

 
S group (n=8) 
Mean (SD) 

P group (n=8) 
Mean (SD) 

S group 
(n=8) 

Adj Mean 
(SE) 

P group 
(n=8) 

Adj Mean 
(SE) 

Adjusted 
Mean diff 

(SE) 95% CI diff 
partial 

Eta2 
p-

value 

25OH Vit D (nmol/L) 64.6 (19.5) 81.2 (24.4) 81.9 (3.6) 67.1 (3.6) 14.8 (5.2)  3.6 to 26.1 0.38 0.014 
CTx (ng/L) 371.3 (201.0) 380.0 (141.1) 357.5 (21.3) 446.3 (21.3) -88.8 (30.2)  -154.0 to -23.6  0.40 0.011 
P1NP (ug/L) 104.2 (46.4) 108.9 (31.6) 107.3 (5.7) 101.9 (5.7) 5.4 (8.0)  -11.9 to 22.7  0.03 0.511 
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5.5 Discussion  

Young jockeys clearly have compromised bone health (Dolan, Crabtree, et al., 

2012; Greene et al., 2013; Warrington et al., 2009), however no research to date has 

examined the efficacy of strategies for improvement in this at-risk population. This is the 

first randomised controlled trial (RCT) to assess markers of bone turnover and non-weight 

bearing bone responses to six months of calcium and vitamin D supplementation in young 

male jockeys or any other male athletic population known to have compromised bone 

health. Results demonstrate supplementation stimulated a response in bone turnover 

markers (BTM) through a reduction in bone resorption indicators, however this was not 

reflected in alterations to bone material properties.  

Typically, jockeys have high bone turnover linked to low energy and calcium 

intakes (Dolan, McGoldrick, et al., 2012; Waldron-Lynch et al., 2010; Wilson, Fraser, et al., 

2013). Despite being within reference ranges, CTx levels were in the bottom 5th percentile 

while P1NP levels were approximately 30% higher than averages for 19-30 year old males 

(Jenkins et al., 2013). Results for CTx were in line with some previous findings (Wilson, 

Fraser, et al., 2013) but contrasting with other research showing high levels of bone 

resorption (Dolan, McGoldrick, et al., 2012; Waldron-Lynch et al., 2010). Possible 

explanations for such differences are variations in the bone resorption markers analysed 

or the mean age of the participants. Jockeys in the current study averaged five years 

younger than those previously reported. Following the intervention period, bone 

resorption levels (CTx) were significantly lower in the supplemented group. Conversely, 

both groups continued to demonstrate elevated levels of bone formation (P1NP) over the 

intervention period. While this may be in part due to the age of the participants, high 
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levels of P1NP are supported by previous research examining jockey bone turnover 

(Waldron-Lynch et al., 2010). 

Calcium kinetics indicate supplementation results in an increase in absorbed 

calcium and suppression of bone resorption (Wastney et al., 2000). Acute BTM marker 

responses in male athletes undertaking endurance cycling demonstrate a suppression of 

bone resorption (CTx) in the presence of calcium loading (Guillemant, Accarie, Peres, & 

Guillemant, 2004). Chronic BTM responses to calcium supplementation in athletic 

populations are unknown to date. However, supplementation with 1000mg calcium and 

5µg vitamin D daily for a period of 16 weeks in pre-menopausal females resulted in a 

>30% decrease in CTx, despite baseline calcium intakes approaching adequate intakes 

(Kruger et al., 2006). Differing from this group; however, P1NP levels were 15% lower 

after 16 weeks, possibly due to age differences between the participants. In older males, 

calcium supplementation is also associated with reductions in CTx (-14%) and P1NP 

(-16%) without significant changes to BMD (Kukuljan, Ducher, Nowson, Ebeling, & Daly, 

2009). In the current study, it is speculated that decreased resorption markers, combined 

with no alteration to bone formation markers potentially increased calcium availability 

resulting in a reduction in bone resorption. 

Calcium and vitamin D are known to act synergistically in order to provide 

adequate mineralisation during growth and maintenance of the skeleton through 

adulthood (Bailey et al., 1996). Results of meta-analyses indicate greater bone gain in 

younger populations and an attenuation of bone loss in the elderly (Chung et al., 2009; 

Heaney & Weaver, 2005; Lips et al., 2014; Tang et al., 2007). However this has not been 

adequately determined in young male populations, and in particular male athletes (Silk, 
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Greene, & Baker, 2015). Previous calcium and vitamin D supplementation trials using 

male participants have predominantly used DXA to assess changes to bone properties 

with improvements to BMD found within six-months in healthy older males (Reid et al., 

2008). Supplementation over the course of 12 months in competitive male road cyclists 

failed to ameliorate BMD (Barry & Kohrt, 2008). Examination of bone responses using 

pQCT to calcium and vitamin D supplementation at the weight-bearing tibia in young 

jockeys indicate a positive response (Silk, Greene, Baker, et al., 2015). However, the 

stimulus provided at the tibia differs from that of the radius which is typically non-weight 

bearing. Consequently, the current study provides new knowledge about bone responses 

to calcium supplementation in young athletic adult males. 

Athletes in sports where use of the lower limbs are stressed and general 

populations who undertake high levels of physical activity show little difference in bone 

strength in the radius compared to those undertaking low levels of habitual physical 

activity (Duckham et al., 2014; Wilks et al., 2009). A previous analysis conducted with 

female participants examining the interaction between physical activity and calcium 

intake indicated exercise had no discernible effect on distal radius BMD at calcium intakes 

below 1000mg·day-1 (Specker, 1996). Conversely, elite athletes such as tennis players and 

young gymnasts who undergo regular impact loads and strain at the radius demonstrate 

greater bone properties at the radius (Dowthwaite et al., 2009; Haapasalo et al., 2000; 

Ireland et al., 2013). Similarly, jockeys have been found to demonstrate positive bone 

effects in the forearm (Greene et al., 2013; Leydon & Wall, 2002). It was postulated that 

additional calcium made available through supplementation, combined with additional 

exercise-induced strains in excess of habitual loads experienced at the radius, may have 

produced improvements in bone properties. However, this was not evident over the 
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duration of the intervention, suggesting that greater stimulus and / or intervention period 

may be required to produce osteogenic responses to non-weight bearing bone.  

Poor bone health has been shown to arise through excessive energy expenditure 

coupled with restricted energy intake, typical of a number of athletic populations 

(Fredericson et al., 2007; Greene et al., 2013; Hind et al., 2006; Nichols & Rauh, 2011; 

Smathers et al., 2009). Jockeys in this study demonstrated insufficient energy intake and 

low calcium levels supporting previous findings (Greene et al., 2013; Leydon & Wall, 2002; 

Warrington et al., 2009). Daily energy consumption was below recommended minimum 

energy intakes of approximately 188-210kj·kgbw·day-1 for athletes (Sundgot-Borgen & 

Garthe, 2011), averaging between 144-152kj·kgbw·day-1. Very low sum of six skinfolds 

observed in this group of jockeys places them in the bottom 5th percentile for skinfold 

measures in athletic populations (Garrido-Chamorro, Sirvent-Belando, González-Lorenzo, 

Blasco-Lafarga, & Roche, 2012), and body mass index for this group was also below levels 

reported by other groups of jockeys (Wilson et al., 2014), further substantiating the 

energy imbalance which may be negatively effecting bone properties. Apprentice jockeys 

undertake around 25 hours per week of rigorous physical activity (Greene et al., 2013), 

similar to observations made in cyclists and endurance runners (Barry & Kohrt, 2008; 

Fredericson et al., 2007; Hind et al., 2006) who also report low BMD.  

A number of strengths and limitations exist within this study. Using pQCT to assess 

bone properties has enabled a more detailed analysis of the adaptations that occurred at 

the proximal and distal radius as a result of calcium and vitamin D supplementation. By 

using a randomised controlled study design, we have minimised selection bias and 

attempted to reduce possible genetic influence on bone properties. Additionally, we have 
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statistically controlled for baseline variations in body composition and bone variables. 

Serum analysis of bone formation and resorption markers were conducted in accordance 

with recommendations from the IOF (Vasikaran, Eastell, Bruyère, et al., 2011) with results 

indicating that supplementation positively affected bone metabolism. It is recognised 

that, given a longer intervention period, bone outcomes may have reflected further 

improvement. However, the number of drop-outs that may have occurred beyond six 

months would have further compromised outcomes. Testing opportunities were limited 

to one day per month, making follow-up difficult. Further, the participants were subject 

to unforeseen relocation and race riding requirements on the allocated testing days. The 

number of drop-outs during the study reduced the sample size which has impacted upon 

the power of the study and we acknowledge that outcomes would have been 

strengthened if participants lost to follow up were minimised. Despite instructions to 

return all used and unused supplement containers as the final data collection period, few 

jockeys returned the containers as instructed. Verbal assurances were received from the 

participants regarding compliance with the supplementation regime at the time of data 

collection, and attempts to follow-up with regard return of containers proved fruitless. 

Nonetheless, positive vitamin D blood results suggest that jockeys in the supplemented 

group were compliant throughout the six-month intervention period.  

This is the first randomised controlled trial to examine the effects of calcium and 

vitamin D supplementation on BTMs and non-weight bearing bone properties in young 

male jockeys using pQCT. While BTMs suggest supplementation may be influencing bone 

metabolism, our findings indicate that 800mg of calcium and 400IU of vitamin D per day 

for a period of six months is not an adequate duration to produce positive bone 

responses at the distal and proximal radius. This is in contrast to weight-bearing limbs 
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which appear to respond more rapidly. Extended supplementation in this cohort and 

other at-risk athletic populations demonstrating compromised bone health would 

additionally improve our understanding of structural changes to bone properties arising 

from the synergistic benefits calcium and vitamin D supplementation. 

 
  



109 
 

6 Tibial bone responses to 6-month calcium and vitamin D 
supplementation in young male Jockeys: A randomised 
controlled trial 

As published in Bone, 2015, vol 81, pp 554-561. Authors: Silk, L.N, Greene, D.A, Baker, 
M.K and Jander, C.B. 
 

6.1 Abstract 

Young male jockeys compromise bone health by engaging in caloric restriction and 

high volumes of physical activity during periods of musculoskeletal growth and 

development. The aim of this randomised, double-blinded, placebo-controlled trial was to 

establish whether calcium and vitamin D supplementation would improve bone 

properties of young male jockeys. We conducted a 6-month trial with two groups of 

weight-, height- and age-matched apprentice male jockeys (age=20.2 ±3.2yrs). 

Participants were supplemented with 800mg of calcium and 400IU of vitamin D (S, n=8) or 

a placebo (cellulose) (P, n=9) daily for 6-months. Baseline calcium intake was 

(669.7±274.3 (S) vs 790.4±423.9 (P) and vitamin D 64.6±19.5 (S) vs 81.2 ±24.4 (P) with no 

statistical differences. Peripheral quantitative computed tomography (pQCT) measured 

ultra-distal (4%) and proximal (66%) tibial bone properties at baseline and 6 months. 

Blood-borne markers of bone turnover, P1NP and CTx and vitamin D concentration were 

assessed. After co-varying for height, weight and baseline bone measurements, the 

supplemented group displayed greater post-intervention bone properties at the 66% 

proximal site with cortical content (mg·mm) 6.6% greater (p<0.001), cortical area (mm2) 

5.9% larger (p<0.001), cortical density (mg·cm3) 1.3% greater (p=0.001), and total area 

(mm2) 4% larger (p=0.003). No other between group differences in bone variables were 

observed. Blood analysis indicated higher vitamin D levels (18.1%, p=0.014) and lower CTx 

(ng/L) (-24.8%, p=0.011) in the supplemented group with no differences observed in 
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P1NP. This is the first randomised controlled trial to examine the efficacy of calcium and 

vitamin D supplementation in improving bone properties in a highly vulnerable, young 

athletic, weight-restricted population. Results using pQCT indicate beneficial effects of 

supplementation on bone properties in as little as six months. Although the study size is 

small, this intervention appears promising as a strategy for improving bone health in 

young athletes in weight-restricted sports.  

KEYWORDS: Cortical bone, Peripheral QCT, young males, calcium, supplementation 

6.2 Introduction 

Jockeys represent a unique group of weight-category athletes, required to 

maintain their restricted weight throughout a full calendar year instead of seasonal 

competitions (Hitchens et al., 2011). Participation in weight restricted activity may limit 

the attainment of PBM during growth which could have deleterious short and long term 

musculoskeletal effects (De Souza & Williams, 2005). Typically, jockeys enter their 

profession around 16 years of age when they are still to attain PBM. Approximately 90% 

of male PBM occurs by 18-20 years of age, however this appears to be site specific 

(Baxter-Jones et al., 2003; Henry et al., 2010; Lorentzon et al., 2005; Szulc et al., 2000). 

Whilst loading during growth predominantly determines bone size and shape during 

adulthood (Rantalainen et al., 2010) other environmental factors, including diet, are 

known to influence male bone (Ebeling, 2008). Recommended strategies to improve bone 

health are not always feasible and/or acceptable to jockeys. The weight restricted nature 

of riding precludes additional gains in muscle mass from strength exercise and there is a 

belief, albeit unsupported with scientific fact, that adding calcium-rich foods, such as 

dairy products, may also be incongruous with weight management demands. One 
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strategy to potentially maximise the attainment of PBM during growth in young jockeys 

involves calcium and vitamin D supplementation. However, there is scant evidence 

regarding the beneficial effects of calcium and vitamin D supplementation on bone 

mineral density in male athletic populations (Silk, Greene, & Baker, 2015). Accordingly, 

we have an imperfect understanding of the role of supplementation on bone 

development in this at-risk population. 

Male apprentice jockeys in New South Wales (Australia) are recommended to 

have a body weight 45kg to 48kg (Racing-NSW, 2014), placing them in lowest 5th 

percentile for international weight-for-age scales (Kuczmarski et al., 2000). To remain 

within specific weight limits, jockeys often engage in unhealthy weight-loss behaviours 

relying on rapid, short-term weight loss and demonstrate an increased propensity to 

engage in disordered eating (Leydon & Wall, 2002; Moore et al., 2002). Thus there is a 

high risk of inadequate nutrition in an effort to maintain low body weight. Previous 

research has found jockeys to have low calcium intakes and subsequent indicators of 

compromised musculoskeletal health (Caulfield & Karageorghis, 2008; Dolan, McGoldrick, 

et al., 2012; Dolan et al., 2011; Greene et al., 2013; Leydon & Wall, 2002; Moore et al., 

2002; Waldron-Lynch et al., 2010; Warrington et al., 2009) and there is evidence of 

inadequate serum vitamin D, particularly in the northern hemisphere (Close et al., 2012; 

Guillemant et al., 2001; Waldron-Lynch et al., 2010; Wilson, Fraser, et al., 2013; Wilson, 

Sparks, et al., 2013). Approximately 50% of jockeys demonstrating osteopenia as young as 

20 years of age (Leydon & Wall, 2002; Warrington et al., 2009) and apprentice riders 

displaying reduced bone strength (Greene et al., 2013).  
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Current assessment of jockey bone health has predominately used dual energy x-

ray absorptiometry (DXA) (Dolan, Crabtree, et al., 2012; Dolan, McGoldrick, et al., 2012; 

Hitchens et al., 2011; Leydon & Wall, 2002; Warrington et al., 2009) with only one study 

using pQCT (Greene et al., 2013). The two-dimensional nature of DXA has a number of 

inherent limitations, being unable to differentiate between cortical and trabecular bone, 

and difficulty in quantifying bone size and shape with acceptable accuracy (Khan et al., 

2001). Small alterations in the distribution of bone mass or bone structure may have 

considerable impact on bone strength without altering overall BMD (Nikander et al., 

2010). Peripheral quantitative computed tomography (pQCT) provides a more accurate 

assessment of bone size, strength and geometry (Khan et al., 2001). Specifically, pQCT 

differentiates between trabecular and cortical bone, provides a measure of volumetric 

BMD (vBMD), and quantifies cross sectional area (CSA) of bone. It is suggested that 

cortical bone appears to be more responsive to loading than BMD (Nikander et al., 2006), 

thus pQCT should allow for a more accurate assessment of potential changes in the 

structural properties through supplementation. While BMD can take months or years to 

respond to stimuli, bone turnover markers (BTM) may detect change within days or 

weeks of treatments beginning (Vasikaran, Eastell, Bruyère, et al., 2011). Changes in BTMs 

have been assessed in jockeys; however, a wide variation in markers and methods exists 

(Dolan, McGoldrick, et al., 2012; Waldron-Lynch et al., 2010; Wilson, Fraser, et al., 2013). 

The current recommended markers of bone formation and bone resorption are serum 

procollagen type I N propeptide (s-PINP) and serum C-terminal telopeptide of type I 

collagen (s-CTx) (Vasikaran, Eastell, Bruyère, et al., 2011). 

The efficacy of calcium and vitamin D supplementation on improving bone 

properties, particularly in male athletes and younger male age cohorts remains unknown 
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(Silk, Greene, & Baker, 2015). It appears, however, that populations who incur the 

greatest compromises to musculoskeletal health may also benefit the most from calcium 

and vitamin-D supplementation (Winzenberg et al., 2010). Apprentice jockeys represent 

an at-risk population who may potentially achieve a positive musculoskeletal response to 

a simple and effective intervention strategy. Therefore, the aim of this study was to 

assess the efficacy of 6-months calcium and vitamin D supplementation in young male 

jockeys in improving bone properties at the tibia. 

6.3 Methods 

6.3.1 Participants  

From a total pool of 40 apprentice male jockeys, 30 jockeys were available for 

recruitment to the study. After excluding one jockey for health reasons, twenty-nine 

apprentice male jockeys aged 16 to 32 years (mean age 20.2± 3.2) representing 72.5% of 

all male apprentices were recruited to participate. All participants were completing a 

Certificate IV in Racing in New South Wales or Victoria, Australia (3 first year, 5 second 

year and 21 third year apprentices). Participants were only available for testing on 

Apprentice School days which were held one day each month. All other days, they were 

apprenticed to a Trainer and required to train or ride and were therefore unavailable for 

testing. To control for selection bias, specific inclusion and exclusion criteria was used: in 

good health in last 6 months with no systemic illness lasting more than 2 weeks; no 

known history of fracture or recurrent fracture complications in last 6 months; no known 

history of metabolic bone or muscle disease; and no medication, hormones or 

calcium/vitamin D preparations in preceding 6 months and willing to remain free of such 

medications for the 6 months of data collection. All participants provided informed 
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consent. Ethical approval was granted by the Human Research Ethics Committee at the 

Australian Catholic University and the study was registered with the Australian New 

Zealand Clinical Trials Registry (registration no: ACTRN12612000374864). 

6.3.2 Research design  

A double-blind placebo controlled trial was used to assess the effect of 6-months 

calcium and vitamin D supplementation on bone material properties. Data were collected 

at baseline and at six months. Participants were randomly allocated into the active (S) or 

placebo (P) group using a computerised four block randomisation process 

(www.sealedenvelope.com). Active and placebo supplements were in tablet form and 

were identical in colour, taste, texture and appearance. Participants were each provided 

with enough tablets to last the duration of the study. The active group received 800 mg 

calcium (citrate and carbonate) and 400 IU vitamin D3 (Cholecalciferol) in tablet form per 

day (USANA Pty Ltd, Sydney, Australia) divided into two doses (morning and evening). The 

placebo comprised predominantly cellulose (Microcrystalline cellulose 814.42mg·g-1). 

Researchers and participants were blinded to group allocation and remained blinded until 

after the trial was completed.  

6.3.3 Anthropometric and descriptive characteristics 

Standing and seated height was measured to 0.1 cm using a stadiometer and 

weight was measured using an electronic scale accurate to 500g (Wedderburn UW150, 

Sydney, Australia) with participants dressed in light clothing and without shoes. Tibial 

(tibiale mediale to malleolus mediale) length was also measured. Measures were made in 

accordance with ISAK guidelines by an accredited Level 3 ISAK Anthropometrist (LS). 
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A Dietary Questionnaire for Epidemiological Studies (DQES) was administered to 

assess dietary calcium (mg), and energy intake (kJ). The DQES form is designed to be self-

administered and has adequate reliability (Hodge et al., 2000). In addition, a modified 

version of a diet, health and lifestyle questionnaire previously used with jockeys (Dolan et 

al., 2011) was completed by each participant. Years of training, frequency of training, 

other activities outside of riding, injury rates and types, and smoking and alcohol 

consumption were assessed. Each participant was given instructions on how to complete 

the questionnaires and where assistance was required, questions were read out to the 

participant for them to answer. 

6.3.4 Bone material properties and fracture risk 

The non-dominant tibia was measured using a Stratec XCT-2000L peripheral 

Quantitative Computed Tomography (pQCT) bone scanner (Stratec Medizintechnic, 

Pforzheim, Germany) using software version 5.50d. The scanner was positioned at the 

anatomical reference line (cortical end plate) of the tibia that corresponded to 4% (distal) 

and 66% (proximal) of tibial length. Tibial length was measured externally as the distance 

between the mid-point of the distal medial malleolus and the proximal medial tibial 

plateau landmarks. A planar scout scan was conducted to determine an anatomical 

reference line. Tomographic slices of 1 mm thickness were obtained at the 4% and 66% 

tibia measured distally. Scan speed and voxel size were 30 mm/s and 0.5 mm 

respectively. A contour mode with a threshold of 180mg/cm3 was used to separate soft 

tissue and bone in order to analyse trabecular bone. Cortical bone was identified and 

removed using a constant default threshold of 711mg/cm3. A region of interest (ROI) to 

identify the tibia was automatically identified with manual adjustments made as 

necessary to ensure the entire tibial ROI was enclosed. Volumetric bone mineral density 
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(vBMD), bone geometry, and bone strength, were assessed at the two scanned sites. 

Outcome measures included trabecular and cortical density (mg/cm3) and content 

(mg·mm), cortical cross-sectional area (mm2), total cross-sectional area (mm2), cortical 

thickness (mm), and a surrogate marker of bone strength, namely stress strain index (SSI 

in mm3). Estimates of bone strength (BSI in mg2·mm4) were also made using the formula: 

total area x (total density x 0.001)2 at the 4% site. The precision of repeat measurements 

on the pQCT in our laboratory is 0.7% to 1.4% radius and 0.8% to 2.9% tibia after 

repositioning in eight adults (Greene et al., 2013). Scans were performed at baseline and 

6-months by the same investigator (DG). 

6.3.5 Markers of bone turnover and Vitamin-D 

Blood samples were collected by a qualified phlebotomist (CJ) at the same time of 

day at each data collection period. Ten ml blood was drawn using a lithium heparin 

collection tube and each sample was centrifuged within 15 minutes at 4000 rpm using a 

Centurion centrifuge (Scanspeed406G, Labogene, Scandanavia). Clear plasma was 

transferred into three eppendorf tubes with aliquot, housed temporarily in an ice box and 

then stored at -80oC within six hours of blood draw. Blood samples were analysed for 

Procollagen type 1 N propeptide (P1NP) (ug/L), C-terminal telopeptide of type 1 collage 

(CTx) (ng/L), and serum 25-hydroxy vitamin D [25(OH)D] (nmol/L). A DIALAB 25-OH 

Vitamin D total ELISA kit, using a solid phase enzyme-linked immunosorbent assay was 

used to measure 25(OH)D (nmol/L). Using a denaturation buffer to extract 25(OH)D from 

Vitamin D binding protein (VDBP), samples were pre-treated in separate vials. After 

mixing with enzyme conjugate and enzyme complex, the samples were transferred to 

microtiter plate wells. Incubation for 60 minutes at 37 degrees was followed by a washing 

step and a colour reaction was stopped after 15 minutes at room temperature. All wells 
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were read within 10 minutes after the addition of the stop solution. Intra-assay 

coefficient of variation (CV) was 3.2% (n=20) and the inter-assay CV was 6.9% (n=30). All 

blood samples were tested by a NATA accredited external laboratory (Melbourne 

Pathology, Victoria, Australia).  

6.3.6 Hydration status 

Urine specific gravity (Usg) was analysed using a handheld refractometer. 

Participants were provided with urine sample jars and instructed to provide a “first 

morning” urine sample at each data collection point. Calibration was repeated after every 

ten samples to ensure accuracy and consistency. Urine specific gravity was assessed at 

the time of sample collection with the reading taken at the point where the light and dark 

areas intersect the scale. Hydration status was defined as: well-hydrated Usg < 1.013; 

euhydrated Usg 1.013-1.029; hypo-hydrated Usg > 1.029 (Armstrong et al., 1994). 

6.3.7 Statistical methods 

All variables were tested for normality using Shapiro-Wilk test and t-tests were 

performed on baseline characteristics. Normally distributed data are presented in mean ± 

standard deviations (SD) and treated with parametric analysis. Baseline descriptive data 

are reported as mean ± SD as applicable. Bone variables were compared using analysis of 

covariance (ANCOVA) to derive regression equations to measure the effect size and 

probability of between-group differences (Vickers & Altman, 2001) after controlling for 

weight, height and baseline bone measurements. Data used in ANCOVA was tested for 

homogeneity of regression by examining the statistical significance of the interaction of 

covariates and the independent variables. Statistical analyses were performed using SPSS 

version 22.0 (SPSS, Chicago, IL, USA). A sample size of 9 per group will allow us to detect a 
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significant difference if the mean key outcome variable (BSI at 4% and SSI at 66% sites) for 

the supplemented group is at least 1.5 SD higher than the mean value in the control 

group. To allow for a 35% drop out, at least 15 jockeys will be allocated to each group 

(power = 80%, p>0.05) (Peat & Barton, 2005). 

6.4 Results 

Twenty-nine jockeys were originally randomised into either the placebo or 

intervention group after excluding one available jockey. Of the original 29 participants, 17 

were available for follow-up measurements. A number had been apprenticed to new 

trainers located outside of data collection areas during the intervening period making 

them unavailable for follow-up, whilst others were required to race on the assigned data 

collection day. All other jockeys completed the six month intervention which took place 

between October 2013 and May 2014 (Figure 4-1). 

6.4.1 Descriptive characteristics 

Analysis of baseline characteristics revealed the two groups were homogenous 

with no significant differences in age, height or weight (Table 6-1). There were no 

significant differences between the groups at baseline or six months in hydration levels, 

nor in dietary variables. Dietary analysis revealed wide variations in total kilojoules in 

both groups; however, mean values were not statistically different. Average calcium 

intake in each group was well below standard dietary recommendations of 1,000 mg per 

day for men aged 18-30 years (National Health and Medical Research Council, 2006a). 

Excluding the effects of supplementation, no differences were seen between baseline and 

six month in hydration status, total energy intake, macronutrient or calcium intakes (see 

Table 6-1). 
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 Table 6-1: Descriptive characteristics at baseline and six months for participants 
completing the trial 
 

 Baseline values Six months values 
 Supplement 

group (n=8) 
Placebo group 

(n=9) 
 Supplement 

group (n=8) 
Placebo group 

(n=9) 
 

 mean SD Mean SD p mean SD Mean SD p 

Age (yrs) 22.3 5.0 19.3 1.8 0152 22.9 5.0 19.9 1.8 0.151 

Height (cm) 165.6 4.4 167.3 4.3 0.517 166.3 4.8 167.7 4.1 0.521 

Weight (kg) 52.7 3.6 52.6 3.3 0.453 53.7 3.6 53.8 3.9 0.933 

BMI (kg·m2) 19.3 1.7 18.8 1.1 0.507 19.4 1.7 19.1 1.3 0.682 

Hydration levels (Usg) 1.022 0.01 1.020 0.01 0.348 1.020 0.01 1.019 0.01 0.705 

Energy intake (kJ·day-1) 7,723 2,974 8700 2,454 0.469 9,035 6044 9,626 4758 0.825 

Carbohydrate intake 

(g·day-1) 166.8 68.2 198.0 53.0 0.305 179.9 106.6 208.7 94.9 0.565 

Fat intake (g·day-1) 73.4 30.8 87.1 32.6 0.388 88.8 653 103.7 62.3 0.638 

Protein intake (g·day-1) 95.8 39.5 121.4 48.1 0.252 123.2 115.9 110.4 45.6 0.764 

Alcohol (g·day-1) 16.1 18.7 3.2 2.7 0.092 17.3 17.7 12.1 14.8 0.518 

Dietary calcium intake 

(mg·day-1) 669.7 274.3 790.4 423.9 0.503 740.3 481.5 888.7 363.6 0.481 

 
Results from the health and lifestyle questionnaire both at baseline and six 

months revealed that 72% of jockeys had been training for over two years with 90% (87% 

S, 93% P) reporting in excess of six or more hours training per week. Additionally, one 

third reported engaging in other physical activity outside of training exceeding six hours 

per week in activities such as running, soccer and martial arts. Approximately 40% of the 

supplemented group and 14% of placebo group reported smoking while 87% of 

supplemented group and 57% of placebo group reported drinking alcohol. Of those, four 

jockeys reported drinking daily with the majority reporting consumption 1-2 times per 

week. Sixty per cent of the jockeys reported having previous fractures. Approximately half 

of the supplemented group and one third of placebo group experienced fractures due to 

a riding injury. 

6.4.2 PQCT bone variables 

Tibial bone variables were evaluated at the 4% distal and 66% proximal sites after 

co-varying for baseline weight, height and bone measurements. Adjusted group means (± 
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SE) at six months together with adjusted mean differences (± SE) are presented for both 

sites (Table 6-2). Normality tests showed all variables to be normally distributed with the 

exception of cortical density at the 66% proximal site. This variable was log10 transformed, 

however non-transformed values are presented in the table as the significance and partial 

η2 were identical. There were no significant post-intervention differences observed in 

trabecular content, trabecular density or trabecular area between groups. Similarly, total 

density and total area at the 4% distal site showed no significant differences post-

intervention (refer Table 6-2). At the 66% proximal site, results demonstrate the 

supplemented group displayed 4% larger total area (p=0.003), 6.6% greater cortical 

content (p<0.001), 1.3% greater cortical density (p=0.001) and 5.9% larger cortical area 

(p<0.001) post-intervention while there was no significant difference in cortical thickness 

between the groups. For the significant variables, partial η2 indicate moderate to high 

treatment effect, ranging from 0.53 for total area to 0.7 for cortical content. No 

significant post-intervention differences were seen in the stress-strain index (SSI tibia) or 

bone strength index over the six month period.  
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Table 6-2: Baseline and six-month adjusted bone variables at the 4% distal site and 66% proximal tibia for supplemented (S) and placebo 
(P) groups after co-varying for baseline height, weight and bone variables. 
 
 Unadjusted baseline values ANCOVA six-months adjusted values 

 

S group (n=8) 
baseline Mean 
(SD) 

P group (n=9) 
baseline Mean 
(SD) 

S group (n=8) 
Adj Mean (SE) 

P group (n=9) 
Adj Mean (SE) 

Adjusted 
Mean diff 
(SE) % diff 

Partial 
Eta2 

(η2) 95% CI p-value 

4% distal Tibia          

Trabecular density (mg·cm3) 241.0 (28.1) 246.8 (33.9) 259.3 (5.6) 244.3 (5.3) 14.9 (7.8) 5.7% 0.23 -2.1 to 31.9 0.080 
Trabecular content 
(mg·mm) 227.0 (26.0) 211.4 (42.3) 220.8 (6.6) 220.8 (5.8) -0.02 (9.1) 0.0% 0.00 -20.0 to 19.9 0.998 

Trabecular area (mm2) 861.1 (160.2) 854.7 (126.7) 892.0 (49.7) 870.0 (18.5) 22.0 (27.4) 2.5% 0.05 -37.7 to 81.7 0.437 

Total area (mm2) 1109.2 (81.7) 1044.0 (137.8) 1063.9 (15.9) 1090.0 (14.9) -26.1 (22.8) -2.5% 0.10 -75.8 to 23.6 0.275 

Total density (mg·cm3) 300.1 (29.0) 286.6 (40.9) 292.2 (8.0) 293.9 (7.6) -1.7 (11.3) -0.6% 0.00 -26.2 to 22.8 0.882 
Bone strength index 
(mg2·mm4)  100.1 (17.5) 86.6 (22.4) 90.6 (4.5) 96.5 (4.2) -5.8 (6.4) -6.4% 0.07 -19.7 to 8.1 0.380 

66% proximal Tibia          

Cortical content (mg·mm) 296.5 (35.7) 293.8 (52.4) 318.3 (2.9) 297.1 (2.7) 21.1 (4.0) 6.6% 0.70 12.4 to 29.8 <0.001 

Cortical area (mm2) 267.1 (29.3) 263.4 (43.8) 282.6 (2.3) 266.0 (2.2) 16.6 (3.2) 5.9% 0.69 9.6 to 23.5 <0.001 

Cortical density (mg·cm3) 1101.5 (24.7) 1113.4 (22.1) 1127.4 (2.5) 1112.9 (2.3) 14.5 (3.5) 1.3% 0.59 6.9 to 22.1 0.001 

Total area (mm2) 492.2 (59.6) 519.8 (75.6) 524.6 (4.2) 503.4 (3.9) 21.2 (5.8) 4.0% 0.53 8.5 to 33.9 0.003 

Cortical thickness (mm) 4.2 (0.5) 3.8 (0.6) 4.1 (0.0) 4.0 (0.0) 0.08 (0.04) 1.9% 0.25 -0.01 to 0.2 0.066 

SSI Tibia (mm3) 2100.5 (329.2) 2140.0 (489.6) 2207.1 (80.3) 2127.1 (75.6) 80.0 (111.6) 3.6% 0.04 -163.1 to 323.1 0.487 
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6.4.3 Blood borne variables 

No significant differences in BTM was evident between groups at baseline. Serum 

Vitamin D levels were higher in the placebo group at baseline (81.2 ±24.4 nmol·L-1 vs 64.6 

±19.5 nmol·L-1), however this was not significantly different (p=0.146). At six months, 

unadjusted values for 25(OH)D had increased to 75.6 (±20.8) nmol·L-1 for the 

supplemented group while unadjusted the placebo groups levels fell slightly to 73.4 

(±20.8) nmol·L-1. ANCOVA revealed adjusted 25(OH)D levels were 18% higher in the 

supplemented group than the placebo group (p= 0.014) at six months. Bone resorption 

marker levels (CTx) were almost 25% lower in the supplemented group (p= 0.011) while 

no post-intervention differences were observed in the bone formation marker, P1NP 

between groups (refer Table 6-3). 
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Table 6-3: Baseline and six month adjusted mean values and adjusted mean differences (95% CI) in blood variables: vitamin D levels, CTx 
and P1NP between supplemented (S) and placebo (P) groups after covarying for baseline blood variables. 

 
 Unadjusted baseline values ANCOVA six-months adjusted values 

 
S group (n=8) 

Mean (SD) 
P group (n=8) 

Mean (SD) 

S group (n=8) 
Adj Mean 

(SE) 
P group (n=8) 
Adj Mean (SE) 

Adjusted 
Mean diff 

(SE) % diff 
partial 

Eta2 95% CI diff 
p-

value 

25OH Vit D (nmol/L) 64.6 (19.5) 81.2 (24.4) 81.9 (3.6) 67.1 (3.6) 14.8 (5.2) 18.1% 0.38  3.6 to 26.1 0.014 

CTx (ng/L) 371.3 (201.0) 380.0 (141.1) 357.5 (21.3) 446.3 (21.3) -88.8 (30.2) -24.8% 0.40  -154.0 to -23.6  0.011 

P1NP (ug/L) 104.2 (46.4) 108.9 (31.6) 107.3 (5.7) 101.9 (5.7) 5.4 (8.0) 5.0% 0.03  -11.9 to 22.7  0.511 
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6.5 Discussion 

There is clear evidence that jockeys have compromised bone health (Caulfield & 

Karageorghis, 2008; Dolan, McGoldrick, et al., 2012; Dolan et al., 2011; Greene et al., 

2013; Leydon & Wall, 2002; Moore et al., 2002; Waldron-Lynch et al., 2010; Warrington et 

al., 2009); however, no research to date has examined the efficacy of strategies for 

improvement in this at-risk population. This is the first randomised controlled trial (RCT) 

to assess bone responses to six months of a combined calcium and vitamin D supplement 

in young male jockeys or any other young male athletic group. Furthermore, this is the 

first RCT to use pQCT to examine bone responses at the distal and proximal tibia in an at-

risk athletic population known to have compromised bone health (Greene et al., 2013). 

Results show that the supplemented group displayed greater bone density and geometry 

at the proximal tibia post intervention suggesting supplementation may be a viable 

strategy to counteract the deleterious skeletal effects of engaging in a weight-restricted 

activity in the lower limb. 

Unlike previous studies examining bone responses following calcium 

supplementation in male populations, the present study utilised pQCT rather than DXA 

(Daly, Brown, et al., 2006; Dawson-Hughes et al., 1997; Kukuljan, Nowson, et al., 2009; 

Orwoll et al., 1990; Prentice et al., 2005; Reid et al., 2008). While DXA-derived BMD may 

be a surrogate predictor of fracture risk (Kanis et al., 2008) the two-dimensional 

technology is limited by its inability to adequately assess bone geometry and 

consequently, bone strength. Minor changes in bone mass and bone geometry may lead 

to increases in bone strength independent of changes in BMD (Adami, Gatti, Braga, 

Bianchini, & Rossini, 1999; Järvinen, Sievänen, Jokihaara, & Einhorn, 2005). Furthermore, 
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the importance of cortical bone in relation to whole bone strength is well established 

(Järvinen et al., 2005). The results of this study demonstrate improvements in cortical 

content, density and area at the proximal tibia following six months of supplementation. 

While the primary outcome of the study (changes to strength strain index), indicated 

some improvement in the supplemented group, this was not significantly different. 

Despite no evidence of greater strength strain index in the supplemented group, it is 

plausible that an insufficient intervention period restricted improvements in bone 

strength (Nikander et al., 2010). Nonetheless, it is plausible that greater bone geometry 

and bone material at the proximal tibia may have resulted from calcium and vitamin D 

supplementation over a six month period.  

Typically, jockeys have high bone turnover (Dolan, McGoldrick, et al., 2012; 

Waldron-Lynch et al., 2010; Wilson, Fraser, et al., 2013) linked to low energy and calcium 

intakes. Blood analysis of bone turnover markers (BTM) demonstrated a significant 

decrease in bone resorption markers (CTx) in the supplemented group over the 

intervention period. Despite being within reference ranges, CTx levels were in the bottom 

5th percentile (Jenkins et al., 2013). Bone resorption markers in the current study are 

similar to previous findings (Wilson, Fraser, et al., 2013) but contrast with other research 

which show high levels of bone resorption (Dolan, McGoldrick, et al., 2012; Waldron-

Lynch et al., 2010). Differences may arise from a variety of bone resorption markers 

analysed or the average age of the participants (Jenkins et al., 2013; Michelsen et al., 

2013). At 20 years of age, jockeys in the current study average five years younger than 

those previously reported. In contrast, P1NP remained unchanged over the intervention, 

revealing both groups to have elevated levels of bone formation markers (95th percentile 

for age) (Jenkins et al., 2013; Michelsen et al., 2013). This may be in part due to the 
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average age of the participants; however, high levels of P1NP are supported by previous 

research examining jockey bone turnover (Waldron-Lynch et al., 2010). Calcium kinetics 

indicate that supplementation results in an increase in absorbed calcium and suppression 

of bone resorption (Wastney et al., 2000). While approximately 90% of PBM is acquired 

by 18 years of age (Baxter-Jones et al., 2003), the age of attainment of PBM for males is 

equivocal with some studies indicating 18-20 years of age for spine and hip PBM whilst 

others have found this is achieved around 25-29 years (Boot et al., 2010; Henry et al., 

2010; Lorentzon et al., 2005; Szulc et al., 2000). Tibial bone appears to continue to 

undergo cortical bone mineral accrual up to 50 years of age (Lorentzon et al., 2005). As 

such, it is speculated that decreases in CTx observed in this study, combined with no 

change in P1NP, resulted from continued bone mineral accrual stimulated by an increase 

in available calcium.  

The actions of calcium on bone are well known, being required for adequate 

mineralisation during growth (Bailey et al., 1996) and maintenance of the skeleton 

through adulthood (Bachrach, 2001). Multiple meta-analyses have demonstrated the 

effectiveness of supplementation in improving BMD in children and female 

populations(Abrahamsen et al., 2010; Chung et al., 2009; Cranney et al., 2007; Lips et al., 

2014; Shea et al., 2002; Tang et al., 2007; Winzenberg et al., 2010), however, 

effectiveness has not been demonstrated adequately in young male populations, and in 

particular male athletes (Silk, Greene, & Baker, 2015). A previous controlled trial of 

calcium supplementation in young males (16-18 years) found calcium appeared to 

stimulate skeletal growth; however, once differences in height were accounted for, no 

difference in BMD was reported (Prentice et al., 2005). Study duration of calcium trials 

using male participants has varied from 12 months (Kukuljan, Nowson, et al., 2009) to 3 
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years. Where multiple time points have been examined, supplementation begins to 

improve BMD within a six-month period in healthy older males (Reid et al., 2008). It 

should be noted that DXA, not pQCT, has been used to measure changes in bone mineral 

properties. Positive alterations to bone properties using pQCT has been demonstrated in 

a six month period of calcium supplementation in a group of female peri-pubertal twins 

(Greene & Naughton, 2011). 

