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Abstract: Biomass burning smoke is often a significant source of airborne fine particles in regional
areas where air quality monitoring is scarce. Emerging sensor technology provides opportunities
to monitor air quality on a much larger geographical scale with much finer spatial resolution.
It can also engage communities in the conversation around local pollution sources. The SMoke
Observation Gadget (SMOG), a unit with a Plantower dust sensor PMS3003, was designed as part
of a school-based Science, Technology, Engineering and Mathematics (STEM) project looking at
smoke impacts in regional areas of Victoria, Australia. A smoke-specific calibration curve between
the SMOG units and a standard regulatory instrument was developed using an hourly data set
collected during a peat fire. The calibration curve was applied to the SMOG units during all
field-based validation measurements at several locations and during different seasons. The results
showed strong associations between individual SMOG units for PM2.5 concentrations (r2 = 0.93–0.99)
and good accuracy (mean absolute error (MAE) < 2 µg m−3). Correlations of the SMOG units to
reference instruments also demonstrated strong associations (r2 = 0.87–95) and good accuracy (MAE
of 2.5–3.0 µg m−3). The PM2.5 concentrations tracked by the SMOG units had a similar response time
as those measured by collocated reference instruments. Overall, the study has shown that the SMOG
units provide relevant information about ambient PM2.5 concentrations in an airshed impacted
predominantly by biomass burning, provided that an adequate adjustment factor is applied.

Keywords: particulate matter; validation; smoke; sensors; STEM; air quality

1. Introduction

It is well understood that there are negative health impacts from exposures to biomass
smoke [1–10]. With the increasing amount of time when bushfires and prescribed burns
can occur, there is growing interest from the public on how to best measure and manage
their exposures [11–14].

To capture the local movement of smoke associated with biomass burning events a
dense spatial network of air quality monitors is needed [15,16], which can be enhanced
through the use of satellite-based data [15,17,18]. Considerable resources are required
to maintain such a network of reference air quality monitors in regional locations where
biomass smoke events most frequently occur [19]. In response to this resourcing issue, the
use of ‘low-cost’ air quality sensors can provide a useful alternative to traditional reference
air quality monitors. These sensors have the potential to provide high resolution air quality
monitoring, both in time and space. Mallia et al. [16] highlighted how low-cost sensor
networks can be used to characterize smoke plumes from wildfires and contribute to the
evaluation of smoke transport models. Applications of low-cost sensor networks can also
be extended to population exposure and health assessment [15,20].
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The challenges that earlier research studies identified related to the use of low-cost
particulate matter (PM) sensors were the lack of consistency between individual sensors,
under or over reporting in comparison to reference methods and the deterioration in their
performance over time [21,22]. Feinberg et al. [22] also called into question the consistency
of the sensor performances based on meteorological conditions. The effects of elevated
relative humidity (RH) and temperature on sensor performance is divided, with some
studies showing negative effects of RH on sensor performance [23] while others show
minimal impact [24–26]. Zamora et al. [27] highlighted that low-cost PM sensors are more
accurate in environments with polydispersed particle sources and for PM with less than
1 µm diameter. Since then, more studies have investigated the performance of low-cost
particle sensors under various particle loading scenarios and have established various
calibration curves with or without environmental terms [26,28–30]. The Plantower PM
sensors (PMS1003/3003/5003) have been tested against reference methods in several stud-
ies under laboratory conditions to assess the sensor’s suitability and accuracy [27,31–38]
as well as in field-based measurements [20,24–26,29,30,39–43]. With the growing use of
low-cost sensors both by the public and for research purposes, it is important to be able to
interpret the data and understand their potential limitations [44].

With this understanding, we have conducted a number of field monitoring campaigns
across regional Victoria. We selected locations impacted by both residential woodsmoke
and planned burn emissions to evaluate the utility of the Plantower PMS3003 [45,46] for use
in the detection and monitoring of biomass smoke as part of a broader Science, Technology,
Engineering and Mathematics (STEM) project.

We present results from a range of validation monitoring tests that have been con-
ducted using the sensor to demonstrate its utility for conducting biomass monitoring and
to provide a better understanding of what can be interpreted from the data.

Objectives:

• Develop a smoke-specific calibration curve for the low-cost sensor SMOG units de-
veloped in this study and test how the calibrated data set for PM2.5 compares against
gravimetric mass measurements and reference instruments at three different locations
and during different seasons.

• Assess the suitability of low-cost particle sensors to detect ambient smoke events and
provide insights into the spatial and temporal patterns of these events.

• Develop a school STEM curriculum focusing on the construction, deployment and
analysis of data from low-cost particle sensors to assess biomass burning impacts on
regional air quality where regulatory air quality monitoring is sparse.

2. Materials and Methods
2.1. Instruments

The SMoke Observation Gadget (SMOG) is a unit that comprises of a Plantower Laser
PM2.5 dust sensor (model PMS3003) [45,46] and a digital temperature and humidity sensor
(DHT22 AM2302). The PMS3003 uses a light scattering principle to measure particles
suspended in the air. A red-coloured laser (wavelength of 650 ± 10 nm [45]) shines light
into a measuring cavity through which air is drawn by a fan. A photo-diode measures
scattered light at a 90 degrees angle to the laser beam. Flow is not critical because there is no
size selective inlet or means of collecting aerosol for gravimetric calibration. The amount of
scattered light is measured by a photodiode detector to determine the mass concentrations
of particles using a proprietary algorithm based on Mie Theory. The measuring cavity is
designed to be a light trap, so that only scattered light falls onto the receptor. The Plantower
PMS3003 provides continuous measurements of PM1, PM2.5 and PM10 concentrations with
a response time of 10 s. In this study, the raw standard PM2.5 output data from the PMS3003
(e.g., CF = 1) were used.

The SMOG unit has both a particle and temperature/humidity sensor that are inter-
faced via a printed circuit board (PCB) to a microcontroller, a Raspberry Pi Model 3B (RPi).
The RPi receives information from the sensors and logs the data at 5-min intervals to an
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internal micro-SD card and an external USB stick. The electronics are consolidated onto a
single PCB that connects directly to the RPi. All components are housed in a waterproof
enclosure (150 × 200 × 100 mm) to facilitate outdoor deployment. Figure 1 shows an
assembled SMOG unit. The unit also has a number of light-emitting diodes (LEDs). These
indicate the operating status of the system at the start-up, and the particle load in the air
during sampling. The overall design was simplified to ensure that Grade 6 students could
construct and operate the monitor.