Previous investigations of serum vitamin D levels in young male jockeys highlight 

70% of riders being vitamin D deficient (serum (25(OH)D < 25 nmol·L-1) in winter 

(Guillemant et al., 2001; Wilson, Fraser, et al., 2013). Jump and flat jockeys from the 

United Kingdom recorded serum levels of 25(OH)D averaging 35 nmol·L-1 and 38 nmol·L-1 

during winter (Wilson, Sparks, et al., 2013). In another study, jockeys sampled during 

winter had serum 25(OH)D levels below 50 nmol·L-1 whilst those measured in the summer 

exceeded 90 mmol·L-1(Waldron-Lynch et al., 2010). Recent studies conducted in Australia 

and New Zealand showed that 30 to 70% of male adolescents present with vitamin D 

insufficiency (25(OH)D < 50 nmol·L-1) (Jones et al., 2005; Rockell et al., 2005). In the 

current study, vitamin D levels in both groups were above the current recommended 

serum levels of 50 nmol·L-1  (National Health and Medical Research Council, 2006b), with 

serum vitamin D increasing over the intervention period in the supplemented group from 

64.6 ±19.5 nmol·L-1 to 75.6 (±20.8) nmol·L-1. Without adequate levels of vitamin D bone 

mineralisation may be inadequate as calcium absorption becomes limited (Aloia et al., 

2010; Higdon & Drake, 2011); however, there is divergence of opinion as to what level of 

serum vitamin D represents “adequate” in relation to bone outcomes. There is evidence, 

albeit in a different population, that calcium absorption effectiveness was found to be 

between 45% to 65% higher when 25(OH)D levels were at 86.5 nmol·L-1 compared to 50 
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nmol·L-1 in post-menopausal women (Heaney et al., 2003). Fracture risk in older males 

has been significantly reduced when serum vitamin D levels were between 71 to 99 

nmol·L-1 compared with serum vitamin D levels between 54–62 nmol·L-1 (Dawson-Hughes 

et al., 2005). A recent review of vitamin D intakes to optimise all health outcomes 

recommends serum concentrations of 25(OH)D begin at 75 nmol·L-1, and suggests optimal 

bone health outcomes and reductions in fracture risk are achieved between 90 and 100 

nmol·L-1 (Bischoff-Ferrari et al., 2006). Consequently, it is possible that supplementation 

with vitamin D in this group of jockeys may have assisted in optimising the calcium 

absorption. However, given that the jockeys in this study had vitamin D levels deemed 

adequate under current recommendations, the additional vitamin D may not have had an 

effect. 

Furthermore, energy deficits as a result of restrictions in energy intake and 

excessive exercise typical of a number of athletic populations can result in poor bone 

health outcomes (Ebeling, 2008; Fredericson et al., 2007; Greene et al., 2013; Nichols & Rauh, 

2011; Rector et al., 2008; Smathers et al., 2009). Jockeys in this study demonstrated 

insufficient energy intakes and low calcium intakes supporting previous findings (Greene 

et al., 2013; Leydon & Wall, 2002; Moore et al., 2002; Warrington et al., 2009). 

Additionally, lifestyle behaviours such as smoking (Kanis, Johnell, et al., 2005) and 

excessive alcohol intakes (Kanis, Johansson, et al., 2005) have been shown to contribute 

to osteoporosis, particularly in males. A number of the jockeys in this study reported 

smoking (33%) and regularly drinking alcohol (72%). Although jockeys report training on a 

weekly basis in this study, others have shown jockeys spend approximately 25 hours per 

week training (Greene et al., 2013) in track-work activities involving riding horses for 

exercise and fast paced work, cleaning stables, washing and feeding horses (Dolan et al., 
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2011; Wilson, Sparks, et al., 2013). The combination of low energy intake, high amounts 

of physical activity, smoking and alcohol consumption seen in this group could be 

expected to negate the benefits of the calcium supplementation, however, this does not 

appear to be the case. It is plausible that the synergistic nature of vitamin D and calcium, 

combined with physical activity undertaken by jockeys has produced positive bone 

outcomes in the supplemented group. 

A number of strengths and limitations exist within this study. The use of pQCT to 

assess bone properties has allowed a more detailed analysis of musculoskeletal 

adaptations at the tibia as a result of calcium and vitamin D supplementation. The 

randomised controlled design of this study has minimised selection bias and attempted to 

reduce, where possible, genetic influence on bone properties. Additionally, we have 

statistically controlled for baseline variations in body composition and bone variables. 

Changes to bone properties have been further supported by serum analysis of bone 

formation and resorption markers, in accordance with recommendations from the 

International Osteoporosis Foundation (Vasikaran, Eastell, Bruyère, et al., 2011). The 6-

month duration of this study was shorter than other research examining calcium and 

vitamin D supplementation. Bone outcomes, particularly measures of bone strength (SSI 

and BSI), may have reflected further improvement had the intervention period been 

longer. However, compliance beyond six months may have compromised outcomes. The 

population is not readily accessible, with testing opportunities limited to one day per 

month. Further, they are subject to unforeseen relocation, making follow-up difficult at 

times, as evidenced in this study. The number of drop-outs during the study reduced the 

sample size which has impacted upon the power of the study. It should be noted, 

however, that the differences in cortical bone were found to be highly significant 
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suggesting that an effect does exist, although we acknowledge that outcomes would have 

been strengthened if participants lost to follow up were minimised. Further, we were 

unable to report compliance with the supplementation regime. While verbal assurances 

regarding compliance were provided by participants at data collection, very few jockeys 

returned supplement containers as instructed. Despite the lack of reported compliance, 

changes to both blood and bone variables suggest that jockeys in the supplemented 

group were compliant throughout the 6-month intervention period.  

This is the first randomised controlled trial to examine the effects of calcium and 

vitamin D supplementation on bone properties in young male jockeys using pQCT. Our 

findings indicate that supplementation with 800mg of calcium and 400IU of vitamin D per 

day for a period of 6-months improves bone properties at the proximal tibia and 

therefore supplementation may be a viable strategy for improving bone outcomes in at-

risk male athletic populations. Longitudinal supplementation in this cohort and other 

weight-restricted athletic populations demonstrating compromised bone health would 

further improve our understanding of the synergistic benefits calcium and vitamin D 

supplementation. 
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7 Cortical bone distribution at the tibial shaft in young male 
Jockeys after 6-months calcium and vitamin D supplementation: 
A randomized controlled trial 

Silk, L.N, Greene, D.A, Baker, M.K (2016). Submitted to BONE journal 11 February 2016. 

7.1 Abstract 

Cortical bone distribution in long bones varies both along the axial length of long 

bones and in cross-sections. Regional-specific alterations to cortical bone distribution are 

apparent with minimal variations in volumetric cortical bone mineral density (vBMD). 

Using three-dimensional images acquired using peripheral quantitative computed 

tomography (pQCT), an open source analysis tool (BoneJ) measured the distribution of 

cortical bone within circumferential layers within the cortex (radial distribution) and in 

sectors around the neutral axis (polar distribution). The aim of this study was to compare 

the polar and radial distribution of cortical bone at the tibial shaft in young male jockeys 

exposed to 6-months calcium and vitamin D supplementation. Cortical distribution at the 

tibial shaft (66% of tibial length measured distally) was assessed using pQCT in two groups 

of male jockeys aged 17 to 32 years (mean 20.2± 3.2). Participants were supplemented 

with 800mg of calcium and 400IU of vitamin D (n=8) or a placebo (cellulose) (n=9) daily 

for 6-months. Polar and radial vBMD was measured in 36, ten degree cortical sectors 

(polar) and three concentric cortical divisions (radial). Polar distribution was further 

consolidated into four, 90 degree quadrants aligned to anatomical planes. Cortical 

mineral mass, endocortical and pericortical radii were also analysed. After covarying for 

height, weight, and baseline measurements, the supplemented group demonstrated 

greater endocortical vBMD in the posterior region of bone (1140.5 ± 6.3 vs 1116.2 ± 5.9; 

p=0.018). While the study was not quite long enough to produce significant results, 
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trends support previous suggestions that alterations in bone density and geometry are a 

combined result of site-specific loading and anti-resorptive responses to 

supplementation. 

Keywords: Cortical bone; BoneJ; calcium 

7.2 Introduction 

Designed for optimal function, long bones are predominately comprised of cortical 

bone that is light, rigid and accommodating of loads experienced during movement. 

During growth the diaphysis of long bones alters its mineral mass and positions cortical 

bone away from the neutral axis resulting in increased bone size and bone strength 

(Kontulainen, Macdonald, & McKay, 2006). However, the dispersion of cortical bone in 

long bones is not uniformly distributed. Furthermore, the effect of loading on radial and 

polar cortical bone distribution highlights a region-specific response (Cooper, Ahamed, 

Macdonald, & McKay, 2008; Kontulainen et al., 2006; Lai, Qin, Hung, & Chan, 2005). In 

particular, the distribution of cortical volumetric bone mineral density (vBMD) appears 

responsive to region-specific effects of loading with little evidence of commensurate 

changes in whole bone cortical vBMD.  

Strain enhances apposition of periosteal layer and/or reduces resorption in the 

endocortical region (Kukuljan et al., 2011). Examination of athletes reveals that expansion 

of bone cross-sectional area rather than changes to vBMD appear to influence bone 

strength (Rantalainen, Nikander, Daly, Heinonen, & Sievänen, 2011). Conversely, calcium 

and vitamin D supplementation appears to have anti-resorptive influences, preserving 

BMD through a reduction in endocortical resorption and maintenance of cortical 

thickness (Daly, Duckham, & Gianoudis, 2014). This suggests calcium and bone strain 
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work in concert to improve bone properties, particularly in the presence of initial calcium 

deficiency, but it is unclear if increases or decreases in vBMD occurs with 

supplementation. 

To date, a variety of analysis tools to assess cortical vBMD distribution have been 

used with limited validity (Kontulainen et al., 2006; Lai et al., 2005). In recent years an 

open source image analysis tool, built as an ImageJ plug-in, was validated as a method of 

analysing cortical vBMD distribution around the neutral axis (polar distribution) and in 

circumferential layers within the cortex (radial distribution) using pQCT scans 

(Rantalainen, Nikander, Heinonen, et al., 2011). Whilst examinations of the distribution of 

cortical vBMD have been undertaken in athletic and non-athletic populations (Cooper et 

al., 2008; Greene, Naughton, Moresi, & Bradshaw, 2012; Macdonald et al., 2009; 

Rantalainen et al., 2014; Rantalainen, Weeks, Nogueira, & Beck, 2015; Weidauer, Binkley, 

Berry, & Specker, 2013), no study to date has examined changes to cortical bone 

following an intervention aimed at improving bone material properties via calcium and 

vitamin D supplementation. 

Our aim was to compare the radial and polar cortical vBMD distribution at the 

tibial mid-shaft in young male jockeys exposed to 6-months calcium and vitamin D 

supplementation with age- and gender-matched jockeys receiving a placebo. We 

hypothesised that jockeys receiving calcium and vitamin D supplementation is associated 

with reduced cortical vBMD, particularly at the mid- and pericortical bone divisions. 
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7.3 Methods 

7.3.1 Research design 

The present study is a further exploration of data obtained from young male 

jockeys who participated in a six month randomised double-blind placebo controlled trial 

of calcium and vitamin D supplementation (Silk, Greene, Baker, et al., 2015). Participants 

in the study were young male jockeys, mean age 20.2± 3.2 years. Data was collected at 

baseline and six months with the supplemented group (n=8) having received 800mg of 

calcium and 400IU of vitamin D per day whilst the placebo group (n=9) were provided 

with cellulose tablets. Specific inclusion and exclusion criteria was used: in good health in 

last 6 months with no systemic illness lasting more than 2 weeks; no known history of 

fracture or recurrent fracture complications in last 6 months; no known history of 

metabolic bone or muscle disease; and no medication, hormones or calcium/vitamin D 

preparations in preceding 6 months and willing to remain free of such medications for the 

6 months of data collection. All participants provided informed consent. Ethical approval 

was granted by the Human Research Ethics Committee at the Australian Catholic 

University and the study was registered with the Australian New Zealand Clinical Trials 

Registry (registration no: ACTRN126000374864). 

7.3.2 Anthropometric characteristics 

Standing and seated height was measured to 0.1 cm using a stadiometer and 

weight was measured using an electronic scale accurate to 500g (Wedderburn UW150, 

Sydney, Australia) with participants dressed in light clothing and without shoes. Tibial 

length was measured externally as the distance between the mid-point of the distal 

medial malleolus and the proximal medial tibial plateau landmarks. 
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7.3.3 Bone material properties  

The non-dominant tibia was scanned using a peripheral quantitative computed 

tomography (pQCT) bone scanner (XCT-2000L, software version 5.50d, Stratec 

Medizintechnic, Pforzheim, Germany) and has been previously described (Silk, Greene, 

Baker, et al., 2015). The pQCT images were further analysed using BoneJ (v 1.47v) (Doube 

et al., 2010), pQCT density distribution plug-in (Rantalainen, Nikander, Heinonen, et al., 

2011) using standard settings (see Figure 7-1 A). Radial and polar vBMD distribution, 

endocortical and pericortical radii (mm) together with polar cortical vBMD (mg·cm3) and 

mineral mass (mg) were calculated by BoneJ for 36, ten degree sectors. 

 

Figure 7-1: pQCT image as treated by BoneJ pQCT distribution plug-in (A), an illustration 
of the radial and polar distribution (B) and the location of the anterior, posterior, lateral 
and medial planes (C).  
Images B and C adapted from Rantalainen, Nikander, Heinonen, et al. (2011) 

 
The cortical cross-section was divided into four 90o polar sectors and three cortical 

radial divisions representing anterior, posterior, lateral and medial planes (Figure 7-1 B 

and C). Mean endocortical and pericortical radii (mm), mean mineral mass (mg) and mean 

polar cortical vBMD (mg·cm3) was calculated for each 90o sector by averaging the sum of 

each 10o sector within the defined planes (Macdonald et al., 2009). 
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7.3.4 Blood borne markers of bone turnover and vitamin D status 

Blood samples were collected and analysed for Procollagen type 1 N propeptide 

(P1NP) (ug/L), C-terminal telopeptide of type 1 collage (CTx) (ng/L), and serum 25-hydroxy 

vitamin D [25(OH)D] (nmol/L). Methods have been previously described (Silk, Greene, 

Baker, et al., 2015).  

7.3.5 Statistical methods 

All variables were tested for normality using Shapiro-Wilk test and t-tests were 

performed on baseline characteristics. Normally distributed data are presented in mean ± 

standard deviations (SD) and treated with parametric analysis. Baseline descriptive data 

are reported as mean ± SD as applicable. Bone variables were compared using analysis of 

covariance (ANCOVA) to derive regression equations to measure the effect size and 

probability of between-group differences (Vickers & Altman, 2001) after controlling for 

weight, height and baseline bone measurements. Data used in ANCOVA was tested for 

homogeneity of regression by examining the statistical significance of the interaction of 

covariates and the independent variables. Statistical analyses were performed using SPSS 

version 22.0 (SPSS, Chicago, IL, USA).  

7.4 Results 

7.4.1 Descriptive characteristics 

Following attrition during the study due predominantly to race-related 

commitments and apprenticeship transfers, 17 jockeys completed final data collection. 

Descriptive statistics for participants who completed the study are shown in Table 7-1. 

The two groups were homogenous, with no significant differences in age, height or 

weight. Average calcium intake in each group was well below standard dietary 
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recommendations of 1,000 mg per day (National Health and Medical Research Council, 

2006a) while baseline serum vitamin D was above minimum recommendations of 50 

nmol·L-1  (National Health and Medical Research Council, 2006b). Excluding the additional 

calcium intake in the supplemented group, six monthly values for all variables remained 

consistent. 

Table 7-1: Baseline characteristics of study completers. 

 Baseline values 
 Supplement 

group (n=8) 
Placebo group 

(n=9) 
 

 mean SD mean SD p 
Age (yrs) 22.3 5.0 19.3 1.8 0.152 

Height (cm) 165.6 4.4 167.3 4.3 0.517 

Body mass (kg) 52.7 3.6 52.6 3.3 0.453 

BMI (kg·m2) 19.3 1.7 18.8 1.1 0.507 

Calcium intake (mg·day-1) 669.7 274.3 790.4 423.9 0.503 

25OH Vit D (nmol·L-1) 75.93 21.20 79.00 22.00 0.705 
 

     
7.4.2 BoneJ 

 Mineral mass 

Mineral mass distribution for both groups was seen to be highest in the anterior 

region (Figure 7-2). ANCOVA results in the four anatomical planes indicated non-

significant differences in mineral mass following supplementation. There was a trend 

towards higher mineral mass in the posterior region (12.03 mg ±0.11 vs 11.73 mg ±0.10) 

for the supplemented group. 
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Figure 7-2: Six month adjusted mineral mass (SE) presented in the 4 anatomical planes; S 
= supplemented group, P = placebo group. 

 
7.4.3 Cortical vBMD 

Post-supplementation vBMD was examined in the endocortical, mid-cortical and 

pericortical radii in all 36 sectors as well as anatomical regions. Results by radial division 

demonstrated no significant between group differences. For both groups, the mid-cortical 

region displayed the greatest vBMD and the endocortical region demonstrated the lowest 

vBMD (Table 7-2). 

Table 7-2 : Unadjusted six months vBMD (mg·cm3) by radial division 

 Endocortical Mid-cortical Pericortical 

 Mean 
(mg·cm3) 

SD p-
value 

Mean 
(mg·cm3) 

SD p-
value 

Mean 
(mg·cm3) 

SD p-
value 

Supplemented 1103.72 175.81 0.28 1147.97 186.01 0.18 1108.31 172.19 0.17 

Placebo 1158.77 28.02  1214.57 30.31  1192.35 51.60  

 

When examined in anatomical regions (Figure 7-3), ANCOVA results (adjusted 

mean ±SE) indicate endocortical posterior vBMD was significantly greater in the 
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supplemented group (1140.5 ± 6.3 vs 1116.2 ± 5.9; p=0.018) with vBMD in the anterior 

pericortical radial division also greater (1160.1 ± 8.8 vs 1137.4 ± 8.3; p=0.09). 

 
Figure 7-3: Plot of ANCOVA results for vBMD (mg·cm3) by sector in endocortical, mid-
cortical and pericortical radii. * indicates significant difference in 10o sector (p<0.05). 

 
 Radius 

Results of ANCOVA for the endocortical and pericortical radius are shown as 

adjusted mean (SE error bars) in Figure 7-4. Pericortical radius were highest in the 

anterior region whilst endocortical radius was similar in the anterior and posterior 

regions. While not significant, endocortical radius adjusted mean (SE) in the lateral region 

was greater in the supplemented group (p=0.067) and pericortical radius adjusted mean 

(SE) in the supplemented group was greater in the posterior region (p=0.076).  



141 
 

 
Figure 7-4: Six month adjusted mean (SE) for endocortical and pericortical radius (mm) 
presented in the 4 anatomical planes; S = supplemented group, P = placebo group. 

7.5 Discussion 

This is the first study to compare cortical bone distribution at the tibial mid-shaft 

in male jockeys after 6-months calcium and vitamin D supplementation or a placebo. 

Results of the BoneJ pQCT distribution plug-in analysis show greater vBMD at the 

endocortical posterior region of the tibia in the supplemented group compared to the 

placebo group. No other between-group differences were found. While the majority of 

results were non-significant, there was a general trend to suggest that calcium 

supplementation stimulated bone apposition in the posterior and lateral regions of the 

tibia with increasing mineral mass in the posterior region of the bone.  

Exercise-induced changes to bone appear to be found in regions of loading, 

resulting in geometric alterations rather than changes to vBMD. Studies in athletic 

populations have demonstrated that loading can increase site-specific bone strength 

(Greene, Naughton, Bradshaw, et al., 2012; Jürimäe et al., 2006) and that non-weight 

bearing physical activity can have a negative impact on bone density (Smathers et al., 
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2009). Weight-bearing loading has been shown to improve bone strength at the tibial 

shaft in young boys (Macdonald et al., 2009). Further, results suggest that observed 

alterations occur in different quadrants of the bone shaft, reflecting bone adaptation 

directly in response to site-specific loading in the anterior-posterior plane (Macdonald et 

al., 2009). In the current study, the trend towards expansion of the radii in the 

supplemented group in the anterior/posterior plane appears consistent with these 

findings. 

As previously shown (Rantalainen, Nikander, Daly, et al., 2011; Weidauer et al., 

2013) distribution of vBMD in both groups was highest in the mid-cortical layer of bone 

whereas endocortical vBMD was lowest, reflecting higher metabolic activity in this region. 

Following supplementation, vBMD in the posterior region of the endocortical radius was 

significantly greater in the supplemented group. Loading influences bone in a site-specific 

way, enhancing periosteal apposition and/or reducing resorption in the endocortical 

region (Kukuljan et al., 2011). In adults, supplementation with calcium and vitamin D 

appears to have an anti-resorptive influence, decreasing remodelling and essentially 

preserving BMD by reducing endocortical resorption and maintaining cortical thickness 

(Daly et al., 2014). It is suggested that calcium and loading work in concert to improve 

bone properties particularly where there is an initial calcium deficiency (Daly et al., 2014).  

As professional athletes, jockeys are habitually physically active; however, the 

extent to which horse riding loads the tibia is unknown. Both groups presented with low 

calcium intake which persisted in the non-supplemented group, suggesting increases in 

vBMD in the endocortical posterior region may be in response to both supplementation 

and loading. Observed reductions to bone resorption markers (CTx) in this population 
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coupled with high levels of bone formation marker (P1NP) (Silk, Greene, Baker, et al., 

2015) also appears to further support the premise that the calcium and vitamin D 

supplementation may have anti-resorptive effects. 

Peripheral quantitative computed tomography (pQCT) data indicate that males 

deposit bone on the periosteal surface (Schoenau et al., 2001). Furthermore, 

consolidation of long bone PBM (PBM) is achieved through increased cortical thickness 

and mineralisation of cortical bone (Lorentzon et al., 2005). Little is currently known 

about the site specific effects of calcium supplementation on male bone (Silk, Greene, & 

Baker, 2015). With a few exceptions (Daly, Bass, et al., 2006; Kukuljan et al., 2011; Silk, 

Greene, Baker, et al., 2015), supplementation has focused on changes to BMD using DXA. 

Few male studies have examined changes in bone geometry subsequent to 

supplementation using pQCT. Supplementation with calcium and vitamin D fortified milk 

in a group of men aged 60.7 ± 7.1 over a period of 18 months had no effect on total or 

cortical area, or cortical vBMD at the mid-tibia measured by QCT (Kukuljan et al., 2011). 

Similarly, in a separate study, no differences were observed at the mid-femur after 2 

years using a calcium-vitamin D fortified milk supplement (Daly, Bass, et al., 2006). 

However, when divided into under- and over-62 years age groups, the older group 

demonstrated a reduction in the rates of medullary cavity expansion and cortical vBMD 

loss at the mid-femur (Daly, Bass, et al., 2006). Results of the present study, albeit with a 

younger male cohort, show a similar trend in the supplemented group regarding vBMD at 

the endocortical posterior region of the tibia. 

A number of strengths and limitations exist within this study. The randomised 

controlled design has minimised selection bias and assisted in reducing possible genetic 
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influence on bone properties. The pQCT has allowed a more detailed analysis of 

musculoskeletal adaptations at the tibia as a result of calcium and vitamin D 

supplementation as compared to DXA and the additional analysis through the BoneJ 

cortical distribution plugin (Doube et al., 2010; Rantalainen, Nikander, Heinonen, et al., 

2011) has provided further insight. Additionally, baseline variations in body composition 

and bone variables have been statistically controlled throughout the analysis. It is 

acknowledged that the 6-month duration of this study is shorter than other research 

examining calcium and vitamin D supplementation. Whilst pQCT variables indicated 

significant changes in the supplemented group over the intervention period, this was not 

the case in the subsequent detailed analysis. Had the intervention period been longer 

and/or the sample size had remained higher, we expect that alterations to the different 

bone parameters may have become evident. However, compliance beyond six months 

may have compromised outcomes, as the group was not readily accessible and subject to 

unforeseen relocation, making follow-up difficult as evidenced in this study. It should be 

noted, however, that differences in cortical bone measured by pQCT previously reported 

(Silk, Greene, Baker, et al., 2015), were found to be highly significant suggesting that an 

effect does exist, although we acknowledge that outcomes would have been 

strengthened if participants lost to follow up were minimised.  

This is the first randomised controlled trial to compare cortical bone distribution 

using a custom-designed analysis tool (BoneJ) at the tibial mid-shaft in male jockeys 

exposed to 6-months calcium and vitamin D supplementation. Longitudinal 

supplementation in this cohort and other weight-restricted athletic populations 

demonstrating compromised bone health would further improve our understanding of 
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the synergistic benefits calcium and vitamin D supplementation and the influence of 

loading on cortical bone distribution. 
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8 Thesis Summary  

This thesis examined the efficacy of 800mg of calcium and 400IU of vitamin D daily 

on improving the bone material properties at the weight-bearing tibia and non-weight 

bearing radius in of a group of young male jockeys, through a double-blind, placebo 

controlled intervention for a period of six months.  

A narrative review of the literature provided contextual information relating to 

bone growth, development and maintenance, and outlined influences on bone health 

including calcium, vitamin D and physical activity and energy restriction. The strengths 

and weaknesses of major imaging techniques used to assess the structural integrity of 

bones were outlined. Other indicators of bone health, ie vitamin D status and blood-

borne markers of bone turnover were also discussed. Following this background 

information, a review of the literature directly pertaining to the bone health of jockeys 

was presented. Specifically finding in relation to bone health assessments, blood-borne 

markers of bone turnover, energy intake and calcium and vitamin D status were 

presented.  

8.1 Effects of calcium and vitamin D supplementation on male bone 

material properties 

A systematic review and meta-analysis was conducted examining the effectiveness 

of vitamin D and/or calcium supplementation on improving bone mineral properties in 

healthy males. The systematic review, which met all CONSORT statement guidelines 

(Moher et al., 2001), revealed a distinct lack of studies on male participants in order to 

adequately determine the efficacy of vitamin D and/or calcium supplementation. 

Specifically, it highlighted that no studies of sufficient quality examining supplementation 
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in male athletic populations exist, despite evidence of compromised bone health in 

athletic cohorts. Additionally, the results revealed a heavy reliance on DXA data in 

analysing the effects of supplementation on bone material properties. Further, it cannot 

be established from the studies, the stage at which supplementation begins to affect 

BMD. While many studies made multiple time point measures the majority only reported 

final outcomes.  

The results of the subsequent meta-analysis suggest that supplementation with 

calcium, in combination with vitamin D, has a small to moderate effect on bone mineral 

density in healthy males, indicating differing responses between weight-bearing and non-

weight bearing bone. In younger cohorts, supplementation results in positive acquisition 

of bone over normal growth related bone acquisition, whilst in older populations 

supplementation appeared to attenuate bone loss. 

The combined results of the systematic review and meta-analysis informed the 

three clinical studies. Alterations to bone strength and geometry may translate into 

strength gains without overall alterations to BMD, suggesting that imaging techniques 

such as pQCT should be employed in studies to further elucidate the effects of 

supplementation on both weight bearing and non-weight bearing bone.  

8.2 Influence of supplementation on blood-borne markers of bone 

turnover 

Alterations to bone material properties may take a considerable length of time to 

respond to stimuli whilst blood-borne markers of turnover are more responsive. Chapter 

five incorporated an examination of the effects of calcium and vitamin D supplementation 

on markers of bone turnover, hypothesising that supplementation ‘will be an effective 
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and feasible strategy for improving bone turnover markers’. Specifically, the bone 

formation marker P1NP and the bone resorption marker CTx were monitored at baseline 

and six months to evaluate whether the supplementation regime was having an effect on 

bone metabolism. 

As outlined in section 2.7.2, results of previous studies examining levels of bone 

resorption markers in jockeys are equivocal, with serum markers of CTx being low but 

within normal ranges, whilst examination of urinary markers of bone resorption by other 

groups suggest elevated bone resorption. Bone formation markers in jockeys have been 

shown to be high. Compared to values for Australian males aged 20-29, the baseline 

results for this group of young jockeys revealed low levels of CTx and elevated levels of 

P1NP, in line with other jockey-related research. Following the intervention, CTx levels 

(ng·L-1) declined in the supplemented group being 350.00 ± 204.66 compared to 371.3 ± 

201.00 at baseline while the placebo group demonstrated an increase in CTx levels from 

380.0 ± 141.1 to 453.75 ± 164.92. The supplemented group’s CTx levels were found to be 

approximately 24% lower than the placebo group on an adjusted mean basis (p=0.011). 

The reduction in CTx over the course of the trial was modest compared to those observed 

in pre-menopausal females (-30%) and older men (-14%) (Kruger et al., 2006; Kukuljan, 

Ducher, et al., 2009). Conversely, bone formation markers remained elevated with no 

changes in P1NP levels observed in either group. This result differs from other trials of 

calcium supplementation, where decreases in P1NP levels approximating 15% have been 

observed (Kruger et al., 2006; Kukuljan, Ducher, et al., 2009). The average age of jockeys 

in this study is 20 years, making it plausible that P1NP levels remained elevated due to 

sustained bone mass consolidation, which has been found to continue into the mid-20s in 
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males in the spine and hip (Szulc et al., 2000) and later for long bones (Henry et al., 2010; 

Lorentzon et al., 2005).  

Overall, supplementation appears to have impacted bone metabolism which in 

turn, influenced bone resorption. This is evidenced by alterations to cortical bone 

material properties as measured by pQCT in the tibia (Chapter 6) and a reduction in bone 

resorption in the endocortical region of bone estimated by BoneJ analysis (Chapter 7). 

8.3 Effect of supplementation on the non-weight bearing radius 

Chapters 5 investigated whether non-weight bearing bone, i.e. the radius, would 

display improvements in bone material properties following 800mg calcium and 400IU 

vitamin D supplementation daily for a period of six months. Differences in pQCT derived 

structural properties of bone between the supplemented and control group following the 

intervention period were derived for the 4% distal and 66% proximal radius. It was 

hypothesised that the supplementation would be ‘an effective and feasible strategy for 

improving the bone material properties at the radius’ in this group of young male jockeys. 

Unlike the weight-bearing tibia, the supplementation regime did not have any 

measurable positive effects on the bone properties of the radius, thus rejecting the 

hypothesis.  

Superior bone material properties at the radius have been observed in jockeys 

(Greene et al., 2013; Leydon & Wall, 2002) suggesting a positive influence of physical 

strain on bone adaptations. However, measurement of trabecular area, trabecular 

density, total content, total area and total density at the 4% distal site demonstrated no 

between-group differences following the intervention. Similarly, cortical area, cortical 

density, cortical content and total bone area at the proximal radius remained consistent 
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between the two groups. Further, no observed differences were seen in measures of 

bone strength (BSI or SSI-Polar), or endocortical circumference and pericortical 

circumference. When the results of the radius are considered in light of the alterations to 

bone turnover markers and the observed changes in the tibia, it is plausible that six 

months supplementation may have been an inadequate intervention period to observe 

changes to bone material properties in the non-weight bearing radius. 

8.4 Effect of supplementation on weight-bearing bone 

Chapters 6 investigated the influences of 800mg calcium and 400IU vitamin D 

supplementation daily at the weight-bearing tibia using pQCT. The study examined the 

differences in pQCT-derived structural properties of bone at the 4% distal and 66% 

proximal sites of the tibia between the supplemented and control group following six 

months supplementation. It was hypothesised that the supplementation would be ‘an 

effective and feasible strategy for improving the bone material properties at the tibia’.  

This hypothesis was supported at the 66% proximal site, with analysis of the pQCT 

data revealing adjusted post-intervention bone properties in the supplemented group 

being 6.6% greater for cortical content (mg·mm), 5.9% larger cortical area (mm2), 1.3% 

greater cortical density (mg·cm3) and total area (mm2) being 4% larger after the six-month 

intervention. No changes were observed in cortical thickness. For the significant variables, 

partial η2 indicate moderate to high treatment effect, ranging from 0.53 for total area to 

0.7 for cortical content, suggesting an effect does exist for supplementation on cortical 

bone material properties. 

The hypothesis was rejected at the 4% distal site, with no between-group 

differences being observed in trabecular content, trabecular density or trabecular area. 
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Further, no significant post-intervention differences were seen in total density or total 

area at the 4% distal site. The lack of response in the trabecular variables suggests that 

jockeys may incur lower levels of ground reaction forces compared to torsional stressors 

to the bone. Together with the relatively short duration of the intervention, this could 

possibly explain the lack of response in trabecular bone. While the SSI improved in the 

supplemented group over the period, the differences were not significant. When coupled 

with the higher than anticipated drop-out rate which may have impacted the power of 

the study, this suggests that six months may not have been long enough to produce a 

significant change in the key outcome variable. 

8.5 Influence of physical strain in concert with calcium and vitamin D 

supplementation 

In light of the positive responses observed within the cortical bone of the tibia, 

Chapter 7 further explored the changes to bone material properties within this cohort of 

jockeys. Regional responses to bone strain together with calcium and vitamin D 

supplementation were assessed using BoneJ pQCT distribution plug-in (Rantalainen, 

Nikander, Heinonen, et al., 2011) to further analyse the bone scans obtained through 

pQCT. It was hypothesised that ‘supplementation in concert with mechanical loading 

from weight-bearing activity is associated with reduced cortical vBMD’. 

As outlined in Chapter 2, bone (re)modelling maintains structural integrity and 

results from a combination of physical strain and calcium homeostasis. Physical activity 

appears to affect bone in a site specific manner, so that only bone exposed to loading will 

undergo modelling (see sections 2.3.2 and 2.3.3). Strain enhances periosteal apposition 

and/or reduces resorption in the endocortical region (Kukuljan et al., 2011). Examination 
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of athletes revealed that expansion of bone cross-sectional area, rather than changes to 

vBMD, appear to influence bone strength (Rantalainen, Nikander, Daly, et al., 2011). 

Conversely, calcium and vitamin D supplementation appears to have anti-resorptive 

influences, decreasing remodelling. Supplementation appears to preserve BMD through a 

reduction in endocortical resorption and maintenance of cortical thickness (Daly et al., 

2014). Together, this suggests calcium and bone strain work in concert to improve bone 

properties, particularly where there is an initial calcium deficiency, but makes it unclear 

whether increases or decreases to vBMD will occur. 

Results from the BoneJ analysis revealed a trend towards increasing mineral mass 

following the intervention, particularly in the posterior region of the tibia. Adjusted mean 

mineral mass (mg) was 12.03 ±0.11 for supplemented group vs 11.73 ±0.10 (p=0.072). 

Further there was a trend towards expansion of the radii in the supplemented group 

particularly in the posterior and lateral regions. 

Examination of vBMD (mg·cm3) within the endocortical, mid-cortical and 

pericortical radii by anatomical sectors showed significantly greater vBMD in the posterior 

endocortical radius for the supplemented group (1140.5 ± 6.3 (S) vs 1116.2 ± 5.9 (P); 

p=0.018). Anterior pericortical radial vBMD for the supplemented group was also larger 

although not significant (1160.1 ± 8.8 vs 1137.4 ± 8.3; p=0.09). These results support the 

suggestion that supplementation reduces endocortical resorption (Daly et al., 2014).  

8.6 Other influences on bone 

8.6.1 Vitamin D 

Supplementation resulted in the active group experiencing an increase in vitamin 

D levels (nmol·L-1) from 64.6 ± 19.5 to 75.6 ± 20.8 whilst the placebo group’s serum levels 
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fell from 81.2 ± 24.4 to 73.4 ± 20.8. Without adequate levels of vitamin D, calcium 

absorption will be limited, thus making it essential that vitamin D be available. At the 

present time, consensus as to adequacy of vitamin D levels is not unanimous. A minimum 

of 50 nmol·L-1 serum vitamin D is suggested by the International Osteoporosis Foundation 

as adequate to prevent bone related disorders with general nutrition guidelines being as 

low as 25 nmol·L-1 (National Health and Medical Research Council, 2006b). Others suggest 

that vitamin D levels should be around 75 nmol·L-1, particularly for optimisation of bone 

health outcomes (Bischoff-Ferrari et al., 2006; Dawson-Hughes et al., 2005; Vieth, 2004, 

2006).  

Findings suggest that vitamin D levels may be more essential to maintain calcium 

metabolism and PTH levels than high calcium intakes (Steingrimsdottir et al., 2005). 

Optimisation of calcium absorption appears to correlate to threshold levels of 80 nmol·L-1 

serum vitamin D, below which calcium absorption may be impaired (Heaney et al., 2003), 

implying that higher levels of serum vitamin D should be maintained for bone health. 

 Given that the supplemented group ANCOVA results were 81.9nmol·L-1 following 

the intervention, it is plausible that the additional vitamin D provided to the jockeys 

assisted in enhancing calcium absorption in the supplemented group. This was reflected 

in significant improvements in cortical bone material properties as well as indications that 

mineral mass and bone radii were altered at the tibia. 

8.6.2 Dietary intake and energy imbalance 

The dietary analysis incorporated into Chapters 5 and 6 found both groups had 

insufficient daily energy intakes as well as low calcium levels. Daily calcium intake (mg) 

was estimated to be between 669.7 ± 274.3 and 790.4 ± 423.9 at baseline, well below the 
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recommended levels of 1,000 mg per day. While there was a wide variation in reported 

energy intakes (kJ) (7,723 ± 2,974 to 9,626 ± 4,758), the questionnaire used has adequate 

reliability and supported previous findings relating to jockeys (refer section 2.7.3). 

Recommended minimum daily energy intakes for athletes are approximately 188-210 

kj·kgbw·day-1 (Sundgot-Borgen & Garthe, 2011), whilst the jockeys in this study averaged 

between 144-152 kj·kgbw·day-1. Limited energy intake coupled with excessive energy 

expenditure typical of a number of athletic populations has been found to contribute to 

poor bone health (Ebeling, 2008; Fredericson et al., 2007; Greene et al., 2013; Nichols & 

Rauh, 2011; Rector et al., 2008; Smathers et al., 2009).  

Anthropometric measures revealed this group of jockeys to be very lean compared 

to other weight category athletes (Garrido-Chamorro et al., 2012), with sum of six 

skinfolds (mm) of between 32.9 ± 5.1 and 36.4 ± 7.0 being observed over the six month 

period. Further, body mass index in this group ranged between 17.3 - 19.3 kg·m2 which 

was below the 20 kg·m2 reported by others (Wilson et al., 2014). These measures further 

support low levels of energy balance and reported energy intakes.  

Bone cell function is directly affected by endocrine changes that mobilize stored 

fuels which must be accessed during times of prolonged energy expenditure and/or 

inadequate energy intake (De Souza et al., 2008; Ihle & Loucks, 2004). The continual 

habitual restriction of energy availability that prevails amongst this population may 

counter any benefits of increased availability of calcium and vitamin D. However, the 

supplementation regime appears to be adequate to elicit a positive bone response. 
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8.6.3 Lifestyle factors 

Findings from the lifestyle questionnaire indicate that 17 of the apprentices in this 

study had incurred at least one fracture of which 12 reported riding related injuries with 

the others sporting related. Most reported multiple fractures. Numbers of injuries and 

locations were: 

 Wrist – 5 

 Hand or fingers – 7 

 Forearm – 5 

 Collarbone – 5 

 Pelvis – 3 

 Leg - 6 

Injury related data from around the world shows that majority of injuries 

sustained by jockeys are fractures (Foote et al., 2011). Upper limb fractures are the most 

commonly reported fracture in both the USA and the UK/Ireland, and while Australian 

injury data is not well documented, recent reports indicated that 78% of all jockeys 

surveyed incurred a fracture due to riding (Foote et al., 2011). There is a distinct lack of 

follow-up data in relation to bone health in retired jockeys with recent work not reporting 

bone related data despite the use of DXA for body composition purposes (Cullen et al., 

2016). The number of injuries highlights the need for improving bone material properties 

in this group.  

8.7 Contributions to existing literature  

The use of calcium and vitamin D supplementation as a means of improving bone 

material properties has been under-explored in male cohorts. The systematic review and 

meta-analysis has been rigorously conducted, highlighting a number of gaps within the 
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existing literature, namely: a distinct absence of data in younger male cohorts and athletic 

populations; a heavy reliance on DXA aBMD measures with no cortical or trabecular bone 

material property information available; no indication as to what time period is required 

for supplementation to have a significant effect on bone properties; and further, no data 

which examines the impact of calcium and vitamin D supplementation on reducing 

fracture risk in otherwise healthy male cohorts. 

To date, research pertaining to jockeys has focussed on a number of key areas, 

namely: dietary practices and weight management (Caulfield & Karageorghis, 2008; 

Cotugna et al., 2011; Dolan et al., 2011; Leydon & Wall, 2002; Moore et al., 2002; Wilson 

et al., 2014; Wilson et al., 2015); hormonal and health status (Cullen et al., 2016; Dolan, 

McGoldrick, et al., 2012; Guillemant et al., 2001; Warrington et al., 2009; Wilson, Fraser, 

et al., 2013) and; bone health (Dolan, Crabtree, et al., 2012; Dolan, McGoldrick, et al., 

2012; Greene et al., 2013; Leydon & Wall, 2002; Waldron-Lynch et al., 2010; Warrington 

et al., 2009). A select number of studies has attempted to quantify energy expenditure of 

jockeys (Trowbridge et al., 1995; Wilson, Sparks, et al., 2013); however, this has proven 

difficult given restrictions of using equipment out in the field due to safety and 

competition requirements. No randomised controlled trials have been conducted in this 

athletic cohort to date. 

The overall consensus in relation to bone health is that jockeys prematurely 

display reduced bone material properties, however no study to date has addressed a 

means of rectifying this situation. The current research has tested whether a simple 

intervention, i.e. daily calcium and vitamin D supplementation would result in positive 

bone outcomes. New knowledge has been gained relating to vBMD, cortical and 
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trabecular bone properties, of both weight- and non-weight bearing bone in jockeys as 

existing literature predominantly used DXA to assess bone health. Additionally, by using 

IOF recommended BTMs, data obtained in this group has added to current information of 

BTM profiles of jockeys and will be comparable to other populations. Anthropometric 

data obtained has added physical characteristics to the existing knowledge base as 

anthropometric data has previously been limited to height, weight and estimates of body 

fat obtained via DXA. 

The response to the supplementation in this group adds new knowledge, not only 

to jockeys, but also to the existing literature relating to both BTMs and bone material 

property responses to supplementation in: weight-restricted athletes; male athletes 

known to have compromised bone health; and healthy male populations. Further, the 

post-processing of the pQCT data through BoneJ has provided some new insight into site-

specific ways in which weight-bearing bone reacts to supplementation. Previous 

examinations of bone properties using BoneJ have characterised bone in general and 

athletic populations; however, with the exception of one study (Macdonald et al., 2009) 

these analyses have not followed an intervention and none have examined responses 

following calcium and vitamin D supplementation.  

It is acknowledged that the final study size was small, however it should be 

recognised that three-quarters of the male apprentice jockey population located in NSW 

and Victoria were recruited the study. Professional obligations on the part of the jockeys 

resulted in a large number of the participants being lost to follow-up. Coupled with the 

shorter study duration, this may have impacted on the power of the study, affecting our 

ability to detect significance in the strength strain index. Six months is recognised as being 
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a short duration in terms of manifestations to bone alterations. A year-long intervention 

may have borne out significant alterations to the radius bone properties and strength 

indices. Unfortunately, this was impractical with this group of participants as 21 of the 

original 29 jockeys were in their final apprenticeship year and would most likely have 

been lost to follow-up. Nevertheless, recognition should be given to the highly significant 

results obtained at the tibia and within the bone turnover markers despite the reduced 

final study size. 

8.8 Directions and Future Research 

To strengthen the findings found in this research, future studies should: 

 Extend the intervention period beyond six months to further explore 

changes to bone material properties at both the tibia and radius. It is 

acknowledged that six months represent a relatively short time period to 

observe adaptations to bone properties. Had the timeframe been longer, 

changes to parameters such as cortical thickness and bone strength 

indices (SSI and BSI) may have been observed. Further alterations to 

trabecular properties may have been observed in the tibia as well as 

improvements to radial bone material properties. 

 Replicate the study using female jockeys to establish whether the 

supplementation regime would result in positive modifications to bone 

material properties. The current study excluded female participants as the 

numbers of female apprentice jockeys available was insufficient to provide 

power for a sub-group analysis. Further, females deposit bone on the 

endocortical surface while males deposit bone on the periosteal surface, 
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suggesting there would not be a homogenous response (Schoenau et al., 

2001). 

 Extend the scope of the study to other athletic populations known to 

demonstrate low BMD, such as cyclists and endurance runners, who 

habitually undertake excessive amounts of exercise and limit body weight 

in order to maximise power to weight ratios.  

 Include additional blood markers of bone homeostasis, specifically PTH, as 

this hormone works in concert with vitamin D to regulate osteoclastic 

activity. Increasing levels of PTH would indicate continued bone 

resorption, while decreasing levels of PTH would be indicative of an 

inhibition of osteoclastic activity. This would further assist in clarifying 

alterations to BTMs. 

 Extend the blood parameters to include markers of energy metabolism to 

further establish the effects of prolonged weight regulation on bone 

material properties. Additionally, these markers of energy metabolism 

would assist in interpreting dietary information provided by the subjects, 

particularly in the absence of energy expenditure data. Specific measures 

could include: plasma levels of insulin and IGF-1, cortisol and growth 

hormone which are known to have an effect on the function of bone cells. 

(De Souza et al., 2008; Ihle & Loucks, 2004). 

 Studies with older, retired jockeys specifically examining bone material 

properties would assist in establishing whether there are prolonged 
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effects of persistent weight regulation. Whilst the health characteristics of 

retired jockeys has recently been examined, this did not include data 

relating to bone health. 

 Elucidate impact loads at the tibia and radius through the habitual physical 

activity of jockeys would assist in establishing the level of musculoskeletal 

strain incurred through horse riding.  

 Quantification of energy expenditure encompassing training and routine 

physical activity would help establish levels of energy deficit.  

8.9 Final Remarks 

At a time when energy intake should be optimised to build muscle and bone, 

apprentice jockeys actively restrict energy consumption, compromising growth and 

impacting bone health, amongst other things. The results of this double-blind randomised 

placebo controlled trial of calcium and vitamin D supplementation are encouraging as a 

means of counteracting the deleterious effects of engaging in a prolonged weight-

restricted sport. Reductions in bone resorption together with improvements to the tibial 

shaft suggest that 800mg of calcium combined with 400IU of vitamin D daily would assist 

in improving bone outcomes in this group of weight-restricted athletes, potentially 

reducing fracture risk and improving their longer-term bone health. 
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Appendix 1: ANZ Clinical Trials Registration 

From: info@actr.org.au [mailto:info@actr.org.au]  
Sent: Monday, 2 April 2012 11:13 AM 
To: David Greene 
Subject: Your ACTRN (registration number): ACTRN12612000374864 

 Dear David, 
 
Re: For young male jockeys, will 6-month calcium and vitamin D supplementation compared to a 
placebo increase tibial and radial bone strength and density 
 
Thank you for submitting the above trial for inclusion in the Australian New Zealand Clinical Trials 
Registry (ANZCTR). 
 
Your trial has now been successfully registered and allocated the ACTRN: ACTRN12612000374864 
 
Web address of your trial: http://www.ANZCTR.org.au/ACTRN12612000374864.aspx 
Date submitted: 30/03/2012 10:18:44 AM 
Date registered: 2/04/2012 11:13:04 AM 
Registered by: David Greene 
 
If you have already obtained Ethics approval for your trial, could you please send the ANZCTR a 
copy of at least one Ethics Committee approval letter? A copy of the letter can be sent to 

info@actr.org.au (by email) OR (61 2) 9565 1863, attention to ANZCTR (by fax). 
 
Please be reminded that the quality and accuracy of the trial information submitted for 
registration is the responsibility of the trial's Primary Sponsor or their representative (the 
Registrant). The ANZCTR allows you to update trial data, but please note that the original data 
lodged at the time of trial registration and the tracked history of any changes made will remain 
publicly available. 
 
The ANZCTR is recognised as an ICMJE acceptable registry (http://www.icmje.org/faq.pdf) and a 
Primary Registry in the WHO registry network 
(http://www.who.int/ictrp/network/primary/en/index.html). 
 
If you have any enquiries please send a message to info@actr.org.au or telephone +61 2 9562 
5333. 
 
Kind regards, 
ANZCTR Staff 

T: +61 2 9562 5333 
F: +61 2 9565 1863 
E: info@actr.org.au 
W: www.ANZCTR.org.au 
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Appendix 2: Ethics Approval 

Human Research Ethics Committee 
Committee Approval Form 

Principal Investigator/Supervisor: David Green   Sydney Campus 
Co-Investigators:         Melbourne Campus 
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Ethics approval has been granted for the following project:  
Calcium and vitamin D supplementation on bone structural properties in young male jockeys: A 
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 security of records 
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 adverse effects on participant. The HREC will conduct an audit each year of 
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Signed:  .................................................. Date: ..........15/06/2012............. 
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Appendix 3: Study results 

Appendix 3 Table 1: Descriptive Characteristics results baseline and six months 

   
BASELINE 

   
SIX MONTHS 

  

 
Group Age Weight Height BMI Hydration Age Weight Height BMI Hydration 

ID 
 

(yrs) (kg) (cm) 
 

(Usg) (yrs) (kg) (cm) 
 

(Usg) 

JCAL01 1 32.5 55.9 168.1 1.020 19.78 33.1 55.6 168.0 19.70 1.025 

JCAL02 1 19.5 50.4 170.6 1.023 17.32 20.1 50.9 171.0 17.41 1.023 

JCAL03 2 18.7 55.6 167.0 1.017 19.94 19.3 55.4 167.1 19.84 1.025 

JCAL04 2 17.9 51.5 171.5 1.014 17.49 
     JCAL05 1 22.4 56.3 169.6 1.025 19.57 
     JCAL06 2 18.1 53.9 171.0 1.020 18.43 
     JCAL07 1 22.7 52.8 161.6 1.022 20.22 23.3 54.0 161.5 20.70 1.017 

JCAL08 2 19.8 54.5 167.3 1.010 19.47 20.4 55.0 168.2 19.44 1.015 

JCAL09 1 21.3 54.4 160.8 1.019 21.04 
     JCAL10 2 23.6 53.1 166.8 1.025 19.09 24.2 53.7 167.6 19.12 1.003 

JCAL11 2 18.9 48.7 159.0 1.018 19.26 19.5 49.3 159.4 19.40 1.023 

JCAL12 1 22.3 58.8 178.8 1.030 18.39 
     JCAL13 2 20.7 47.1 160.8 1.005 18.22 
     JCAL14 1 27.2 58.0 161.8 1.028 22.15 27.8 60.2 163.4 22.53 1.005 

JCAL15 2 19.5 50.6 162.3 1.032 19.21 20.0 54.1 163.5 20.22 1.021 

JCAL16 1 18.7 59.2 173.3 1.028 19.71 
     JCAL17 2 17.0 54.6 170.8 1.018 18.72 17.6 54.9 171.1 18.75 1.018 

JCAL18 1 18.6 50.4 159.2 1.021 19.89 19.1 50.5 159.0 19.96 1.024 

JCAL19 1 20.0 51.3 167.6 1.022 18.26 
     JCAL20 2 18.2 51.2 169.7 1.018 17.78 18.7 53.4 169.6 18.55 1.017 

JCAL21 2 18.9 47.6 171.1 1.010 16.26 19.4 47.6 171.5 16.17 1.017 

JCAL22 2 18.2 52.4 170.0 1.021 18.13 
     JCAL23 1 17.7 54.6 174.6 1.026 17.91 
     JCAL24 1 19.1 48.3 165.0 1.021 17.74 19.6 52.1 165.5 19.02 1.020 

JCAL25 1 16.7 49.7 174.0 1.028 16.42 
     JCAL26 1 19.9 56.5 168.8 1.024 19.81 20.4 56.1 170.8 19.23 1.026 

JCAL27 2 19.2 57.7 172.1 1.030 19.46 19.7 61.5 172.0 20.79 1.029 

JCAL28 2 18.9 60.7 169.6 1.029 21.10 
     JCAL29 1 19.0 49.9 170.1 1.021 17.25 19.4 50.4 171.6 17.12 1.020 
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Appendix 3 Table 2: Baseline pQCT results – Radius 

ID Group 
Total 
Area 

Total 
content 

Total 
density 

Trabecular 
area 

Trabecular 
density 

Bone 
strength 

Index 
Endo 
circ 

Peri 
circ 

 
 (mm2) (mg·mm) (mg.cm3) (mm2) (mg.cm3) (mg2·mm4) (mm) (mm) 

JCAL01 1 366.0 125 355.6 164.5 235.4 46.3 40.50 24.50 

JCAL02 1 440.3 148 320.3 198.0 205.0 45.2 41.61 25.38 

JCAL03 2 427.8 124 269.8 192.3 183.0 31.1 43.31 29.66 

JCAL04 2 419.3 
 

401.1 188.5 387.6 67.5 
  JCAL05 1 554.5 

 
290.8 229.5 155.5 46.9 

  JCAL06 2 462.8 
 

310.3 208.0 242.7 44.6 
  JCAL07 1 534.5 163 303.9 240.5 210.5 49.4 41.15 25.07 

JCAL08 2 498.8 153 364.7 224.3 327.5 66.3 42.24 26.76 

JCAL09 1 448.5 
 

373.0 187.3 240.7 62.4 
  JCAL10 2 472.3 171 352.7 212.5 239.7 58.8 42.47 28.96 

JCAL11 2 477.0 136 279.2 214.5 201.1 37.2 35.93 20.82 

JCAL12 1 433.0 
 

395.2 156.6 223.6 67.6 
  JCAL13 2 430.8 

 
335.8 193.8 264.9 48.6 

  JCAL14 1 447.0 177 400.8 201.0 281.8 71.8 48.31 30.80 

JCAL15 2 465.3 158 335.3 209.3 247.9 52.3 49.47 34.91 

JCAL16 1 574.3 
 

283.5 240.0 198.5 46.2 
  JCAL17 2 486.3 139 272.3 218.8 196.6 36.1 42.09 27.69 

JCAL18 1 445.3 162 393.8 200.3 318.8 69.1 41.49 23.65 

JCAL19 1 542.5 
 

228.1 204.0 143.5 28.2   

JCAL20 2 444.8 167 345.6 200.0 255.9 53.1 42.21 26.11 

JCAL21 2 464.0 133 272.5 208.8 182.6 34.5 41.76 27.69 

JCAL22 2 550.0 
 

291.3 247.3 230.5 46.7 
  JCAL23 1 476.8 

 
275.5 192.5 164.0 36.2 

  JCAL24 1 421.8 127 309.0 189.8 244.7 40.3 39.51 25.44 

JCAL25 1 519.5 
 

286.4 233.8 228.9 42.6 
  JCAL26 1 478.0 

 
325.8 215.0 183.9 50.7 

  JCAL27 2 369.0 119 369.4 166.0 205.0 50.4 43.88 30.55 

JCAL28 2 410.0 
 

319.3 184.6 181.6 41.8 
  JCAL29 1 557.8 161 295.2 250.8 232.8 48.6 41.30 26.47 

KEY: Endo circ = endocortical circumference; Peri circ = Pericortical circumference 

  



 

192 
 

Appendix 2 Table 2: Baseline pQCT results – Radius cont’d 

ID Group 
Cortical 
content 

Cortical 
area 
66% 

Cortical 
density 

66% 

SSI-
Polar 
66%  

Total 
Bone 
Area 

Total 
Muscle + 

Bone 
Area 

Total 
Bone 
Area 

Muscle 
Area 

 
 (mg.mm) (mm2) (mg.cm3) (mm3) (mm2) (mm2) (mm2) (mm2) 

JCAL01 1 108 83.3 1171.3 314.9 198.5 4698.8 291.3 4407.5 

JCAL02 1 117 85.3 1075.6 223.8 206.0 3884.3 366.0 3518.3 

JCAL03 2 103 74.8 1119.5 292.2 173.3 4449.8 282.3 4167.5 

JCAL04 2 
 

86.3 1123.1 281.6 189.0 3677.8 271.8 3406.0 

JCAL05 1 
 

72.3 1082.6 354.4 218.5 4601.5 344.8 4256.7 

JCAL06 2 
 

79.8 1034.6 314.7 181.8 4127.0 353.3 3773.7 

JCAL07 1 110 86.0 1150.9 324.2 209.5 4570.0 307.5 4262.5 

JCAL08 2 110 85.8 1099.7 295.4 213.5 4495.3 335.3 4160.0 

JCAL09 1 
 

76.3 1101.1 256.7 202.0 4917.0 307.3 4609.7 

JCAL10 2 101 77.8 1132.1 315.5 187.5 4608.3 301.8 4306.5 

JCAL11 2 87 69.5 1127.5 188.8 166.0 4442.8 244.3 4198.5 

JCAL12 1 
 

75.7 1132.3 268.3 208.0 4364.3 321.0 4043.3 

JCAL13 2 
 

75.3 1174.7 246.5 174.5 4115.3 254.5 3860.8 

JCAL14 1 149 112.5 1142.3 427.3 183.3 4573.8 311.5 4262.3 

JCAL15 2 129 96.3 1104.0 492.5 226.3 4952.0 411.3 4540.7 

JCAL16 1 
 

72.2 1061.2 343.4 199.3 4620.0 343.8 4276.2 

JCAL17 2 103 79.5 1097.8 295.0 185.5 4292.5 297.8 3994.7 

JCAL18 1 118 91.5 1146.0 312.8 214.0 4533.8 293.3 4240.5 

JCAL19 1 
 

61.3 1023.4 287.8 178.0 4490.3 316.3 4174.0 

JCAL20 2 115 88.3 1140.8 344.2 196.3 4279.0 294.8 3984.2 

JCAL21 2 98 74.8 1105.2 242.7 183.8 4075.3 302.8 3772.5 

JCAL22 2 
 

91.0 1094.4 336.0 208.8 4547.3 340.5 4206.8 

JCAL23 1 
 

72.5 1067.5 289.1 187.3 4441.5 322.5 4119.0 

JCAL24 1 89 69.0 1039.2 221.9 167.3 4338.5 273.0 4065.5 

JCAL25 1 
 

68.8 1039.4 232.8 172.8 4562.5 320.3 4242.2 

JCAL26 1 
 

76.5 1122.5 301.0 186.0 4658.5 317.8 4340.7 

JCAL27 2 103 79.3 1101.9 257.4 194.3 4345.3 322.5 4022.8 

JCAL28 2 
 

80.5 1120.7 289.8 197.3 4788.5 342.3 4446.2 

JCAL29 1 106 80.3 1111.2 294.5 185.8 4323.8 285.8 4038.0 
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Appendix 3 Table 3: Six months pQCT results – Radius  

ID Group 
Total 
Area 

Total 
content 

Total 
density 

Trabecular 
area 

Trabecular 
density 

Bone 
strength 

Index 
Endo 
circ 

Peri 
circ 

 
 (mm2) (mg·mm) (mg.cm3) (mm2) (mg.cm3) (mg2·mm4) (mm) (mm) 

JCAL01 1 346.8 125 361.3 156.0 227.3 45.3 40.92 25.07 

JCAL02 1 497.0 140 297.5 223.5 192.6 44.0 47.33 34.19 

JCAL03 2 416.8 132 281.7 187.5 194.8 33.1 44.20 30.10 

JCAL04 2 
        JCAL05 1 
        JCAL06 2 
        JCAL07 1 522.0 162 311.3 234.8 218.6 50.6 41.34 25.07 

JCAL08 2 442.5 182 345.9 199.0 255.1 52.9 43.20 28.08 

JCAL09 1 
        JCAL10 2 470.8 167 362.6 211.8 253.5 61.9 42.35 28.58 

JCAL11 2 469.8 133 288.7 211.3 197.6 39.2 36.50 21.42 

JCAL12 1 
        JCAL13 2 
        JCAL14 1 425.0 178 416.5 191.0 282.9 73.7 46.02 26.53 

JCAL15 2 471.3 156 336.1 212.0 245.6 53.2 49.12 34.69 

JCAL16 1 
        JCAL17 2 506.0 132 274.6 227.5 204.1 38.2 41.45 26.82 

JCAL18 1 421.0 174 384.0 189.3 282.3 62.1 40.11 21.42 

JCAL19 1 
      

  

JCAL20 2 477.8 154 349.2 214.8 262.2 58.3 41.79 25.25 

JCAL21 2 460.0 126 288.4 206.8 183.5 38.3 41.61 28.14 

JCAL22 2 
        JCAL23 1 
        JCAL24 1 416.3 129 305.6 187.3 231.0 38.9 39.44 26.23 

JCAL25 1 
        JCAL26 1 474.5 

 
337.7 213.5 194.1 54.1 

  JCAL27 2 377.8 136 315.5 169.8 142.5 37.6 44.38 31.21 

JCAL28 2 
        JCAL29 1 574.8 165 279.8 258.5 220.9 45.0 41.23 26.29 

KEY: Endo circ = endocortical circumference; Peri circ = Pericortical circumference 
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Appendix 3 Table 3: Six months pQCT results – Radius cont’d 

ID Group 
Cortical 
content 

Cortical 
area 
66% 

Cortical 
density 66% 

SSI-Polar 
66%  

Total 
Bone 
Area 

Total 
Muscle + 

Bone 
Area 

Total 
Bone 
Area 

Muscle 
Area 

 
 (mg.mm) (mm2) (mg.cm3) (mm3) (mm2) (mm2) (mm2) (mm2) 

JCAL01 1 109 82.8 1171.9 307.7 198.0 4671.5 290.3 4381.2 

JCAL02 1 121 86.5 1164.2 262.6 204.3 4184.0 308.3 3875.7 

JCAL03 2 104 73.0 1120.1 289.9 170.3 4211.8 279.8 3932.0 

JCAL04 2 
        JCAL05 1 
        JCAL06 2 
        JCAL07 1 110 84.8 1160.8 327.1 207.5 4861.0 305.8 4555.2 

JCAL08 2 112 85.0 1127.4 582.4 215.8 4232.0 327.8 3904.2 

JCAL09 1 
        JCAL10 2 100 76.8 1143.1 325.6 189.0 4731.3 303.3 4428.0 

JCAL11 2 89 68.3 1141.4 206.9 165.8 4725.0 238.3 4486.7 

JCAL12 1 
        JCAL13 2 
        JCAL14 1 147 110.3 1125.8 698.4 175.5 4798.3 347.5 4450.8 

JCAL15 2 128 97.8 1111.5 500.2 229.0 5199.8 412.5 4787.3 

JCAL16 1 
        JCAL17 2 100 80.0 1099.5 283.2 188.5 4304.3 318.3 3986.0 

JCAL18 1 116 92.5 1124.9 196.4 217.3 4576.8 312.5 4264.3 

JCAL19 1 
        JCAL20 2 113 87.5 1160.5 346.1 196.0 4594.3 298.8 4295.5 

JCAL21 2 97 77.8 1098.3 474.1 189.3 4101.0 306.5 3794.5 

JCAL22 2 
        JCAL23 1 
        JCAL24 1 86 72.8 1049.5 233.0 171.8 4225.8 275.3 3950.5 

JCAL25 1 
        JCAL26 1 
 

76.3 1130.6 298.0 186.5 4323.0 318.5 4004.5 

JCAL27 2 105 79.0 1089.6 260.0 186.5 3956.5 321.3 3635.2 

JCAL28 2 
        JCAL29 1 104 80.0 1133.3 306.6 182.8 4314.3 284.5 4029.8 

 

  



 

195 
 

Appendix 3 Table 4: Baseline pQCT results – Tibia 

ID Group 
Trabecular 

content 
Trabecular 

density 
Trabecular 

area 
Total 

density 
Total 
Area 

Bone 
strength 

Index 

 
 (mg·mm) (mg.cm3) (mm2) (mg.cm3) (mm2) (mg2·mm4) 

JCAL01 1 215.02 208.90 952.00 286.60 1152.25 94.65 

JCAL02 1 202.99 216.30 913.75 283.30 1108.00 88.93 

JCAL03 2 184.47 246.50 748.50 286.90 918.00 75.56 

JCAL04 2 186.94 206.70 904.50 244.70 1100.75 65.91 

JCAL05 1 189.97 200.40 922.75 253.30 1117.50 71.70 

JCAL06 2 237.86 232.00 1025.25 252.80 1231.50 78.70 

JCAL07 1 216.76 242.70 811.50 314.40 988.00 97.66 

JCAL08 2 192.69 272.00 708.50 352.30 910.25 112.98 

JCAL09 1 236.67 308.80 806.50 353.00 989.20 123.26 

JCAL10 2 238.05 240.60 989.25 266.20 1187.75 84.17 

JCAL11 2 134.92 173.30 778.75 214.00 949.75 43.49 

JCAL12 1 198.20 204.70 913.75 285.10 1131.00 91.93 

JCAL13 2 244.05 305.00 800.25 348.60 983.00 119.46 

JCAL14 1 278.80 256.50 989.25 331.90 1189.75 131.06 

JCAL15 2 215.22 269.20 799.50 295.30 973.75 84.91 

JCAL16 1 205.02 207.40 959.25 251.90 1163.50 73.83 

JCAL17 2 228.51 240.30 951.00 264.80 1144.50 80.25 

JCAL18 1 241.85 300.60 804.50 350.20 989.30 121.33 

JCAL19 1 
 

213.60 616.50 244.20 1370.50 81.73 

JCAL20 2 283.35 259.70 1091.25 285.90 1308.50 106.96 

JCAL21 2 186.69 227.90 819.25 275.60 1006.00 76.41 

JCAL22 2 263.31 266.00 989.75 284.80 1192.00 96.68 

JCAL23 1 210.12 201.50 1009.00 257.50 1210.75 80.28 

JCAL24 1 
 

246.80 505.80 280.10 1124.00 88.18 

JCAL25 1 178.51 210.90 842.25 248.70 1021.50 63.18 

JCAL26 1 225.41 230.60 989.20 287.60 1204.00 99.59 

JCAL27 2 235.48 292.10 806.25 338.60 997.75 114.39 

JCAL28 2 225.45 235.50 957.50 272.20 1158.00 85.80 

JCAL29 1 208.45 225.80 923.00 266.40 1118.50 79.38 

 

  



 

196 
 

Appendix 3 Table 4: Baseline pQCT results – Tibia cont’d 

ID Group 
Cortical 
content 

Cortical 
density 

66% 

Cortical 
area 
66% 

Cortical 
thickness 

Total 
Bone 
Area 

SSI-Polar 
66%  

 
 (mg.mm) (mg.cm3) (mm2) (mm) (mm2) (mm3) 

JCAL01 1 343.71 1124.30 303.75 4.61 521.00 2462.91 

JCAL02 1 314.36 1126.00 289.50 4.56 454.25 2085.24 

JCAL03 2 280.90 1116.90 251.50 3.80 484.75 1920.14 

JCAL04 2 288.79 1103.30 261.75 3.67 542.75 2067.81 

JCAL05 1 269.93 1101.00 249.00 3.40 566.25 2237.49 

JCAL06 2 272.13 1102.80 246.75 3.88 454.50 1840.00 

JCAL07 1 232.63 1047.90 228.25 4.16 392.50 1482.23 

JCAL08 2 260.05 1097.30 237.00 3.73 450.50 1777.96 

JCAL09 1 293.22 1110.00 239.50 4.04 462.50 2008.11 

JCAL10 2 313.37 1121.20 279.50 3.53 647.75 2717.28 

JCAL11 2 186.07 1092.90 170.25 2.77 391.50 1108.08 

JCAL12 1 321.84 1103.80 292.30 3.78 604.00 2694.26 

JCAL13 2 359.66 1144.50 314.25 4.97 493.75 2338.09 

JCAL14 1 302.57 1091.90 263.00 3.79 587.75 2567.12 

JCAL15 2 296.29 1136.30 260.75 3.83 509.25 2206.84 

JCAL16 1 309.12 1111.60 242.00 3.84 540.00 2290.19 

JCAL17 2 276.82 1072.90 258.00 3.49 569.75 2223.47 

JCAL18 1 318.41 1106.20 289.30 4.64 449.75 2095.45 

JCAL19 1 259.09 1052.40 230.25 3.17 614.75 2400.54 

JCAL20 2 359.77 1140.30 315.50 4.86 509.50 2319.66 

JCAL21 2 318.82 1112.80 286.50 4.16 531.50 2340.65 

JCAL22 2 325.71 1086.60 299.75 4.33 545.25 2295.44 

JCAL23 1 245.88 1087.20 230.75 3.34 531.00 2007.95 

JCAL24 1 317.60 1100.50 287.75 4.58 489.75 2080.18 

JCAL25 1 243.94 1004.00 237.75 3.49 505.25 1809.64 

JCAL26 1 278.20 1114.20 235.25 3.73 515.00 2093.83 

JCAL27 2 352.34 1130.20 311.75 4.32 583.50 2645.82 

JCAL28 2 335.68 1132.10 296.50 4.03 591.25 2649.41 

JCAL29 1 264.53 1101.00 240.25 3.38 527.50 1937.64 
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Appendix 3 Table 5: Six months pQCT results – Tibia 

ID Group 
Trabecular 

content 
Trabecular 

density 
Trabecular 

area 
Total 

density 
Total 
Area 

Bone 
strength 

Index 

 
 (mg·mm) (mg.cm3) (mm2) (mg.cm3) (mm2) (mg2·mm4) 

JCAL01 1 227.94 239.20 953.00 282.50 1162.75 92.79 

JCAL02 1 225.96 239.30 944.25 286.30 1153.75 94.57 

JCAL03 2 187.22 241.00 776.75 280.00 949.25 74.42 

JCAL04 2 
      JCAL05 1 
      JCAL06 2 
      JCAL07 1 188.70 224.40 841.00 249.90 1017.25 63.53 

JCAL08 2 195.41 275.20 710.00 361.10 935.25 121.95 

JCAL09 1 
      JCAL10 2 246.24 243.70 1010.25 274.40 1218.75 91.77 

JCAL11 2 150.98 184.50 818.50 224.60 997.75 50.33 

JCAL12 1 
      JCAL13 2 
      JCAL14 1 279.64 299.20 934.75 345.60 1155.25 137.98 

JCAL15 2 221.49 264.50 837.25 292.80 1016.75 87.17 

JCAL16 1 
      JCAL17 2 220.15 240.10 916.75 265.50 1105.00 77.89 

JCAL18 1 271.39 325.10 834.75 359.70 1024.25 132.52 

JCAL19 1 
      JCAL20 2 264.27 251.20 1052.00 281.50 1266.25 100.34 

JCAL21 2 196.78 231.20 851.00 283.70 1049.25 84.45 

JCAL22 2 
      JCAL23 1 
      JCAL24 1 226.06 269.80 837.75 314.20 1029.50 101.63 

JCAL25 1 
      JCAL26 1 218.09 242.00 901.25 294.30 1108.25 95.99 

JCAL27 2 245.50 283.80 865.00 328.40 1065.00 114.86 

JCAL28 2 
      JCAL29 1 192.52 218.50 881.25 258.10 1066.50 71.05 
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Appendix 3 Table 5: Six months pQCT results – Tibia cont’d 

ID Group 
Cortical 
content 

Cortical 
density 

66% 

Cortical 
area 
66% 

Cortical 
thickness 

Total 
Bone 
Area 

SSI-Polar 
66%  

 
 (mg.mm) (mg.cm3) (mm2) (mm) (mm2) (mm3) 

JCAL01 1 376.31 1152.60 326.50 4.87 538.50 2613.16 

JCAL02 1 346.16 1146.20 302.00 4.76 489.00 2183.52 

JCAL03 2 279.92 1115.20 251.00 3.82 480.50 1868.30 

JCAL04 2 
      JCAL05 1 
      JCAL06 2 
      JCAL07 1 267.46 1072.00 249.50 4.23 413.25 2168.44 

JCAL08 2 261.77 1102.20 237.50 3.75 448.25 1775.26 

JCAL09 1 
      JCAL10 2 315.22 1128.80 279.25 3.52 648.50 2796.06 

JCAL11 2 196.41 1112.80 176.50 2.92 382.75 1178.77 

JCAL12 1 
      JCAL13 2 
      JCAL14 1 329.54 1120.90 294.00 3.87 608.00 2676.75 

JCAL15 2 299.47 1140.80 262.50 3.87 508.75 2179.04 

JCAL16 1 
      JCAL17 2 267.55 1070.20 250.00 3.46 545.00 2086.33 

JCAL18 1 344.90 1133.60 304.25 4.87 481.25 2208.00 

JCAL19 1 
      JCAL20 2 360.97 1143.20 315.75 4.83 515.00 2331.15 

JCAL21 2 321.40 1118.90 287.25 4.17 533.50 2397.80 

JCAL22 2 
      JCAL23 1 
      JCAL24 1 338.20 1125.50 300.50 4.68 493.25 1609.80 

JCAL25 1 
      JCAL26 1 298.34 1123.70 265.50 3.79 534.75 2170.17 

JCAL27 2 351.38 1126.20 312.00 4.33 580.75 2604.03 

JCAL28 2 
      JCAL29 1 265.45 1102.60 240.75 3.39 526.75 1954.18 
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Appendix 3 Table 6: Blood borne variables data baseline and six months 

   
BASELINE 

 
SIX MONTHS 

ID Group 

250H  
Vit D 

(nmol·L-1) 
CTx 

(ng·L-1) 

Total 
P1NP 

(ug·L-1) 

250H  
Vit D 

(nmol·L-1) 
CTx 

(ng·L-1) 

Total 
P1NP 

(ug·L-1) 

JCAL01 1 58 190 69 63 160 51.3 

JCAL02 1 47 250 100.7 50 230 113.9 

JCAL03 2 103 200 102.1 86 190 91.5 

JCAL04 2 86 400 159.8 
   JCAL05 1 106 480 76.6 
   JCAL06 2 60 550 187.4 
   JCAL07 1 58 260 53 65 220 65.8 

JCAL08 2 53 440 153.1 50 540 160.1 

JCAL09 1 101 210 75.4 
   JCAL10 2 93 230 92 92 240 90.6 

JCAL11 2 62 610 115.8 54 620 110.7 

JCAL12 1 81 180 56 
   JCAL13 2 79 450 64.5 
   JCAL14 1 64 180 53.2 88 160 64.6 

JCAL15 2 75 270 63.4 52 400 52.2 

JCAL16 1 90 610 191.7 
   JCAL17 2 90 330 101.5 
   JCAL18 1 98 280 108.4 108 250 98.9 

JCAL19 1 98 570 113.3 
   JCAL20 2 86 440 125.7 88 470 121.9 

JCAL21 2 47 350 153.5 63 550 146.1 

JCAL22 2 98 470 93.4 
   JCAL23 1 86 430 133.1 
   JCAL24 1 41 510 115.2 58 580 105.8 

JCAL25 1 60 540 127.9 
   JCAL26 1 89 610 184.4 100 570 152.9 

JCAL27 2 122 550 73.4 102 620 64.1 

JCAL28 2 52 440 125.9 
   JCAL29 1 62 690 149.5 73 630 183.6 
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Appendix 3 Table 7: Baseline Anthropometric data 

  

Stretch 
stature  

Sitting 
Height 

Triceps 
s/f 

Subscap 
s/f 

Supraspinale 
s/f 

Abdominal 
s/f 

Front 
Thigh s/f 

Medial 
Calf s/f 

sum of 
six s/f 

ID Group (cm) (cm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 168.1 86.8 4.95 6.45 3.2 4.9 5.4 3.3 28.2 

JCAL02 1 170.6 85.3 5.2 5.35 3.6 5.15 5.1 4.45 28.85 

JCAL03 2 167 84.5 6.65 6.35 5.55 7.95 6.65 4.85 38 

JCAL04 2 171.5 87 5.5 5.8 5 5.75 6.7 4.85 33.6 

JCAL05 1 169.6 83.5 5.3 5.35 3.75 5.1 6.2 4.2 29.9 

JCAL06 2 171 85 6.45 6 4.1 6 7.05 5.75 35.35 

JCAL07 1 161.6 85 5.8 6.2 5.2 8.95 7.35 4.5 38 

JCAL08 2 167.3 84.8 6.5 5.8 4.25 6.25 7.65 5.25 35.7 

JCAL09 1 160.8 82 7.6 7.45 6.15 8.8 7.8 4.35 42.15 

JCAL10 2 166.8 85.2 4.35 6.2 4 5.3 6.95 3.45 30.25 

JCAL11 2 159 84.6 5.15 5.95 4.5 5.5 6.1 3.3 30.5 

JCAL12 1 178.8 89.6 5.5 4.9 3.4 5.1 6.25 3.15 28.3 

JCAL13 2 160.8 84 5.5 5.45 3.6 5.05 6.15 3.55 29.3 

JCAL14 1 161.8 83 7 5.95 5.85 10.45 9.8 3.55 42.6 

JCAL15 2 162.3 81 5.25 6.4 3.4 5.15 6.55 4.55 31.3 

JCAL16 1 173.3 83.4 10.1 5.75 4.2 8.05 12.3 5.35 45.75 

JCAL17 2 170.8 83.4 9 6.25 4.65 7 8.6 6.4 41.9 

JCAL18 1 159.2 78.8 6.55 7.1 4 5.7 10.25 4.7 38.3 

JCAL19 1 167.6 83 4.45 4.8 2.9 4.5 5.9 3 25.55 

JCAL20 2 169.7 83.2 5.8 5.65 3.6 5.8 7.9 4.75 33.5 

JCAL21 2 171.1 84.5 3.45 4.9 3.5 5.05 4 3.55 24.45 

JCAL22 2 170 82.9 4.35 5.15 3.85 4.4 6.3 4.15 28.2 

JCAL23 1 174.6 84 4.55 5.9 6.05 7.8 4.75 5.2 34.25 

JCAL24 1 165 79.2 5.3 4.4 3.75 5.5 6.1 3.8 28.85 

JCAL25 1 174 84.5 6.2 5.7 5.6 11.3 9.8 5.75 44.35 

JCAL26 1 168.8 84.9 6.3 5.65 5.1 8.95 8.9 5.1 40 

JCAL27 2 172.1 84.9 4.85 5.05 3.2 5.05 8.4 4.65 31.2 

JCAL28 2 169.6 83.4 7.4 5.9 4.75 6.35 10.6 4.25 39.25 

JCAL29 1 170.1 82 4.65 5.3 4.25 5.95 5.7 4.9 30.75 
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Appendix 3 Table 7: Baseline Anthropometric data cont’d 

  

Head 
girth 

Arm 
girth 

relaxed 

Arm 
girth 

flexed  
Forearm 

girth  
Wrist 
girth  

Chest 
girth  

Waist 
girth  

Gluteal 
girth  

Thigh girth 
(1 cm dist. 
glut. line) 

Thigh girth 
(mid  

Calf 
girth 

(max.)  

Ankle 
girth 

(min.)    