Figure 1. Assembled Smoke Observation Gadget (SMOG).

The SMOG units were tested at various locations and in different seasons alongside
a tapered element oscillating microbalance (TEOM, Thermo Fisher Scientific, Waltham,
MA, USA), an E-Sampler (Met One Instruments, Grants Pass, OR, USA) and a Fidas® 200 S
(Palas GmbH, Karlsruhe, Germany).

The TEOM is an EPA-designated equivalent method used for real-time measurements
of the mass concentrations of particles. Air is drawn through a filter resting on a microbal-
ance at a known flow rate and the change in frequency of an oscillating microbalance
relative to the blank filter weight determines the volumetric concentration of particulate
matter in ambient air [47]. The measurement is only dependent on the mass of the particles
(i.e., not density, chemical composition or optical or electrical properties). A filter dynamic
measurement system (FDMS) is used to adjust for the volatile component of the mass.

The E-sampler contains a diode laser that operates at a 670 nm wavelength and
measures real-time particles through near-forward light-scattering. Accurate flow in the
E-sampler is critical to ensure accurate size selection through the inlet for gravimetric
calibration of PM2.5. The E-samplers operate at a flow rate of 2 L/min and collect both
continuous particle measurements at a 5 min interval by light-scattering and particle
mass on pre-weighed 47 mm Fluoropore membrane filters with a 1 µm pore size (Merck
Millipore, Darmstadt, Germany). The scattering is converted into mass concentration
using a gravimetric K-factor determined from the aerosol mass collected on a filter during
sampling. Although the E-sampler is not an EPA-designated equivalent method, applying
a gravimetric K-factor generated for the E-sampler during the measurement period ensures
that accurate concentration measurements and good agreement with federal reference
methods (FRM) and federal equivalent methods (FEM) are achieved.

The Fidas® 200 S, a European equivalent reference method, is an optical aerosol
spectrometer that continuously analyzes ambient particles present in the size range 180 nm–
18 µm. It is equipped with a polychromatic LED light source and has a 90◦ scattering
angle.
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The TEOM, E-sampler and Fidas are all equipped with an aerosol drying system
controlled by dynamic heating of the inlet to keep relative humidity of the intake air below
50%. In addition to removing water, heating the intake air has the undesired effect of
evaporating volatile PM. The TEOM is the only instrument to control for this using a
filter dynamics measurement system. Operational settings of the various types of particle
instruments are provided in Table 1. It should be noted that differences in wavelengths
of the light source and scattering angles between instruments may impact on the sensor
response. The E-sampler and PMS3003 use a similar light source but a different scattering
angle while the Fidas has a similar scattering angle to the PMS3003 but uses a different
light source.

Table 1. Operational settings of instruments.

Parameters SMOG E-Sampler Fidas TEOM

Sampling time (s) 1 1 1 2
Size range (µm) 0.3–10 0.1–100 0.18–18 NA

Resolution (µg m−3) 1 1 0.1 0.1
Effective detection range (µg m−3) 0–500 0–65,000 0–10,000 0–1,000,000

Flow rate (lpm) NA 2 4.8 3
Temperature range (◦C) −10 to 60 −30 to 50 −20 to 50 −40 to 60

Humidity range (%) 0–99 Drying system Drying system Drying system
Light source wavelength 650 nm 670 nm Polychromatic LED NA

Scattering angle 90◦ forward 85–95◦ NA
PM sizing Mie-scattering Cyclone Mie-scattering PM2.5 inlet

Weight (kg) 0.04 6.4 9.3 18
Size (mm) 38 × 35 × 12 267 × 235 × 145 180.5 × 450 × 320 432 × 483 × 1400

2.2. Measurement Locations

We used the data set collected during a peat fire event near Port Macquarie, NSW
(latitude −31.4337, longitude 152.9153) to develop a smoke-specific calibration curve for
the SMOG units. This event was chosen as it was a prolonged biomass burning particle
pollution event that presented a wide range of particle concentrations. Two SMOG units
were collocated alongside a standard regulatory method (FDMS-TEOM) between August
and December 2019 to evaluate smoke impacts due to the nearby peat fires [48]. The
monitoring equipment was set up at a mobile monitoring site operated by the NSW
Department of Planning, Industry and Environment (DPIE). The site was located in the car
park of a local library. Readings from the SMOG units were averaged on an hourly and
24 h basis for comparison with the TEOM and for the development of a smoke-specific
calibration curve for the SMOG units.

A number of field-based measurements were conducted to test the suitability of the
SMOG units to accurately detect and monitor biomass burning events in different locations
and under different meteorological conditions (Table S1 and Figure S1).

Measurements were conducted on the rooftop of CSIRO laboratories at Aspendale,
Victoria (latitude −38.025, longitude 145.102) located 30 km south of Melbourne and in
close proximity (~50 m) to the Port Philip bay shoreline from 23 to 26 April 2018 (autumn)
and between 25 June and 16 July 2018 (winter) (Figure S2). The area is impacted by local
residential woodsmoke emissions during autumn/winter. In autumn, three SMOG units
were compared to two collocated E-samplers fitted with a PM2.5 size-selective inlet and to
the Fidas. In winter, one SMOG unit was collocated with an E-sampler fitted with a PM2.5
size-selective inlet and with the Fidas.

Ambient PM2.5 measurements using the low-cost sensor SMOG units were completed
at fifteen locations in north-east Victoria between 1 May 2018 and 6 June 2018 and at six
locations in north-east Victoria between November 2018 and June 2019 (Figure S1). The
monitoring sites were located in areas that had the potential to be impacted by either
prescribed burns, stubble burns or bushfires. Two SMOG units were deployed at each
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location. During each deployment period in north-east Victoria, reference instruments
were installed at one location (e.g., Rutherglen in May/June 2018 and Alexandra between
November 2018 and June 2019) to test the performance of the SMOG units either against
the Fidas and/or the E-sampler.

The smoke-specific calibration curve parameters were applied to all deployed SMOG
units with the hourly calibrated data set being compared against the reference instruments.

2.3. Data Analysis

A data cleaning criterion was applied to the raw data output from the SMOG units
to remove erroneous data due to errors in PM filter sizing (e.g., check if PM10 ≥ PM2.5 ≥
PM1) and unrealistic spikes or drops in temperature and PM2.5. The filtered data set was
then aggregated to hourly averaged data using a 75% data capture.

The limit of detection (LOD) for the SMOG units was determined by using the method
of Wallace et al. [49]. LOD has been defined as the lowest concentration at which the ratio
of the mean to standard deviation exceeds 3.

The following parameters were used to assess the performance of the SMOG units.
Precision refers to how well all sensors reproduce the measurement of PM2.5 under identical
circumstances. The precision of the SMOG units was evaluated using Pearson’s Correlation
Coefficient to understand the associations between SMOG units. We used the reduced
major axis linear regression relationships in R to provide insight into the pattern and
extent of agreement between SMOG units [50]. A perfect agreement between SMOG units
would show a slope of 1, indicating a similar response between the two instruments, and
intercept of 0, indicating no bias in the sensor’s response. The intra-precision and accuracy
of the SMOG units were also evaluated using Lin’s Concordance Correlation Coefficient
(CCC). The CCC measures the agreement of continuous measurements obtained by two
different methods by determining how far the observed data deviate from the line of perfect
concordance (e.g., 1:1 line) [51,52]. The CCC value increases as a function of the accuracy
of the data and the precision of the data. All statistical analysis was conducted using the
statistical packages epiR in R [53].

The performance of the SMOG units was evaluated by computing linear regression
and correlation with a reference instrument (e.g., E-sampler, Fidas or TEOM) using Or-
dinary Least Squares (OLS) Linear Regression in R [54]. This provided the strength of
the relationship and the suitability of the calibration curve for the SMOG units. Lin’s
concordance coefficient was also used to assess the precision and accuracy of the SMOG
units relative to the reference instruments. Bland-Altman plots were used to examine the
agreement between PM2.5 measurements made by the SMOG units and the corresponding
reference particle instrument (R package ‘BlandAltmanLeh’ version 0.3.1) [55]. Bland-
Altman diagrams (or difference plots) are typically used for the visual comparison of two
measurements methods.

Additionally, the relative bias, mean absolute error (MAE), root mean square error
(RMSE) and normalised root mean square error (NRMSE) were calculated for each hourly
data set to measure data accuracy using R packages (Table S2).

2.4. Development of STEM Project

The SMOG units were designed to support a student-based project. The STEM project
combined science, mathematics, engineering, and digital technology to address the issue
of the impact of ambient particles from biomass burning sources on local and regional air
quality and to assess air quality sensors. The project aimed to forecast smoke movements
in smoke impacted regions and engage the community through schools.

The project was targeted at Grade 6–8 students and comprised of five lessons. The first
three lessons were classroom based interactive presentations that taught students about air
pollution and ambient particles, biomass burning and measurement techniques of ambient
particles.
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Lesson 4 was a hands-on session when students worked in teams to build the SMOG.
After building the SMOG unit the students undertook a monitoring campaign using the
SMOG units. Ideally, the monitoring campaign captured a period of potential high particle
concentrations in the air such as those that result from prescribed burning in autumn or
from domestic wood smoke in winter. The students were encouraged to set up the SMOG
units outside their home and monitor the ambient air over approximately a 4-to-6-week
period. Once the monitoring campaign was finished, the students returned their units to
school to process and analyse their collected data set as part of lesson 5.

3. Results and Discussion

To evaluate the suitability of the SMOG units to capture and quantify smoke events, we
assessed their performance against each other and against gravimetric mass measurements
and reference instruments.

3.1. Development of Calibration Curve for SMOG Units

Previous studies have shown that the Plantower sensors correlated well with reference
instruments, but they exhibited high biases [24,26,30,42,43,45]. In these studies, various
simple and multi-variate linear regression curves as well as polynomial, exponential and
quadratic correction equations were established for correcting PM2.5 concentrations.

We used hourly PM2.5 measurements from a FDMS-TEOM during a period of smoke
from peat fires near Port Macquarie (NSW) to develop a calibration curve for the SMOG
units. Ambient hourly PM2.5 concentrations up to 1300 µg m−3 were measured during the
sampling period between August–December 2019. Figure 2 shows the fitted lines for the
two measurements methods, with the relevant equations shown below.

PM2.5 (µg m−3) = 1.667 + 0.569 × SMOG (1)

PM2.5 (µg m−3) = 0.578 × SMOG (2)

PM2.5 (µg m−3) = 5.45 + 0.45 × SMOG + 1.2 × 10−4 × SMOG2 + 1.8 × 10−7 × SMOG3 (3)

The data suggests that a linear relationship can be applied to correct the SMOG data
up to an hourly PM2.5 concentration of ~300 µg m−3, with a 3rd degree polynomial curve
best fitted for PM2.5 concentrations exceeding 300 µg m−3. Previous studies have shown
non-linear behaviour above concentrations as low as 25 µg m−3 [43] and 40 µg m−3 [42],
while other studies have shown a linear relationship exists at concentrations up to 125 µg
m−3 [46], 150 µg m−3 [29] and 200 µg m−3 [26]. These differences could be due to particle
composition, particle size and environmental conditions during testing, variations in the
response of individual sensors or due to sensor algorithm [45,46,56].

Our linear equations with zero and non-zero intercepts showed similar slopes (1.73
and 1.76) and no significant difference in RMSE. This was also observed by Delp and
Singer [29] who used simple scalars with no offset as adjustment factors for wildfire
smoke. The median adjustment factors calculated for the Purple Air (PA) units that include
Plantower sensors PMS5003 ranged from 0.42 to 0.58, in agreement with the adjustment
factor of 0.58 in this study (defined as the slope in Equation (2)). The slopes we generated
are also similar to the reported adjustment factor of 0.55 by Robinson [30] and the slopes by
Holder et al. [26] (e.g., 0.51 for PA sensor and 0.57 for RAMP sensor). The slight difference
in response between the PA and RAMP sensors (both units using the same Plantower
PM sensor) was attributed to a potential difference in the sensor package design and/or
post-processing algorithm [26].
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Figure 2. Fitted calibration curves for the SMOG units against the TEOM.

A linear multivariate regression with additive terms for temperature and relative
humidity was also developed for the SMOG PM2.5 concentrations in the 0–600 µg m−3

range.

PM2.5 (µg m−3) = 11.76 + 0.569 × SMOG − 0.056 × temperature (◦C) − 0.157 × RH (%) (4)

PM2.5 (µg m−3) = 9.56 + 0.569 × SMOG − 0.142 × RH (%) (5)

A recent paper by Barkjohn et al. [28] developed an adjustment factor for the Purple
Air Sensor that could be applied across the United States. After trialing a variety of
model fits, the authors chose an additive RH model to work across a wide variety of data.
Their fitted equation is similar to the one developed in this study (Equation (4)) with
an approximate 8% difference. Holder et al. [26] observed little improvements in sensor
accuracy when including an RH term and as a result recommended a simple regression
without environmental terms.