ID Group (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) 

JCAL01 1 55.7 28.3 30.3 26.1 15.5 88.4 68.5 84.7 48 45.2 34.3 19.5 

JCAL02 1 55.2 24.8 27.3 24.3 15.3 82 66 81.5 45.2 40.7 29.5 20.2 

JCAL03 2 53 27 29.6 25.8 16.1 90 69.5 86.1 48 45.6 32 20.4 

JCAL04 2 52 24.7 27 23.7 15.4 83 64.5 82.5 46.8 42 31.5 20.5 

JCAL05 1 53.4 27.5 30.9 25.7 15.8 90.5 68.3 83.3 49 47 32.5 21.3 

JCAL06 2 56.3 25.8 28.8 24 16.3 85.3 69.5 82.5 47.7 43 29.7 20.7 

JCAL07 1 52.1 27.5 31.3 25 15.6 87.8 69.4 82 49.4 45 32.2 19.8 

JCAL08 2 55.7 25.4 28.5 24.7 16.5 87.2 68 85.5 46.3 43.5 31.3 20.3 

JCAL09 1 56 29 31.8 25.7 15.7 86.6 70.3 84 48.7 45.2 30.3 20 

JCAL10 2 56.2 27 28.1 24.7 15.5 85.7 65.2 82.3 45 40.8 33.3 20.7 

JCAL11 2 53.2 27.2 29.9 24.5 15.1 86.8 67.8 78.5 44.7 41.8 31.3 19.5 

JCAL12 1 55.3 27.5 29.3 24.9 15.2 88.5 67 84.8 46.2 43 30.8 19.8 

JCAL13 2 52.5 25.8 28.1 23.3 14.8 83.2 63 81 45 42.3 29.8 20.3 

JCAL14 1 58.2 29.4 31 26 15.8 87.6 71.2 87.5 49 45.6 35.6 20.5 

JCAL15 2 54.5 27.4 30.2 25.7 16 87.8 68 82.3 44.3 40 29.5 20 

JCAL16 1 54.5 27.3 30.3 24.6 15.7 87.4 70.8 86.7 48.5 44.7 31.4 20.7 

JCAL17 2 57.2 26 28.5 24.5 15.3 85.6 69.2 84.4 47.1 44 30.3 21 

JCAL18 1 58 26.8 29.8 24.6 14.8 84.6 68.8 80.6 46.5 43.5 31.1 19.5 

JCAL19 1 56.2 25.7 28.3 23.8 16.1 80.2 65 82 46.1 43.9 31.1 21.9 

JCAL20 2 56.5 27 29.5 24.2 16.4 83.7 67.5 83 44.5 43.2 32 20.9 

JCAL21 2 53.9 26 28.2 23.2 15.6 86.1 60.8 79.8 42.3 39.3 30.5 19.3 

JCAL22 2 53.2 26.8 29 25.4 16.8 87 65.3 82 44.5 41.3 31.8 21.4 

JCAL23 1 57 25.5 27.8 25.3 15.8 87.5 67.2 84.4 45.1 40.8 31.5 20.1 

JCAL24 1 52.2 26.2 28.3 24 15 81.8 66.1 81.8 44.4 40.8 29.8 19.7 

JCAL25 1 54.6 26.3 29.4 24.8 15.3 85.7 68.8 85.3 47.3 42.4 32.3 19.9 

JCAL26 1 55.3 26 28.8 25.1 16 86.3 65.8 87.6 50.4 45.5 32.1 19.7 

JCAL27 2 55.6 27.3 29.3 25.2 15.5 89 68.5 85.2 48.5 46 33 20.2 

JCAL28 2 57.4 28.7 30.8 26.5 16.1 86.2 69.5 90.3 53 48 33 20.7 

JCAL29 1 53.2 25.5 28.1 24.8 16 82.8 60.7 81.4 45.5 40.8 29.4 19.1 
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Appendix 3 Table 7: Baseline Anthropometric data cont’d 

  

Biacromial 
breadth 

Biiliocristal 
breadth 

Transverse 
chest 

breadth 

A-P 
Chest 
depth 

Humerus 
breadth 

(biepicondylar) 
Wrist 

breadth  
Femur breadth 
(biepicondylar) 

Ankle 
breadth 

ID Group (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) 

JCAL01 1 38.2 26.4 28.4 16.7 6.7 5.3 9.4 6.7 

JCAL02 1 38.2 24.8 28 16.3 6.6 5.7 9.1 6.6 

JCAL03 2 36.1 24.7 28.6 17.9 6.4 5.5 8.7 6.8 

JCAL04 2 37.1 26.15 25.6 18.7 7 5.4 9.2 6.7 

JCAL05 1 38.95 24.7 28.3 18.1 6.8 6 9.5 6.9 

JCAL06 2 38 25 27.3 17.8 6.7 6.2 9.6 7.5 

JCAL07 1 36.7 23.7 30.5 18.3 6.4 5.5 9.5 7 

JCAL08 2 37.2 26.7 28.8 17.3 7 5.8 9.5 6.8 

JCAL09 1 36.5 24.4 26.5 18.8 6.3 5.6 8.7 6.6 

JCAL10 2 39.2 23.8 27.6 17.2 6.6 5.7 9.9 7.4 

JCAL11 2 37.3 23.4 27.6 17.8 7 5.2 8.8 6.8 

JCAL12 1 40.5 25.2 28.3 18.7 6.9 5.6 9.2 6.9 

JCAL13 2 35.5 23.5 26.5 16.2 6.5 5.4 9.1 6.8 

JCAL14 1 36.5 26.7 26.8 18.9 6.2 5.8 9.7 7.5 

JCAL15 2 38 25.7 28.3 19 6.9 5.8 9.1 6.9 

JCAL16 1 41.4 27 29.7 17.6 7 5.7 10.8 6.8 

JCAL17 2 37.7 24.5 27.7 19.1 6.7 5.8 9.4 7.4 

JCAL18 1 36.9 24.9 27.6 18 6.3 5.2 9.3 6.6 

JCAL19 1 37.4 25.7 26.4 16.7 6.7 6 9.3 7.3 

JCAL20 2 35 25.7 25.8 17.2 6.7 5.8 9.4 6.9 

JCAL21 2 37.8 24 26.7 18.1 6.5 5.7 9 6.6 

JCAL22 2 39.1 25.5 28.8 17.7 7.3 5.6 9.4 7.2 

JCAL23 1 39.3 25.5 28 17.6 6.8 6.1 9.6 7.1 

JCAL24 1 36.7 25.6 26.9 16.6 6.9 5.3 9.2 6.5 

JCAL25 1 36.3 27 28.7 17.3 7 5.3 9.4 7.2 

JCAL26 1 38 25.8 26.4 19.7 7 5.8 9.4 7 

JCAL27 2 37.2 25.2 29.8 19.5 6.3 5.3 9.2 7.1 

JCAL28 2 37.7 25.6 29.4 16.6 6.8 5.9 9.8 7.5 

JCAL29 1 35.5 24.2 25.8 18.3 7.1 5.7 9.1 6.9 
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Appendix 3 Table 8: Six month Anthropometric data 

  

Stretch 
stature  

Sitting 
Height 

Triceps 
s/f 

Subscapular 
s/f 

Supraspinale 
s/f 

Abdominal 
s/f 

Front 
Thigh 

s/f 
Medial 
Calf s/f 

sum of 
six s/f 

ID Group (cm) (cm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 168 78.1 5.6 7.35 3.7 6.05 6.25 3.3 32.25 

JCAL02 1 171 75.4 5.5 5.65 3.7 5.6 6.8 5.6 32.85 

JCAL03 2 167.1 79.3 6.7 6.7 6.15 8.95 6.55 4.6 39.65 

JCAL04 2 
         JCAL05 1 
         JCAL06 2 
         JCAL07 1 161.5 76.7 6.9 7.25 6.15 12.5 8.5 4.4 45.7 

JCAL08 2 168.2 78.4 6.3 6.35 4.3 6.7 7.95 5.8 37.4 

JCAL09 1 
         JCAL10 2 167.6 77 3.8 5.55 3.4 5.15 6.15 3.2 27.25 

JCAL11 2 159.4 81.8 5.05 6.2 4.55 5.8 5.2 2.9 29.7 

JCAL12 1 
         JCAL13 2 
         JCAL14 1 163.4 80.6 6.8 6.9 6.3 12.6 10.9 4 47.5 

JCAL15 2 163.5 79.7 5.3 7.3 3.9 6.6 6.75 4.25 34.1 

JCAL16 1 
         JCAL17 2 171.1 80 9.3 6.6 5.2 7.95 9.05 5.8 43.9 

JCAL18 1 159 73.7 5.8 6.85 4 6.1 8.5 4.1 35.35 

JCAL19 1 
         JCAL20 2 169.6 78.2 6.5 5.45 4.05 6.35 8.3 4.25 34.9 

JCAL21 2 171.5 78 3.2 4.5 3.15 4.5 3.65 3.2 22.2 

JCAL22 2 
         JCAL23 1 
         JCAL24 1 165.2 72.9 5.15 4.45 4.6 6.6 7.25 4.3 32.35 

JCAL25 1 
         JCAL26 1 170.8 78.2 6.3 5.8 4.8 8.15 8.25 5.1 38.4 

JCAL27 2 172 80 6.65 6.65 5.2 9.05 10.35 4.55 42.45 

JCAL28 2 
         JCAL29 1 171.6 79.8 3.75 5.2 3.75 5.45 4.95 4.05 27.15 
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Appendix 3 Table 8: Six month Anthropometric data cont’d 

  

Head 
girth 

Arm 
girth 

relaxed 

Arm 
girth 

flexed 
Forearm 

girth 
Wrist 
girth Chest girth 

Waist 
girth 

(min.) 

Gluteal 
girth 

(max.) 

Thigh 
girth (1 

cm dist. ) 

Thigh 
girth 
(mid) 

Calf 
girth 

(max.) 

Ankle 
girth 

(min.) 

ID Group (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) 

JCAL01 1 55.8 28.5 30.8 26.1 15.6 87 70 86.4 49.4 45.6 33.8 19.2 
JCAL02 1 54.8 25.3 27.8 24.3 15 82.5 68.5 82 45 41.2 29.5 19.4 
JCAL03 2 52.8 27.5 29.1 25.7 15.5 90.5 66.8 85.2 48 45.7 32 20.5 
JCAL04 2 

            JCAL05 1 
            JCAL06 2 
            JCAL07 1 52.5 28.8 32.3 25.5 15.4 88.2 71.5 84.6 49.8 46.2 32.2 19.5 

JCAL08 2 55.5 25.8 28.8 24.7 16 88 66 86.5 46.8 44.6 31.5 19.4 
JCAL09 1 

            JCAL10 2 55.7 26.8 27.4 24.3 15.5 82.4 65.2 81.5 44.5 40.4 32.5 20.4 
JCAL11 2 53.3 27.3 30.3 25.8 14.8 86.2 67.3 78.7 45.5 42.7 30.8 19 
JCAL12 1 

            JCAL13 2 
            JCAL14 1 57.8 30.3 31.5 26.5 15.7 86.3 72.3 88.4 51 46 35.9 20.5 

JCAL15 2 54.7 28.8 32 26.1 16 94.8 71 84.2 45.4 41.2 29.8 19.9 
JCAL16 1 

            JCAL17 2 56.8 26.8 29.8 24.4 15.4 86.5 70.5 84.8 47.8 45.5 32.7 20.7 
JCAL18 1 57.5 26.5 29.5 24.5 14.8 85.1 68.6 81.3 46.6 43.6 30.4 19.5 
JCAL19 1 

            JCAL20 2 56.4 26.8 29.4 24.5 16.4 85 65.5 82.5 46.3 44.5 31.5 21.2 
JCAL21 2 53.6 25.7 28.6 23.3 15.6 86.5 62.3 79.5 41.7 39 30 18.7 
JCAL22 2 

            JCAL23 1 
            JCAL24 1 51.8 26.4 30.2 25.1 15 85 70.5 85.6 47 42.4 30.8 19.7 

JCAL25 1 
            JCAL26 1 55.2 26.1 28.9 24.5 15.9 85.6 64.8 88.2 50.5 44.2 32 19.7 

JCAL27 2 56 28.5 29.7 25.5 15.5 91.5 74.2 90 54 48 33.9 19.8 
JCAL28 2 

            JCAL29 1 52.8 25.8 27.9 24.7 16 84.5 61.5 80.8 44.4 40.5 29.2 19.3 
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Appendix 3 Table 8: Six months Anthropometric data cont’d 

  

Biacromial 
breadth 

Biiliocristal 
breadth 

Transverse 
chest 

breadth 
A-P Chest 

depth 

Humerus 
breadth 

(biepicondylar) 
Wrist 

breadth 
Femur breadth 
(biepicondylar) 

Ankle 
breadth 

ID Group (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm) 

JCAL01 1 40.7 26.6 28.8 17.7 6.5 5.3 9.5 6.7 
JCAL02 1 39.1 25.2 26.7 17.7 6.6 5.5 8.7 6.8 

JCAL03 2 36 25.3 29.1 18.1 6.5 5.6 8.5 7 

JCAL04 2 
        JCAL05 1 
        JCAL06 2 
        JCAL07 1 36.5 23.7 29 18.5 6 5.6 9.5 7 

JCAL08 2 37.2 26.7 28.7 36.8 7 5.7 9.3 6.8 

JCAL09 1 
        JCAL10 2 39 24.7 26.7 17 6.8 5.6 9.6 7.4 

JCAL11 2 37.3 23.5 27.5 17.4 7 5.2 9 7 

JCAL12 1 
        JCAL13 2 
        JCAL14 1 36.1 26.2 27.6 19.7 6.8 5.9 9.6 7.2 

JCAL15 2 38.7 25.6 28.2 19.3 7 6 9.1 7.1 

JCAL16 1 
        JCAL17 2 38.1 24.5 27.5 18.4 7.1 5.6 9.1 7.3 

JCAL18 1 37.3 25.4 26.3 18.6 6.3 5.1 9.1 6.5 

JCAL19 1 
        JCAL20 2 37.2 25.7 28.7 16.9 6.9 5.8 9.6 7.1 

JCAL21 2 36.8 24.1 26.1 18.4 6.6 5.6 9 6.5 
JCAL22 2 

        JCAL23 1 
        JCAL24 1 37.3 24.8 28.4 16.3 7 5.3 9.3 6.9 

JCAL25 1 
        JCAL26 1 38.1 24.3 26.6 19.6 7 5.8 9.2 7.5 

JCAL27 2 36.8 25.6 29.7 19.6 6.3 5.4 8.9 6.7 

JCAL28 2 
        JCAL29 1 35.9 24.4 26.3 18.6 7.1 6 9.3 7.1 
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Appendix 3 Table 9: Baseline Dietary intake (DQES) 

 

 Portion  Energy Alcohol Total kJ Fat Protein Carbohydrate Alcohol Calcium 

ID Group (std factor) (kJ·day-1) (kJ·day-1) (kJ·day-1) (g·day-1) (g·day-1) (g·day-1) (g·day-1) (mg·day-1) 

JCAL01 1 1.1 6998.3 2064.2 9062.5 64.1 81.5 194.0 57.4 852.8 

JCAL02 1 1.0 8857.9 621.2 9479.1 93.4 115.9 208.5 15.7 745.2 

JCAL03 2 1.1 5946.7 60.8 6007.6 50.8 74.7 167.4 1.8 213.6 

JCAL04 2 1.1 5475.5 0.0 5475.5 55.2 67.2 137.1 0.0 ` 

JCAL05 1 1.8 18326.3 697.1 19023.5 198.1 321.3 330.4 21.5 1360.2 

JCAL06 2 0.8 3528.9 113.4 3642.3 41.0 34.8 85.4 3.2 201.3 

JCAL07 1 1.9 9510.1 1056.9 10566.9 100.6 106.9 238.7 27.3 598.3 

JCAL08 2 0.9 4475.9 0.0 4475.9 35.2 65.9 123.8 0.0 799.9 

JCAL09 1 1.1 6092.6 245.8 6338.5 62.6 98.2 127.5 7.8 561.6 

JCAL10 2 0.6 7357.2 71.6 7428.7 58.9 66.6 241.9 2.5 602.4 

JCAL11 2 1.1 8738.2 226.8 8965.0 107.8 90.9 192.0 6.4 640.3 

JCAL12 1 0.9 4296.4 371.8 4668.2 35.3 72.8 104.4 11.9 651.6 

JCAL13 2 1.0 2913.9 0.0 2913.9 24.2 51.5 68.4 0.0 188.0 

JCAL14 1 0.5 4240.5 318.0 4558.6 39.9 68.5 96.1 8.8 510.5 

JCAL15 2 1.8 12378.6 250.1 12628.7 129.2 149.7 302.3 7.3 790.4 

JCAL16 1 0.8 5401.7 281.4 5683.1 55.9 74.3 123.9 8.2 542.4 

JCAL17 2 1.1 10880.2 0.0 10880.2 113.2 173.2 224.6 0.0 1141.4 

JCAL18 1 1.2 9635.0 178.9 9813.9 83.9 145.3 238.9 6.2 1214.0 

JCAL19 1 0.9 8324.1 291.4 8615.5 85.5 90.8 218.8 10.0 1233.6 

JCAL20 2 0.8 8842.8 204.4 9047.2 83.6 139.3 203.8 5.6 1712.3 

JCAL21 2 1.9 9277.4 107.4 9384.8 115.0 138.9 159.6 3.7 665.4 

JCAL22 2 0.8 7917.7 354.8 8272.5 72.3 67.7 248.3 10.9 794.8 

JCAL23 1 0.9 6710.7 0.0 6710.7 70.1 81.4 163.2 0.0 636.1 

JCAL24 1 1.6 10119.3 61.3 10180.7 120.3 145.1 190.6 1.6 661.3 

JCAL25 1 0.9 9602.1 0.0 9602.1 105.6 153.9 183.3 0.0 902.7 

JCAL26 1 1.1 4611.8 375.1 4986.9 49.1 69.8 96.3 10.3 418.5 

JCAL27 2 1.0 9433.6 51.1 9484.7 90.6 193.9 166.8 1.8 548.3 

JCAL28 2 0.6 5759.0 2037.5 7796.5 51.8 69.2 160.8 59.1 529.4 

JCAL29 1 0.6 3081.5 54.5 3136.0 36.0 33.2 71.3 1.5 357.1 
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Appendix 3 Table 9: Six months Dietary intake (DQES) 

 

 Portion  Energy Alcohol Total kJ Fat Protein Carbohydrate Alcohol Calcium 

ID Group (std factor) (kJ·day-1) (kJ·day-1) (kJ·day-1) (g·day-1) (g·day-1) (g·day-1) (g·day-1) (mg·day-1) 

JCAL01 1 1.2 8872.7 1776.9 10649.6 80.0 106.4 243.3 48.8 1070.2 

JCAL02 1 0.8 2227.2 767.6 2994.8 19.2 28.1 62.1 19.4 152.9 

JCAL03 2 1.4 5316.1 566.7 5882.8 51.3 78.3 124.7 16.9 429.6 

JCAL04 2 
         JCAL05 1 
         JCAL06 2 
         JCAL07 1 1.9 6822.0 1124.9 7946.9 73.7 87.4 156.4 29.8 505.7 

JCAL08 2 0.8 5994.2 50.4 6044.6 59.3 92.7 133.5 1.4 908.6 

JCAL09 1 
         JCAL10 2 0.9 6273.6 20.4 6294.1 57.2 66.7 180.5 0.7 504.1 

JCAL11 2 1.1 13704.4 862.0 14566.5 165.7 165.3 287.2 22.5 979.2 

JCAL12 1 
         JCAL13 2 
         JCAL14 1 0.7 7284.7 1081.3 8365.9 78.0 111.3 150.3 30.0 553.6 

JCAL15 2 2.1 17566.6 554.7 18121.3 211.6 175.8 404.9 16.4 1178.5 

JCAL16 1 
         JCAL17 2 1.0 5361.6 0.0 5361.6 53.4 68.2 133.3 0.0 625.3 

JCAL18 1 1.3 22716.3 178.7 22895.0 241.6 401.4 412.5 5.2 1759.4 

JCAL19 1 
         JCAL20 2 0.7 7964.7 1584.2 9548.9 94.1 95.6 171.4 44.6 1559.0 

JCAL21 2 1.8 13896.0 201.5 14097.5 172.8 168.1 278.3 5.7 1116.0 

JCAL22 2 
         JCAL23 1 
         JCAL24 1 0.9 7107.9 0.0 7107.9 82.3 97.0 143.9 0.0 634.1 

JCAL25 1 
         JCAL26 1 1.1 4850.1 142.9 4993.0 54.6 54.6 114.1 4.2 654.4 

JCAL27 2 0.9 6696.7 25.6 6722.3 67.7 83.0 164.3 0.9 698.6 

JCAL28 2 
         JCAL29 1 0.7 7297.8 35.8 7333.6 81.0 99.3 156.8 1.2 592.1 
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Appendix 3 Table 10 Baseline Responses from lifestyle questionnaire 
 

ID Group Q1 Q2 Q3 Q4 Q5 Q5a Q6 Q7 Q8 

JCAL01 1 3 3 1 1 1  1 water water/sport 
drink/energy drink 

JCAL02 1 1 3 1 1 1  1 water water 

JCAL03 2 3 3 1 2 2 Bruised 
bone in 
heel of 
foot 

2 nothing or energy 
drink 

nothing/water/ 
sport drink/energy 
drink 

JCAL04 2 2 3 1 1 1  1 Water water 
JCAL05 1 3 3 1 1 1  2 sports drink/energy 

drink 
energy drink 

JCAL06 2 3 3 1 2 2 ligament in 
ankle 

1 water/sport 
drink/energy drink 

water/sport 
drink/energy drink 

JCAL07 1 3 2 1 2 2 Can’t run 2 Sports drink Sports drink 

JCAL08 2 3 3 1 1 1  1 water water 

JCAL09 1 3 3 1 1 1  2 water/sport 
drink/energy drink 

water 

JCAL10 2 3 2 1 1 1  1 water water 

JCAL11 2 3 3 1 1 1  1 fruit juice water 

JCAL12 1 3 3 1 1 1  2 water water 
JCAL13 2 1 3 1 1 1  1 water water 

JCAL14 1 1 2 1 1 1  2 water/energy drink water/energy drink 

JCAL15 2 3 3 2 1 1  1 energy drink nothing 

JCAL16 1 3 3 1 1 1  2 water water 
JCAL17 2 2 3 1 1 1  1 coffee water/energy drink 

JCAL18 1 2 3 1 1 1  1 water/sport drink water/sport 
drink/energy drink 

JCAL19 1 3 3 1 1 1  1 tea/hot chocolate nothing 
JCAL20 2 3 3 1 2 1  4 up and go milk water/energy/sport

s drink 
JCAL21 2 3 3 1 1 1  1 water water 

JCAL22 2 2 3 1 1 1  1 water/sport 
drink/energy/soft 
drink 

water/sport 
drink/energy/soft 
drink 

JCAL23 1 2 3 1 1 1  1 nothing water/cordial 
JCAL24 1 3 3 2 2 2 Apprentice 

school 
2 sports drink Sports drink 

JCAL25 1 3 3 1 1 1  1 sports drink water 

JCAL26 1 3 3 1 1 1  1 water water 
JCAL27 2 3 3 1 1 1  1 beetroot juice water/water and 

lemon 
JCAL28 2 3 3 1 1 1  1 water/sport/energy

/juice 
water/sport/energy 

JCAL29 1 3 3 1 1 1  1 water water 
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Appendix 3 Table 10: Baseline Responses from lifestyle questionnaire cont’d 
 

ID Group Q9 Q9a Q10 Q11 Q11a Q12 Q12a 

JCAL01 1 2 baseball 3 1  2 20 

JCAL02 1 1  1 1  2 7 

JCAL03 2 1  1 1  1 0 

JCAL04 2 1  1 1  1 0 
JCAL05 1 1  1 1  1 0 

JCAL06 2 1  1 1  1 0 

JCAL07 1 2 OzTag 2 1  2 30 

JCAL08 2 1  1 1  1 0 
JCAL09 1 1  2 1  1 0 

JCAL10 2 1  1 2 multivitamins, iron, 
calcium, magnesium 

2 8 

JCAL11 2 1  1 2 ventolin 1 0 
JCAL12 1 2 golf, soccer 2 2 Akmin 2 5 

JCAL13 2 1  1 1  1 0 

JCAL14 1 2 touch football 3 1  1 0 

JCAL15 2 1  1 2 borocca/ vitamins 
occasionally 

2 12 

JCAL16 1 1  1 1  2 5 

JCAL17 2 2 training 
sessions/swimming 

2 1  1 0 

JCAL18 1 2 taekwondo 3 1  1 0 

JCAL19 1 2 running 4 1  1 0 

JCAL20 2 1  1 2 ventolin, seretide, 
vitamin D 

1 0 

JCAL21 2 1  1 1  1 0 

JCAL22 2 1  1 1  1 0 

JCAL23 1 1  1 2 multivitamins 1 0 
JCAL24 1 2 running twice per 

week 
4 2 nurofen/ multivitamins 1 0 

JCAL25 1 1  1 1  1 0 

JCAL26 1 1  1 1  2 15 
JCAL27 2 2 triathlon 3 2 multivitamins, garlic, 

vitamin c 
1 0 

JCAL28 2 1  1 1  1 0 

JCAL29 1 1  1 1  1 0 
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Appendix 3 Table 10: Baseline Responses from lifestyle questionnaire cont’d 

ID Group Q13 Q13a Q14 Q15 Q15a Q16 

JCAL01 1 2 5 to 6 times 7 2 skull and finger 1 

JCAL02 1 2 2-3 times per week 4 to 5 1  1 

JCAL03 2 2 1 to 2 times per 
week 

7 2 Jaw 1 

JCAL04 2 1 0 8 1  1 

JCAL05 1 2 3-4 times 6 2 pelvis, collar bone, 
ribs, ankle, finger, 

leg 

2 

JCAL06 2 2 0-2 times per week 5 to 8 1  1 

JCAL07 1 2 daily amount not 
specified 

5 to 6 2 wrist, thumb, neck, 
collarbone 

2 

JCAL08 2 1 0 5 1  1 

JCAL09 1 2 1 to 2 glasses per 
week 

7 to 8 1  1 

JCAL10 2 2 once a week 6 2 broken toes 1 

JCAL11 2 2 < once a week 5 2 both tibia, L thumb, 
R Femur, L clavicle, L 

wrist 

2 

JCAL12 1 2 once a week 7    

JCAL13 2 1 0 4 to 5 2 ribs, ankle, finger 2 

JCAL14 1 2 1 per day 7 2 wrist 1 

JCAL15 2 1 0 7 2 L ankle 2 

JCAL16 1 2 once a week 6 2 hand 2 

JCAL17 2 1 0 8 1  1 

JCAL18 1 2 1 per week 8 to 9 1  1 

JCAL19 1 2 3-4 times 6 2 Jaw/Mandible 1 

JCAL20 2 2 once a week 6 to 9 1  1 

JCAL21 2 2 < once a week 6 to 8 1  1 

JCAL22 2 2 3 to 4 times 7 2  2 

JCAL23 1 1 0 8 2 collarbone, 
scaphoid, hand 

2 

JCAL24 1 2 < per week - rarely 7 to 8 2 2 x fracture to 
forearm, R tibia 

2 

JCAL25 1 1 0 5 to 6 1  1 

JCAL26 1 2 1 to 2 per week 7 2 L collarbone 2 

JCAL27 2 1 0 8 2 multiple, most 
recent sternum 

2 

JCAL28 2 2 3 to 4 times 7 1  1 

JCAL29 1 2 < once per week 7 to 8 2 wrist, chipped knee 
cap 

2 

KEY: 
Q1: 1 = less than 1; 2 = 1 to 2; 3 = 2 or more; Q2: 1 = less than 4; 2 = 4 to 5; 3 = 6 or more; Q3: 1 = yes; 0 = no; 
Q4: 1 = yes; 0 = no; Q5: 1 = yes; 0 = no; 5a. Explain yes answer; Q6: 0 = 0; 1 = 1 to 2; 2 = 2 to 3; 3 = 4 or more; 
Q7: record answer; Q8: record answer; Q9: 1 = yes; 0 = no; 9a. Explain yes answer; Q10: 0 = 0; 1 = 2 to 3; 2 = 4 
to 5; 3 = 6 or more; Q11: 1 = yes; 0 = no; 11a. Explain yes answer; Q12: 1 = yes; 0 = no; 12a. Explain yes answer; 
Q13: 1 = yes; 0 = no; 13a. Explain yes answer; Q14: record answer; Q15: 1 = yes; 0 = no; 15a. Explain yes 
answer; Q16: 1 = yes; 0 = no 
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 Appendix 3 Table 11: Six months Responses from lifestyle questionnaire 

ID Group Q1 Q2 Q3 Q4 Q5 Q5a Q6 Q7 

JCAL01 1 3 3 2 1 1  1 water, coffee 
JCAL02 1 2 3 1 1 1  1 water 

JCAL03 2 3 3 1 1 1  1 water, energy drink 

JCAL04 2         

JCAL05 1         
JCAL06 2         

JCAL07 1 3 3 1 1 1  4 energy drink 

JCAL08 2 3 3 1 1 1  1 water, sports drink 

JCAL09 1         
JCAL10 2 3 2 1 1 1  1 water 

JCAL11 2         

JCAL12 1         

JCAL13 2         
JCAL14 1 1 2 1 1 1  1 water, sport drink, 

juice, energy drink 
JCAL15 2 3 3 1 2 2 jarred finger 1 nothing 

JCAL16 1         
JCAL17 2 3 3 1 1 1  1 energy drink 

JCAL18 1 3 3 1 1 1  1 fruit juice, sport 
drink, water 

JCAL19 1         

JCAL20 2 3 3 1 1 1  4 water 

JCAL21 2 3 3 1 1 1  1 water 

JCAL22 2         
JCAL23 1         

JCAL24 1 3 3 1 1 1  1 up and go 

JCAL25 1         

JCAL26 1 3 3 1 1 1  1 water, sport drink 
JCAL27 2 3 3 1 1 2 broken thumb, 5 

weeks missed 
training as at 
measure date 

4 water 

JCAL28 2         

JCAL29 1 3 1 1 1 1  1 water, sports drink 
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Appendix 3 Table 11: Six months Responses from lifestyle questionnaire cont’d 

ID Group Q8 Q9 Q9a Q10 Q11 Q11a Q12 Q12a 

JCAL01 1 water 2 baseball 3 1 0 2 20 

JCAL02 1 water 1  1 1 0 2 10 

JCAL03 2 water, energy 
drink, sports 
drink, soft drink 

1  1 1 0 2 5 

JCAL04 2         
JCAL05 1         

JCAL06 2         

JCAL07 1 sports drink 1  1  0 2 20 

JCAL08 2 water 1  1 1 0 1 0 
JCAL09 1         

JCAL10 2 water 1  1 2 multivitamins, 
magnesium 

2 6 

JCAL11 2       1  
JCAL12 1         

JCAL13 2         

JCAL14 1         

JCAL15 2 nothing 1  1 1 0 2 10 
JCAL16 1         

JCAL17 2 water 1  1 1 0 1 0 

JCAL18 1 water, sport 
drink, energy 
drink 

2 taekwondo, 
gym 

3 1 0 1 0 

JCAL19 1         

JCAL20 2 water, sport drink 1  1 2 ventolin, 
serotide, 
nasonex 

1 0 

JCAL21 2 water 1  1 1 0 1 0 

JCAL22 2         

JCAL23 1         
JCAL24 1 water 1  1 2 multivitamins 1 0 

JCAL25 1         

JCAL26 1 water, sports 
drink 

1  1 2 multivitamins 2 8 

JCAL27 2 water 2 gym 4 2 multivitamin, 
glucosamine, 
fish oil, 
vitamin c 

1 0 

JCAL28 2         

JCAL29 1 water, sports 
drink 

1  1 1 0 1 0 
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Appendix 3 Table 11: Six months Responses from lifestyle questionnaire cont’d 

ID Group Q13 Q13a Q14 Q15 Q15a Q16 
 

JCAL01 1 2 daily 7 2 skull 1 

 
JCAL02 1 2 

2 to 3 times per 
week 4 to 5 1 0 1 

 JCAL03 2 2 once a month 6 to 7 2 jaw 1 

 JCAL04 2 
       JCAL05 1 
       JCAL06 2 
       JCAL07 1 2 daily 5 2 wrist, collar bone 2 

 JCAL08 2 1 0 5 1 0 1 

 JCAL09 1 
       JCAL10 2 2 once per week 6 2 foot 1 

 

JCAL11 2 2 
  

2 

both tibia, L thumb, R 
Femur, L clavicle, L 
wrist 2 

 JCAL12 1 
       JCAL13 2 
       JCAL14 1 
       JCAL15 2 2 once per week 5 2 ankle 2 

 JCAL16 1 
       JCAL17 2 1 0 7 1 0 1 

 JCAL18 1 2 once a month 6 to 8 1 0 1 

 JCAL19 1 
       JCAL20 2 2 2-3 times per week 6 2 fingers, neck 2 

 JCAL21 2 2 once a week 5 to 8 2 tailbone 2 

 JCAL22 2 
       JCAL23 1 
       JCAL24 1 1 0 7 2 arm (L), leg - R 2 

 JCAL25 1 
       JCAL26 1 1 0 7 2 collarbone 2 

 

JCAL27 2 1 0 8 2 

thumb, nose, arm, 
ankle, sternum, wrist, 
humerus (left side 
injuries) 2 

 JCAL28 2 
       JCAL29 1 2 once a week 8 2 wrist, knee cap 2 

 
KEY: 
Q1: 1 = less than 1; 2 = 1 to 2; 3 = 2 or more; Q2: 1 = less than 4; 2 = 4 to 5; 3 = 6 or more; Q3: 1 = yes; 0 = no; Q4: 1 
= yes; 0 = no; Q5: 1 = yes; 0 = no; 5a. Explain yes answer; Q6: 0 = 0; 1 = 1 to 2; 2 = 2 to 3; 3 = 4 or more; Q7: record 
answer; Q8: record answer; Q9: 1 = yes; 0 = no; 9a. Explain yes answer; Q10: 0 = 0; 1 = 2 to 3; 2 = 4 to 5; 3 = 6 or 
more; Q11: 1 = yes; 0 = no; 11a. Explain yes answer; Q12: 1 = yes; 0 = no; 12a. Explain yes answer; Q13: 1 = yes; 0 = 
no; 13a. Explain yes answer; Q14: record answer; Q15: 1 = yes; 0 = no; 15a. Explain yes answer; Q16: 1 = yes; 0 = 
no 
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Appendix 3 Table 12: Baseline mineral mass by polar sector 

  

0o - 
10o 

10o - 
20o 

20o - 
30o 

30o - 
40o 

40o - 
50o 

50o - 
60o 

60o - 
70o 

70o - 
80o 

80o - 
90o 

90o - 
100o 

100o - 
110o 

110o - 
120o 

ID Group (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) 

JCAL01 1 15.35 17.79 21.63 20.86 14.61 12.24 9.32 6.91 5.37 4.71 4.46 4.65 

JCAL02 1 14.11 14.25 13.86 13.76 12.35 10.79 8.73 6.94 6.01 5.33 5.11 5.49 

JCAL03 2 14.06 12.70 9.22 8.91 9.56 9.77 8.36 6.97 6.08 5.13 4.66 4.74 

JCAL04 2 12.23 13.07 12.96 11.63 9.83 7.46 6.50 6.09 5.87 5.65 5.70 5.63 

JCAL05 1 14.87 15.24 12.59 10.01 8.60 7.17 6.45 6.56 7.00 6.66 6.61 6.52 

JCAL06 2 12.95 14.47 12.75 10.57 8.68 7.38 6.34 5.47 4.93 4.85 4.48 4.71 

JCAL07 1 16.15 14.39 10.58 8.93 9.51 9.74 9.67 9.50 8.56 7.36 6.51 6.29 

JCAL08 2 11.29 10.05 8.55 8.25 8.13 8.17 7.77 7.78 7.15 6.51 5.67 5.39 

JCAL09 1 12.09 12.88 12.84 12.84 11.52 10.13 9.98 9.45 8.39 8.01 8.02 6.38 

JCAL10 2 14.70 12.08 11.73 10.75 10.86 11.17 8.71 7.82 8.04 8.56 8.95 6.93 

JCAL11 2 7.40 7.22 6.40 8.13 9.47 7.82 5.95 4.83 3.82 3.19 2.91 2.61 

JCAL12 1 17.12 17.09 14.92 13.05 11.12 9.21 8.38 7.49 6.61 6.24 6.03 6.34 

JCAL13 2 14.18 15.85 15.98 15.04 12.81 10.87 9.47 8.14 7.64 7.64 7.38 7.54 

JCAL14 1 17.12 18.36 15.25 12.28 9.38 7.87 5.99 5.16 5.16 4.84 5.09 5.54 

JCAL15 2 12.72 12.22 11.02 10.26 9.53 8.70 7.85 7.14 6.19 5.90 5.98 6.56 

JCAL16 1 11.43 10.92 11.72 11.33 10.04 9.68 9.20 8.29 6.63 6.17 5.80 5.54 

JCAL17 2 14.04 12.15 11.51 10.75 10.16 8.92 7.49 6.22 5.50 4.96 4.66 4.73 

JCAL18 1 14.38 14.07 12.12 11.99 11.85 10.11 8.83 7.51 6.43 5.88 5.67 5.68 

JCAL19 1 12.87 14.10 13.85 12.37 10.18 9.04 8.35 7.32 6.39 5.92 5.62 5.60 

JCAL20 2 16.66 17.02 15.16 13.77 12.31 10.54 8.94 7.54 6.74 6.08 5.99 6.27 

JCAL21 2 12.62 14.42 14.26 12.11 10.42 9.01 8.32 7.97 7.61 7.15 5.96 5.20 

JCAL22 2 13.13 13.19 11.87 10.64 9.98 8.94 7.73 7.36 6.82 6.58 6.50 6.59 

JCAL23 1 13.32 12.75 12.24 11.99 11.47 9.69 7.78 5.85 5.21 4.76 4.41 3.97 

JCAL24 1 12.88 13.05 12.00 9.84 9.18 8.16 6.89 6.13 6.00 5.61 4.58 4.32 

JCAL25 1 13.53 13.36 8.93 7.58 7.54 8.49 8.85 8.24 6.90 5.97 5.58 5.35 

JCAL26 1 12.79 12.96 12.04 11.51 10.45 8.87 7.40 6.36 5.20 4.50 4.30 4.56 

JCAL27 2 18.77 19.30 14.64 11.48 9.63 8.28 8.00 8.11 7.33 6.75 6.49 6.45 

JCAL28 2 17.56 16.51 13.25 12.04 11.16 9.37 8.67 8.21 7.34 6.41 5.64 5.54 

JCAL29 1 13.36 11.81 10.47 10.53 9.31 8.43 7.72 6.84 6.38 5.83 5.56 5.35 
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Appendix 3 Table 12: Baseline mineral mass by polar sector cont’d 

  

120o - 
130o 

130o - 
140o 

140o - 
150o 

150o - 
160o 

160o - 
170o 

170o - 
180o 

180o - 
190o 

190o - 
200o 

200o - 
210o 

210o - 
220o 

220o - 
230o 

230o - 
240o 

ID Group (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) 

JCAL01 1 5.07 5.84 7.86 11.34 19.27 29.69 29.85 23.85 15.95 9.22 5.87 4.37 

JCAL02 1 5.73 6.84 8.84 12.60 16.67 21.37 21.28 16.88 11.97 8.93 6.47 5.53 

JCAL03 2 4.98 5.62 6.59 8.91 12.67 19.43 20.33 15.79 10.26 7.15 4.97 4.32 

JCAL04 2 5.90 6.20 7.01 8.60 11.84 17.30 19.77 15.71 11.04 7.61 5.86 5.21 

JCAL05 1 6.87 7.56 9.05 10.92 13.55 18.02 20.77 15.36 10.77 8.05 6.61 6.23 

JCAL06 2 5.01 6.41 8.09 11.06 14.65 16.04 15.16 12.86 10.46 8.42 6.62 5.27 

JCAL07 1 6.36 7.00 7.94 10.36 14.48 19.65 22.39 20.50 14.34 10.30 6.90 5.57 

JCAL08 2 5.30 5.63 6.42 7.99 10.31 13.66 17.28 16.55 12.95 9.38 7.02 4.83 

JCAL09 1 5.54 5.77 7.21 8.81 11.20 13.46 16.63 18.52 14.97 11.41 8.85 7.15 

JCAL10 2 6.17 6.56 7.90 9.24 10.58 13.24 16.54 20.31 19.80 14.17 10.43 8.51 

JCAL11 2 3.15 3.60 4.52 6.26 8.71 11.43 10.78 7.82 5.36 3.74 3.36 3.64 

JCAL12 1 7.12 8.27 11.02 15.06 19.96 22.64 21.38 17.45 12.92 8.10 5.85 5.73 

JCAL13 2 7.76 8.46 10.25 13.58 18.91 20.83 18.43 16.29 13.13 9.89 8.17 6.62 

JCAL14 1 6.08 7.41 10.28 15.13 22.18 24.90 20.89 17.35 12.71 9.21 6.88 5.47 

JCAL15 2 7.38 9.17 11.20 14.18 17.04 17.17 14.45 12.51 9.94 8.11 6.78 5.67 

JCAL16 1 5.90 6.43 7.71 10.09 13.66 17.85 21.07 18.65 13.75 9.65 5.75 4.87 

JCAL17 2 5.28 6.09 7.81 10.80 14.29 17.58 18.59 15.31 12.29 8.37 6.47 5.49 

JCAL18 1 6.51 7.46 9.22 13.09 17.20 18.30 18.18 16.61 13.43 9.86 6.92 5.68 

JCAL19 1 5.87 6.96 8.51 12.76 15.77 17.46 16.33 13.99 10.29 7.94 6.59 5.86 

JCAL20 2 6.73 7.95 10.21 13.28 17.23 21.51 20.26 16.04 12.56 10.14 7.53 6.29 

JCAL21 2 5.08 5.54 7.61 10.39 13.39 16.32 19.05 18.25 14.68 11.46 8.88 7.26 

JCAL22 2 7.05 8.20 10.28 12.89 16.74 19.35 18.63 14.88 11.21 9.16 7.47 6.45 

JCAL23 1 4.54 4.98 7.26 10.20 14.58 19.88 21.01 13.99 9.75 7.38 5.08 4.40 

JCAL24 1 4.63 5.66 7.46 9.64 11.66 13.20 14.79 14.06 10.49 7.89 5.87 5.03 

JCAL25 1 5.36 5.91 6.90 8.70 11.95 16.41 19.92 16.96 12.45 9.12 6.47 5.25 

JCAL26 1 5.16 6.55 7.89 10.62 15.37 20.36 20.20 16.35 12.10 8.82 6.65 5.21 

JCAL27 2 6.76 8.23 10.87 14.91 21.07 24.85 21.00 16.29 13.03 10.47 7.74 6.26 

JCAL28 2 5.60 6.75 8.35 12.25 17.78 18.97 16.89 14.38 12.27 10.21 7.70 6.58 

JCAL29 1 5.62 5.97 7.08 9.25 12.86 16.75 15.57 13.33 11.00 9.11 6.44 5.05 
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Appendix 3 Table 12: Baseline mineral mass by polar sector cont’d 

  

240o - 
250o 

250o - 
260o 

260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

ID Group (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) 