3.2. PM2.5 Measurement Statistics

The LOD for PM2.5 measurements was calculated at 5.5 µg m−3, in agreement with
the LOD of 6 µg m−3 reported by Barkjohn et al. [57] and Sayahi et al. [42] but higher than
the LOD reported for PMS5003 [31,34,58].

There are several theories regarding the replacement of values below the LOD, either
being censored or substituted with a constant value, such as half the LOD, the LOD
divided by the square root of 2, or zero. Using either approach can have impacts on
the analyses [59,60]. Depending on the percentage of values below the LOD, replacing
values below the LOD can produce strong biases, questionable descriptive statistics and
differences in correlation and regression relationships. Due to the variable number of
values below the LOD, we retained the actual values to minimise introducing any bias in
the analysis.
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Tables S3–S5 show the summary statistics of the hourly measurements conducted in
the field-based measurements. Boxplots of hourly PM2.5 concentrations for each measure-
ment period and collocation of instruments are shown in Figure S3.

During the rooftop test at Aspendale, 35–43% of data were below the LOD, while
for the field-based measurements in Northeast Victoria the percentage of hourly PM2.5
concentrations below LOD ranged from 32–89%. More than 90% of hourly PM2.5 concen-
trations remained below 25 µg m−3. Maximum hourly PM2.5 concentrations ranged from
32 to 220 µg m−3. As the maximum hourly PM2.5 concentration was measured at 220 µg
m−3, we applied the linear calibration curve fitted through the origin to correct the hourly
SMOG data for the field-based testing.

3.3. Inter-Comparison of SMOG Units

Intercomparison of collocated SMOG units enabled us to assess whether the SMOG
units are suitable for measuring the spatial variability in PM2.5 concentrations. The sum-
mary of statistical metrics for the SMOG inter-comparisons is shown in Table 2.

Table 2. Statistical metrics of SMOG inter-comparison.

Measurement
Period

SMOG
ID Slope Intercept r2 RMSE NRMSE Bias MAE CCC N (h)

Aspendale
autumn (2018)

2 vs. 3 0.84 0.95 0.94 2.06 26.4 0.33 1.71 0.95 72
2 vs. 4 1.03 0.41 0.98 1.32 16.9 -0.67 0.96 0.98 72
4 vs. 3 0.81 0.62 0.94 2.43 28.7 1.00 1.93 0.94 72

NE Victoria
May–June 2018

23 vs. 25 0.98 −0.01 0.98 0.70 20.0 −0.09 0.39 0.99 831
15 vs. 21 1.00 0.15 0.98 0.67 15.5 0.14 0.36 0.99 775
3 vs. 24 1.03 −0.10 0.74 3.07 82.6 0.01 1.24 0.86 792
1 vs. 30 0.99 −0.77 0.97 1.76 26.5 −0.84 1.03 0.98 614

22 vs. 28 0.82 −0.10 0.93 1.57 51.1 −0.82 0.87 0.92 820
6 vs. 7 0.99 −0.08 0.99 0.63 9.7 −0.15 0.39 1.00 72

12 vs. 13 0.96 −0.05 0.99 0.74 16.8 −0.24 0.41 0.99 855
2 vs. 4 0.85 −0.16 0.93 1.18 64.2 −0.51 0.52 0.94 855

16 vs. 17 1.09 0.27 0.99 0.93 22.2 0.60 0.61 0.99 828
18 vs. 19 0.97 0.04 0.99 0.85 11.9 −0.15 0.52 1.00 825

8 vs. 9 0.97 0.74 0.97 1.98 22.4 0.53 0.80 0.98 849
10 vs. 11 0.97 −0.34 0.99 1.33 18.5 −0.59 0.84 0.99 855

NE Victoria
November 2018–

June
2019

6 vs. 15 0.93 −0.25 0.99 2.12 25.7 −0.64 0.88 0.99 2502
2 vs. 14 1.04 −0.19 0.99 1.91 76.0 0.13 0.77 1.00 2573
3 vs. 41 0.91 −0.44 0.93 2.45 48.3 −0.80 1.25 1.00 1607
9 vs. 26 1.11 −0.09 0.86 2.72 45.9 0.45 1.02 1.00 1384
7 vs. 10 0.96 −0.41 0.96 2.22 25.7 −0.63 0.96 0.98 3360

Agreement between SMOG units 2 and 4 during the autumn measurements at As-
pendale was very high (r2 = 0.98, slope = 1.03, intercept = 0.41) and CCC value of 0.98
(Table 2). The good agreement between the two SMOG units is shown in the Bland-Altman
plot in Figure S4 (mean bias of 0.67 µg m−3 and agreement limits between −1.57 and
2.91 µg m−3). SMOG unit 3 did not perform as well with an under-reporting of ~20%, this
was potentially due to drift in the sensor performance.

The collocation of two SMOG units at each of the sites in Northeast Victoria enabled
us to further test the measurement agreement between SMOG units. The results were
variable with very good agreement for most sites and units and very high CCC values
indicating significant reliability (Table 2). We excluded any units for which sampling issues
were identified, including unit 5 that showed much lower levels than other tested units,
unit 20 that showed unrealistically high PM2.5 values likely due to an insect in the dust
sensor which affected the sensor readings and unit 27 that switched off after 7 h. Poorer
performance was observed at concentrations below 10 µg m−3. Examples of scatter and
Bland-Altman plots are shown in Figure S5 highlighting the variable agreements. Possible
explanations for the poorer performance between SMOG units include drift in sensor



Sensors 2021, 21, 7206 9 of 20

performance (as reported by Sayahi et al. [42] and Wang et al. [36]); misalignment of the
sensor inlet with the inlet hole of the enclosure; very localized sources (e.g., SMOG2&4 in
NE Victoria were deployed indoors and were potentially more sensitive to location).

The rooftop tests conducted at CSIRO Aspendale and the collocated SMOG units
at north-east Victoria have shown an overall good intra-precision between SMOG units.
Previous studies have shown very high correlations between PMS3003 units. For example,
Zheng et al. [46] reported r2 values of 0.98–1.0 among five PMS3003 units, while Kelly
et al. [45] showed high correlations (r2 > 0.99) between two PMS3003 units.

The data suggest that the SMOG units are reliable over a range of concentrations,
temperatures (5–50 ◦C), and RH values (11–91%) which suggests they can be deployed
to assess the spatial variability of PM2.5 concentrations in a wide range of locations and
conditions.

3.4. Evaluation of PM2.5 Measurements Made by Optical Instruments versus Gravimetric Mass
Measurements

Regression analysis of the continuous measurements by light-scattering versus gravi-
metric mass measurements for the E-sampler and Fidas are provided in Table 3 and
Figure S6.

Comparison of gravimetric mass measurements against averaged corrected SMOG
data showed ratios varying between 0.69 and 1.48 (excluding time periods with less than
50% data capture and more than 90% of data below LOD). The corrected SMOG data
measured at Rutherglen were within 10% of the gravimetric mass measurements. Most
of the SMOG data measured during the summer at Alexandra were below the LOD, with
averaged corrected SMOG data being lower than the gravimetric mass measurements. In
April, corrected SMOG data was in good agreement with the gravimetric mass measure-
ments, while higher PM2.5 concentrations compared to gravimetric mass measurements
were observed in winter (May–June) at Alexandra. A similar trend was observed for the
measurements with the Fidas and E-sampler. Lower ratios were observed in winter at both
Aspendale and Alexandra when high concentrations of particle events were attributed to
residential wood smoke. This trend is in agreement with the findings by Kelly et al. [45]
and Tryner et al. [35] who reported an overestimation in sensor data compared to TEOM
data when the sensor was exposed to wood smoke.

The results in Table 3 show that the Fidas over-reported PM2.5 concentrations com-
pared to gravimetric mass measurements, while the E-sampler under-reported PM2.5
concentrations compared to gravimetric mass measurements except for measurements
completed in winter at Aspendale and Alexandra.

Systematic discrepancies between light-scattering monitors and reference methods
have been observed in previous research studies [61–63]. The over-estimation in PM2.5
concentrations has been attributed to the differences between the optical properties of the
manufacturer’s factory calibration particles and wood smoke particles and can be adjusted
using a site-specific or season-specific calibration factor. The data also shows that there is
not a uniform response of the light-scattering instruments to the different particle sources.
This will be further explored in Section 3.6.
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Table 3. Comparison between gravimetric PM2.5 mass concentrations and PM2.5 concentrations measured using optical instruments, including raw and calibrated SMOG data.

Location Date Gravimetric SMOG Fidas E-Sampler

(µg m−3) Average 1

(µg m−3)
Average (OLS) 2

(µg m−3) CF 3 Missing Data
(%) <LOD (%) Average

(µg m−3) CF Missing Data
(%)

Average
(µg m−3) CF Missing Data

(%)

Aspendale 25/06/18–02/07/18 9.34 39.3 22.7 0.41 64 4 17.9 0.52 0 12.1 0.77 0
02/07/18–09/07/18 3.42 na 4 na na na na 7.4 0.46 0 4.8 0.71 0
09/07/18–16/07/18 7.25 na na na na na 10.8 0.67 0 4.9 1.49 0

Rutherglen 5 01/05/18–21/05/18 4.71 7.12 4.12 1.15 3.8 69 na na na 3.59 1.31 0
21/05/18–06/06/18 4.41 6.90 3.99 1.10 6.1 64 na na na 3.39 1.30 0
01/05/18–21/05/18 4.60 7.12 4.12 1.12 3.8 69 na na na 4.00 1.15 0
21/05/18–06/06/18 4.33 6.90 3.99 1.08 6.1 64 na na na 3.55 1.22 0

Alexandra 29/11/18–09/12/18 4.44 1.63 0.94 4.71 10 92 4.83 0.92 11 1.85 2.40 0
18/12/18–27/12/18 3.77 6.79 3.92 0.96 81 68 4.20 0.90 4.7 2.02 1.87 0
27/12/18–02/01/19 5.30 2.82 1.63 3.26 1.4 99 6.64 0.80 0 2.69 1.97 1.4
02/01/19–12/01/19 4.48 2.75 1.59 2.82 11 95 5.85 0.77 13 2.71 1.65 0
16/01/19–06/02/19 6.76 8.75 5.05 1.34 2.0 79 11.8 0.58 0 5.13 1.32 0
06/02/19–04/03/19 4.52 2.88 1.66 2.72 49 91 6.84 0.66 2.5 2.82 1.60 2.7
21/03/19–05/04/19 4.70 5.48 3.17 1.48 0 87 7.62 0.62 0.6 3.88 1.21 0.6
05/04/19–18/04/19 7.32 13.2 7.62 0.96 26 54 15.6 0.47 33 5.86 1.25 20
18/04/19–16/05/19 7.36 16.15 9.33 0.79 0 57 15.5 0.48 0 9.85 0.75 0
16/05/19–13/06/19 12.03 30.2 17.4 0.69 3.1 46 24.4 0.49 0.1 18.1 0.66 0

1 Averaged non-calibrated PM2.5 concentration. 2 Averaged calibrated PM2.5. Concentration (using linear regression fitted through origin). 3 CF (calibration factor) = Gravimetric PM2.5 mass concentration/light
scattering averaged PM2.5 concentration. 4 No data available from the SMOG units. 5 Fidas was not installed at the Rutherglen site.
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3.5. Performance Assessment of SMOG Units

To check the accuracy of the SMOG units, we compared the hourly PM2.5 concentra-
tions measured with the calibrated SMOG units using gravimetrically corrected measure-
ments from the collocated Fidas (Fidas_CF) and E-sampler. Table 4 shows a summary of
the statistical parameters using the different calibration curves for the SMOG calibration
as defined in Section 3.1. The data shows that there is a minimal difference between the
different calibration curves. Therefore, we used the calibration curve with zero intercept
(Equation (2)) for the remaining analysis of the data sets. Table 4 also shows the statistical
analysis of site- and season-specific intercomparison using Equation (2). Intercomparisons
between calibrated SMOG (using Equation (2)), Fidas and E-sampler are shown in Figure 3.

Table 4. Performance of calibrated SMOG units in comparison to gravimetrically corrected reference instruments.