JCAL01 1 3.91 4.31 5.14 6.15 10.06 9.76 9.69 10.35 10.44 8.71 11.19 12.57 

JCAL02 1 5.33 5.57 6.68 7.82 7.61 7.85 9.01 8.75 10.76 14.40 13.98 12.30 

JCAL03 2 3.87 4.25 5.18 5.20 5.62 6.21 6.96 7.42 7.65 11.06 13.44 12.99 

JCAL04 2 5.05 5.60 6.09 6.33 6.99 7.83 9.47 10.41 11.02 13.88 14.84 12.74 

JCAL05 1 5.92 6.36 7.17 8.50 8.57 8.51 8.68 9.10 9.04 10.93 11.59 12.47 

JCAL06 2 5.01 4.98 5.06 5.48 5.97 6.68 5.86 8.24 10.16 10.03 10.27 10.65 

JCAL07 1 4.53 4.56 4.75 5.26 7.51 11.15 10.65 10.62 10.79 12.38 13.49 15.94 

JCAL08 2 4.11 4.19 5.06 6.16 6.62 6.81 7.54 8.96 10.33 10.67 11.98 12.43 

JCAL09 1 6.31 5.86 5.82 5.85 6.46 7.13 7.59 8.56 8.93 8.70 9.72 11.54 

JCAL10 2 7.16 6.33 6.34 6.34 6.00 5.96 6.34 7.32 10.09 13.06 15.08 15.74 

JCAL11 2 3.62 3.85 5.17 6.02 5.94 6.13 6.42 6.62 6.98 7.17 7.52 7.37 

JCAL12 1 5.75 6.76 6.93 7.15 7.90 8.29 8.91 10.03 12.18 13.20 12.61 13.53 

JCAL13 2 6.52 6.92 8.15 8.40 8.47 8.75 9.94 11.88 12.78 13.41 13.46 13.33 

JCAL14 1 6.22 7.28 6.96 6.72 6.78 7.01 8.20 8.26 9.51 13.28 15.00 15.26 

JCAL15 2 5.84 6.80 8.23 7.69 7.19 6.64 9.01 8.90 8.71 9.68 10.74 12.11 

JCAL16 1 4.26 4.90 6.02 8.23 7.34 7.69 8.61 10.39 13.51 14.76 13.62 11.71 

JCAL17 2 4.82 5.11 5.80 5.43 5.37 6.14 6.89 8.33 9.97 12.51 14.97 14.37 

JCAL18 1 5.72 6.03 7.27 8.02 7.61 7.54 8.19 9.86 11.82 14.60 14.47 13.99 

JCAL19 1 5.93 6.21 7.59 8.99 9.59 9.92 10.16 9.46 9.66 10.33 10.36 11.21 

JCAL20 2 5.48 5.70 6.74 8.93 9.68 9.25 9.79 10.41 9.48 12.11 13.39 14.83 

JCAL21 2 6.21 5.54 5.33 5.30 5.64 6.64 7.75 8.89 9.86 10.09 11.06 11.27 

JCAL22 2 6.22 6.44 7.26 8.24 8.22 8.54 9.71 10.16 11.94 12.95 12.41 12.15 

JCAL23 1 4.02 4.31 5.66 7.55 7.76 8.21 9.51 9.60 10.15 11.63 11.77 12.29 

JCAL24 1 4.79 4.67 4.90 5.49 6.21 6.97 7.66 7.22 6.31 6.86 8.78 11.20 

JCAL25 1 4.54 4.60 4.34 5.44 6.78 8.72 8.87 9.37 10.38 10.90 11.71 12.53 

JCAL26 1 4.74 4.78 5.79 7.63 7.12 7.25 8.32 9.68 10.96 10.96 11.07 11.89 

JCAL27 2 5.73 5.55 6.40 6.76 6.61 6.58 4.95 9.30 10.98 12.23 11.93 14.69 

JCAL28 2 6.06 6.24 7.41 7.03 6.38 6.75 7.59 8.43 10.69 14.04 14.77 18.26 

JCAL29 1 4.17 4.52 4.94 6.75 7.98 7.92 8.56 7.90 6.49 9.53 11.15 15.44 
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Appendix 3 Table 13: Six months mineral mass by polar sector 

  
0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 

90o - 
100o 

100o - 
110o 

110o - 
120o 

ID Group (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) 

JCAL01 1 15.27 18.98 22.16 20.41 14.32 11.52 8.80 6.34 5.53 4.86 4.43 4.60 

JCAL02 1 14.49 14.20 13.96 13.44 12.49 10.70 8.57 7.00 6.08 5.45 5.40 5.36 

JCAL03 2 13.47 13.87 12.58 9.96 8.68 7.70 6.64 6.09 5.96 5.98 4.83 4.65 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 15.57 14.40 11.25 9.40 10.26 10.25 9.74 8.94 8.02 7.10 6.46 6.04 

JCAL08 2 11.36 9.61 8.64 8.32 8.08 8.23 8.09 7.71 7.36 6.68 5.96 5.69 

JCAL09 1 
            JCAL10 2 14.59 12.19 11.23 10.22 10.53 11.12 8.56 7.86 8.25 8.63 9.33 7.10 

JCAL11 2 7.71 8.12 6.94 8.28 9.30 7.63 5.88 4.70 3.77 3.27 2.93 2.83 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 17.69 16.71 13.46 11.78 9.26 8.73 7.10 5.96 5.50 5.31 5.22 5.39 

JCAL15 2 12.64 12.38 11.23 10.03 9.58 8.65 7.94 7.23 6.23 5.72 6.01 6.61 

JCAL16 1 
            JCAL17 2 13.30 11.79 11.93 11.54 11.48 9.82 8.00 6.08 5.12 4.38 3.88 3.86 

JCAL18 1 14.12 14.04 12.06 11.72 11.79 10.59 9.11 7.85 6.57 5.76 5.54 5.50 

JCAL19 1 
            JCAL20 2 16.67 17.21 15.26 13.71 12.22 10.55 8.79 7.67 6.74 6.14 6.03 6.24 

JCAL21 2 12.83 14.75 14.74 12.26 10.78 9.03 8.29 7.93 7.78 7.23 5.79 5.06 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 14.62 12.88 9.52 9.34 9.79 8.87 8.05 6.76 6.03 5.14 4.72 4.87 

JCAL25 1 
            JCAL26 1 12.55 13.19 12.62 11.93 11.20 9.24 7.36 6.15 5.19 4.44 4.33 4.57 

JCAL27 2 18.30 18.91 15.49 11.42 10.07 8.61 7.78 8.12 7.18 6.81 6.66 6.56 

JCAL28 2 
            JCAL29 1 13.50 11.62 10.62 10.46 9.58 8.25 7.83 6.65 6.48 5.73 5.68 5.54 
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Appendix 3 Table 13: Six months mineral mass by polar sector cont’d 

  

120o - 
130o 

130o - 
140o 

140o - 
150o 

150o - 
160o 

160o - 
170o 

170o - 
180o 

180o - 
190o 

190o - 
200o 

200o - 
210o 

210o - 
220o 

220o - 
230o 

230o - 
240o 

ID Group (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) 

JCAL01 1 5.08 6.09 7.88 12.14 20.04 29.35 28.52 22.02 16.10 9.93 6.21 5.12 

JCAL02 1 5.76 6.69 8.95 12.44 16.89 21.44 21.93 17.34 12.15 8.84 6.59 5.72 

JCAL03 2 5.05 6.13 7.97 10.11 11.97 12.98 14.30 13.68 10.79 8.15 6.32 5.48 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 6.15 7.15 8.12 10.74 14.91 20.70 23.28 19.78 13.54 10.06 7.31 5.26 

JCAL08 2 5.43 5.76 6.59 8.06 10.71 14.72 18.65 16.23 12.79 9.30 6.82 4.77 

JCAL09 1 
            JCAL10 2 6.50 6.77 7.90 9.03 10.39 13.26 16.55 20.35 19.80 14.29 10.38 8.23 

JCAL11 2 3.33 3.79 4.72 6.46 9.22 12.70 12.45 8.81 5.73 4.31 3.97 3.34 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 5.98 7.58 9.93 14.67 22.73 26.46 21.62 15.97 11.31 8.38 6.34 5.71 

JCAL15 2 7.49 9.05 11.41 14.01 16.90 17.10 14.44 12.30 9.90 8.54 6.99 5.87 

JCAL16 1 
            JCAL17 2 3.99 4.87 6.82 10.31 15.51 21.22 19.59 13.94 10.27 7.16 6.34 5.90 

JCAL18 1 5.95 6.92 8.96 12.36 17.30 18.77 19.04 17.62 13.67 9.76 6.93 5.82 

JCAL19 1 
            JCAL20 2 6.97 8.05 10.27 13.07 17.13 21.50 20.11 16.15 12.23 9.70 7.43 5.83 

JCAL21 2 5.15 5.99 7.87 10.33 13.05 15.79 18.50 19.36 15.06 11.82 9.48 7.47 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 5.27 5.87 6.77 9.16 13.18 18.71 19.03 15.09 10.39 7.63 5.47 4.37 

JCAL25 1 
            JCAL26 1 5.32 6.30 7.72 10.85 15.52 20.49 21.10 16.43 11.65 8.20 6.57 5.33 

JCAL27 2 7.13 8.55 11.36 15.03 21.36 23.71 20.53 16.82 12.80 9.81 7.41 6.08 

JCAL28 2 
            JCAL29 1 5.52 5.99 7.13 9.36 12.93 16.62 15.47 13.46 11.28 8.83 6.10 5.13 
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Appendix 3 Table 13: Six months mineral mass by polar sector cont’d 

  

240o - 
250o 

250o - 
260o 

260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

ID Group (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) (mg) 

JCAL01 1 4.46 4.37 5.05 6.22 10.48 10.78 9.98 10.03 9.65 8.58 11.38 12.31 

JCAL02 1 5.38 5.71 6.71 7.93 7.61 7.92 8.67 8.67 10.63 14.65 14.29 12.78 

JCAL03 2 4.98 4.92 5.20 5.78 6.33 6.87 7.39 7.12 6.49 6.97 9.13 11.37 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 4.55 4.40 4.52 5.40 7.99 12.46 11.24 10.78 10.73 11.69 13.23 15.62 

JCAL08 2 4.00 4.23 5.14 6.64 6.84 6.77 7.42 8.95 10.47 10.70 11.67 12.43 

JCAL09 1 
            JCAL10 2 7.41 6.54 6.45 6.46 6.36 6.10 6.45 7.53 10.22 13.23 15.39 15.86 

JCAL11 2 3.57 3.83 4.74 6.00 6.06 6.19 6.58 6.87 7.14 7.16 7.15 7.50 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 6.16 6.46 6.24 6.66 7.36 7.98 8.88 8.06 11.15 14.96 14.47 14.68 

JCAL15 2 5.86 6.60 8.08 8.08 7.52 6.70 8.69 8.84 8.75 9.71 10.84 12.01 

JCAL16 1 
            JCAL17 2 5.45 5.63 5.40 5.41 5.57 5.91 7.07 8.49 10.79 12.81 13.62 13.38 

JCAL18 1 5.40 5.67 7.32 8.24 7.52 7.80 8.20 9.82 12.28 15.06 14.97 14.11 

JCAL19 1 
            JCAL20 2 5.52 5.68 6.91 8.64 9.51 9.18 9.88 10.79 9.20 12.31 13.73 14.86 

JCAL21 2 6.39 5.79 5.53 5.64 6.02 6.80 7.58 8.78 9.66 10.29 11.42 11.43 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 3.98 4.24 5.71 5.22 5.59 6.05 6.87 7.47 7.53 10.76 13.27 12.77 

JCAL25 1 
            JCAL26 1 4.52 4.50 5.62 7.08 6.84 7.30 8.33 9.72 10.86 11.54 11.33 11.79 

JCAL27 2 5.51 5.35 5.85 6.77 7.13 7.01 4.97 9.15 10.63 11.35 11.91 13.91 

JCAL28 2 
            JCAL29 1 4.37 4.21 4.94 6.51 7.69 8.02 8.60 7.88 6.92 9.70 11.33 15.22 
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Appendix 3 Table 14: Baseline and six months vBMD by Radial division 

  

Radial 
division 
0 vBMD  

Radial 
division 
1 vBMD  

Radial 
division 
2 vBMD  

Radial 
division 
0 vBMD  

Radial 
division 
1 vBMD  

Radial 
division 
2 vBMD  

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1157.96 1216.26 1204.97 1155.54 1223.28 1207.36 

JCAL02 1 1152.30 1204.25 1207.06 1143.93 1202.00 1204.99 

JCAL03 2 1135.71 1185.88 1181.24 1085.40 1136.30 1123.29 

JCAL04 2 1115.78 1181.92 1171.07 
   JCAL05 1 1114.72 1202.51 1205.71 
   JCAL06 2 1112.56 1189.57 1185.99 
   JCAL07 1 1114.21 1192.77 1172.26 1120.73 1199.70 1189.12 

JCAL08 2 1096.91 1190.57 1182.07 1095.99 1206.09 1195.67 

JCAL09 1 1140.64 1215.75 1212.97 
   JCAL10 2 1135.97 1211.18 1207.32 1134.37 1222.66 1216.67 

JCAL11 2 1129.72 1162.07 1154.02 1147.55 1189.79 1185.84 

JCAL12 1 1152.26 1211.93 1185.12 
   JCAL13 2 1123.02 1216.15 1217.13 
   JCAL14 1 1084.36 1188.14 1172.30 1106.99 1212.24 1214.92 

JCAL15 2 1153.34 1214.53 1209.34 1158.95 1220.97 1209.38 

JCAL16 1 1156.70 1200.56 1189.88 
   JCAL17 2 1091.87 1157.90 1144.09 1076.52 1169.25 1135.51 

JCAL18 1 1129.21 1183.01 1179.94 1140.26 1193.42 1186.59 

JCAL19 1 1068.98 1157.75 1165.46 
   JCAL20 2 1157.78 1196.29 1193.64 1154.06 1200.23 1186.86 

JCAL21 2 1124.65 1188.97 1178.12 1129.82 1193.48 1188.32 

JCAL22 2 1094.31 1160.63 1147.64 
   JCAL23 1 1101.53 1169.93 1163.83 
   JCAL24 1 1065.71 1123.07 1102.59 1134.01 1185.10 1178.34 

JCAL25 1 1051.86 1098.47 1074.29 
   JCAL26 1 1140.24 1199.04 1185.95 1154.39 1202.53 1193.59 

JCAL27 2 1148.18 1201.01 1191.07 1139.35 1200.88 1187.74 

JCAL28 2 1153.29 1193.39 1175.14 
   JCAL29 1 1111.42 1186.91 1185.44 1102.76 1185.62 1185.25 

 
KEY: radial division 0 = endocortical; radial division 1 = mid-cortical, radial division 2 = 
pericortical 
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Appendix 3 Table 15: Baseline vBMD by polar sector 

  

Polar 
sector 0  

Polar 
sector 1  

Polar 
sector 2  

Polar 
sector 3  

Polar 
sector 4  

Polar 
sector 5  

Polar 
sector 6  

Polar 
sector 7  

Polar 
sector 8  

Polar 
sector 9  

Polar 
sector 10  

Polar 
sector 11  

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1218.45 1169.32 1209.20 1217.62 1192.92 1225.58 1243.10 1222.46 1241.04 1180.79 1225.10 1250.09 

JCAL02 1 1191.55 1214.56 1220.53 1230.69 1246.04 1211.02 1234.64 1231.05 1205.87 1172.13 1175.50 1196.17 

JCAL03 2 1152.04 1158.82 1178.13 1230.62 1260.88 1275.37 1237.93 1233.05 1198.84 1198.72 1153.54 1159.06 

JCAL04 2 1092.49 1044.94 1181.48 1237.85 1229.00 1133.15 1105.57 1167.07 1161.49 1179.64 1170.09 1168.58 

JCAL05 1 1162.74 1094.62 1172.49 1236.90 1222.81 1208.97 1134.89 1156.92 1212.42 1230.19 1186.49 1185.62 

JCAL06 2 1135.81 1101.65 1167.65 1209.04 1199.91 1205.38 1190.17 1206.17 1173.93 1210.97 1204.61 1172.29 

JCAL07 1 1206.99 1171.76 1193.06 1199.23 1190.27 1200.99 1202.28 1241.94 1267.68 1235.22 1210.02 1198.40 

JCAL08 2 1160.76 1129.14 1121.59 1205.87 1225.78 1238.21 1186.02 1152.93 1135.26 1182.91 1140.57 1175.33 

JCAL09 1 1224.03 1218.64 1210.60 1197.04 1215.96 1142.61 1165.12 1208.65 1237.26 1239.20 1238.23 1189.18 

JCAL10 2 1169.66 1198.64 1206.44 1207.95 1198.41 1191.28 1163.89 1194.82 1180.96 1242.36 1238.10 1231.45 

JCAL11 2 1123.60 1073.85 1129.84 1209.60 1232.20 1205.69 1179.78 1212.32 1146.06 1181.75 1144.85 1128.75 

JCAL12 1 1168.73 1180.08 1225.14 1238.49 1190.84 1295.32 1288.37 1271.37 1322.89 1285.82 1241.40 1196.73 

JCAL13 2 1136.91 1142.50 1171.81 1201.99 1189.34 1187.32 1188.81 1219.97 1215.30 1206.64 1215.41 1232.78 

JCAL14 1 1110.48 1072.48 1183.01 1260.70 1246.98 1138.50 1029.54 998.29 1128.79 1147.66 1123.13 1154.42 

JCAL15 2 1173.77 1212.24 1253.22 1234.22 1176.64 1176.65 1224.41 1250.27 1220.23 1211.64 1189.58 1208.29 

JCAL16 1 1184.87 1182.97 1211.79 1229.86 1222.02 1214.52 1215.16 1238.81 1206.78 1187.00 1214.86 1189.23 

JCAL17 2 1115.40 1134.41 1192.83 1220.61 1194.97 1179.17 1163.32 1154.39 1162.02 1135.57 1122.95 1124.74 

JCAL18 1 1159.36 1159.89 1171.39 1205.77 1207.03 1196.62 1178.73 1178.18 1175.01 1183.47 1164.10 1160.32 

JCAL19 1 1015.47 1084.85 1070.88 1149.88 1182.92 1195.51 1188.60 1166.60 1157.80 1170.03 1132.79 1122.88 

JCAL20 2 1210.67 1173.00 1193.51 1211.84 1210.21 1186.06 1186.11 1174.81 1202.93 1190.38 1178.39 1185.84 

JCAL21 2 1068.75 1127.96 1191.18 1166.11 1169.67 1181.39 1210.62 1165.97 1187.56 1188.07 1204.70 1192.81 

JCAL22 2 1143.93 1150.52 1205.54 1223.30 1188.46 1169.07 1184.46 1181.36 1168.83 1134.14 1125.01 1108.94 

JCAL23 1 1111.14 1064.74 1169.20 1223.74 1225.21 1236.81 1138.64 1131.92 1128.64 1130.43 1121.51 1081.51 

JCAL24 1 1081.84 1069.88 1105.60 1021.50 1076.98 1167.37 1197.18 1184.80 1169.82 1119.31 1098.97 1093.71 

JCAL25 1 1093.42 1068.45 1055.43 1080.11 1099.67 1103.21 1128.19 1127.17 1147.84 1064.43 1094.91 1105.99 

JCAL26 1 1189.95 1206.59 1249.43 1242.61 1235.57 1180.21 1207.18 1199.17 1187.66 1173.06 1153.36 1135.35 

JCAL27 2 1167.73 1188.77 1186.31 1249.16 1221.76 1201.86 1221.42 1239.50 1222.24 1205.90 1232.39 1217.37 

JCAL28 2 1163.40 1214.56 1208.47 1181.53 1188.47 1183.14 1200.83 1278.00 1246.23 1207.18 1224.75 1165.68 

JCAL29 1 1042.13 1062.30 1034.26 1189.88 1224.48 1213.16 1220.24 1195.23 1204.78 1213.14 1194.87 1178.30 
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Appendix 3 Table 15: Baseline vBMD by polar sector cont’d 

  

Polar 
sector 12  

Polar 
sector 13  

Polar 
sector 14  

Polar 
sector 15  

Polar 
sector 16  

Polar 
sector 17  

Polar 
sector 18  

Polar 
sector 19  

Polar 
sector 20  

Polar 
sector 21  

Polar 
sector 22  

Polar 
sector 23  

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1224.12 1186.94 1189.91 1142.37 1121.77 1177.55 1175.54 1172.22 1124.05 1113.49 1073.07 1082.64 

JCAL02 1 1180.41 1171.34 1128.79 1171.69 1154.09 1153.90 1157.22 1130.65 1122.22 1145.12 1149.86 1163.42 

JCAL03 2 1119.07 1128.41 1125.08 1119.56 1128.62 1119.54 1106.79 1065.08 1049.72 1155.67 1092.20 1134.48 

JCAL04 2 1153.28 1133.84 1106.02 1120.99 1161.67 1096.71 1086.10 1009.01 1056.43 1059.16 1149.43 1165.03 

JCAL05 1 1106.75 1119.23 1155.41 1134.16 1179.43 1120.09 1093.48 1117.96 1096.08 1157.79 1158.52 1196.22 

JCAL06 2 1152.13 1144.43 1120.79 1081.47 1058.21 1066.91 1071.72 1081.65 1137.49 1169.17 1168.71 1164.17 

JCAL07 1 1138.38 1130.09 1088.33 1114.83 1104.14 1094.49 1075.33 1052.83 1014.45 1079.60 1132.34 1112.82 

JCAL08 2 1157.90 1161.62 1149.60 1125.81 1148.08 1052.80 1059.70 1016.66 1031.68 1114.93 1106.57 1115.67 

JCAL09 1 1199.19 1203.81 1169.25 1123.27 1098.03 1078.54 1145.79 1154.50 1158.86 1145.77 1167.14 1143.64 

JCAL10 2 1198.88 1186.74 1192.02 1160.33 1117.40 1127.79 1078.77 1051.51 1094.00 1109.23 1131.13 1188.85 

JCAL11 2 1164.60 1096.82 1113.72 1076.04 1066.62 1012.33 980.91 999.80 981.59 986.59 1088.80 1190.72 

JCAL12 1 1145.99 1108.40 1098.42 1134.55 1138.43 1153.46 1122.66 1138.90 1203.96 1140.66 1128.17 1242.14 

JCAL13 2 1190.22 1194.29 1173.99 1174.98 1164.83 1169.95 1125.59 1141.56 1095.18 1147.95 1167.06 1159.60 

JCAL14 1 1152.36 1181.43 1183.74 1161.97 1146.49 1103.37 1086.21 1085.98 1053.28 1092.31 1100.44 1131.12 

JCAL15 2 1185.91 1184.32 1161.07 1154.02 1122.38 1104.84 1084.46 1115.82 1150.73 1166.59 1194.49 1205.67 

JCAL16 1 1193.50 1174.18 1183.50 1173.94 1169.64 1122.12 1082.24 1093.20 1118.51 1163.33 1142.11 1142.60 

JCAL17 2 1125.14 1121.10 1128.99 1089.25 1049.48 972.65 972.10 975.74 1022.62 1091.57 1168.38 1147.61 

JCAL18 1 1177.00 1145.25 1108.33 1132.84 1111.19 1101.82 1078.70 1084.69 1076.47 1122.78 1145.24 1193.25 

JCAL19 1 1124.21 1116.13 1106.73 1069.78 1054.06 1027.04 999.38 1045.06 1061.89 1043.48 1102.59 1146.96 

JCAL20 2 1179.70 1178.93 1164.73 1161.16 1156.73 1141.20 1106.60 1100.52 1094.41 1138.89 1138.93 1166.14 

JCAL21 2 1138.42 1114.91 1156.74 1188.56 1139.81 1082.96 1090.23 1074.01 1135.76 1165.63 1217.60 1191.15 

JCAL22 2 1044.86 1029.40 1055.19 1046.19 1053.23 1024.12 1047.50 1083.02 1077.30 1103.75 1101.82 1123.10 

JCAL23 1 1135.13 1123.15 1152.50 1131.92 1085.03 1073.37 1105.95 1041.53 1032.26 1056.99 1059.20 1099.92 

JCAL24 1 1071.83 1059.02 1085.59 1047.24 1046.32 1032.56 1069.27 1009.14 993.84 1004.50 1014.91 1064.64 

JCAL25 1 1028.58 1011.74 1029.20 1039.33 952.99 929.67 942.39 970.52 972.09 1044.98 1104.95 1090.16 

JCAL26 1 1177.09 1147.62 1158.04 1093.10 1103.51 1075.29 1061.96 1071.50 1155.62 1171.80 1175.22 1151.05 

JCAL27 2 1193.84 1177.40 1154.20 1152.27 1118.93 1110.66 1068.30 1034.04 1088.51 1176.05 1201.23 1185.49 

JCAL28 2 1123.64 1164.02 1137.40 1154.50 1145.76 1168.63 1105.42 1044.19 1091.85 1204.17 1196.72 1179.14 

JCAL29 1 1179.63 1135.50 1145.08 1135.75 1116.04 1066.93 1105.40 1115.71 1116.26 1123.44 1151.07 1138.74 
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Appendix 3 Table 15: Baseline vBMD by polar sector cont’d 

  

Polar 
sector 24  

Polar 
sector 25  

Polar 
sector 26  

Polar 
sector 27  

Polar 
sector 28  

Polar 
sector 29  

Polar 
sector 30  

Polar 
sector 31  

Polar 
sector 32  

Polar 
sector 33  

Polar 
sector 34  

Polar 
sector 35  

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1168.62 1201.79 1196.47 1177.63 1202.52 1185.21 1251.11 1264.62 1295.09 1248.84 1202.66 1176.42 

JCAL02 1 1184.89 1201.68 1209.95 1207.36 1223.43 1240.96 1255.50 1196.30 1179.62 1180.46 1163.74 1160.95 

JCAL03 2 1129.41 1107.68 1132.47 1195.42 1233.17 1213.94 1212.89 1226.77 1194.39 1225.68 1210.06 1170.92 

JCAL04 2 1204.08 1217.87 1244.87 1282.14 1263.62 1199.83 1180.26 1187.23 1166.90 1171.31 1165.79 1172.23 

JCAL05 1 1210.08 1248.55 1228.70 1239.12 1235.38 1199.13 1184.52 1201.77 1182.38 1172.71 1161.83 1170.94 

JCAL06 2 1153.30 1162.85 1189.51 1216.37 1194.00 1204.00 1201.31 1185.10 1201.22 1213.60 1174.27 1167.44 

JCAL07 1 1111.94 1154.75 1160.45 1149.39 1119.91 1160.34 1186.29 1226.27 1230.49 1222.83 1178.38 1194.40 

JCAL08 2 1170.15 1173.02 1245.58 1269.51 1232.83 1206.03 1197.76 1181.93 1193.30 1172.48 1162.00 1134.60 

JCAL09 1 1164.74 1188.67 1218.89 1225.24 1244.71 1210.75 1196.28 1222.25 1240.21 1222.73 1228.61 1194.87 

JCAL10 2 1178.69 1154.76 1225.12 1230.67 1258.14 1195.56 1184.06 1248.01 1265.89 1241.80 1204.67 1205.74 

JCAL11 2 1203.88 1223.10 1257.97 1279.99 1248.36 1236.74 1198.43 1174.43 1195.32 1204.57 1209.84 1190.25 

JCAL12 1 1243.60 1116.88 1036.97 1002.14 1034.92 1089.03 1207.60 1261.44 1278.61 1250.35 1214.11 1195.22 

JCAL13 2 1194.64 1248.15 1254.35 1272.85 1235.66 1184.93 1212.95 1208.41 1193.89 1176.67 1147.00 1132.15 

JCAL14 1 1295.91 1399.36 1423.83 1280.12 1124.01 966.63 960.55 1074.23 1186.62 1171.12 1240.11 1142.31 

JCAL15 2 1214.89 1206.72 1234.70 1214.71 1234.89 1252.12 1238.86 1241.29 1228.61 1163.92 1180.15 1154.32 

JCAL16 1 1175.84 1180.70 1200.96 1233.41 1186.08 1205.03 1194.85 1172.41 1190.72 1184.22 1197.15 1187.55 

JCAL17 2 1123.78 1151.74 1214.12 1178.26 1137.05 1181.36 1192.78 1201.06 1182.80 1127.13 1124.69 1146.61 

JCAL18 1 1173.38 1192.95 1211.10 1214.25 1201.54 1196.05 1190.98 1203.51 1177.75 1198.31 1179.61 1148.99 

JCAL19 1 1197.68 1210.95 1190.87 1130.76 1173.73 1225.67 1182.28 1191.73 1182.76 1204.75 1174.31 1105.24 

JCAL20 2 1185.76 1212.85 1251.60 1268.87 1252.58 1203.04 1207.31 1204.50 1191.13 1186.17 1187.45 1189.64 

JCAL21 2 1181.99 1162.60 1189.53 1156.44 1155.54 1185.38 1212.54 1249.44 1215.46 1181.43 1130.03 1129.89 

JCAL22 2 1161.05 1183.85 1176.83 1197.42 1198.18 1182.73 1183.10 1155.22 1161.13 1188.37 1143.36 1126.71 

JCAL23 1 1181.41 1166.16 1249.81 1264.15 1288.34 1232.40 1200.69 1174.92 1157.86 1174.59 1177.22 1095.46 

JCAL24 1 1074.90 1100.00 1105.82 1123.25 1122.81 1168.37 1212.07 1221.91 1171.66 1114.52 1116.57 1078.86 

JCAL25 1 1077.94 1145.65 1142.96 1142.16 1165.00 1165.71 1120.22 1104.09 1095.66 1069.54 1087.99 1093.17 

JCAL26 1 1175.19 1131.12 1179.62 1242.76 1185.49 1209.42 1208.98 1255.03 1242.75 1194.06 1186.66 1189.76 

JCAL27 2 1212.90 1181.79 1179.90 1161.06 1167.66 1136.19 1166.80 1235.89 1230.36 1228.20 1197.78 1169.18 

JCAL28 2 1151.41 1145.65 1188.35 1104.41 1122.25 1139.28 1192.50 1224.27 1247.27 1223.29 1161.05 1184.35 

JCAL29 1 1210.80 1190.75 1206.71 1214.16 1248.91 1245.13 1188.35 1177.15 1194.37 1168.83 1143.59 1114.21 
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Appendix 3 Table 16: Six months vBMD by polar sector 

  

Polar 
sector 0 

Polar 
sector 1 

Polar 
sector 2 

Polar 
sector 3 

Polar 
sector 4 

Polar 
sector 5 

Polar 
sector 6 

Polar 
sector 7 

Polar 
sector 8 

Polar 
sector 9 

Polar 
sector 10 

Polar 
sector 11 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1196.87 1203.19 1214.18 1219.27 1220.64 1224.14 1218.26 1183.45 1199.12 1210.75 1193.74 1196.54 

JCAL02 1 1202.21 1192.01 1221.47 1222.19 1246.18 1218.14 1181.84 1173.99 1197.17 1208.06 1188.08 1218.79 

JCAL03 2 1108.90 1124.05 1157.18 1107.62 1117.92 1130.78 1130.15 1170.69 1171.71 1163.48 1138.69 1149.63 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1171.55 1149.97 1187.74 1212.09 1251.11 1229.93 1237.63 1215.18 1195.47 1192.19 1212.28 1198.98 

JCAL08 2 1165.25 1099.71 1139.10 1232.02 1245.66 1234.61 1183.41 1169.90 1171.82 1208.48 1180.98 1184.56 

JCAL09 1 
            JCAL10 2 1183.51 1232.07 1182.99 1169.09 1188.97 1217.94 1195.05 1208.09 1213.42 1286.36 1273.15 1258.51 

JCAL11 2 1120.05 1094.21 1144.08 1249.87 1263.20 1242.41 1259.01 1217.30 1207.70 1209.44 1200.78 1184.31 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1084.97 1052.56 1169.18 1269.69 1256.55 1198.03 1169.62 1202.05 1194.02 1166.23 1123.06 1152.09 

JCAL15 2 1173.46 1226.82 1281.03 1231.88 1164.72 1192.54 1235.03 1243.82 1214.02 1204.04 1188.64 1232.28 

JCAL16 1 
            JCAL17 2 1136.23 1115.43 1254.37 1257.99 1291.95 1358.57 1325.37 1308.91 1310.06 1173.25 1050.70 974.18 

JCAL18 1 1144.60 1154.07 1180.09 1206.95 1216.33 1206.68 1217.91 1218.68 1198.01 1146.94 1164.34 1138.71 

JCAL19 1 
            JCAL20 2 1182.99 1176.54 1213.24 1199.51 1210.75 1227.55 1184.98 1202.49 1196.31 1214.90 1201.27 1165.00 

JCAL21 2 1085.38 1133.36 1169.98 1167.58 1192.80 1164.94 1192.06 1207.66 1193.86 1181.91 1188.98 1200.24 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1162.05 1143.96 1212.87 1247.36 1261.78 1222.58 1226.27 1201.41 1223.77 1181.59 1183.91 1171.46 

JCAL25 1 
            JCAL26 1 1183.57 1196.34 1229.44 1245.27 1232.78 1243.19 1211.80 1212.22 1226.82 1210.32 1181.38 1228.34 

JCAL27 2 1188.94 1176.47 1163.38 1201.63 1215.90 1259.51 1206.44 1181.85 1199.29 1214.01 1207.70 1199.56 

JCAL28 2 
            JCAL29 1 1077.69 1076.07 1041.37 1179.76 1246.80 1225.64 1179.94 1195.27 1196.62 1210.55 1215.42 1208.76 
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 Appendix 3 Table 16: Six months vBMD by polar sector cont’d 

  

Polar 
sector 12 

Polar 
sector 13 

Polar 
sector 14 

Polar 
sector 15 

Polar 
sector 16 

Polar 
sector 17 

Polar 
sector 18 

Polar 
sector 19 

Polar 
sector 20 

Polar 
sector 21 

Polar 
sector 22 

Polar 
sector 23 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1206.29 1201.30 1181.54 1206.61 1164.96 1183.14 1159.74 1132.03 1116.23 1130.34 1123.05 1152.43 

JCAL02 1 1190.81 1170.60 1147.89 1149.41 1146.22 1156.52 1152.82 1143.74 1121.05 1143.89 1163.39 1151.78 

JCAL03 2 1145.26 1134.95 1109.01 1066.11 1045.49 1035.50 1033.99 1002.99 1005.15 1033.48 1027.33 1064.32 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1182.71 1157.78 1121.49 1139.59 1138.23 1112.43 1103.18 1055.05 1068.45 1141.60 1178.69 1074.67 

JCAL08 2 1185.68 1164.59 1160.26 1138.56 1112.88 1112.32 1074.41 1022.97 1017.02 1090.21 1062.00 1126.31 

JCAL09 1 
            JCAL10 2 1196.58 1179.97 1168.95 1178.94 1120.92 1110.35 1101.58 1090.46 1078.86 1106.90 1148.05 1181.22 

JCAL11 2 1146.52 1112.05 1122.06 1080.53 1067.99 1042.79 1070.53 1035.75 1075.40 1098.56 1103.92 1174.06 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1170.01 1170.45 1160.04 1172.79 1196.14 1159.11 1126.35 1079.93 952.57 1088.45 1163.92 1232.08 

JCAL15 2 1195.49 1209.32 1173.76 1168.41 1144.86 1110.58 1081.75 1141.19 1194.91 1184.35 1162.32 1180.55 

JCAL16 1 
            JCAL17 2 910.10 903.63 1004.53 1093.34 1105.16 1099.71 1043.02 889.53 971.67 1030.04 1086.81 1188.28 

JCAL18 1 1146.40 1156.31 1158.22 1160.35 1142.18 1132.91 1113.37 1114.86 1106.65 1139.33 1143.57 1163.87 

JCAL19 1 
            JCAL20 2 1187.53 1182.23 1165.95 1149.65 1156.48 1135.23 1134.10 1107.01 1081.18 1109.16 1131.60 1143.40 

JCAL21 2 1185.52 1166.08 1183.67 1178.35 1137.14 1096.38 1095.91 1099.54 1122.55 1170.87 1200.66 1185.22 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1159.70 1142.98 1138.48 1145.97 1127.31 1079.47 1059.81 1049.87 1036.67 1130.25 1120.86 1088.46 

JCAL25 1 
            JCAL26 1 1173.80 1155.20 1143.42 1131.10 1090.60 1065.19 1051.39 1064.77 1103.26 1170.48 1164.41 1184.75 

JCAL27 2 1197.50 1178.83 1169.86 1143.93 1111.88 1074.87 1052.67 1072.05 1096.00 1147.81 1163.40 1171.34 

JCAL28 2 
            JCAL29 1 1177.95 1158.45 1133.12 1089.98 1093.10 1086.00 1114.79 1098.23 1114.08 1095.63 1076.23 1143.27 
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Appendix 3 Table 16: Six months vBMD by polar sector cont’d 

  

Polar 
sector 24  

Polar 
sector 25  

Polar 
sector 26  

Polar 
sector 27  

Polar 
sector 28  

Polar 
sector 29  

Polar 
sector 30  

Polar 
sector 31  

Polar 
sector 32  

Polar 
sector 33  

Polar 
sector 34  

Polar 
sector 35  

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1186.10 1155.42 1194.75 1233.08 1301.00 1271.85 1234.74 1226.81 1233.83 1210.54 1173.18 1175.02 

JCAL02 1 1164.44 1161.97 1189.71 1191.39 1218.63 1208.15 1195.79 1180.40 1186.72 1206.45 1205.82 1193.28 

JCAL03 2 1096.94 1119.78 1146.81 1138.26 1162.06 1149.93 1168.49 1177.29 1149.28 1147.83 1170.44 1138.46 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1085.61 1112.68 1162.69 1170.59 1213.68 1247.32 1191.10 1225.25 1198.30 1207.23 1165.28 1206.83 

JCAL08 2 1214.54 1218.06 1261.53 1300.61 1257.38 1217.34 1242.97 1225.23 1196.35 1145.56 1083.47 1127.17 

JCAL09 1 
            JCAL10 2 1172.25 1170.58 1223.60 1236.52 1249.83 1215.92 1218.90 1205.95 1273.59 1239.42 1206.20 1199.75 

JCAL11 2 1157.79 1206.38 1256.50 1277.70 1250.82 1224.56 1243.41 1249.54 1258.14 1236.01 1208.31 1186.47 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1271.41 1279.53 1354.20 1294.47 1247.83 1250.04 1211.49 1169.40 1194.50 1215.75 1141.50 1069.71 

JCAL15 2 1224.99 1202.16 1229.29 1256.29 1249.41 1234.88 1216.87 1244.66 1199.68 1166.91 1173.79 1136.99 

JCAL16 1 
            JCAL17 2 1264.77 1219.55 1165.28 1143.00 1084.23 1148.83 1176.60 1239.68 1128.60 980.55 1017.97 1123.52 

JCAL18 1 1158.08 1180.63 1210.37 1241.78 1240.41 1203.39 1187.14 1207.52 1197.76 1196.66 1179.19 1168.97 

JCAL19 1 
            JCAL20 2 1130.59 1166.81 1251.36 1243.82 1258.51 1212.54 1209.51 1221.60 1188.80 1190.08 1190.37 1170.74 

JCAL21 2 1203.38 1215.86 1191.98 1196.64 1176.88 1162.25 1185.37 1186.72 1228.86 1179.70 1165.40 1145.76 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1113.61 1147.15 1158.09 1158.81 1213.74 1222.88 1234.74 1219.88 1193.18 1200.42 1187.00 1201.03 

JCAL25 1 
            JCAL26 1 1186.41 1188.43 1182.24 1224.51 1229.53 1226.39 1201.38 1239.95 1228.35 1202.38 1197.17 1199.46 

JCAL27 2 1176.93 1167.26 1167.31 1229.23 1240.45 1152.42 1219.80 1193.66 1218.82 1169.82 1214.75 1190.31 

JCAL28 2 
            JCAL29 1 1165.07 1144.03 1153.33 1179.63 1215.53 1239.41 1243.95 1211.53 1190.52 1212.92 1193.43 1099.54 
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Appendix 3 Table 17: Baseline Endocortical Radius by polar sector 

  
0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 

90o - 
100o 

100o - 
110o 

110o - 
120o 

ID Group (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 9.06 8.38 8.39 8.73 8.62 9.37 8.85 8.09 7.66 7.12 7.38 7.31 

JCAL02 1 8.67 9.50 9.94 9.54 8.94 7.82 7.04 6.61 6.24 5.95 5.92 5.88 

JCAL03 2 9.92 10.46 10.63 10.41 9.78 8.99 8.38 7.71 7.29 7.10 7.17 6.85 

JCAL04 2 10.90 10.84 11.44 11.42 10.92 9.96 9.02 8.13 7.57 7.31 7.04 7.05 

JCAL05 1 11.14 11.25 12.20 12.03 11.42 10.97 10.26 9.51 8.68 8.29 8.02 8.15 

JCAL06 2 9.36 9.17 9.75 9.63 9.31 8.66 8.01 7.26 7.10 6.59 6.72 7.03 

JCAL07 1 8.98 9.00 9.18 9.14 9.09 8.82 8.40 8.05 7.26 7.02 6.68 6.47 

JCAL08 2 8.92 8.26 8.62 8.93 8.83 8.92 8.93 8.32 7.70 7.38 7.10 7.01 

JCAL09 1 8.52 8.03 7.72 7.16 7.68 7.59 7.89 8.20 8.45 8.65 8.21 8.28 

JCAL10 2 12.39 12.32 11.78 11.84 11.06 9.87 9.80 9.92 10.11 10.63 10.76 10.19 

JCAL11 2 11.01 10.85 10.94 9.89 8.94 8.15 7.46 6.87 6.54 6.41 6.45 6.32 

JCAL12 1 10.71 12.19 12.97 12.15 11.27 10.39 9.42 8.65 8.36 8.09 7.88 7.90 

JCAL13 2 7.59 7.71 8.49 9.34 9.17 8.67 7.90 7.59 7.17 6.75 6.57 6.53 

JCAL14 1 10.10 10.59 11.29 11.70 11.91 11.16 10.30 9.88 9.09 8.56 8.17 8.20 

JCAL15 2 9.21 9.89 10.49 10.81 10.25 9.64 8.84 8.11 7.80 7.65 7.73 7.60 

JCAL16 1 9.53 9.97 10.41 10.91 10.86 10.56 9.81 9.06 8.54 8.00 7.73 7.69 

JCAL17 2 11.45 11.90 12.00 11.88 11.13 10.16 9.05 8.40 7.87 7.77 7.73 7.99 

JCAL18 1 8.44 9.16 9.51 9.39 8.49 8.37 7.18 6.70 6.52 6.33 6.10 6.06 

JCAL19 1 11.39 11.72 12.26 12.49 12.55 11.80 11.16 10.36 9.63 9.41 9.08 9.35 

JCAL20 2 8.33 8.39 8.98 9.05 9.15 8.72 8.37 7.69 7.09 6.85 6.86 6.63 

JCAL21 2 9.51 9.37 9.41 9.34 9.20 8.91 8.67 8.22 8.16 7.99 7.83 7.70 

JCAL22 2 9.27 9.98 10.37 10.52 10.46 9.99 9.73 9.16 8.34 8.02 7.37 7.19 

JCAL23 1 10.61 11.04 11.89 11.74 11.44 10.64 9.62 8.74 8.18 7.56 7.47 7.76 

JCAL24 1 7.48 7.20 7.20 7.34 7.50 7.47 7.09 7.09 6.91 6.77 6.65 6.44 

JCAL25 1 9.54 10.07 10.30 10.40 10.12 9.96 9.47 9.12 8.51 8.00 7.78 7.83 

JCAL26 1 9.86 10.67 11.11 10.88 10.35 9.40 8.53 7.93 7.41 7.39 7.30 7.41 

JCAL27 2 10.41 10.82 11.49 11.44 10.66 10.15 9.52 8.56 7.74 7.42 7.13 7.17 

JCAL28 2 10.91 11.18 11.27 11.41 11.04 10.56 9.65 8.92 8.23 7.91 7.82 7.62 

JCAL29 1 10.65 10.97 11.07 11.09 10.60 10.20 9.42 8.75 8.11 7.99 7.57 7.66 
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Appendix 3 Table 17: Baseline Endocortical Radius by sector cont’d 

  
120o - 130o 130o - 140o 140o - 150o 150o - 160o 160o - 170o 170o - 180o 180o - 190o 190o - 200o 200o - 210o 210o - 220o 220o - 230o 230o - 240o 

ID Group (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 7.58 7.93 8.21 8.75 9.28 9.87 10.00 9.13 8.55 8.01 7.16 6.48 

JCAL02 1 6.31 6.58 6.71 7.46 8.08 8.86 9.66 9.99 9.47 7.99 6.78 6.32 

JCAL03 2 7.15 7.29 8.41 8.81 9.44 9.74 10.54 10.65 10.51 9.41 8.18 7.53 

JCAL04 2 7.51 7.95 8.71 9.83 11.13 11.72 11.63 12.00 11.44 10.08 8.71 7.78 

JCAL05 1 8.32 8.89 9.54 10.48 11.62 11.16 10.76 12.50 11.77 10.53 9.24 8.80 

JCAL06 2 7.18 7.58 7.97 8.40 8.29 9.00 9.12 9.65 9.72 8.86 8.09 7.40 

JCAL07 1 6.42 6.46 6.68 7.35 8.10 8.31 9.12 9.29 9.31 8.95 8.02 6.90 

JCAL08 2 7.08 7.32 7.62 7.90 8.74 8.72 9.14 8.82 9.49 9.22 7.95 7.45 

JCAL09 1 8.21 8.41 8.88 9.52 9.75 9.50 9.47 8.82 8.38 7.61 6.97 6.52 

JCAL10 2 9.93 9.97 10.84 11.62 12.36 12.67 12.21 11.79 11.76 11.16 10.30 9.52 

JCAL11 2 6.59 7.14 8.02 8.89 9.91 10.50 10.69 10.59 9.74 8.41 7.51 6.64 

JCAL12 1 8.20 8.61 9.33 10.17 11.10 11.72 11.66 12.17 11.67 10.12 9.17 8.86 

JCAL13 2 6.57 6.85 6.89 7.20 7.05 7.15 7.66 7.89 7.95 8.74 7.76 6.91 

JCAL14 1 8.50 8.88 9.54 9.65 10.18 10.67 10.85 11.03 11.21 10.75 9.94 9.69 

JCAL15 2 7.71 8.07 8.24 8.69 9.01 9.22 9.84 10.42 10.19 9.18 8.90 8.87 

JCAL16 1 7.88 8.17 8.79 9.21 9.89 10.74 10.92 11.26 11.29 9.72 8.79 8.04 

JCAL17 2 8.22 9.10 9.79 10.23 10.95 11.11 11.77 12.64 12.06 11.06 9.43 8.49 

JCAL18 1 6.34 6.58 6.93 7.38 7.81 8.39 8.55 8.74 8.54 8.17 7.53 6.97 

JCAL19 1 9.99 10.20 11.03 11.34 11.83 11.61 11.45 11.99 12.67 11.95 10.89 9.94 

JCAL20 2 6.80 7.25 7.30 7.60 8.16 8.34 8.15 8.93 8.79 8.11 7.47 7.11 

JCAL21 2 7.81 8.64 9.43 10.61 11.06 10.18 10.02 9.70 9.25 8.43 7.93 7.51 

JCAL22 2 7.07 7.13 7.32 8.03 8.88 9.25 9.80 10.20 10.09 9.88 9.12 8.60 

JCAL23 1 8.07 8.38 9.04 10.04 10.68 11.32 12.02 12.43 11.44 9.83 8.78 7.75 

JCAL24 1 6.52 7.07 7.68 7.69 8.11 8.30 7.95 7.25 7.03 6.45 6.33 6.11 

JCAL25 1 7.75 7.90 8.61 9.44 9.79 10.68 11.53 11.65 11.16 10.17 8.83 8.04 

JCAL26 1 7.62 7.83 8.42 8.99 9.92 10.58 10.91 11.33 10.88 9.18 8.31 8.07 

JCAL27 2 7.47 7.77 8.15 8.97 9.57 10.39 10.89 11.27 11.20 10.26 9.18 8.27 

JCAL28 2 8.03 8.64 9.36 10.16 10.54 10.99 10.96 11.08 10.92 10.19 9.50 8.86 

JCAL29 1 7.99 8.19 9.04 9.71 10.77 11.14 11.94 11.97 11.21 9.80 8.61 7.88 
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Appendix 3 Table 17: Baseline Endocortical Radius by sector cont’d 

  

240o - 
250o 

250o - 
260o 

260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

ID Group (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 6.10 5.92 6.33 6.69 7.65 8.16 8.73 8.90 8.98 9.47 9.28 9.30 

JCAL02 1 6.10 6.07 6.23 6.30 6.55 6.78 6.99 7.27 7.66 7.80 7.96 8.17 

JCAL03 2 7.53 7.33 7.37 7.50 7.08 7.06 7.40 7.76 8.17 8.69 9.28 9.56 

JCAL04 2 8.01 7.61 7.67 7.77 7.93 8.30 8.47 9.30 9.50 10.01 9.83 10.69 

JCAL05 1 8.54 8.37 8.78 9.36 9.57 9.58 9.56 9.61 9.51 9.32 9.86 10.76 

JCAL06 2 6.97 7.03 6.98 7.10 6.90 6.88 7.00 7.41 8.00 8.44 8.56 9.21 

JCAL07 1 6.41 6.30 6.39 6.69 7.16 7.50 7.81 8.37 7.98 8.14 8.46 8.58 

JCAL08 2 7.21 6.84 6.89 7.20 7.27 7.56 7.86 8.42 8.95 9.04 9.28 8.72 

JCAL09 1 6.14 6.34 6.42 6.69 7.17 7.62 8.72 9.60 9.97 9.81 9.29 8.72 

JCAL10 2 8.86 8.50 8.41 8.58 9.00 9.43 10.44 11.25 11.66 11.92 11.93 11.70 

JCAL11 2 6.45 6.46 6.67 7.13 7.26 7.17 7.28 7.64 8.12 8.63 9.00 9.94 

JCAL12 1 8.90 9.07 9.11 9.42 9.18 9.25 9.21 8.91 9.20 9.36 10.26 10.19 

JCAL13 2 6.75 6.88 6.92 7.09 7.30 7.53 7.78 7.44 7.89 7.69 6.78 7.33 

JCAL14 1 9.37 9.36 9.17 9.06 9.17 9.37 8.97 9.31 9.05 9.58 9.71 9.69 

JCAL15 2 8.82 8.72 8.81 8.42 8.21 8.25 8.19 8.50 8.57 8.18 8.57 8.45 

JCAL16 1 7.67 7.76 8.09 8.74 9.08 9.07 9.55 9.76 9.69 9.86 9.56 9.38 

JCAL17 2 8.21 8.31 8.63 8.32 8.33 8.69 8.95 9.48 10.16 10.46 10.92 11.28 

JCAL18 1 6.69 6.61 6.50 6.31 6.30 6.49 6.52 6.61 6.89 7.43 7.85 8.01 

JCAL19 1 9.40 9.18 9.87 10.17 10.20 10.48 10.90 10.86 10.82 10.85 10.93 11.21 

JCAL20 2 7.00 7.08 6.99 7.46 7.80 7.81 7.65 7.49 7.24 7.71 8.13 7.99 

JCAL21 2 7.27 7.08 7.10 7.19 7.49 7.81 8.23 8.88 9.57 10.05 10.04 10.14 

JCAL22 2 8.37 8.06 8.20 8.05 7.89 7.99 7.96 7.98 8.32 8.41 8.75 9.08 

JCAL23 1 7.51 7.80 7.98 8.44 9.07 9.37 9.47 9.56 9.90 10.23 10.57 10.36 

JCAL24 1 6.10 6.17 5.95 6.16 6.40 6.96 7.15 7.31 7.50 7.63 7.85 7.58 

JCAL25 1 7.57 7.42 7.71 7.68 7.75 8.27 8.59 9.10 9.13 8.96 9.36 9.47 

JCAL26 1 7.73 7.56 7.81 8.23 8.22 8.12 8.50 8.83 9.39 9.57 9.60 9.67 

JCAL27 2 8.14 8.10 8.31 8.41 8.29 8.33 8.55 8.55 8.94 8.97 9.69 9.80 

JCAL28 2 8.45 8.61 8.53 8.61 8.52 8.69 9.04 9.33 9.49 9.82 10.27 10.48 

JCAL29 1 7.48 7.33 7.41 8.11 8.83 9.23 9.36 9.13 8.96 9.39 10.26 10.89 
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Appendix 3 Table 18: Six months Endocortical Radius by sector 

  0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 
90o - 
100o 

100o - 
110o 

110o - 
120o 

ID Group (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 8.85 8.42 8.28 8.12 8.46 9.32 8.56 7.79 7.32 6.79 7.07 7.18 
JCAL02 1 9.05 9.55 9.86 9.69 9.00 7.86 7.06 6.65 6.14 6.01 5.85 5.91 
JCAL03 2 7.43 7.26 7.31 7.39 7.51 7.22 6.98 6.97 6.92 6.90 6.90 6.64 
JCAL04 2 

            JCAL05 1 
            JCAL06 2 
            JCAL07 1 8.84 8.54 8.89 9.09 9.04 8.64 8.29 7.70 7.22 6.81 6.67 6.52 

JCAL08 2 8.69 8.37 8.52 8.87 8.75 8.75 8.78 8.36 7.79 7.42 7.07 7.36 
JCAL09 1 

            JCAL10 2 12.43 12.24 11.67 11.71 10.74 9.96 9.89 9.97 10.35 10.60 10.73 10.26 
JCAL11 2 10.17 9.93 10.48 9.70 8.89 8.07 7.36 6.68 6.41 6.13 6.23 6.14 
JCAL12 1 

            JCAL13 2 
            JCAL14 1 9.91 10.88 12.70 12.12 12.10 11.34 10.29 10.01 9.16 8.53 8.02 8.04 

JCAL15 2 9.17 9.80 10.51 10.72 10.20 9.50 8.94 8.01 7.73 7.67 7.59 7.56 
JCAL16 1 

            JCAL17 2 11.28 11.54 11.63 11.57 10.87 10.04 8.89 8.45 7.90 7.55 7.46 7.56 
JCAL18 1 8.24 8.97 9.51 9.46 8.74 8.18 7.21 6.85 6.39 6.11 5.92 5.86 
JCAL19 1 

            JCAL20 2 8.32 8.65 8.99 9.11 9.37 9.19 8.32 7.62 7.04 6.92 6.93 6.82 
JCAL21 2 9.61 9.26 9.21 9.11 8.99 8.66 8.48 8.24 7.87 7.70 7.65 7.54 
JCAL22 2 

            JCAL23 1 
            JCAL24 1 9.98 10.31 10.90 10.17 9.64 8.93 8.12 7.48 7.26 7.10 6.94 7.05 

JCAL25 1 
            JCAL26 1 10.43 10.77 11.21 11.20 10.34 9.50 8.69 8.02 7.62 7.53 7.47 7.87 

JCAL27 2 10.29 10.84 10.92 11.33 10.47 10.00 9.27 8.50 8.02 7.52 7.11 7.13 
JCAL28 2 

            JCAL29 1 10.53 11.21 11.19 11.14 10.68 10.04 9.29 8.86 8.11 7.82 7.61 7.63 
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Appendix 3 Table 18: Six months Endocortical Radius by sector cont’d 

  
120o - 
130o 

130o - 
140o 

140o - 
150o 

150o - 
160o 

160o - 
170o 

170o - 
180o 

180o - 
190o 

190o - 
200o 

200o - 
210o 

210o - 
220o 

220o - 
230o 

230o - 
240o 

ID Group (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 7.31 7.70 8.08 8.82 9.23 9.58 9.68 9.05 8.51 8.15 7.44 6.91 

JCAL02 1 6.22 6.61 6.79 7.64 8.14 9.01 9.85 9.90 9.62 8.13 7.11 6.70 

JCAL03 2 6.70 7.16 7.42 8.10 8.42 8.46 8.28 7.82 7.22 6.71 6.22 6.04 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 6.50 6.56 6.84 7.11 7.65 8.26 8.86 9.28 10.04 8.77 7.81 6.71 

JCAL08 2 7.46 7.37 7.72 8.31 8.67 8.96 9.00 8.65 9.31 9.22 7.70 7.21 

JCAL09 1 
            JCAL10 2 9.71 9.90 10.69 11.60 12.37 12.49 12.35 11.95 11.44 11.23 10.28 9.57 

JCAL11 2 6.36 6.79 7.82 8.49 9.39 10.03 10.34 10.16 9.10 7.99 6.94 6.43 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 8.60 8.80 9.22 10.04 10.49 11.24 11.44 11.28 11.01 10.73 9.83 9.57 

JCAL15 2 7.80 8.05 8.16 8.53 8.96 9.03 9.40 10.76 10.51 9.25 8.95 8.81 

JCAL16 1 
            JCAL17 2 7.73 8.32 9.28 9.93 11.01 11.23 12.08 11.80 12.28 10.32 9.14 8.23 

JCAL18 1 6.05 6.40 6.93 7.55 8.03 8.50 8.84 8.97 8.91 8.15 7.47 6.99 

JCAL19 1 
            JCAL20 2 7.10 7.28 7.28 7.90 8.27 8.25 8.57 8.88 9.07 8.11 7.82 7.42 

JCAL21 2 8.08 8.44 9.48 10.42 11.05 10.76 10.57 9.75 9.50 8.51 7.85 7.51 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 6.94 7.23 8.00 8.91 9.09 9.85 10.26 10.54 10.19 9.21 7.94 7.23 

JCAL25 1 
            JCAL26 1 8.01 8.08 8.79 9.84 10.50 10.89 11.04 11.47 11.06 9.30 8.28 7.81 

JCAL27 2 7.40 7.98 8.21 9.09 9.77 10.41 11.53 11.51 11.20 10.19 8.77 8.16 

JCAL28 2 
            JCAL29 1 7.88 8.15 9.11 9.53 10.78 11.51 12.31 12.08 10.90 9.37 8.53 7.69 
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Appendix 3 Table 18: Six months Endocortical Radius by sector cont’d 

  
260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

ID Group (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 5.92 6.55 7.69 8.42 8.80 9.10 9.29 9.42 9.47 9.48 

JCAL02 1 6.27 6.36 6.66 6.70 6.80 7.17 7.54 7.71 8.14 8.54 

JCAL03 2 6.14 6.29 6.65 7.04 7.08 6.99 7.53 7.54 7.71 7.66 

JCAL04 2 
          JCAL05 1 
          JCAL06 2 
          JCAL07 1 6.49 6.83 6.99 7.63 7.76 7.75 7.64 7.74 7.92 8.49 

JCAL08 2 6.78 6.93 7.34 7.59 7.86 8.42 8.76 8.86 8.53 8.49 

JCAL09 1 
          JCAL10 2 8.49 8.57 8.99 9.62 10.54 11.36 11.92 11.90 11.40 11.77 

JCAL11 2 6.65 6.90 7.02 6.97 7.17 7.61 8.12 8.35 8.88 9.65 

JCAL12 1 
          JCAL13 2 
          JCAL14 1 9.11 9.03 9.23 9.31 9.54 9.44 9.21 9.63 9.72 9.65 

JCAL15 2 8.66 8.47 8.31 8.13 8.21 8.52 8.46 7.94 8.35 8.60 

JCAL16 1 
          JCAL17 2 8.04 8.16 8.15 8.43 8.63 9.46 9.38 9.31 9.91 10.49 

JCAL18 1 6.76 6.48 6.62 6.56 6.78 6.59 6.80 7.46 7.71 8.18 

JCAL19 1 
          JCAL20 2 6.92 7.75 7.98 7.89 7.73 7.76 7.72 7.96 8.16 8.14 

JCAL21 2 7.41 7.39 7.45 7.74 8.32 8.72 9.57 9.99 9.95 9.88 

JCAL22 2 
          JCAL23 1 
          JCAL24 1 7.25 7.28 7.11 7.15 7.22 7.56 8.17 8.75 9.23 9.77 

JCAL25 1 
          JCAL26 1 7.91 8.36 8.19 8.10 8.27 8.73 9.28 9.57 10.01 9.75 

JCAL27 2 8.34 8.37 8.16 8.25 8.30 8.35 8.77 8.93 9.58 9.80 

JCAL28 2 
          JCAL29 1 7.30 7.96 8.86 9.32 9.34 9.04 9.05 9.66 10.59 10.87 
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Appendix 3 Table 19: Baseline Pericortical Radius by sector  

  
0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 

90o - 
100o 

100o - 
110o 

110o - 
120o 

ID Group (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 14.20 14.71 16.05 16.28 15.11 14.27 13.31 11.71 10.75 10.10 9.70 9.77 

JCAL02 1 14.35 14.84 14.97 14.49 13.96 12.63 11.43 10.51 9.82 9.36 9.23 9.19 

JCAL03 2 15.08 15.15 14.04 13.55 13.27 12.82 12.09 11.28 10.54 10.15 9.92 9.84 

JCAL04 2 15.33 15.93 15.85 15.37 14.17 12.99 12.04 11.22 10.78 10.28 9.92 9.82 

JCAL05 1 15.98 16.31 16.03 15.22 14.36 13.66 12.91 12.21 11.68 11.46 11.11 11.25 

JCAL06 2 14.46 15.12 14.58 13.78 13.11 12.09 11.17 10.30 9.67 9.32 9.26 9.51 

JCAL07 1 14.63 14.29 13.19 12.63 12.75 12.82 12.47 12.07 11.51 10.87 10.35 10.02 

JCAL08 2 13.08 12.53 11.99 12.01 11.87 12.09 11.96 11.64 11.10 10.49 10.01 9.80 

JCAL09 1 13.47 13.44 13.28 13.18 12.83 12.57 12.49 12.46 12.10 11.86 11.76 11.31 

JCAL10 2 16.27 15.54 15.02 14.63 14.59 14.32 13.22 13.02 13.49 13.89 14.02 12.91 

JCAL11 2 13.67 13.75 13.62 13.50 13.13 11.77 10.63 9.47 8.79 8.25 8.23 8.11 

JCAL12 1 16.56 17.19 17.08 16.16 15.23 13.74 12.63 11.84 11.16 10.67 10.74 10.76 

JCAL13 2 13.58 14.30 14.77 14.74 14.13 13.10 12.11 11.55 10.91 10.65 10.45 10.50 

JCAL14 1 16.14 16.99 16.57 15.87 15.18 14.12 13.07 12.24 11.60 10.97 10.69 10.86 

JCAL15 2 14.16 14.27 14.27 13.86 13.60 12.92 11.94 11.27 10.77 10.46 10.46 10.66 

JCAL16 1 13.92 14.02 14.60 14.83 14.37 14.13 13.31 12.49 11.75 10.95 10.59 10.51 

JCAL17 2 16.23 15.97 15.81 15.54 14.90 13.74 12.61 11.63 10.79 10.29 10.17 10.15 

JCAL18 1 14.15 14.41 14.17 13.90 13.54 12.62 11.64 10.81 10.27 9.73 9.52 9.49 

JCAL19 1 15.86 16.50 16.91 16.38 15.64 14.86 13.78 13.02 12.15 11.68 11.43 11.50 

JCAL20 2 14.75 15.17 14.80 14.44 14.13 13.36 12.43 11.32 10.68 10.18 10.12 10.17 

JCAL21 2 14.65 15.04 14.72 14.15 13.47 12.74 12.33 12.11 11.79 11.44 10.89 10.71 

JCAL22 2 14.42 14.87 14.76 14.30 14.04 13.59 12.79 12.14 11.46 11.05 10.61 10.74 

JCAL23 1 15.45 15.84 15.78 15.79 15.39 14.31 12.90 11.65 10.89 10.20 9.98 9.81 

JCAL24 1 13.69 13.62 13.25 12.78 12.11 11.61 11.02 10.42 10.21 10.28 9.66 9.28 

JCAL25 1 15.03 15.19 13.69 13.38 13.12 13.42 13.09 12.44 11.63 10.81 10.37 10.30 

JCAL26 1 14.64 15.06 15.13 14.78 13.97 13.07 12.03 10.83 10.27 9.86 9.40 9.59 

JCAL27 2 16.55 17.26 16.69 15.13 14.26 13.47 12.65 12.15 11.62 11.01 10.80 10.67 

JCAL28 2 16.94 16.82 15.86 15.72 15.16 14.17 13.25 12.29 11.60 10.85 10.64 10.62 

JCAL29 1 16.08 15.75 15.46 15.03 14.15 13.50 12.70 11.91 11.16 10.60 10.25 10.16 



 

234 
 

Appendix 3 Table 19: Baseline Pericortical Radius by sector cont’d 

  

120o - 
130o 

130o - 
140o 

140o - 
150o 

150o - 
160o 

160o - 
170o 

170o - 
180o 

180o - 
190o 

190o - 
200o 

200o - 
210o 

210o - 
220o 

220o - 
230o 

230o - 
240o 

ID Group (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 10.23 10.93 12.10 14.07 17.26 20.12 19.77 17.52 14.51 11.80 10.21 9.24 

JCAL02 1 9.53 10.27 11.40 13.32 15.16 17.00 17.38 16.06 14.23 12.42 10.70 9.98 

JCAL03 2 9.96 10.51 11.49 12.82 14.69 16.96 17.57 16.08 14.15 12.19 10.60 9.79 

JCAL04 2 10.08 10.62 11.51 12.84 14.56 16.83 17.89 16.95 14.95 13.06 11.38 10.75 

JCAL05 1 11.46 12.05 13.02 14.21 15.61 17.04 17.96 16.81 14.93 13.30 12.18 11.60 

JCAL06 2 9.70 10.50 11.65 13.17 14.62 15.52 15.33 14.56 13.49 12.43 11.02 10.21 

JCAL07 1 10.00 10.58 11.35 12.54 14.35 16.60 17.92 17.46 15.42 13.49 11.40 10.06 

JCAL08 2 9.97 10.10 10.66 11.52 12.82 14.59 16.24 16.13 15.01 13.13 11.51 10.04 

JCAL09 1 10.82 10.98 11.60 12.71 14.06 14.95 15.84 15.91 14.45 12.68 11.32 10.33 

JCAL10 2 12.43 12.64 13.47 14.43 15.53 16.32 17.30 18.26 17.74 15.67 13.92 12.65 

JCAL11 2 8.39 9.02 9.95 11.55 13.23 14.60 14.47 13.33 11.84 10.25 9.27 8.71 

JCAL12 1 11.27 12.37 13.76 15.43 17.54 18.62 18.45 17.53 15.50 13.09 12.03 11.53 

JCAL13 2 10.62 11.15 12.08 13.67 15.54 15.98 15.51 14.53 13.52 12.38 11.32 10.42 

JCAL14 1 11.01 11.78 13.17 15.28 17.57 18.93 17.74 16.78 15.14 13.39 12.56 11.81 

JCAL15 2 11.20 11.93 13.05 14.45 15.85 16.00 15.42 14.62 13.60 12.63 11.86 11.42 

JCAL16 1 10.67 11.07 11.95 13.28 14.90 16.82 18.18 17.64 16.06 13.55 11.43 10.39 

JCAL17 2 10.53 11.43 12.52 13.93 15.66 17.21 17.77 17.12 15.62 13.76 12.07 11.20 

JCAL18 1 9.84 10.58 11.64 13.57 15.33 16.05 16.13 15.69 14.37 12.30 10.95 10.15 

JCAL19 1 11.74 12.61 13.79 15.19 16.68 17.11 16.92 16.22 15.21 14.13 12.73 12.11 

JCAL20 2 10.49 11.17 12.18 13.51 15.06 16.52 16.35 15.27 14.01 12.77 11.21 10.53 

JCAL21 2 10.86 11.36 12.72 14.43 15.78 16.51 17.04 16.75 14.92 13.25 11.95 11.13 

JCAL22 2 11.06 11.63 12.70 14.03 15.73 17.09 17.01 15.55 14.31 13.24 12.41 11.69 

JCAL23 1 10.24 10.61 11.68 13.68 15.69 17.70 18.22 16.48 14.65 12.56 10.83 9.74 

JCAL24 1 9.71 10.49 11.23 12.74 13.76 14.41 14.68 14.17 12.59 10.92 9.99 9.14 

JCAL25 1 10.28 10.80 11.37 12.81 14.56 16.68 18.28 17.39 15.50 13.62 11.84 10.76 

JCAL26 1 10.02 10.78 11.90 13.42 15.44 17.69 18.18 16.89 14.96 12.99 11.54 10.69 

JCAL27 2 11.06 11.94 13.41 15.36 17.65 18.95 18.01 16.70 15.29 13.70 12.17 11.30 

JCAL28 2 10.78 11.57 12.58 14.60 16.70 16.99 16.57 16.03 15.25 13.97 12.54 11.67 

JCAL29 1 10.42 10.77 11.72 12.99 14.78 16.36 16.24 15.41 14.47 12.98 11.44 10.04 
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Appendix 3 Table 19: Baseline Pericortical Radius by sector cont’d 

  

240o - 
250o 

250o - 
260o 

260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

ID Group (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 8.68 8.88 9.25 10.76 11.96 12.01 12.30 12.52 12.68 12.40 13.25 13.63 

JCAL02 1 9.64 9.59 10.35 10.72 10.60 11.01 11.25 11.47 12.61 14.01 13.83 13.34 

JCAL03 2 9.65 10.09 10.35 10.15 10.11 10.37 10.75 11.20 11.62 13.29 14.33 14.55 

JCAL04 2 10.52 10.59 10.68 10.97 11.13 11.97 12.72 13.52 13.94 15.12 15.48 15.11 

JCAL05 1 11.26 11.43 12.07 12.92 12.92 12.99 12.93 13.18 12.98 13.86 14.31 14.91 

JCAL06 2 9.83 9.56 9.94 10.00 10.25 10.65 10.19 11.65 12.54 12.50 13.10 13.62 

JCAL07 1 9.47 9.30 9.44 10.00 11.98 12.44 12.42 12.33 12.48 12.93 13.68 14.38 

JCAL08 2 9.22 9.30 9.99 10.63 10.71 10.90 11.59 12.17 12.89 12.87 13.65 13.48 

JCAL09 1 9.80 9.54 9.58 9.63 10.36 10.94 11.83 12.68 13.25 13.12 13.05 13.39 

JCAL10 2 11.85 11.35 11.24 11.34 11.68 12.21 13.05 14.03 15.32 16.29 16.78 16.96 

JCAL11 2 8.51 8.97 9.59 10.33 10.45 10.41 10.87 11.04 11.59 12.00 12.52 13.11 

JCAL12 1 11.41 12.14 12.42 12.56 12.75 12.72 12.87 12.92 13.56 14.07 14.45 14.90 

JCAL13 2 10.07 9.94 10.85 10.83 11.03 11.44 12.02 12.62 12.95 13.22 13.04 13.21 

JCAL14 1 12.19 12.07 11.69 11.72 11.76 12.37 12.72 12.40 12.81 14.20 14.73 15.17 

JCAL15 2 11.63 12.08 12.37 11.92 11.38 11.54 12.13 12.01 12.17 12.35 13.04 13.53 

JCAL16 1 10.18 10.50 11.49 12.39 12.29 12.50 13.17 13.87 14.85 15.17 14.51 14.04 

JCAL17 2 10.73 10.85 11.13 10.96 11.08 11.56 12.02 12.97 13.73 14.96 15.99 15.96 

JCAL18 1 10.03 10.12 10.80 10.79 10.41 10.50 11.05 11.58 12.73 13.76 13.86 13.93 

JCAL19 1 11.55 11.93 12.74 13.66 13.84 13.99 14.16 14.13 14.19 14.36 14.68 15.26 

JCAL20 2 10.00 10.14 10.61 11.49 12.26 12.01 12.21 12.38 11.68 12.98 13.72 14.06 

JCAL21 2 10.51 10.15 10.02 10.22 10.51 11.12 11.78 12.60 13.44 13.95 14.48 14.34 

JCAL22 2 11.39 11.44 11.81 11.83 11.78 11.97 12.49 12.58 13.54 13.73 13.79 13.88 

JCAL23 1 9.62 9.96 10.70 11.69 12.06 12.60 13.16 13.03 13.91 14.34 14.63 14.66 

JCAL24 1 8.96 8.89 9.15 9.40 9.97 10.57 10.91 10.82 10.84 11.00 12.00 13.04 

JCAL25 1 10.15 9.89 9.94 10.66 11.59 12.27 12.49 12.88 13.43 13.98 14.15 14.66 

JCAL26 1 10.20 10.44 11.13 11.69 11.53 11.73 12.31 12.86 13.32 13.59 13.73 14.15 

JCAL27 2 10.84 10.92 11.33 11.45 11.49 11.28 10.78 12.71 13.19 13.45 14.18 15.07 

JCAL28 2 11.34 11.30 11.76 11.84 11.70 11.95 12.32 12.77 13.75 14.98 15.58 16.91 

JCAL29 1 9.53 9.45 10.00 11.12 12.16 12.54 12.99 12.76 11.88 13.28 14.67 16.30 
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Appendix 3 Table 20: Six months Pericortical radius 

ID Group 0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 
90o - 
100o 

100o - 
110o 

110o - 
120o 

  
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 14.13 14.88 16.01 16.19 15.00 14.10 12.98 11.46 10.45 9.80 9.45 9.68 
JCAL02 1 14.58 14.78 14.85 14.53 13.69 12.71 11.53 10.42 9.83 9.47 9.26 9.33 
JCAL03 2 13.88 13.78 13.33 12.75 12.15 11.33 10.71 10.31 10.22 10.15 9.86 9.47 
JCAL04 2 

            JCAL05 1 
            JCAL06 2 
            JCAL07 1 14.27 14.04 13.23 12.64 12.74 12.78 12.34 11.94 11.40 10.68 10.29 10.06 

JCAL08 2 12.87 12.29 11.86 11.92 11.78 12.01 12.11 11.60 11.21 10.66 10.21 10.07 
JCAL09 1 

            JCAL10 2 16.33 15.57 14.91 14.76 14.54 14.11 13.33 13.04 13.29 13.75 13.84 13.05 
JCAL11 2 13.40 13.42 13.34 13.18 12.65 11.65 10.27 9.42 8.50 8.27 7.99 7.96 
JCAL12 1 

            JCAL13 2 
            JCAL14 1 16.40 16.92 16.44 15.97 15.04 14.38 13.40 12.35 11.66 11.12 10.85 10.91 

JCAL15 2 14.13 14.40 14.40 13.88 13.64 12.87 12.07 11.31 10.70 10.45 10.38 10.64 
JCAL16 1 

            JCAL17 2 15.47 15.47 15.48 15.17 14.66 13.36 12.15 11.09 10.24 9.75 9.56 9.68 
JCAL18 1 14.16 14.44 14.13 13.74 13.46 12.74 11.78 10.93 10.11 9.51 9.49 9.41 
JCAL19 1 

            JCAL20 2 15.04 15.40 14.84 14.50 14.12 13.32 12.39 11.40 10.68 10.12 10.01 10.15 
JCAL21 2 14.62 14.82 14.88 14.16 13.44 12.81 12.27 12.00 11.62 11.56 10.90 10.49 
JCAL22 2 

            JCAL23 1 
            JCAL24 1 15.23 15.29 14.17 13.63 13.32 12.71 12.00 11.14 10.52 10.03 9.73 9.73 

JCAL25 1 
            JCAL26 1 14.83 15.31 15.38 15.11 14.17 13.20 12.06 11.01 10.23 9.82 9.66 9.73 

JCAL27 2 16.27 17.12 16.53 15.28 14.29 13.42 12.50 12.11 11.56 11.02 10.81 10.85 
JCAL28 2 

            JCAL29 1 15.81 15.57 15.47 14.99 14.14 13.46 12.68 11.85 11.07 10.64 10.26 10.07 
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Appendix 3 Table 20: Six months Pericortical radius cont’d 

ID Group 
120o - 
130o 

130o - 
140o 

140o - 
150o 

150o - 
160o 

160o - 
170o 

170o - 
180o 

180o - 
190o 

190o - 
200o 

200o - 
210o 

210o - 
220o 

220o - 
230o 

230o - 
240o 

  
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 10.09 10.75 11.83 13.90 17.25 19.92 19.48 17.29 14.69 12.12 10.72 9.49 
JCAL02 1 9.60 10.37 11.52 13.32 15.29 17.05 17.58 16.21 14.40 12.35 10.78 9.80 
JCAL03 2 9.85 10.59 11.48 12.77 13.73 14.42 14.78 14.44 12.71 11.23 10.16 9.42 
JCAL04 2 

            JCAL05 1 
            JCAL06 2 
            JCAL07 1 10.08 10.47 11.22 12.52 14.46 16.86 18.07 17.32 15.05 13.15 11.23 9.89 

JCAL08 2 9.98 10.22 10.78 11.61 13.09 14.86 16.51 16.01 14.86 12.97 11.29 9.95 
JCAL09 1 

            JCAL10 2 12.56 12.65 13.65 14.64 15.47 16.23 17.18 18.15 17.89 15.84 13.97 12.68 
JCAL11 2 8.49 9.03 9.94 11.45 13.19 14.77 14.79 13.35 11.78 10.33 9.47 8.58 
JCAL12 1 

            JCAL13 2 
            JCAL14 1 11.14 12.04 13.22 15.33 17.95 19.20 18.07 16.34 14.74 13.28 12.33 11.79 

JCAL15 2 11.13 11.81 12.94 14.17 15.54 15.79 15.25 14.72 13.82 12.76 12.01 11.50 
JCAL16 1 

            JCAL17 2 9.91 10.47 11.54 13.58 15.76 18.07 18.13 16.81 15.39 13.10 11.95 11.31 
JCAL18 1 9.70 10.25 11.28 13.01 15.09 16.10 16.37 15.91 14.59 12.74 11.23 10.21 
JCAL19 1 

            JCAL20 2 10.48 11.22 12.23 13.64 15.27 16.70 16.33 15.41 14.13 12.37 11.19 10.53 
JCAL21 2 10.63 11.40 12.76 14.43 15.49 16.39 17.22 17.05 15.30 13.65 12.13 11.21 
JCAL22 2 

            JCAL23 1 
            JCAL24 1 9.99 10.42 11.26 12.65 14.66 16.90 17.24 15.87 14.13 12.33 10.64 9.81 

JCAL25 1 
            JCAL26 1 10.18 10.86 12.14 13.66 15.83 18.04 18.44 17.17 15.02 12.71 11.56 10.39 

JCAL27 2 11.25 12.21 13.55 15.45 17.94 18.99 18.21 16.98 15.25 13.61 12.17 11.04 
JCAL28 2 

            JCAL29 1 10.39 10.84 11.73 12.96 14.88 16.32 16.38 15.69 14.43 12.90 11.20 10.09 
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Appendix 3 Table 20: Six months Pericortical radius cont’d 

ID Group 
240o - 
250o 

250o - 
260o 

260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

  
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

JCAL01 1 8.84 8.88 9.20 10.67 12.17 12.36 12.57 12.70 12.71 12.63 13.39 13.47 

JCAL02 1 9.54 9.69 10.46 10.73 10.66 10.93 11.53 11.46 12.73 14.03 13.79 13.76 

JCAL03 2 9.16 9.04 9.21 9.55 10.20 10.28 10.69 10.89 10.85 11.31 12.04 13.13 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 9.27 8.86 9.04 9.91 12.00 12.55 12.18 12.31 12.21 12.60 13.34 14.07 

JCAL08 2 9.22 9.37 10.02 10.36 10.51 10.89 11.35 12.22 12.74 12.89 13.40 13.16 

JCAL09 1 
            JCAL10 2 11.96 11.28 11.22 11.35 11.68 12.27 13.19 14.03 15.37 16.28 16.82 16.90 

JCAL11 2 8.31 8.66 9.28 10.03 10.22 10.48 10.56 11.09 11.31 11.86 12.12 13.02 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 11.83 11.71 11.63 11.76 12.15 12.40 12.76 12.58 13.45 14.53 14.76 15.30 

JCAL15 2 11.52 11.89 12.21 11.98 11.52 11.43 12.16 12.03 12.21 12.37 13.01 13.63 

JCAL16 1 
            JCAL17 2 10.86 10.88 10.89 10.72 10.94 11.25 11.78 12.58 13.80 14.98 15.16 15.30 

JCAL18 1 9.96 10.06 10.89 10.87 10.55 10.76 11.15 11.79 12.92 13.77 13.83 14.03 

JCAL19 1 
            JCAL20 2 10.22 10.24 10.74 11.84 12.02 12.20 12.29 12.57 12.03 13.35 13.92 14.37 

JCAL21 2 10.57 10.25 10.12 10.40 10.53 11.41 11.78 12.49 13.36 14.00 14.34 14.33 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 9.57 9.93 10.45 10.19 10.16 10.33 10.67 11.25 11.53 13.22 14.23 14.40 

JCAL25 1 
            JCAL26 1 10.12 10.16 11.05 11.67 11.40 11.69 12.26 12.92 13.49 13.68 13.74 14.24 

JCAL27 2 10.89 10.81 11.05 11.38 11.35 11.27 10.70 12.41 12.92 13.41 13.78 14.78 

JCAL28 2 
            JCAL29 1 9.75 9.42 10.01 11.09 12.10 12.55 12.89 12.65 11.76 13.40 14.71 16.53 
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Appendix 3 Table 21: Baseline Endocortical vBMD by sector 

  
0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 

90o - 
100o 

100o - 
110o 

110o - 
120o 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1178.33 1124.94 1151.62 1204.57 1143.60 1169.38 1220.90 1206.88 1217.10 1106.36 1223.19 1252.10 

JCAL02 1 1130.92 1172.75 1226.75 1215.31 1229.64 1176.01 1190.39 1182.73 1171.53 1120.88 1160.22 1154.02 

JCAL03 2 1111.87 1139.39 1123.84 1190.97 1261.08 1273.28 1226.42 1228.66 1185.56 1185.02 1117.70 1096.55 

JCAL04 2 1008.27 840.40 1084.24 1263.82 1258.78 1108.84 1083.17 1181.04 1150.46 1180.75 1123.50 1113.90 

JCAL05 1 1078.05 940.29 1081.08 1198.58 1186.58 1183.98 1069.17 1152.86 1177.36 1176.73 1138.61 1089.39 

JCAL06 2 1010.05 942.63 1063.22 1175.94 1201.98 1193.83 1148.60 1142.98 1144.96 1126.25 1175.11 1135.01 

JCAL07 1 1147.43 1093.19 1139.05 1162.88 1166.47 1164.05 1184.08 1252.66 1227.93 1200.71 1179.99 1168.14 

JCAL08 2 1099.93 1004.46 1083.80 1203.08 1182.09 1200.21 1141.20 1103.21 1109.96 1147.27 1073.98 1062.78 

JCAL09 1 1204.77 1188.17 1179.31 1123.07 1164.82 1172.24 1200.58 1177.18 1200.02 1216.78 1193.11 1167.75 

JCAL10 2 1101.72 1177.01 1166.93 1193.95 1170.66 1164.98 1158.65 1190.58 1103.23 1234.40 1260.83 1220.12 

JCAL11 2 1143.84 963.34 1060.26 1198.01 1240.97 1186.60 1162.94 1186.19 1101.58 1178.59 1155.06 1119.88 

JCAL12 1 1098.69 1115.13 1156.43 1243.61 1143.98 1192.54 1256.41 1257.21 1344.48 1233.84 1170.18 1095.27 

JCAL13 2 1022.77 1015.44 1075.19 1095.11 1061.44 1108.43 1090.41 1174.41 1190.32 1182.17 1160.91 1205.57 

JCAL14 1 954.55 916.90 980.33 1125.50 1249.32 1077.85 1010.16 955.10 1099.81 1078.47 1018.76 1053.59 

JCAL15 2 1120.03 1159.97 1255.31 1225.21 1127.90 1156.44 1202.99 1200.43 1155.53 1147.68 1139.41 1157.13 

JCAL16 1 1137.87 1123.23 1153.12 1235.03 1213.84 1205.75 1181.39 1232.56 1184.89 1146.32 1150.02 1122.51 

JCAL17 2 1023.84 1037.19 1128.45 1244.40 1171.34 1159.68 1120.82 1141.96 1128.51 1099.88 1112.39 1111.59 

JCAL18 1 1051.73 1067.00 1130.52 1199.91 1171.02 1163.47 1152.92 1158.61 1153.20 1177.04 1153.97 1124.22 

JCAL19 1 817.75 960.16 915.27 1019.49 1154.82 1187.49 1130.68 1152.24 1120.34 1132.28 1048.37 1093.43 

JCAL20 2 1201.40 1143.83 1207.55 1214.15 1184.33 1162.26 1140.85 1145.38 1199.90 1152.50 1139.46 1115.03 

JCAL21 2 1061.31 1027.64 1126.15 1137.72 1151.69 1205.94 1209.90 1156.38 1209.58 1182.46 1173.58 1213.23 

JCAL22 2 1006.06 1028.66 1138.01 1176.09 1180.60 1130.38 1139.18 1185.37 1170.40 1140.90 1101.75 1056.53 

JCAL23 1 975.34 902.61 1068.19 1158.60 1209.98 1185.42 1111.89 1104.69 1126.44 1091.22 1102.70 1070.91 

JCAL24 1 1083.29 1101.55 1087.68 1062.75 1133.56 1157.98 1191.50 1158.72 1160.02 1059.74 1034.94 1067.27 

JCAL25 1 1099.29 1070.46 1070.48 1082.30 1093.67 1085.00 1129.65 1085.73 1137.32 1028.25 1037.42 1065.57 

JCAL26 1 1070.77 1159.44 1236.62 1226.23 1232.09 1154.63 1148.77 1190.47 1131.01 1146.73 1127.98 1119.13 

JCAL27 2 1133.14 1164.92 1117.86 1234.81 1210.86 1162.77 1224.62 1238.26 1180.75 1201.24 1199.04 1188.91 

JCAL28 2 1107.28 1167.42 1218.28 1176.59 1146.10 1136.25 1203.48 1298.82 1214.89 1182.84 1173.51 1069.67 

JCAL29 1 862.59 867.63 916.64 1088.03 1184.26 1184.11 1196.32 1179.52 1191.12 1179.67 1103.96 1129.49 
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Appendix 3 Table 21: Baseline Endocortical vBMD by sector cont’d 