SMOG Calibration Reference
Instrument Slope Intercept r2 Slope

(Zero Int) r2 RMSE NRMSE
(%) MBE MAE

Linear with zero intercept (all
data) (Equation (2))

E-sampler
Fidas

0.88
1.43

0.55
−2.53

0.87
0.95

0.90
1.30

0.90
0.94

4.76
5.17

67.3
74.6

−0.29
0.52

2.50
2.98

Linear with non-zero intercept
(all data) (Equation (1))

E-sampler
Fidas

0.87
1.40

2.15
−0.88

0.87
0.95

0.94
1.36

0.90
0.96

4.90
5.33

69.3
76.9

1.20
2.00

2.82
2.69

Polynomial (all data)
(Equation (3))

E-sampler
Fidas

0.71
1.15

5.71
3.23

0.88
0.95

0.89
1.32

0.83
0.95

6.39
5.22

90.3
75.3

3.66
4.31

5.03
4.40

Linear with additive RH term (all
data) (Equation (5))

E-sampler
Fidas

0.82
1.33

3.17
0.58

0.83
0.94

0.91
1.36

0.86
0.96

5.81
5.33

82.2
76.9

1.84
2.93

3.84
3.49

Linear with additive RH and
temperature term (all data)

(Equation (4))

E-sampler
Fidas

0.82
1.34

3.40
0.72

0.84
0.94

0.93
1.37

0.86
0.96

5.77
5.42

81.6
78.2

2.11
3.12

3.88
3.56

Aspendale autumn (Equation (2)) E-sampler
Fidas

0.80
1.61

0.68
−3.80

0.78
0.93

0.85
1.24

0.90
0.94

4.02
3.45

41.5
45.2

−1.22
0.83

3.42
2.33

Aspendale winter (Equation (2)) E-sampler
Fidas

1.60
2.29

1.67
−3.62

0.84
0.96

1.69
2.04

0.91
0.97

11.0
11.9

139
146

6.63
6.80

6.84
7.25

Rutherglen (Equation (2)) E-sampler 0.90 0.12 0.76 0.92 0.87 2.08 50.0 −0.27 1.41
Alexandra summer-autumn

(Equation (2))
E-sampler

Fidas
0.88
1.23

0.05
−2.18

0.81
0.92

0.88
1.05

0.85
0.91

3.66
2.81

74.5
54.7

−0.56
−0.96

2.13
2.07

Alexandra winter (Equation (2)) E-sampler
Fidas

0.84
1.45

2.54
−1.25

0.91
0.98

0.89
1.41

0.94
0.99

7.81
8.66

41.5
64.8

−0.26
4.53

4.22
5.50

Figure 3. Scatterplot of hourly PM2.5 concentrations measured with the SMOG units compared to
(a) the E-sampler and (b) Fidas_CF (both of which have been corrected against gravimetric mass
measurements). Blue lines show linear least-squares fit; red line represents 1:1 line.

The SMOG units showed very good correlation with the E-sampler, with a slope
of 0.88, intercept of 0.55 and a CCC value of 0.93. The SMOG units exhibited a bias
within 10 µg m−3 with a larger bias observed at higher ambient PM2.5 concentrations
(Figure 4). This variability seems in agreement with the reported consistency of ±10 µg
m−3 at concentrations ranging from 0–100 µg m−3 reported for the Plantower sensors [64].
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At higher PM2.5 concentrations, the SMOG units reported lower PM2.5 concentrations
compared to the E-sampler.

Figure 4. Bland-Altman plots of hourly PM2.5 concentrations measured with the SMOG units com-
pared to (a) the E-sampler and (b) Fidas, both corrected against the gravimetric mass measurements.

The correlation between the SMOG and Fidas was very high (r2 = 0.95), with an over-
reporting compared to gravimetrically corrected Fidas data (slope of 1.43). Similarly to the
E-sampler, the Bland-Altman plot (Figure 4) shows agreement limits within 10 µg m−3 and
a proportional difference variability between the PM2.5 concentrations measured by the
SMOG unit and the Fidas, with a widening trend of agreement as PM2.5 concentrations
increased over 25 µg m−3. An increase in the absolute bias with increased ambient PM2.5
concentrations has also been reported by Gupta et al. [15].

Unlike the SMOG units, the E-sampler and Fidas are fitted with a drier in the inlet
to remove excess water from the air and keep the relative humidity below 50%. As the
SMOG sensors are based upon light scattering principles, particle hygroscopic properties
can affect mass concentration estimations. Multivariate regression analysis conducted
in this study has shown that changes in RH were significantly associated to changes in
PM2.5. The association between temperature and PM2.5 concentrations was less consistent.
However, using the multivariate regression analysis developed for the calibration curve
of the SMOG vs. TEOM did not significantly alter the regression parameters and hence
the sensor accuracy (Table 4). A similar observation was made by Holder et al. [26] who
recommended using a simple linear regression to correct the data from the PA sensors, and
other field-based evaluations of Plantower sensors [24,25,42]. The low insensitivity of the
SMOG units to RH may be due to the low hygroscopicity of smoke particles [65].

Plotting the SMOG data vs. the reference data by location and season shows a closer
fit for autumn at all locations compared to winter (Figure 5). Statistical metrics also showed
a poorer agreement between SMOGs and reference instruments with a NRMSE above 100%
observed during winter at Aspendale as well as higher RMSE and MAE values observed
during winter at both Aspendale and Alexandra (Table 4).

Correlations between SMOG units and E-sampler during the Aspendale autumn
campaign were high (r2 = 0.77–0.91), with an average slope of 0.80 and intercept of 0.68.
The agreement between SMOG units and E-sampler was good (CCC values of 0.83 to 0.87).
Performance of the SMOG unit against the Fidas was good, with a poorer performance
for SMOG3 (possibly as a result of drift in sensor performance). Overall, the SMOG
units over-reported by ~40% when using Fidas data corrected against gravimetric mass
measurements.
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Figure 5. Scatterplot of hourly PM2.5 concentrations measured with the SMOG units compared to the
E-sampler and Fidas_CF (both of which have been corrected against gravimetric mass measurements)
by season and location. Blue lines show linear least-squares fit; red line represents 1:1 line.

The set of measurements conducted at Aspendale in winter 2018 showed high correla-
tions between the SMOG unit and the E-sampler (r2 = 0.84, slope of 1.60 and an intercept of
1.67) and the Fidas (r2 = 0.96, slope of 2.29, intercept of −3.62). However, the SMOG units
over-reported PM2.5 concentrations, with agreement limits ranging from −15.6 to 15.0 µg
m−3 for the E-sampler and from −9.9 to 19 µg m−3 for the Fidas.