  

120o - 
130o 

130o - 
140o 

140o - 
150o 

150o - 
160o 

160o - 
170o 

170o - 
180o 

180o - 
190o 

190o - 
200o 

200o - 
210o 

210o - 
220o 

220o - 
230o 

230o - 
240o 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1209.00 1162.37 1127.76 1049.94 1065.14 1180.15 1140.43 1118.76 1020.87 1038.36 1047.97 1034.75 

JCAL02 1 1148.07 1137.59 1054.14 1107.91 1107.78 1109.50 1099.91 1056.90 996.32 1105.52 1114.93 1143.28 

JCAL03 2 1022.87 1034.06 1081.59 1053.75 1058.45 1065.98 1035.90 958.02 972.60 1153.18 1094.93 1148.05 

JCAL04 2 1102.30 1110.11 1061.50 1088.84 1122.80 973.06 974.16 896.95 979.87 1057.76 1118.34 1114.11 

JCAL05 1 958.15 1000.35 1054.85 1075.83 1130.13 1016.87 964.81 1061.00 1009.47 1142.06 1164.24 1187.39 

JCAL06 2 1118.43 1122.59 1071.38 982.05 946.86 991.45 973.22 992.34 1103.21 1161.05 1173.69 1126.82 

JCAL07 1 1081.20 1069.07 1025.34 1054.05 1042.47 1041.55 1032.90 933.53 862.93 995.37 1124.81 1086.67 

JCAL08 2 1116.55 1124.00 1077.12 990.39 1033.60 896.72 958.50 888.64 901.07 1076.84 1061.40 1112.39 

JCAL09 1 1167.31 1182.76 1165.30 1041.98 932.15 963.38 1090.85 1124.14 1143.13 1102.75 1079.54 1049.97 

JCAL10 2 1197.88 1189.30 1199.94 1078.19 1051.07 1065.44 967.94 910.86 948.74 983.80 1030.01 1132.00 

JCAL11 2 1160.02 1095.30 1110.21 1039.29 1018.13 956.57 926.77 964.17 978.04 988.47 1096.42 1195.35 

JCAL12 1 1058.74 1033.10 1034.46 1042.38 1050.97 1083.08 986.94 1009.10 1203.30 1140.57 1125.35 1203.99 

JCAL13 2 1207.77 1155.40 1083.55 1095.11 1111.89 1118.14 1059.53 1117.89 1000.67 1055.32 1120.14 1156.26 

JCAL14 1 1077.16 1093.96 1140.76 1026.75 1028.49 1026.51 996.42 943.65 938.30 1064.45 1082.96 1058.56 

JCAL15 2 1125.80 1192.53 1134.28 1112.17 1066.95 1006.44 972.41 993.82 1089.33 1141.89 1181.79 1190.46 

JCAL16 1 1149.39 1141.54 1143.21 1133.19 1132.61 1062.50 1056.48 1007.39 1057.72 1131.10 1148.67 1147.61 

JCAL17 2 1080.11 1127.30 1106.76 993.40 971.69 845.73 841.78 867.79 930.94 1083.98 1154.86 1136.47 

JCAL18 1 1139.31 1097.84 1081.53 1087.02 1053.29 1057.76 1016.02 1034.52 993.29 1055.24 1126.35 1202.27 

JCAL19 1 1107.63 1073.57 1080.78 966.55 971.04 876.99 867.65 916.48 1003.28 1043.43 1109.95 1140.61 

JCAL20 2 1120.85 1142.89 1141.91 1118.81 1144.14 1114.89 1044.54 1028.01 990.03 1068.29 1124.19 1176.42 

JCAL21 2 1148.95 1146.80 1152.12 1146.14 1077.85 948.58 966.34 998.66 1103.47 1075.74 1191.44 1141.14 

JCAL22 2 956.17 944.08 1005.14 1022.28 1054.34 1014.12 1045.27 1099.28 1065.43 1096.27 1090.85 1130.19 

JCAL23 1 1112.32 1099.50 1137.71 1095.37 976.90 953.49 1044.83 950.21 988.80 1056.45 1075.01 1100.68 

JCAL24 1 1057.19 1061.38 1038.47 972.58 969.92 990.19 1031.27 929.76 898.71 920.04 963.42 998.29 

JCAL25 1 976.56 937.75 979.22 975.38 868.55 889.71 924.22 946.13 936.71 1017.17 1078.05 1072.56 

JCAL26 1 1144.18 1075.00 1070.30 998.26 1031.71 975.93 977.93 1030.34 1133.10 1187.25 1152.69 1142.56 

JCAL27 2 1182.70 1158.06 1112.77 1085.58 1058.07 1041.71 979.07 857.94 958.70 1135.08 1167.66 1156.97 

JCAL28 2 1058.21 1130.00 1117.68 1131.16 1145.09 1158.84 1070.73 946.88 981.74 1169.94 1217.10 1199.70 

JCAL29 1 1139.46 1058.00 1109.66 1094.63 1057.51 951.84 985.55 1058.61 1092.06 1114.77 1151.41 1138.17 
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Appendix 3 Table 21: Baseline Endocortical vBMD by sector cont’d 

  

240o - 
250o 

250o - 
260o 

260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1145.17 1227.43 1191.85 1170.86 1177.21 1176.75 1228.53 1219.89 1261.53 1210.54 1184.64 1097.51 

JCAL02 1 1170.76 1205.46 1247.48 1207.08 1187.35 1227.36 1212.60 1185.70 1194.21 1155.16 1102.24 1074.47 

JCAL03 2 1131.49 1071.37 1076.42 1217.26 1206.08 1202.77 1219.51 1221.66 1216.60 1226.20 1167.07 1109.42 

JCAL04 2 1207.49 1200.20 1247.14 1266.96 1220.85 1182.51 1142.03 1160.46 1117.59 1148.61 1125.26 1151.86 

JCAL05 1 1151.36 1165.16 1201.12 1260.30 1216.05 1192.83 1174.42 1171.65 1119.25 1094.00 1051.70 1094.36 

JCAL06 2 1163.51 1123.21 1148.33 1167.18 1161.89 1228.99 1178.44 1174.03 1187.78 1154.31 1083.71 1057.15 

JCAL07 1 1092.97 1106.22 1139.45 1122.95 1115.69 1142.87 1160.24 1210.21 1228.98 1168.38 1125.99 1061.14 

JCAL08 2 1170.21 1163.22 1241.96 1269.20 1168.39 1172.32 1161.77 1159.52 1130.61 1106.15 1111.53 984.81 

JCAL09 1 1058.22 1106.62 1140.83 1162.52 1197.16 1183.04 1147.11 1193.62 1210.29 1185.60 1140.43 1106.56 

JCAL10 2 1114.21 1076.36 1162.50 1168.52 1230.18 1098.18 1135.99 1235.51 1255.20 1192.83 1154.74 1172.55 

JCAL11 2 1206.67 1216.98 1273.14 1295.84 1227.27 1193.13 1151.99 1137.22 1161.70 1224.49 1198.52 1156.91 

JCAL12 1 1244.66 1187.07 1084.10 1061.37 1111.08 1153.82 1314.66 1333.48 1249.24 1174.87 1162.00 1125.38 

JCAL13 2 1189.11 1195.04 1207.13 1243.04 1163.93 1103.41 1171.14 1148.71 1150.89 1102.61 1034.95 1055.01 

JCAL14 1 1222.44 1402.44 1428.23 1235.64 1118.89 1045.54 1021.19 1081.47 1265.35 1234.15 1115.35 867.79 

JCAL15 2 1194.72 1188.23 1229.28 1186.31 1230.23 1269.76 1226.81 1226.18 1191.76 1095.19 1134.44 1091.61 

JCAL16 1 1189.05 1180.10 1192.66 1212.15 1161.91 1203.40 1211.88 1189.50 1166.09 1192.11 1197.39 1146.96 

JCAL17 2 1127.75 1132.54 1206.73 1177.52 1166.93 1199.67 1191.82 1176.98 1153.33 1009.11 1045.30 1098.94 

JCAL18 1 1158.75 1156.14 1199.87 1194.17 1141.18 1175.07 1217.42 1205.56 1142.35 1176.24 1157.50 1079.27 

JCAL19 1 1193.51 1236.75 1202.35 1028.16 1110.94 1168.79 1183.10 1144.57 1124.05 1151.85 1074.17 974.75 

JCAL20 2 1166.96 1220.29 1244.26 1257.65 1248.06 1192.96 1198.37 1157.72 1169.95 1213.57 1204.31 1184.54 

JCAL21 2 1142.51 1131.85 1160.32 1129.91 1096.34 1151.65 1171.00 1253.53 1193.49 1080.21 983.38 1040.41 

JCAL22 2 1152.48 1172.75 1189.30 1168.81 1149.90 1135.56 1122.13 1066.74 1101.79 1135.02 1006.79 1016.54 

JCAL23 1 1142.42 1172.71 1226.34 1249.55 1298.97 1239.52 1180.30 1139.26 1132.59 1109.58 1136.29 928.17 

JCAL24 1 1042.17 1065.56 1026.00 1037.00 1077.29 1152.42 1201.64 1187.43 1136.22 1069.59 1125.35 1114.77 

JCAL25 1 1061.51 1122.83 1155.66 1185.26 1155.97 1140.48 1099.22 1119.12 1093.74 1053.49 1034.79 1057.85 

JCAL26 1 1153.78 1110.96 1135.80 1214.47 1186.41 1227.53 1223.92 1261.33 1233.59 1165.85 1153.98 1117.80 

JCAL27 2 1211.24 1206.19 1164.37 1145.73 1170.48 1105.63 1162.80 1237.01 1287.79 1233.60 1158.84 1099.19 

JCAL28 2 1245.17 1179.98 1148.93 1039.12 1138.95 1150.57 1180.11 1251.16 1252.94 1187.81 1146.59 1174.75 

JCAL29 1 1210.00 1175.47 1144.74 1202.31 1240.91 1228.11 1158.07 1199.08 1182.02 1156.73 1086.70 992.08 
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Appendix 3 Table 22: Six months Endocortical vBMD by sector 

ID Group 0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 
90o - 
100o 

100o - 
110o 

110o - 
120o 

  
[mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1125.37 1170.89 1152.75 1166.91 1134.48 1217.80 1198.42 1121.16 1147.35 1153.85 1152.23 1152.41 

JCAL02 1 1168.38 1140.59 1195.22 1185.32 1224.97 1183.70 1138.39 1127.83 1134.75 1139.35 1124.25 1157.54 

JCAL03 2 1120.26 1103.68 1166.86 1103.24 1117.46 1121.14 1151.97 1181.33 1188.53 1159.24 1151.74 1130.72 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1101.47 1063.90 1052.45 1170.27 1231.03 1229.78 1202.22 1161.02 1179.34 1186.31 1161.65 1143.60 

JCAL08 2 1075.87 973.75 1028.39 1175.44 1204.46 1227.41 1145.06 1114.23 1126.67 1146.93 1101.39 1169.61 

JCAL09 1 
            JCAL10 2 1074.86 1180.29 1126.56 1133.72 1140.43 1157.65 1185.38 1209.79 1200.84 1240.65 1270.72 1236.47 

JCAL11 2 1055.44 923.32 1043.22 1216.06 1229.41 1192.84 1236.34 1183.98 1203.03 1204.42 1185.60 1174.42 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 902.49 865.10 1044.08 1170.73 1270.21 1135.67 1123.03 1191.02 1156.92 1087.49 975.06 1018.99 

JCAL15 2 1085.24 1162.16 1302.59 1210.58 1102.44 1160.32 1216.38 1201.11 1154.41 1175.24 1154.73 1196.97 

JCAL16 1 
            JCAL17 2 1022.89 1034.69 1201.62 1249.83 1200.80 1325.81 1398.03 1345.67 1280.77 1068.42 972.98 917.87 

JCAL18 1 1054.38 1056.01 1143.91 1200.28 1182.67 1215.01 1182.18 1173.67 1177.44 1105.59 1106.59 1081.22 

JCAL19 1 
            JCAL20 2 1174.26 1163.09 1187.01 1159.73 1173.19 1208.93 1169.27 1192.94 1182.46 1178.07 1184.56 1099.64 

JCAL21 2 1046.43 1008.86 1066.99 1145.96 1148.26 1143.92 1136.22 1189.39 1171.79 1180.38 1156.88 1171.55 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1142.66 1085.52 1200.41 1262.01 1255.89 1220.47 1188.12 1219.83 1233.41 1159.94 1138.12 1114.35 

JCAL25 1 
            JCAL26 1 1146.02 1169.04 1170.38 1251.94 1212.04 1229.15 1203.85 1174.40 1181.71 1181.72 1157.99 1211.69 

JCAL27 2 1138.63 1147.73 1048.32 1182.48 1231.21 1219.81 1170.69 1147.14 1226.83 1240.72 1178.30 1186.05 

JCAL28 2 
            JCAL29 1 905.88 875.92 896.54 1086.03 1224.09 1219.54 1131.20 1157.65 1181.37 1187.61 1181.50 1154.10 
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Appendix 3 Table 22: Six months Endocortical vBMD by sector cont’d 

ID Group 
120o - 
130o 

130o - 
140o 

140o - 
150o 

150o - 
160o 

160o - 
170o 

170o - 
180o 

180o - 
190o 

190o - 
200o 

200o - 
210o 

210o - 
220o 

220o - 
230o 

230o - 
240o 

  
[mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1176.29 1151.15 1116.55 1100.40 1121.38 1192.21 1147.24 1086.51 1039.34 1024.29 1107.86 1153.06 

JCAL02 1 1145.95 1083.06 1062.40 1103.39 1101.95 1112.91 1117.96 1061.04 1068.04 1062.12 1169.63 1185.14 

JCAL03 2 1137.76 1100.23 1049.51 996.70 951.94 996.82 1019.97 985.18 908.68 960.75 924.85 941.14 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1106.10 1047.91 1045.39 1042.38 1046.99 1059.72 1053.15 949.60 968.46 1049.05 1115.38 1055.60 

JCAL08 2 1170.32 1072.67 1096.70 1061.25 968.05 955.06 902.11 908.09 908.72 1031.53 1000.22 1073.32 

JCAL09 1 
            JCAL10 2 1134.59 1141.80 1142.56 1161.57 1079.22 1035.42 1029.58 958.50 914.38 969.52 1036.18 1122.43 

JCAL11 2 1148.05 1102.90 1126.41 1009.16 975.28 954.59 1015.63 967.26 1085.05 1091.48 1096.95 1169.09 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1067.37 1059.65 1058.86 1114.26 1119.28 1086.79 1048.36 965.80 811.78 1055.41 1176.61 1188.01 

JCAL15 2 1148.65 1191.68 1136.54 1132.61 1107.72 999.07 986.57 1068.33 1193.83 1131.89 1147.28 1160.16 

JCAL16 1 
            JCAL17 2 884.08 908.48 945.14 1037.61 1005.39 897.28 947.33 868.30 991.75 1017.15 1113.32 1201.11 

JCAL18 1 1093.74 1129.50 1141.09 1139.30 1083.13 1068.28 1047.35 1080.80 1031.56 1118.36 1127.82 1168.40 

JCAL19 1 
            JCAL20 2 1118.43 1159.55 1113.49 1122.01 1135.42 1082.93 1073.69 1027.08 1027.16 1010.65 1119.86 1141.93 

JCAL21 2 1161.33 1167.69 1223.41 1165.51 1085.38 1003.17 1015.43 1024.90 1098.48 1116.87 1142.82 1169.75 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1079.23 1089.25 1091.21 1124.09 1087.53 1058.58 1017.44 933.60 912.27 1118.43 1101.76 1033.32 

JCAL25 1 
            JCAL26 1 1151.31 1090.10 1089.24 1092.73 1013.36 955.63 963.07 1018.44 1066.01 1146.60 1174.48 1198.36 

JCAL27 2 1182.98 1165.47 1120.61 1110.15 1061.70 1022.35 1023.60 929.50 961.20 1120.42 1086.38 1153.61 

JCAL28 2 
            JCAL29 1 1097.16 1068.47 1062.13 1006.42 999.42 983.36 1004.21 1035.30 1071.34 1063.17 1069.50 1155.50 
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Appendix 3 Table 22: Six months Endocortical vBMD by sector cont’d 

ID Group 
240o - 
250o 

250o - 
260o 

260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

  
[mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1207.26 1078.10 1161.30 1223.61 1294.78 1256.59 1190.53 1215.59 1213.60 1214.44 1135.72 1098.09 

JCAL02 1 1171.29 1152.05 1216.42 1181.52 1157.44 1132.06 1141.10 1128.84 1173.34 1195.97 1187.28 1150.16 

JCAL03 2 1053.76 1072.35 1111.75 1099.63 1117.75 1120.78 1129.15 1128.50 1140.45 1134.00 1152.92 1143.79 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1123.09 1113.25 1173.63 1176.47 1164.44 1211.24 1199.90 1254.91 1165.90 1134.33 1071.76 1134.48 

JCAL08 2 1204.52 1113.98 1220.41 1279.84 1205.67 1199.03 1237.47 1199.84 1156.86 1096.59 940.42 963.62 

JCAL09 1 
            JCAL10 2 1092.88 1092.93 1131.10 1178.09 1221.86 1195.28 1168.57 1216.31 1266.16 1158.69 1089.60 1142.72 

JCAL11 2 1160.47 1191.04 1264.55 1280.75 1247.99 1241.07 1250.32 1245.88 1242.34 1201.85 1216.70 1178.74 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1235.44 1248.74 1350.06 1280.73 1258.83 1250.32 1181.97 1143.17 1165.60 1163.92 995.71 884.04 

JCAL15 2 1209.47 1155.31 1176.64 1245.70 1256.91 1275.96 1222.74 1240.12 1146.62 1087.24 1119.37 1059.76 

JCAL16 1 
            JCAL17 2 1304.88 1241.27 1105.31 994.04 971.24 1060.85 1084.15 1289.06 1030.29 830.33 963.15 1043.94 

JCAL18 1 1146.33 1167.71 1250.46 1278.27 1242.87 1187.30 1180.97 1171.08 1153.57 1173.36 1109.16 1080.15 

JCAL19 1 
            JCAL20 2 1122.03 1157.10 1239.83 1255.06 1232.56 1232.56 1193.61 1231.64 1215.76 1211.55 1128.36 1120.84 

JCAL21 2 1189.63 1190.73 1163.79 1155.52 1147.85 1176.06 1145.06 1180.37 1218.51 1111.53 1026.63 1026.30 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1071.62 1125.89 1122.21 1154.27 1203.19 1199.25 1194.54 1179.87 1183.97 1230.88 1116.81 1174.44 

JCAL25 1 
            JCAL26 1 1180.94 1165.93 1168.22 1243.67 1240.19 1220.04 1187.56 1228.15 1205.11 1155.62 1146.62 1166.69 

JCAL27 2 1131.05 1146.21 1166.35 1232.47 1192.31 1151.69 1213.91 1195.29 1212.12 1151.02 1120.67 1047.53 

JCAL28 2 
            JCAL29 1 1163.58 1105.29 1121.39 1193.07 1241.41 1224.64 1196.06 1200.06 1164.78 1133.00 1176.07 962.67 
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Appendix 3 Table 23: Baseline Mid-cortical vBMD by sector  

  
0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 90o - 100o 100o - 110o 110o - 120o 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1238.10 1175.39 1232.15 1230.82 1232.55 1255.16 1265.15 1230.95 1254.72 1233.87 1236.21 1258.36 

JCAL02 1 1200.82 1237.56 1221.24 1233.96 1250.56 1207.31 1265.79 1246.81 1210.53 1189.76 1185.13 1216.57 

JCAL03 2 1165.86 1174.13 1199.91 1266.63 1279.10 1288.37 1255.18 1239.42 1202.89 1210.09 1160.25 1176.74 

JCAL04 2 1123.98 1110.59 1225.26 1235.47 1236.66 1154.69 1110.56 1186.04 1173.15 1191.04 1194.78 1190.85 

JCAL05 1 1193.79 1128.28 1217.07 1264.28 1247.72 1223.87 1171.32 1165.44 1225.39 1256.12 1205.54 1223.48 

JCAL06 2 1185.11 1156.27 1238.94 1242.17 1212.13 1232.13 1212.30 1228.99 1185.59 1255.53 1230.03 1192.89 

JCAL07 1 1238.23 1234.21 1217.47 1226.23 1210.48 1225.77 1206.20 1262.40 1322.64 1258.55 1234.36 1223.57 

JCAL08 2 1197.69 1172.26 1148.62 1239.68 1249.37 1253.36 1223.84 1180.26 1167.36 1197.27 1166.63 1242.29 

JCAL09 1 1245.01 1222.64 1229.90 1226.27 1254.10 1223.85 1225.69 1250.24 1259.45 1258.65 1255.36 1205.11 

JCAL10 2 1202.25 1218.22 1240.60 1229.55 1215.47 1220.96 1196.05 1225.88 1217.48 1255.32 1241.12 1247.36 

JCAL11 2 1127.09 1125.05 1168.42 1218.46 1249.26 1223.95 1200.38 1224.24 1163.19 1182.49 1147.04 1136.56 

JCAL12 1 1186.01 1192.39 1263.56 1259.68 1194.01 1339.56 1313.46 1286.31 1344.74 1313.86 1296.16 1229.34 

JCAL13 2 1201.05 1189.88 1223.01 1284.50 1257.58 1211.08 1202.69 1239.44 1225.46 1221.42 1219.82 1231.64 

JCAL14 1 1160.16 1110.03 1236.40 1350.93 1256.76 1162.79 1064.27 1020.42 1162.57 1183.09 1145.49 1196.34 

JCAL15 2 1178.58 1224.77 1248.93 1244.84 1196.93 1195.73 1237.53 1268.67 1247.33 1241.24 1212.70 1237.14 

JCAL16 1 1202.93 1196.24 1232.31 1223.98 1229.62 1232.20 1228.20 1253.37 1224.65 1214.21 1233.59 1204.71 

JCAL17 2 1159.78 1179.37 1250.36 1231.41 1237.72 1197.43 1184.80 1160.61 1176.26 1156.62 1128.72 1132.69 

JCAL18 1 1189.62 1194.82 1179.84 1226.91 1210.65 1212.74 1191.37 1180.27 1201.50 1201.78 1177.22 1181.90 

JCAL19 1 1054.63 1101.16 1106.80 1193.70 1205.09 1216.42 1214.41 1177.31 1169.80 1189.50 1164.36 1130.88 

JCAL20 2 1219.99 1179.74 1207.60 1223.20 1215.52 1188.82 1206.30 1182.69 1211.83 1215.87 1200.04 1211.49 

JCAL21 2 1054.02 1170.33 1219.22 1208.34 1190.90 1204.44 1222.66 1182.37 1198.29 1210.06 1239.48 1210.11 

JCAL22 2 1193.49 1217.47 1240.44 1283.80 1200.82 1192.03 1207.06 1196.74 1173.96 1146.42 1146.70 1137.30 

JCAL23 1 1167.97 1142.37 1219.19 1267.74 1262.58 1268.31 1149.85 1145.70 1150.03 1143.69 1134.19 1085.57 

JCAL24 1 1090.89 1064.46 1131.94 1028.47 1091.14 1181.07 1237.88 1212.87 1187.33 1152.53 1113.16 1100.53 

JCAL25 1 1114.18 1106.44 1095.89 1109.62 1128.87 1115.75 1152.90 1136.56 1159.72 1090.01 1120.04 1124.81 

JCAL26 1 1242.90 1243.60 1270.47 1273.39 1249.95 1204.67 1245.05 1211.99 1204.21 1186.19 1164.45 1145.76 

JCAL27 2 1189.55 1207.33 1224.94 1257.72 1240.02 1234.70 1225.58 1256.55 1237.35 1212.82 1255.02 1233.82 

JCAL28 2 1162.46 1266.82 1239.97 1194.02 1235.22 1202.85 1190.61 1307.51 1272.91 1202.90 1228.76 1188.85 

JCAL29 1 1068.62 1107.03 1034.09 1249.10 1237.61 1243.06 1229.56 1212.19 1221.13 1243.20 1227.52 1197.36 
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 Appendix 3 Table 23: Baseline Mid-cortical vBMD by sector cont’d 

  
120o - 130o 130o - 140o 140o - 150o 150o - 160o 160o - 170o 170o - 180o 180o - 190o 190o - 200o 200o - 210o 210o - 220o 220o - 230o 230o - 240o 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1238.13 1203.79 1202.76 1146.31 1134.56 1189.03 1194.71 1183.18 1182.49 1181.80 1109.68 1102.92 

JCAL02 1 1193.92 1181.75 1152.30 1195.03 1163.83 1170.41 1173.16 1160.81 1154.23 1175.29 1157.18 1182.61 

JCAL03 2 1159.23 1167.59 1148.04 1149.26 1166.08 1133.54 1125.18 1108.45 1088.04 1155.93 1092.54 1141.48 

JCAL04 2 1175.31 1154.60 1119.09 1154.11 1185.61 1144.74 1114.95 1041.39 1081.55 1068.46 1168.95 1185.10 

JCAL05 1 1126.65 1169.40 1203.44 1153.13 1212.13 1138.01 1149.12 1165.24 1111.04 1166.02 1174.00 1215.95 

JCAL06 2 1168.65 1155.70 1140.71 1116.98 1088.54 1091.40 1109.41 1119.72 1152.31 1182.46 1179.55 1195.36 

JCAL07 1 1171.57 1175.53 1122.18 1148.40 1155.80 1142.62 1105.89 1124.30 1070.58 1103.03 1165.53 1134.84 

JCAL08 2 1198.79 1186.00 1193.90 1187.03 1195.12 1121.55 1104.66 1057.01 1086.68 1137.97 1126.54 1121.90 

JCAL09 1 1223.66 1205.08 1174.47 1136.17 1144.84 1115.60 1159.15 1172.31 1169.96 1166.44 1179.97 1152.07 

JCAL10 2 1210.53 1213.43 1217.46 1199.91 1151.71 1157.01 1093.23 1078.86 1121.28 1145.11 1174.26 1217.75 

JCAL11 2 1168.26 1100.06 1115.13 1090.35 1082.56 1014.00 987.54 1019.16 982.03 986.86 1086.74 1190.49 

JCAL12 1 1175.21 1114.84 1134.26 1171.12 1174.62 1178.48 1154.66 1203.31 1234.20 1163.25 1153.75 1266.06 

JCAL13 2 1188.86 1224.06 1226.16 1216.71 1201.23 1204.83 1147.01 1147.39 1092.89 1196.72 1194.26 1202.97 

JCAL14 1 1205.71 1223.28 1210.63 1223.48 1174.11 1108.74 1111.80 1139.73 1111.25 1105.34 1122.67 1156.01 

JCAL15 2 1208.15 1192.00 1182.38 1180.46 1173.68 1161.27 1131.01 1136.33 1175.86 1200.34 1208.98 1213.11 

JCAL16 1 1214.42 1190.89 1198.95 1211.34 1197.17 1164.78 1091.34 1137.51 1166.02 1184.70 1166.29 1145.99 

JCAL17 2 1149.73 1148.25 1153.07 1128.48 1075.35 1014.01 1016.44 1007.69 1049.94 1097.60 1183.91 1171.30 

JCAL18 1 1203.67 1160.01 1120.44 1157.91 1145.63 1124.62 1106.41 1096.10 1117.57 1151.90 1160.15 1218.57 

JCAL19 1 1138.08 1147.97 1126.58 1115.10 1087.34 1073.46 1034.57 1091.27 1100.20 1047.33 1100.53 1147.65 

JCAL20 2 1194.40 1194.19 1179.78 1184.48 1156.23 1164.71 1139.28 1143.20 1110.47 1141.80 1131.32 1180.18 

JCAL21 2 1150.25 1124.50 1178.27 1229.55 1189.22 1140.67 1131.45 1101.53 1146.96 1187.00 1232.96 1222.82 

JCAL22 2 1092.66 1061.47 1069.64 1078.45 1063.32 1040.41 1065.11 1082.60 1084.29 1115.65 1114.60 1142.02 

JCAL23 1 1143.18 1133.30 1160.18 1173.40 1137.79 1099.75 1132.19 1062.65 1057.24 1056.38 1061.66 1100.62 

JCAL24 1 1088.71 1071.37 1102.75 1092.70 1089.61 1061.91 1114.87 1075.29 1033.12 1030.51 1045.62 1091.42 

JCAL25 1 1044.22 1026.47 1051.77 1075.88 982.09 956.01 946.73 992.98 994.88 1059.08 1117.00 1102.00 

JCAL26 1 1191.78 1164.12 1193.43 1134.53 1138.54 1100.26 1096.03 1091.66 1192.97 1185.26 1208.38 1164.07 

JCAL27 2 1202.15 1179.90 1191.18 1180.97 1112.92 1128.25 1108.26 1066.71 1123.24 1199.85 1224.53 1217.61 

JCAL28 2 1146.42 1172.44 1145.13 1183.39 1166.06 1201.96 1112.48 1086.28 1152.40 1245.30 1217.00 1191.59 

JCAL29 1 1200.93 1168.99 1161.88 1160.38 1143.47 1096.29 1159.46 1152.94 1151.03 1149.03 1160.65 1138.63 
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Appendix 3 Table 23: Baseline Mid-cortical vBMD by sector cont’d  

  
240o - 250o 250o - 260o 260o - 270o 270o - 280o 280o - 290o 290o - 300o 300o - 310o 310o - 320o 320o - 330o 330o - 340o 340o - 350o 350o - 360o 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1201.69 1246.11 1202.43 1179.51 1190.72 1198.60 1299.74 1306.69 1349.44 1287.20 1214.33 1196.17 

JCAL02 1 1196.28 1218.77 1222.85 1223.31 1242.27 1270.30 1276.16 1217.79 1172.31 1187.98 1206.45 1191.83 

JCAL03 2 1134.20 1132.77 1160.00 1204.41 1253.41 1226.43 1217.52 1242.40 1196.35 1242.80 1233.68 1193.86 

JCAL04 2 1208.53 1276.41 1271.04 1305.11 1306.95 1256.39 1225.03 1195.06 1194.22 1199.49 1192.81 1190.99 

JCAL05 1 1229.26 1274.66 1254.21 1245.99 1272.85 1210.76 1201.41 1239.28 1233.19 1221.00 1198.53 1202.76 

JCAL06 2 1166.26 1176.41 1199.51 1246.33 1213.99 1249.95 1236.73 1204.69 1225.51 1238.85 1206.53 1186.83 

JCAL07 1 1146.69 1195.32 1196.83 1165.08 1145.80 1170.21 1197.55 1240.77 1252.89 1260.48 1239.26 1248.64 

JCAL08 2 1170.12 1186.34 1266.53 1274.49 1283.51 1216.23 1214.40 1204.69 1246.61 1227.45 1207.47 1206.74 

JCAL09 1 1180.26 1226.35 1259.60 1244.11 1295.86 1226.12 1201.42 1237.28 1252.28 1246.28 1272.82 1268.51 

JCAL10 2 1215.44 1194.18 1251.00 1260.84 1281.46 1228.28 1203.04 1262.33 1275.37 1269.42 1235.22 1235.23 

JCAL11 2 1206.67 1239.91 1274.08 1297.90 1275.12 1251.42 1236.69 1179.74 1213.57 1223.48 1230.84 1215.85 

JCAL12 1 1264.80 1154.71 1059.74 1013.54 1040.89 1128.82 1252.96 1362.44 1335.93 1267.21 1223.24 1182.49 

JCAL13 2 1202.44 1259.54 1256.08 1300.99 1265.54 1237.52 1268.83 1260.74 1195.61 1219.05 1201.12 1163.15 

JCAL14 1 1367.44 1448.18 1485.89 1314.40 1152.21 974.61 973.73 1121.35 1226.04 1216.52 1340.04 1210.62 

JCAL15 2 1230.44 1226.71 1252.45 1218.69 1257.38 1275.42 1245.25 1264.81 1251.19 1200.46 1219.45 1183.03 

JCAL16 1 1193.34 1195.37 1215.55 1251.07 1215.37 1231.15 1202.55 1181.99 1219.11 1185.47 1194.28 1189.53 

JCAL17 2 1142.88 1161.59 1233.46 1193.87 1144.30 1194.18 1226.74 1260.39 1216.73 1187.60 1144.41 1186.74 

JCAL18 1 1190.54 1208.29 1248.59 1246.62 1219.37 1180.41 1175.06 1214.97 1209.15 1231.70 1176.94 1174.98 

JCAL19 1 1203.05 1241.04 1203.54 1181.29 1230.83 1257.52 1191.13 1216.12 1210.42 1236.40 1206.87 1166.62 

JCAL20 2 1194.81 1224.88 1283.99 1262.97 1284.38 1214.88 1222.52 1234.11 1224.22 1172.72 1178.34 1185.41 

JCAL21 2 1195.17 1172.10 1201.72 1171.43 1176.06 1204.42 1245.32 1269.58 1224.81 1226.40 1213.11 1157.30 

JCAL22 2 1174.27 1216.86 1215.74 1215.48 1214.63 1215.26 1234.85 1195.06 1194.34 1215.74 1196.52 1147.64 

JCAL23 1 1197.91 1185.64 1290.16 1295.88 1307.79 1231.13 1210.81 1203.87 1165.40 1213.98 1216.16 1143.16 

JCAL24 1 1110.23 1121.86 1140.17 1165.80 1143.02 1193.95 1239.06 1244.86 1208.30 1123.00 1147.84 1102.38 

JCAL25 1 1091.32 1171.44 1147.76 1167.09 1194.92 1214.10 1147.76 1103.90 1138.92 1079.26 1148.45 1136.10 

JCAL26 1 1192.71 1148.26 1201.28 1267.91 1212.57 1246.98 1246.34 1260.98 1234.32 1227.38 1195.18 1227.84 

JCAL27 2 1231.06 1205.29 1185.88 1182.45 1191.27 1162.15 1172.66 1293.24 1252.70 1221.32 1221.17 1206.20 

JCAL28 2 1169.70 1136.68 1217.39 1132.04 1113.87 1128.93 1199.43 1239.58 1269.23 1260.07 1193.98 1187.69 

JCAL29 1 1211.21 1197.19 1234.75 1225.37 1280.32 1263.42 1212.73 1194.01 1234.22 1193.16 1200.01 1168.36 
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Appendix 3 Table 24: Six months Mid-cortical vBMD by sector  

ID Group 0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 90o - 100o 100o - 110o 110o - 120o 

  
[mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1256.11 1197.66 1251.07 1268.81 1275.72 1268.45 1236.89 1198.92 1224.56 1246.05 1213.39 1209.12 

JCAL02 1 1228.14 1206.88 1236.69 1251.95 1257.20 1235.61 1175.86 1161.93 1220.33 1234.01 1217.29 1249.73 

JCAL03 2 1120.56 1148.11 1162.88 1135.66 1164.40 1119.83 1127.79 1178.46 1181.82 1164.21 1139.63 1168.64 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1221.50 1179.54 1251.80 1254.06 1259.95 1235.27 1264.13 1240.84 1213.87 1218.61 1256.19 1221.40 

JCAL08 2 1207.03 1158.20 1204.58 1290.91 1279.28 1254.65 1237.60 1187.85 1206.59 1247.67 1208.23 1192.60 

JCAL09 1 
            JCAL10 2 1241.66 1269.73 1212.44 1193.13 1243.63 1263.60 1218.85 1228.38 1231.78 1318.84 1283.75 1284.96 

JCAL11 2 1160.51 1134.50 1186.01 1266.53 1257.03 1265.24 1275.79 1251.60 1211.07 1215.48 1212.92 1193.16 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1133.27 1097.62 1225.16 1327.12 1274.57 1220.38 1193.13 1208.80 1211.77 1184.53 1171.99 1214.60 

JCAL15 2 1190.70 1275.37 1286.07 1250.73 1190.70 1216.62 1247.50 1271.54 1253.22 1236.74 1219.75 1257.13 

JCAL16 1 
            JCAL17 2 1179.50 1144.29 1297.13 1287.76 1323.83 1392.13 1330.40 1349.77 1359.99 1238.33 1075.38 994.96 

JCAL18 1 1166.01 1187.86 1213.46 1227.32 1238.72 1206.64 1243.01 1228.79 1201.23 1160.87 1199.67 1186.84 

JCAL19 1 
            JCAL20 2 1195.72 1188.47 1253.49 1236.09 1216.15 1243.72 1167.09 1198.32 1222.99 1242.99 1224.01 1213.28 

JCAL21 2 1085.83 1168.10 1217.36 1203.99 1229.46 1181.81 1224.56 1242.79 1217.36 1197.06 1216.12 1215.01 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1166.01 1172.26 1240.68 1253.49 1271.27 1243.83 1253.84 1207.27 1237.99 1199.34 1200.55 1203.15 

JCAL25 1 
            JCAL26 1 1221.39 1211.04 1279.85 1257.81 1246.18 1262.28 1220.50 1244.26 1246.87 1223.86 1198.73 1243.73 

JCAL27 2 1198.50 1216.55 1215.93 1230.95 1235.25 1289.15 1226.62 1213.09 1188.97 1230.73 1249.67 1223.36 

JCAL28 2 
            JCAL29 1 1090.53 1142.66 1097.45 1208.75 1272.85 1240.10 1201.06 1210.54 1210.91 1231.86 1226.93 1233.12 
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Appendix 3 Table 24: Six months Mid-cortical vBMD by sector cont’d 

ID Group 
120o - 
130o 

130o - 
140o 

140o - 
150o 

150o - 
160o 

160o - 
170o 

170o - 
180o 

180o - 
190o 

190o - 
200o 

200o - 
210o 

210o - 
220o 

220o - 
230o 

230o - 
240o 

  
[mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1224.78 1222.40 1193.84 1250.62 1175.49 1200.22 1169.69 1121.23 1124.37 1175.25 1145.37 1181.40 

JCAL02 1 1217.63 1208.83 1181.64 1143.82 1153.21 1186.67 1174.98 1164.32 1157.20 1175.58 1178.53 1150.16 

JCAL03 2 1158.62 1183.28 1143.27 1084.20 1063.25 1054.72 1053.65 1015.31 1039.04 1055.83 1060.68 1114.15 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1220.28 1197.05 1135.49 1191.23 1186.32 1151.32 1169.03 1133.21 1101.59 1174.84 1198.55 1079.07 

JCAL08 2 1202.95 1206.85 1187.75 1168.40 1169.23 1196.71 1145.07 1082.03 1059.52 1115.90 1115.06 1169.42 

JCAL09 1 
            JCAL10 2 1239.19 1206.88 1186.88 1192.82 1124.13 1121.74 1130.18 1117.27 1132.06 1144.34 1200.52 1212.45 

JCAL11 2 1160.08 1121.43 1120.94 1112.85 1101.27 1064.35 1083.41 1054.44 1075.00 1099.36 1110.71 1176.14 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1219.68 1219.02 1187.52 1186.67 1209.63 1201.32 1200.91 1137.68 986.81 1099.39 1185.03 1260.11 

JCAL15 2 1235.05 1227.98 1201.65 1199.32 1172.27 1159.34 1118.78 1173.78 1215.73 1220.64 1173.63 1186.11 

JCAL16 1 
            JCAL17 2 925.37 904.42 1022.18 1149.51 1157.81 1179.02 1122.22 923.85 981.46 1046.57 1128.55 1225.28 

JCAL18 1 1180.23 1184.23 1164.59 1175.82 1165.35 1150.50 1157.60 1144.04 1143.25 1154.13 1134.02 1176.79 

JCAL19 1 
            JCAL20 2 1199.96 1176.11 1177.69 1172.75 1167.12 1149.14 1172.16 1156.58 1102.34 1158.93 1159.43 1161.42 

JCAL21 2 1206.74 1174.78 1198.73 1202.09 1175.26 1138.26 1135.63 1126.67 1131.22 1193.52 1213.70 1200.59 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1197.68 1167.37 1154.46 1157.29 1149.96 1066.11 1081.42 1074.78 1096.67 1144.49 1130.94 1096.27 

JCAL25 1 
            JCAL26 1 1187.32 1177.24 1173.15 1163.10 1116.41 1111.81 1075.56 1057.27 1116.84 1190.46 1168.79 1203.02 

JCAL27 2 1207.27 1184.25 1183.70 1163.80 1125.82 1086.55 1051.79 1127.78 1176.00 1167.15 1187.22 1188.34 

JCAL28 2 
            JCAL29 1 1214.63 1190.64 1166.51 1118.24 1119.68 1119.16 1153.97 1128.14 1136.89 1126.44 1086.13 1151.60 
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 Appendix 3 Table 24: Six months Mid-cortical vBMD by sector cont’d 

ID Group 
240o - 
250o 

250o - 
260o 

260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

  
[mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1209.89 1242.52 1226.91 1251.45 1329.54 1305.62 1281.57 1251.17 1240.34 1247.50 1199.13 1220.93 

JCAL02 1 1153.06 1163.83 1207.72 1199.22 1253.96 1244.92 1242.09 1196.02 1199.52 1218.44 1214.63 1210.43 

JCAL03 2 1119.70 1151.53 1160.54 1157.45 1191.74 1163.47 1177.90 1204.49 1165.06 1167.97 1223.70 1185.37 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1103.43 1142.25 1182.05 1186.88 1218.40 1251.87 1198.59 1254.27 1237.66 1234.19 1193.43 1230.92 

JCAL08 2 1239.42 1277.19 1313.49 1319.97 1282.30 1234.03 1262.05 1233.53 1235.89 1197.10 1153.23 1176.90 

JCAL09 1 
            JCAL10 2 1225.61 1205.55 1254.85 1263.65 1276.62 1242.35 1250.00 1203.61 1305.11 1287.98 1257.31 1243.97 

JCAL11 2 1157.25 1221.48 1285.11 1292.49 1260.41 1226.06 1255.20 1275.97 1272.46 1251.89 1222.76 1201.54 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1290.80 1304.93 1393.52 1317.95 1273.75 1262.02 1220.97 1185.63 1239.00 1234.44 1219.12 1141.78 

JCAL15 2 1242.41 1231.15 1253.02 1287.60 1259.18 1228.10 1229.44 1264.70 1206.93 1196.55 1212.01 1163.63 

JCAL16 1 
            JCAL17 2 1332.64 1228.47 1190.95 1211.43 1131.86 1216.15 1247.32 1305.99 1251.31 1060.47 1024.42 1152.32 

JCAL18 1 1161.79 1195.48 1234.42 1241.01 1268.87 1234.32 1210.14 1202.79 1214.25 1215.06 1207.77 1186.16 

JCAL19 1 
            JCAL20 2 1143.24 1171.11 1281.95 1270.89 1276.80 1212.56 1225.59 1220.88 1219.00 1204.30 1230.09 1195.70 

JCAL21 2 1215.66 1221.86 1198.56 1204.44 1187.52 1169.65 1210.72 1184.00 1248.92 1242.89 1209.93 1174.66 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1124.44 1174.39 1178.09 1166.91 1227.28 1232.55 1261.18 1261.13 1215.64 1207.90 1241.36 1205.69 

JCAL25 1 
            JCAL26 1 1205.91 1198.38 1191.47 1231.96 1264.14 1233.47 1211.04 1250.91 1249.50 1214.24 1205.06 1237.39 

JCAL27 2 1201.63 1193.53 1190.37 1254.03 1267.33 1183.30 1231.85 1208.92 1239.09 1179.99 1264.91 1248.31 

JCAL28 2 
            JCAL29 1 1193.40 1164.44 1197.45 1191.11 1219.76 1249.08 1272.98 1232.21 1197.40 1264.37 1236.05 1185.39 
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Appendix 3 Table 25: Baseline Pericortical vBMD by sector 

  
0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 90o - 100o 100o - 110o 110o - 120o 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1238.93 1207.63 1243.84 1217.47 1202.62 1252.19 1243.26 1229.56 1251.31 1202.14 1215.91 1239.80 

JCAL02 1 1242.90 1233.36 1213.61 1242.80 1257.91 1249.74 1247.74 1263.61 1235.54 1205.76 1181.14 1217.90 

JCAL03 2 1178.39 1162.93 1210.64 1234.28 1242.45 1264.46 1232.19 1231.07 1208.08 1201.07 1182.68 1203.89 

JCAL04 2 1145.24 1183.84 1234.94 1214.26 1191.55 1135.91 1122.96 1134.12 1160.87 1167.13 1191.99 1200.99 

JCAL05 1 1216.38 1215.28 1219.31 1247.84 1234.13 1219.05 1164.18 1152.46 1234.51 1257.72 1215.33 1243.98 

JCAL06 2 1212.26 1206.04 1200.79 1209.00 1185.62 1190.18 1209.60 1246.55 1191.23 1251.12 1208.71 1188.96 

JCAL07 1 1235.31 1187.87 1222.68 1208.59 1193.85 1213.14 1216.56 1210.77 1252.49 1246.40 1215.70 1203.48 

JCAL08 2 1184.64 1210.70 1132.36 1174.85 1245.88 1261.07 1193.00 1175.33 1128.46 1204.18 1181.11 1220.91 

JCAL09 1 1222.31 1245.09 1222.58 1241.79 1228.96 1031.75 1069.09 1198.55 1252.29 1242.16 1266.24 1194.68 

JCAL10 2 1205.01 1200.69 1211.80 1200.36 1209.10 1187.90 1136.97 1167.98 1222.16 1237.38 1212.36 1226.87 

JCAL11 2 1099.86 1133.15 1160.84 1212.34 1206.36 1206.52 1176.03 1226.52 1173.42 1184.18 1132.46 1129.81 

JCAL12 1 1221.50 1232.71 1255.43 1212.19 1234.52 1353.88 1295.25 1270.60 1279.44 1309.77 1257.85 1265.58 

JCAL13 2 1186.90 1222.19 1217.23 1226.35 1249.02 1242.44 1273.34 1246.06 1230.13 1216.32 1265.49 1261.14 

JCAL14 1 1216.74 1190.52 1332.31 1305.66 1234.87 1174.86 1014.19 1019.36 1123.99 1181.42 1205.13 1213.32 

JCAL15 2 1222.69 1251.99 1255.41 1232.61 1205.08 1177.76 1232.72 1281.71 1257.82 1246.01 1216.61 1230.58 

JCAL16 1 1213.81 1229.45 1249.94 1230.55 1222.60 1205.61 1235.88 1230.50 1210.79 1200.46 1260.97 1240.47 

JCAL17 2 1162.59 1186.68 1199.68 1186.02 1175.86 1180.39 1184.35 1160.59 1181.30 1150.21 1127.74 1129.95 

JCAL18 1 1236.73 1217.86 1203.82 1190.50 1239.43 1213.65 1191.91 1195.67 1170.32 1171.58 1161.10 1174.84 

JCAL19 1 1174.03 1193.22 1190.57 1236.45 1188.84 1182.62 1220.70 1170.24 1183.24 1188.31 1185.64 1144.31 

JCAL20 2 1210.61 1195.42 1165.39 1198.18 1230.77 1207.11 1211.20 1196.34 1197.06 1202.79 1195.68 1231.00 

JCAL21 2 1090.92 1185.92 1228.19 1152.26 1166.41 1133.78 1199.30 1159.16 1154.83 1171.70 1201.05 1155.10 

JCAL22 2 1232.24 1205.42 1238.17 1210.02 1183.97 1184.80 1207.13 1161.95 1162.14 1115.11 1126.57 1132.97 

JCAL23 1 1190.11 1149.26 1220.22 1244.90 1203.06 1256.70 1154.17 1145.36 1109.45 1156.37 1127.64 1088.06 

JCAL24 1 1071.35 1043.65 1097.17 973.27 1006.24 1163.07 1162.16 1182.81 1162.11 1145.65 1148.80 1113.35 

JCAL25 1 1066.79 1028.45 999.92 1048.40 1076.46 1108.86 1102.03 1159.23 1146.48 1075.04 1127.26 1127.61 

JCAL26 1 1256.17 1216.75 1241.19 1228.19 1224.67 1181.34 1227.72 1195.06 1227.77 1186.25 1167.63 1141.18 

JCAL27 2 1180.50 1194.07 1216.14 1254.97 1214.41 1208.11 1214.07 1223.70 1248.61 1203.64 1243.10 1229.37 

JCAL28 2 1220.47 1209.45 1167.17 1173.98 1184.09 1210.32 1208.39 1227.68 1250.88 1235.81 1271.98 1238.51 

JCAL29 1 1195.18 1212.26 1152.05 1232.50 1251.58 1212.29 1234.85 1193.97 1202.09 1216.55 1253.14 1208.04 
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 Appendix 3 Table 25: Baseline Pericortical vBMD by sector cont’d 

  

120o - 
130o 

130o - 
140o 

140o - 
150o 

150o - 
160o 

160o - 
170o 

170o - 
180o 

180o - 
190o 

190o - 
200o 

200o - 
210o 

210o - 
220o 

220o - 
230o 

230o - 
240o 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1225.24 1194.65 1239.21 1230.87 1165.60 1163.45 1191.47 1214.70 1168.79 1120.31 1061.58 1110.25 

JCAL02 1 1199.25 1194.67 1179.94 1212.12 1190.65 1181.78 1198.60 1174.24 1216.12 1154.55 1177.49 1164.38 

JCAL03 2 1175.12 1183.59 1145.61 1155.66 1161.32 1159.11 1159.29 1128.76 1088.53 1157.89 1089.14 1113.89 

JCAL04 2 1182.23 1136.81 1137.48 1120.02 1176.58 1172.33 1169.18 1088.70 1107.88 1051.26 1161.02 1195.89 

JCAL05 1 1235.45 1187.94 1207.94 1173.53 1196.02 1205.40 1166.51 1127.63 1167.73 1165.30 1137.33 1185.32 

JCAL06 2 1169.30 1155.00 1150.29 1145.37 1139.24 1117.88 1132.52 1132.89 1156.94 1164.00 1152.89 1170.33 

JCAL07 1 1162.37 1145.67 1117.48 1142.05 1114.14 1099.29 1087.20 1100.67 1109.84 1140.40 1106.68 1116.96 

JCAL08 2 1158.37 1174.87 1177.79 1200.02 1215.50 1140.12 1115.94 1104.34 1107.30 1129.98 1131.77 1112.73 

JCAL09 1 1206.59 1223.58 1167.99 1191.65 1217.09 1156.63 1187.37 1167.04 1163.47 1168.12 1241.90 1228.88 

JCAL10 2 1188.22 1157.49 1158.67 1202.89 1149.41 1160.93 1175.13 1164.81 1211.99 1198.79 1189.12 1216.81 

JCAL11 2 1165.52 1095.09 1115.82 1098.46 1099.16 1066.41 1028.41 1016.08 984.71 984.45 1083.23 1186.33 

JCAL12 1 1204.00 1177.26 1126.55 1190.14 1189.69 1198.82 1226.37 1204.30 1174.38 1118.18 1105.41 1256.38 

JCAL13 2 1174.03 1203.41 1212.26 1213.12 1181.37 1186.90 1170.22 1159.40 1191.98 1191.80 1186.79 1119.58 

JCAL14 1 1174.19 1227.05 1199.83 1235.68 1236.88 1174.87 1150.42 1174.55 1110.29 1107.14 1095.69 1178.79 

JCAL15 2 1223.78 1168.42 1166.56 1169.44 1126.52 1146.83 1149.95 1217.33 1187.00 1157.54 1192.72 1213.44 

JCAL16 1 1216.69 1190.10 1208.35 1177.28 1179.15 1139.09 1098.92 1134.69 1131.80 1174.20 1111.36 1134.20 

JCAL17 2 1145.60 1087.75 1127.14 1145.88 1101.41 1058.21 1058.08 1051.75 1086.96 1093.12 1166.37 1135.07 

JCAL18 1 1188.01 1177.90 1123.03 1153.60 1134.65 1123.08 1113.68 1123.44 1118.55 1161.20 1149.23 1158.90 

JCAL19 1 1126.91 1126.86 1112.83 1127.70 1103.78 1130.66 1095.93 1127.42 1082.19 1039.69 1097.28 1152.61 

JCAL20 2 1223.86 1199.70 1172.51 1180.20 1169.81 1143.99 1135.97 1130.37 1182.72 1206.58 1161.29 1141.82 

JCAL21 2 1116.05 1073.42 1139.84 1189.98 1152.38 1159.62 1172.90 1121.83 1156.86 1234.16 1228.39 1209.48 

JCAL22 2 1085.74 1082.65 1090.78 1037.85 1042.05 1017.82 1032.10 1067.18 1082.17 1099.35 1100.00 1097.09 

JCAL23 1 1149.88 1136.65 1159.62 1126.97 1140.39 1166.87 1140.84 1111.72 1050.75 1058.15 1040.92 1098.48 

JCAL24 1 1069.60 1044.32 1115.55 1076.43 1079.44 1045.58 1061.66 1022.36 1049.68 1062.93 1035.68 1104.19 

JCAL25 1 1064.95 1070.99 1056.60 1066.72 1008.32 943.30 956.22 972.45 984.67 1058.69 1119.79 1095.93 

JCAL26 1 1195.31 1203.75 1210.40 1146.52 1140.30 1149.67 1111.91 1092.49 1140.78 1142.89 1164.60 1146.51 

JCAL27 2 1196.68 1194.24 1158.64 1190.28 1185.78 1162.01 1117.59 1177.46 1183.59 1193.21 1211.50 1181.90 

JCAL28 2 1166.30 1189.63 1149.39 1148.95 1126.12 1145.10 1133.06 1099.42 1141.40 1197.28 1156.06 1146.13 

JCAL29 1 1198.49 1179.53 1163.72 1152.23 1147.13 1152.66 1171.20 1135.59 1105.70 1106.51 1141.17 1139.41 



 

253 
 

Appendix 3 Table 25: Baseline Pericortical vBMD by sector cont’d 

  

240o - 
250o 

250o - 
260o 

260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

ID Group [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1159.00 1131.82 1195.12 1182.51 1239.61 1180.26 1225.05 1267.28 1274.29 1248.77 1209.00 1235.58 

JCAL02 1 1187.62 1180.81 1159.50 1191.71 1240.68 1225.22 1277.74 1185.42 1172.34 1198.24 1182.54 1216.54 

JCAL03 2 1122.55 1118.88 1160.98 1164.57 1240.03 1212.62 1201.66 1216.25 1170.22 1208.04 1229.43 1209.49 

JCAL04 2 1196.22 1177.00 1216.45 1274.36 1263.07 1160.60 1173.72 1206.16 1188.89 1165.83 1179.30 1173.83 

JCAL05 1 1249.60 1305.81 1230.77 1211.08 1217.23 1193.80 1177.74 1194.39 1194.69 1203.12 1235.25 1215.68 

JCAL06 2 1130.13 1188.91 1220.69 1235.60 1206.13 1133.08 1188.77 1176.57 1190.38 1247.64 1232.56 1258.35 

JCAL07 1 1096.18 1162.71 1145.07 1160.13 1098.25 1167.92 1201.09 1227.83 1209.59 1239.62 1169.89 1273.42 

JCAL08 2 1170.12 1169.50 1228.26 1264.84 1246.60 1229.53 1217.13 1181.58 1202.68 1183.84 1167.00 1212.27 

JCAL09 1 1255.74 1233.04 1256.24 1269.09 1241.13 1223.09 1240.31 1235.84 1258.07 1236.30 1272.57 1209.55 

JCAL10 2 1206.40 1193.74 1261.85 1262.66 1262.77 1260.21 1213.14 1246.19 1267.11 1263.14 1224.05 1209.44 

JCAL11 2 1198.31 1212.43 1226.70 1246.23 1242.68 1265.67 1206.61 1206.33 1210.69 1165.73 1200.15 1197.97 

JCAL12 1 1221.32 1008.87 967.06 931.51 952.78 984.43 1055.17 1088.41 1250.65 1308.99 1257.08 1277.79 

JCAL13 2 1192.36 1289.86 1299.84 1274.51 1277.50 1213.87 1198.88 1215.76 1235.17 1208.36 1204.92 1178.28 

JCAL14 1 1297.86 1347.46 1357.36 1290.31 1100.94 879.73 886.73 1019.87 1068.46 1062.69 1264.95 1348.51 

JCAL15 2 1219.50 1205.23 1222.36 1239.12 1217.06 1211.18 1244.53 1232.87 1242.89 1196.12 1186.56 1188.32 

JCAL16 1 1145.12 1166.62 1194.66 1237.01 1180.97 1180.52 1170.13 1145.75 1186.97 1175.09 1199.78 1226.15 

JCAL17 2 1100.70 1161.09 1202.18 1163.38 1099.93 1150.22 1159.79 1165.82 1178.35 1184.68 1184.35 1154.17 

JCAL18 1 1170.84 1214.44 1184.84 1201.97 1244.08 1232.66 1180.45 1190.02 1181.75 1186.99 1204.39 1192.73 

JCAL19 1 1196.49 1155.08 1166.71 1182.83 1179.43 1250.69 1172.60 1214.49 1213.81 1225.98 1241.89 1174.35 

JCAL20 2 1195.49 1193.37 1226.55 1285.99 1225.30 1201.27 1201.04 1221.68 1179.22 1172.21 1179.69 1198.98 

JCAL21 2 1208.28 1183.85 1206.55 1167.97 1194.22 1200.08 1221.29 1225.21 1228.09 1237.67 1193.61 1191.98 

JCAL22 2 1156.40 1161.93 1125.43 1207.99 1230.00 1197.38 1192.33 1203.87 1187.27 1214.33 1226.77 1215.96 

JCAL23 1 1203.91 1140.12 1232.93 1247.03 1258.28 1226.57 1210.97 1181.63 1175.58 1200.22 1179.20 1215.05 

JCAL24 1 1072.28 1112.58 1151.30 1166.96 1148.11 1158.74 1195.51 1233.44 1170.46 1150.98 1076.54 1019.43 

JCAL25 1 1080.99 1142.69 1125.47 1074.14 1144.12 1142.55 1113.68 1089.25 1054.32 1075.88 1080.73 1085.56 

JCAL26 1 1179.07 1134.13 1201.77 1245.88 1157.49 1153.75 1156.67 1242.79 1260.34 1188.95 1210.82 1223.65 

JCAL27 2 1196.39 1133.88 1189.43 1155.01 1141.22 1140.78 1164.95 1177.43 1150.60 1229.69 1213.34 1202.15 

JCAL28 2 1039.36 1120.29 1198.72 1142.06 1113.93 1138.33 1197.96 1182.06 1219.65 1221.98 1142.57 1190.62 

JCAL29 1 1211.18 1199.60 1240.63 1214.80 1225.49 1243.85 1194.26 1138.36 1166.88 1156.60 1144.06 1182.19 
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Appendix 3 Table 26: Six months Pericortical vBMD by sector  

ID Group 0o - 10o 10o - 20o 20o - 30o 30o - 40o 40o - 50o 50o - 60o 60o - 70o 70o - 80o 80o - 90o 
90o - 
100o 

100o - 
110o 

110o - 
120o 

  
[mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1209.14 1241.02 1238.72 1222.09 1251.73 1186.19 1219.49 1230.28 1225.44 1232.36 1215.61 1228.09 

JCAL02 1 1210.11 1228.55 1232.48 1229.30 1256.38 1235.11 1231.26 1232.21 1236.44 1250.82 1222.71 1249.12 

JCAL03 2 1085.87 1120.37 1141.79 1083.96 1071.89 1151.38 1110.69 1152.27 1144.79 1166.99 1124.70 1149.54 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1191.68 1206.46 1258.99 1211.92 1262.36 1224.74 1246.54 1243.68 1193.18 1171.65 1218.99 1231.93 

JCAL08 2 1212.86 1167.17 1184.33 1229.72 1253.23 1221.76 1167.57 1207.61 1182.20 1230.84 1233.32 1191.45 

JCAL09 1 
            JCAL10 2 1234.02 1246.21 1209.98 1180.42 1182.86 1232.58 1180.91 1186.11 1207.65 1299.58 1264.97 1254.11 

JCAL11 2 1144.21 1224.82 1203.00 1267.01 1303.16 1269.14 1264.89 1216.33 1209.00 1208.43 1203.82 1185.35 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1219.15 1194.97 1238.29 1311.23 1224.88 1238.02 1192.69 1206.33 1213.35 1226.65 1222.12 1222.69 

JCAL15 2 1244.44 1242.93 1254.42 1234.34 1201.00 1200.69 1241.21 1258.80 1234.43 1200.15 1191.44 1242.76 

JCAL16 1 
            JCAL17 2 1206.29 1167.31 1264.37 1236.37 1351.20 1357.78 1247.66 1231.28 1289.42 1212.99 1103.73 1009.70 

JCAL18 1 1213.39 1218.33 1182.88 1193.24 1227.61 1198.40 1228.55 1253.57 1215.36 1174.35 1186.76 1148.06 

JCAL19 1 
            JCAL20 2 1178.99 1178.05 1199.23 1202.72 1242.91 1230.00 1218.58 1216.22 1183.48 1223.64 1195.22 1182.09 

JCAL21 2 1123.87 1223.12 1225.59 1152.80 1200.68 1169.08 1215.39 1190.79 1192.43 1168.27 1193.94 1214.17 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1177.47 1174.11 1197.52 1226.58 1258.17 1203.44 1236.84 1177.13 1199.90 1185.48 1213.06 1196.87 

JCAL25 1 
            JCAL26 1 1183.31 1208.93 1238.09 1226.07 1240.11 1238.13 1211.06 1218.00 1251.89 1225.36 1187.41 1229.61 

JCAL27 2 1229.69 1165.12 1225.88 1191.47 1181.24 1269.56 1221.99 1185.34 1182.08 1170.58 1195.12 1189.28 

JCAL28 2 
            JCAL29 1 1236.68 1209.63 1130.13 1244.51 1243.45 1217.28 1207.57 1217.60 1197.59 1212.17 1237.82 1239.06 
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Appendix 3 Table 26: Six months Pericortical vBMD by sector cont’d 

ID Group 
120o - 
130o 

130o - 
140o 

140o - 
150o 

150o - 
160o 

160o - 
170o 

170o - 
180o 

180o - 
190o 

190o - 
200o 

200o - 
210o 

210o - 
220o 

220o - 
230o 

230o - 
240o 

  
[mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1217.81 1230.34 1234.23 1268.82 1198.02 1157.00 1162.28 1188.37 1184.99 1191.47 1115.91 1122.83 

JCAL02 1 1208.86 1219.90 1199.61 1201.03 1183.50 1169.97 1165.52 1205.87 1137.90 1193.97 1141.99 1120.05 

JCAL03 2 1139.38 1121.34 1134.26 1117.43 1121.29 1054.96 1028.36 1008.48 1067.73 1083.87 1096.47 1137.68 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1221.74 1228.37 1183.57 1185.15 1181.37 1126.26 1087.35 1082.33 1135.31 1200.90 1222.14 1089.33 

JCAL08 2 1183.77 1214.24 1196.33 1186.02 1201.37 1185.20 1176.06 1078.79 1082.81 1123.21 1070.70 1136.19 

JCAL09 1 
            JCAL10 2 1215.95 1191.23 1177.41 1182.42 1159.42 1173.90 1144.97 1195.63 1190.13 1206.85 1207.45 1208.78 

JCAL11 2 1131.44 1111.82 1118.83 1119.59 1127.42 1109.44 1112.56 1085.56 1066.16 1104.83 1104.09 1176.96 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1223.00 1232.67 1233.75 1217.44 1259.50 1189.23 1129.77 1136.31 1059.11 1110.56 1130.12 1248.12 

JCAL15 2 1202.76 1208.29 1183.07 1173.30 1154.60 1173.34 1139.90 1181.46 1175.15 1200.51 1166.05 1195.39 

JCAL16 1 
            JCAL17 2 920.84 898.01 1046.26 1092.88 1152.29 1222.83 1059.52 876.45 941.78 1026.39 1018.55 1138.45 

JCAL18 1 1165.23 1155.20 1168.98 1165.93 1178.06 1179.93 1135.15 1119.73 1145.14 1145.50 1168.88 1146.43 

JCAL19 1 
            JCAL20 2 1244.21 1211.04 1206.67 1154.19 1166.88 1173.61 1156.44 1137.36 1114.03 1157.90 1115.51 1126.84 

JCAL21 2 1188.50 1155.77 1128.85 1167.46 1150.78 1147.71 1136.68 1147.04 1137.94 1202.21 1245.44 1185.33 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1202.20 1172.30 1169.76 1156.53 1144.44 1113.72 1080.58 1141.24 1101.07 1127.85 1129.89 1135.78 

JCAL25 1 
            JCAL26 1 1182.78 1198.27 1167.87 1137.48 1142.04 1128.14 1115.54 1118.59 1126.93 1174.39 1149.96 1152.88 

JCAL27 2 1202.25 1186.79 1205.26 1157.86 1148.13 1115.71 1082.62 1158.87 1150.79 1155.88 1216.60 1172.08 

JCAL28 2 
            JCAL29 1 1222.05 1216.24 1170.73 1145.30 1160.21 1155.49 1186.18 1131.25 1134.03 1097.28 1073.07 1122.71 
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Appendix 3 Table 26: Six months Pericortical vBMD by sector cont’d 

ID Group 
240o - 
250o 

250o - 
260o 

260o - 
270o 

270o - 
280o 

280o - 
290o 

290o - 
300o 

300o - 
310o 

310o - 
320o 

320o - 
330o 

330o - 
340o 

340o - 
350o 

350o - 
360o 

  
[mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] [mg·cm3] 

JCAL01 1 1141.13 1145.63 1196.06 1224.20 1278.69 1253.33 1232.12 1213.67 1247.53 1169.68 1184.69 1206.05 

JCAL02 1 1168.97 1170.04 1145.00 1193.44 1244.48 1247.47 1204.17 1216.33 1187.29 1204.94 1215.54 1219.26 

JCAL03 2 1117.37 1135.47 1168.13 1157.69 1176.69 1165.53 1198.43 1198.86 1142.32 1141.52 1134.69 1086.23 

JCAL04 2 
            JCAL05 1 
            JCAL06 2 
            JCAL07 1 1030.31 1082.54 1132.40 1148.43 1258.20 1278.87 1174.81 1166.56 1191.34 1253.16 1230.65 1255.10 

JCAL08 2 1199.70 1262.99 1250.68 1302.02 1284.16 1218.95 1229.39 1242.33 1196.31 1142.98 1156.74 1240.99 

JCAL09 1 
            JCAL10 2 1198.27 1213.25 1284.83 1267.83 1251.00 1210.13 1238.13 1197.93 1249.51 1271.58 1271.68 1212.54 

JCAL11 2 1155.64 1206.62 1219.82 1259.86 1244.05 1206.56 1224.70 1226.77 1259.61 1254.28 1185.48 1179.11 

JCAL12 1 
            JCAL13 2 
            JCAL14 1 1287.97 1284.94 1319.02 1284.74 1210.91 1237.78 1231.54 1179.40 1178.90 1248.89 1209.68 1183.30 

JCAL15 2 1223.09 1220.02 1258.21 1235.56 1232.14 1200.57 1198.44 1229.17 1245.50 1216.95 1189.99 1187.57 

JCAL16 1 
            JCAL17 2 1156.79 1188.90 1199.59 1223.54 1149.58 1169.48 1198.32 1123.99 1104.19 1050.84 1066.35 1174.30 

JCAL18 1 1166.11 1178.70 1146.22 1206.07 1209.50 1188.56 1170.31 1248.70 1225.46 1201.55 1220.63 1240.60 

JCAL19 1 
            JCAL20 2 1126.50 1172.22 1232.31 1205.51 1266.17 1192.50 1209.33 1212.27 1131.64 1154.38 1212.65 1195.69 

JCAL21 2 1204.85 1234.97 1213.60 1229.94 1195.26 1141.03 1200.32 1195.79 1219.15 1184.69 1259.64 1236.32 

JCAL22 2 
            JCAL23 1 
            JCAL24 1 1144.78 1141.16 1173.98 1155.24 1210.74 1236.85 1248.52 1218.65 1179.93 1162.47 1202.84 1222.97 

JCAL25 1 
            JCAL26 1 1172.36 1200.98 1187.02 1197.90 1184.27 1225.67 1205.54 1240.80 1230.45 1237.27 1239.83 1194.31 

JCAL27 2 1198.10 1162.05 1145.22 1201.18 1261.71 1122.28 1213.63 1176.77 1205.26 1178.46 1258.66 1275.09 

JCAL28 2 
            JCAL29 1 1138.25 1162.36 1141.14 1154.70 1185.41 1244.51 1262.81 1202.33 1209.39 1241.38 1168.16 1150.57 
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Appendix 4: Information statement 

 
INFORMATION LETTER TO JOCKEYS 

BONE DENSITY STUDY BEING UNDERTAKEN BY  
AUSTRALIAN CATHOLIC UNIVERSITY 

 
 

Dear Participant, 

The Racing Industry and the Jockeys’ Associations have approved this study to be 
undertaken by the Australian Catholic University [ACU] representatives Dr David Greene 
and Ms Leslie Silk. This study was started last year in NSW but could not be completed 
due to difficulties with equipment and apprentice attendance for testing. The study has 
the potential to confirm that there is a means to reduce the risk of bone breakage in falls 
by increasing bone density through the minor intervention of taking a calcium and 
vitamin D supplement. This study has also been approved by the Human Research Ethics 
Committee at Australian Catholic University. 
 
You are invited to participate in this study profiling how bone structural properties 
change with calcium and vitamin-D supplementation over a 6-month period. The purpose 
is to look for changes in bone structural properties on two occasions: 
At baseline, and After 6-months.  
 
The study will also monitor reports of injury to see if there are any links between changes 
in bone structural properties and either injury incidence or injury prevention.  
 
There is a minimal commitment on your behalf, when balanced against the potential 
benefits outlined above. You will be asked to take four (4) tablets per day for a period of 
6-months. You will not be aware if the tablets contain the active ingredients of calcium 
and vitamin D or if you are taking a placebo. This will be revealed after the study has 
finished. You will be asked to complete a short (15 minute) questionnaire about your 
dietary habits, current lifestyle, and current level of physical activity. Then there will be a 
bone scan using peripheral quantitative computed tomography (pQCT). In addition, a 10 
ml blood sample and a urine sample will be taken. The scan and related activity will take 
place at your Education & Training establishment; this should take no more than 40 
minutes.  
 
The timing of the baseline and follow up testing will be co-ordinated with your Training 
and Education program, so that any disruption to your routine is minimised. It is 
anticipated that this will commence in November 2013. 
  
You should know that you are free to refuse consent altogether without having to justify 
that decision or to withdraw consent and discontinue participation in the study at any 
time without giving a reason. Withdrawal from the research will not prejudice your future 
as a jockey. Apprentices under the age of 18 will be required to have their parent or 
guardian sign a consent form to comply with legislative requirements. 
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 Taking part in the study is likely to benefit you by having access to a hard-copy 
report of your own results. Because this is a research project, you should also know that 
results may be published or presented in scientific forums. However, data collected will 
be de-identified by giving you a number not a name, and number codes will only be 
known to the researcher. You have our assurance that individual data that could identify 
single participants will not be disclosed, because only group averages will be used for 
reports and publications. Furthermore, the Australian Racing Board (ARB) will not be 
aware of your participation in the project, nor will individual results be provided to the 
ARB.  
 
If you have any questions regarding this project, they should be directed to either your 
Training & Education Co-ordinator or the NSWJA [Paul Innes on 02 9894 9629] or the VJA 
[Des O’Keefe on 0412 554 155]. 
 
We look forward to working with you on this important research project and thank you 
for your participation. 

 

Ms Melissa Weatherly Ms Robyn Parkinson 
Athlete Development and Industry  Project Manager, Australian Racing & 
Careers Advisor, RVL Equine Academy, TAFE NSW 

         

  

 

Des O’Keefe,      Paul Innes, 
EO, VJA      Sec NSWJA 
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ATTACHMENT I – FURTHER DETAILS OF STUDY 
 
Bone Scanning Equipment 

Peripheral Quantitative Computed Tomography (pQCT) bone scan is an easy, painless test. The 
only preparation required is the removal of any pieces of clothing and accessories that 
contain metal or thick plastics. All you need to do is sit in a chair for approximately 10 
minutes. While you sit in a chair, you will be asked to place your lower leg into the 
scanner where an x-ray beam is passed through your body. After the leg scan, you will be 
re-positioned so that your lower arm is placed in the scanner where an x-ray beam is 
passed through your body. The scan involves exposure to a very small amount of 
radiation. The Australian Radiation Protection and Nuclear Safety Agency's Guidelines 
(http://www.arpansa.gov.au/pubs/rps/rps8.pdf) require us to communicate the following 
statement:  
 
“This research study involves exposure to a very small amount of radiation. As part of 
everyday living, everyone is exposed to naturally occurring background radiation and 
receives a dose of about 2 to 3 millisieverts (mSv) each year. The effective dose from this 
study is about 0.003 mSv. At this dose level, no harmful effects of radiation have been 
demonstrated and the risk is negligible.” 
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Appendix 5: Informed consent 

 

TITLE OF PROJECT: Calcium and Vitamin-D supplementation on bone structural 
properties in young male jockeys: A randomized controlled trial. 
 
 (NAME OF) PRINCIPAL INVESTIGATOR: Dr David Greene 
 
(NAME OF) STUDENT RESEARCHER: Ms Leslie Silk 
 
 
I ................................................... (the participant) have read and understood the 
information provided in the Letter to jockeys. Any questions I have asked have been 
answered to my satisfaction. I agree to participate in this research project requiring me to 
take four (4) tablets per day for a period of 6-months. I also agree to answer questions 
about my eating habits, injuries, current level of physical activity, to be scanned using a 
peripheral quantitative computed tomography device, and to provide approximately 10 
ml of blood and 20 – 30 ml of urine on two occasions, realising that I can withdraw my 
consent at any time without adverse consequences. I am aware that ionising radiation 
will be used. This research study involves exposure to a very small amount of radiation. As 
part of everyday living, everyone is exposed to naturally occurring background radiation 
and receives a dose of about 2 to 3 millisieverts (mSv) each year. The effective dose from 
this study is about 0.003 mSv. At this dose level, no harmful effects of radiation have been 
demonstrated and the risk is negligible. 
 
I agree that research data collected for the study may be published or may be provided to 
other researchers in a form that does not identify me in any way.  
 
If 18 years of age and over: 
NAME OF PARTICIPANT:  _______________________________________________ 
 
SIGNATURE: ____________________________         DATE: _______________ 
 
SIGNATURE OF PRINCIPAL INVESTIGATOR: _______________________________ 
 DATE:________________ 
 
SIGNATURE OF STUDENT RESEARCHER:_________________________________ 
DATE: _______________ 
 
If under 18 years: 
NAME OF PARENT/GUARDIAN:___________________________________________ 
 
NAME OF CHILD:_______________________________________________________ 
 
SIGNATURE OF PARENT:_____________________ DATE: _______________  
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Appendix 6: Lifestyle questionnaire 
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Appendix 7: DQES form 
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Appendix 8: Anthropometric Assessment Pro Forma 
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Appendix 9: PRISMA Checklist for Systematic Review and Meta-Analysis 

Section/topic  # Checklist item  
Reported on 
page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  48 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, 
participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and 
implications of key findings; systematic review registration number.  

48 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  49 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, 
outcomes, and study design (PICOS).  

50-51 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide 
registration information including registration number.  

N/A 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, 
language, publication status) used as criteria for eligibility, giving rationale.  

51 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify 
additional studies) in the search and date last searched.  

52 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could be 
repeated.  

52 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, 
included in the meta-analysis).  

52 

Data collection process  10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes 
for obtaining and confirming data from investigators.  

52-53 
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Section/topic  # Checklist item  
Reported on 
page #  

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and 
simplifications made.  

53 

Risk of bias in individual 
studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done 
at the study or outcome level), and how this information is to be used in any data synthesis.  

52 

Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  53 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency 
(e.g., I2) for each meta-analysis.  

53 

Risk of bias across studies  15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting 
within studies).  

53 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating 
which were pre-specified.  

54 

RESULTS   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at 
each stage, ideally with a flow diagram.  

54 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and 
provide the citations.  

56-65 

Risk of bias within studies  19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  56 

Results of individual studies  20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each 
intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.  

65-68 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  67-68 

Risk of bias across studies  22 Present results of any assessment of risk of bias across studies (see Item 15).  55 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).  67-68 

DISCUSSION   

Summary of evidence  24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key 
groups (e.g., healthcare providers, users, and policy makers).  

68-70 
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Section/topic  # Checklist item  
Reported on 
page #  

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of 
identified research, reporting bias).  

71-72 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future research.  72-73 

FUNDING   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the 
systematic review.  

No funding 
received 

 
From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): 
e1000097. doi:10.1371/journal.pmed1000097  
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Appendix 10: Consort Statement 

CONSORT 2010 checklist of information to include when reporting a randomised trial* 
 

Section/Topic 
Item 
No Checklist item 

Reported on 
page No 

TITLE AND ABSTRACT 

 1a Identification as a randomised trial in the title 111 

1b Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for 
abstracts) 

111 

INTRODUCTION 

Background and objectives 2a Scientific background and explanation of rationale 112-114 

2b Specific objectives or hypotheses 114 

METHODS 

Trial design 3a Description of trial design (such as parallel, factorial) including allocation ratio 116 

3b Important changes to methods after trial commencement (such as eligibility criteria), with reasons N/A 

Participants 4a Eligibility criteria for participants 115-116 

4b Settings and locations where the data were collected 115 

Interventions 5 The interventions for each group with sufficient details to allow replication, including how and when they were 
actually administered 

116 

Outcomes 6a Completely defined pre-specified primary and secondary outcome measures, including how and when they were 
assessed 

117-119 

6b Any changes to trial outcomes after the trial commenced, with reasons N/A 

Sample size 7a How sample size was determined 120 

7b When applicable, explanation of any interim analyses and stopping guidelines N/A 

Randomisation:    

Sequence generation 8a Method used to generate the random allocation sequence 116 

8b Type of randomisation; details of any restriction (such as blocking and block size) 116 

Allocation concealment 
mechanism 

9 Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), 
describing any steps taken to conceal the sequence until interventions were assigned 

116 

Implementation 10 Who generated the random allocation sequence, who enrolled participants, and who assigned participants to 
interventions 

116 

Blinding 11a If done, who was blinded after assignment to interventions (for example, participants, care providers, those 116 
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Section/Topic 
Item 
No Checklist item 

Reported on 
page No 

assessing outcomes) and how 

11b If relevant, description of the similarity of interventions N/A 

Statistical methods 12a Statistical methods used to compare groups for primary and secondary outcomes 120 

12b Methods for additional analyses, such as subgroup analyses and adjusted analyses 120 

RESULTS 

Participant flow (a diagram 
is strongly recommended) 

13a For each group, the numbers of participants who were randomly assigned, received intended treatment, and were 
analysed for the primary outcome 

78 (fig 4.1) 

13b For each group, losses and exclusions after randomisation, together with reasons 120 

Recruitment 14a Dates defining the periods of recruitment and follow-up 120 

14b Why the trial ended or was stopped N/A 

Baseline data 15 A table showing baseline demographic and clinical characteristics for each group 121 

Numbers analysed 16 For each group, number of participants (denominator) included in each analysis and whether the analysis was by 
original assigned groups 

121 

Outcomes and estimation 17a For each primary and secondary outcome, results for each group, and the estimated effect size and its precision 
(such as 95% confidence interval) 

120-126 

17b For binary outcomes, presentation of both absolute and relative effect sizes is recommended N/A 

Ancillary analyses 18 Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-
specified from exploratory 

N/A 

Harms 19 All important harms or unintended effects in each group (for specific guidance see CONSORT for harms) N/A 

DISCUSSION 

Limitations 20 Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses 132 

Generalisability 21 Generalisability (external validity, applicability) of the trial findings 133 

Interpretation 22 Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence 127-132 

Other information  

Registration 23 Registration number and name of trial registry 116 

Protocol 24 Where the full trial protocol can be accessed, if available N/A 

Funding 25 Sources of funding and other support (such as supply of drugs), role of funders 134 

*We strongly recommend reading this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. If 

relevant, we also recommend reading CONSORT extensions for cluster randomised trials, non-inferiority and equivalence trials, non-pharmacological treatments, herbal 

interventions, and pragmatic trials. Additional extensions are forthcoming: for those and for up to date references relevant to this checklist, see www.consort-

statement.org. 

http://www.consort-statement.org/
http://www.consort-statement.org/