Good correlation (average r2 value of 0.76) was observed between the two E-samplers
and the two SMOG units at the location in Rutherglen, Victoria with slopes ranging between
0.88 and 0.96. The scatter plots between SMOG7 and E-samplers indicate a large scatter
when PM2.5 concentrations were below 10 µg m−3 and an underestimation of PM2.5 when
concentrations were above 15 µg m−3 (Figure 5). The trend is similar to what was observed
during autumn at Aspendale.

At Alexandra, we observed a larger scatter in the E-sampler vs. SMOG data set with
slightly higher PM2.5 concentrations measured by the SMOGs in autumn and lower PM2.5
concentrations measured in winter. Less scatter is observed in the Fidas vs. SMOG data set
with the SMOG data aligning with the corrected Fidas data up to a PM2.5 concentration
of ~25 µg m−3 and an over-reporting in PM2.5 concentrations above 25 µg m−3 with the
over-reporting more pronounced in winter compared to summer-autumn.

Overall, the SMOG units exhibited a high correlation with reference instruments
(r2 > 0.75). Bias and error values were within recommended performance metrics [66],
except for winter.

Observed correlations in this study were higher compared to other field-based studies
using the Plantower sensor [67]. Moderate correlations (r2 of 0.40) were reported by Zheng
for hourly PM2.5 measurements made with the Plantower PMS3003 sensor and an E-BAM
reference instrument, with improved correlations when averaging times were increased
to 6 h and 12 h [46]. Field-testing of three Plantower PMS3003 units against a BAM-1020
(Met one Instruments) conducted by the South Coast Air Quality Management District
(SCAQMD) provided r2 values of 0.58 for hourly PM2.5 measurements [68]. Liu also
reported moderate to good correlations (0.44–0.91) with performance varying by location
and particle sources [40]. Poorer performance was observed for marine aerosols and fresh
vehicle emissions with a better response to mixed urban background emissions, aged traffic
emissions and industrial emissions. Higher correlations (r2 of 0.83–0.92) between PMS
units and FEMs were reported in studies where biomass burning was the dominant particle
source [26,29,45] as was the case in this study.

Time series plots of hourly PM2.5 concentrations measured with the calibrated SMOG
units compared with a reference instrument (E-sampler/Fidas) corrected against gravimet-
ric mass measurements are shown in Figure 6 for Aspendale autumn, Aspendale winter,
Rutherglen and Alexandra summer and Alexandra autumn/winter.
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Figure 6. Hourly time series of ambient PM2.5 concentrations at the four measurement locations in different seasons:
(a) Aspendale autumn, (b) Aspendale winter, (c) Rutherglen, (d) Alexandra summer, (e) Alexandra autumn-winter.

The time series plots show that the SMOG units closely follow the PM2.5 trends of
the collocated E-sampler and Fidas, indicating that the response time of the SMOG units
is comparable to that of the E-sampler/Fidas and that peaks are temporally captured
correctly.

3.6. Capturing Smoke Plume Events

At Aspendale in winter, we observed an elevated PM2.5 event on 27–28 June 2018
when the SMOG, Fidas and E-sampler were operational. Hourly PM2.5 concentrations
remained above 25 µg m−3 for 15 h.

In Rutherglen, we observed a short spike in PM2.5 concentrations on 3 May 2018 and
elevated PM2.5 concentrations between 8–10 May 2018. Elevated PM2.5 concentrations
were measured at the other sampling sites during May 2018 and were either attributed to
planned burns or stubble burns.

During the 2018/19 measurement period, three major PM2.5 peak events were identi-
fied: 1–8 February 2019, 7–20 March 2019 and 14–22 April 2019 (Figure 7). In early February,
the Alexandra site recorded increased hourly PM2.5 concentrations with a maximum peak
concentration of 75 µg m−3 recorded on 4 February. Increased PM2.5 concentrations were
also measured at Mansfield, Milawa and Tallangatta. The elevated PM2.5 concentrations
were likely due to fires to the southeast of Alexandra. On 13–18 March, smoke plumes
from fires to the east impacted the monitoring sites at Mansfield, Benalla and Milawa.
Tallangatta also showed increased PM2.5 concentrations during March but trends in PM2.5



Sensors 2021, 21, 7206 15 of 20

concentrations differed to the other monitoring sites suggesting that smoke impacting
Tallangatta originated from different fires. Elevated PM2.5 concentrations observed at
monitoring sites in April are likely due to nearby planned burns. Maximum hourly PM2.5
concentrations that were measured during the 2018/19 field campaign ranged from 32 to
220 µg m−3.

Figure 7. Time series plots of hourly PM2.5 concentrations measured at monitoring sites in NE Victoria in 2019. Shaded
polygons represent the smoke plume events.

Elevated PM2.5 concentrations were further observed during winter at Alexandra,
Mansfield and Tallangatta and were most likely attributed to residential wood smoke.

Results on the performance of the SMOG units during the identified smoke plume
events are provided in Table 5 and in Figures S7–S11. During smoke plume events from
bushfires and planned burns, the corrected PM2.5 concentrations measured with the SMOG
units were in good agreement with measurements with the Fidas or E-sampler (bias < 2 µg
m−3, RMSE < 5 µg m−3). However, during winter, corrected SMOG PM2.5 concentrations
were significantly higher compared to PM2.5 measurements made with the Fidas or E-
sampler (bias of 5.9 to 13.3 µg m−3 and NRMSE of 94–132%).
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Table 5. Summary statistics of hourly PM2.5 concentrations measured during smoke plume events.

Location Date Units
SMOG PM2.5

Range
(µg m−3)

Slope r2 Bias (Limit) RMSE
(µg m−3) NRMSE

Aspendale 26–28 June 2018 SMOG vs. E-sampler_CF
SMOG vs. Fidas_CF 5.0–72.4 1.69 ± 0.07

2.10 ± 0.04
0.91
0.98

11.5 (−8.1 to 31.1)
13.3 (−6.3 to 33.0)

15.2
16.6

105
132

Rutherglen 7–11 May 2018 SMOG vs. E-sampler4_CF
SMOG vs. E-sampler5_CF 0.0–39.3 0.82 ± 0.03

0.83 ± 0.03
0.88
0.87

−0.7 (−6.4 to 4.9)
−0.5 (−6.3 to 5.3)

2.96
2.99

50.5
53.2

Alexandra 1–6 February 2019

SMOG vs. E-sampler_CF
SMOG vs. E-sampler_OLS

SMOG vs. Fidas_CF
SMOG vs. Fidas_OLS

0.1–75.3

0.90 ± 0.02
1.14 ± 0.02
1.11 ± 0.02
1.16 ± 0.02

0.96
0.96
0.97
0.97

−1.2 (−10.5 to 8.1)
1.6 (−7.5 to 10.8)
−0.25 (−8.3 to 7.8)

0.3 (−8.5 to 9.1)

4.87
4.93
4.12
4.48

36.6
47.2
33.3
38.0

Alexandra 10–23 April 2019 SMOG vs. E-sampler_CF
SMOG vs. Fidas_CF 0.0–57.3 0.97 ± 0.03

1.22 ± 0.02
0.88
0.97

0.7 (−7.2 to 8.7)
1.3 (−4.2 to 6.8)

4.10
3.10

46.8
37.8

Alexandra 12 May–13 June
2019

SMOG vs. E-sampler_CF
SMOG vs. E-sampler_OLS

SMOG vs. Fidas_CF
SMOG vs. Fidas_OLS

0.0–125

1.36 ± 0.01
0.89 ± 0.01
1.59 ± 0.01
1.41 ± 0.01

0.93
0.94
0.99
0.99

5.89 (−10.5 to 22.3)
−0.26 (−15.6 to 15.0)

5.9 (−11.5 to 23.4)
4.5 (−9.9 to 19.0)

10.2
7.81
10.7
8.66

89.4
44.4
94.1
67.6

Bold is used to easily identify where sensor performance was good.

Although Holder et al. [26] and Delp & Singer [29] reported variations in linear
regression parameters between smoke impacted data sets, they applied a combined smoke
adjustment factor which reduced the MAE and NRMSE for all data sets and resulted in
minimal error (<20%). The data captured smoke plume events due to wildfires with likely
similar particle properties.

Several research studies have shown that a combined calibration curve is suitable [26,28,29]
while other studies argue for a seasonal or condition-specific calibration [20,42,69].

While we were able to investigate the effects of temperature and RH on the sensor
performance other factors were not evaluated. One limitation of the study that could
explain why the sensors responded differently between seasons is likely due to particle
characteristics (e.g., composition and/or particle size). Mehadi et al. [33] showed an effect
of EC fraction on PA sensor response, with a lower PA to reference ratio with increasing
EC content. Kuula et al. [69] reported a stronger response of the PMS5003 sensor with
an increased BC to PM ratio and also highlighted that accuracy of the PMS5003 sensor
benefited from a residential wood smoke specific adjustment factor. As even small changes
in EC/OC ratios can affect PM optical properties, the different chemical composition of
residential wood smoke to smoke plumes from bushfires in summer and planned burns
in autumn may be a contributing factor to the observed differences in the response of the
optical instruments. The calibration curve developed in this study was determined from
smoke plumes of peat fires which are likely to have a higher organic carbon content. The
higher scattering efficiency of organic carbon compared to the high absorption efficiency
of elemental carbon may explain the higher discrepancies between SMOG units and
gravimetrically corrected reference instruments for the winter period at both Aspendale
and Alexandra.

A larger scatter in the data was observed when comparing the SMOG data against
the E-sampler data. This may be due to the different scattering angle between the E-
sampler and Plantower sensor which affects the size range within which the oscillations
are more pronounced [70] and/or the use of a cyclone for PM size separation vs. optical
size separation. Zamora et al. [27] have shown that the sensors performed poorly when
measuring particles in the size range of 2.5–5 µm while Kuula et al. [69] has shown better
agreement for PM1 than for PM2.5 for wood smoke particles.

Like other educational programs using low-cost sensor technology [71], the SMOG
units have proven to be a useful educational tool to teach students about particle sources
and their impact on air quality. Approximately 85 Grade 5 and 6 students took part in the
study with 41 SMOG units being built and deployed. The feedback from the pilot study
was very positive among the students, teacher, and principal. Building the SMOG unit
was the favourite activity. The students also liked that their collected data contributed to a
larger scale project to further our understanding on biomass burning impacts in regional
areas of Victoria.



Sensors 2021, 21, 7206 17 of 20

4. Conclusions

We were able to conduct a number of field-based monitoring campaigns where the
SMOG units were tested over a wide range of environmental conditions (e.g., temperature
and RH range) and PM2.5 concentration ranges. This provided us with important data on
the performance of the units under different meteorological conditions and in different
locations with different biomass smoke sources.

Based on the sensor performance when testing a number of units simultaneously
we are confident that the SMOG units can be used to increase spatial coverage of PM2.5
monitoring, as precision between SMOG units when regularly maintained was very high.

The field-based measurements suggest that the Plantower PMS3003 dust sensor can
provide relevant information about ambient PM2.5 concentrations in an airshed impacted
predominantly by biomass burning, provided that an adequate adjustment factor is applied.
This study suggests that a uniform adjustment factor applied to sensor data may not be
appropriate across all PM sources and that a residential wood smoke adjustment factor
may need to be applied to increase the accuracy of the sensor.

The study also highlighted that sensor accuracy and precision may vary depending
on reference instruments used for comparison purposes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21217206/s1. Table S1. Deployment details of field-based measurements; Table S2. Data
analysis parameters and equations; Table S3. Summary statistics of hourly PM2.5 concentrations
measured during the rooftop tests at CSIRO Aspendale in 2018; Table S4 Summary statistics of hourly
PM2.5 concentrations measured in Northeast Victoria in 2018; Table S5. Summary statistics of hourly
PM2.5 concentrations measured in Northeast Victoria in 2018/2019; Figure S1. Location of the field-
based measurement sites Figure S2. Set-up for intercomparison between SMOG units and E-samplers
fitted with a PM2.5 size selective inlet; Figure S3. Boxplots for PM2.5 hourly concentrations at (a)
Aspendale Autumn, (b) Aspendale winter, (c) Rutherglen (Victoria) and (d) Alexandra (Victoria).
Whiskers denote the 10th and 90th percentiles; Figure S4. Bland-Altman plot of the agreement
between PM2.5 concentrations measured by two SMOG units during autumn at Aspendale; Figure S5.
Scatter plot and Bland-Altman plots of the agreement between PM2.5 concentrations measured by
two SMOG units in Northeast Victoria; Figure S6. Linear regression analysis of optical measurements
vs. gravimetric mass measurements; Figure S7. High particle event in winter at Aspendale; Figure S8.
High particle event in autumn at Rutherglen; Figure S9. High particle event in summer at Alexandra;
Figure S10. High particle event in autumn at Alexandra; Figure S11. High particle event in winter at
Alexandra.
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