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ABSTRACT 

Advancing age is accompanied by a reduction in bone formation and remodeling 

imbalance, which produces microstructural deterioration. This may be partly due to 

diversion of mesenchymal cells towards adipocytes rather than osteoblast lineage 

cells. We hypothesized that microstructural deterioration will be associated with an 

increased marrow adiposity, and each of these traits will be independently associated 

with nonvertebral fractures and improve discrimination of women with fractures from 

controls over that achieved by femoral neck (FN) areal bone mineral density (aBMD) 

alone. The marrow adiposity and bone microstructure were quantified from high-

resolution peripheral quantitative computed tomography (HR-pQCT) images of the 

distal tibia and distal radius in 77 women aged 40-70 years with a recent nonvertebral 

fracture and 226 controls in Melbourne, Australia. Marrow fat measurement from HR-
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pQCT images was validated using direct histologic measurement as gold standard, at 

the distal radius of 15 sheep, with an agreement (R2 = 0.86, p < 0.0001). Each standard 

deviation (SD) higher distal tibia marrow adiposity was associated with 0.33 SD 

higher cortical porosity, 0.60 SD fewer, 0.24 SD thinner and 0.72 SD more separated 

trabeculae (all p < 0.05). Adjusted for age and FN aBMD, odds ratios (95% 

confidence interval) for fracture per SD higher marrow adiposity and cortical porosity 

were 3.39 (2.14-5.38) and 1.79 (1.14-2.80), respectively. Discrimination of women 

with fracture from controls improved when cortical porosity was added to FN aBMD 

and age (AUC 0.778 vs. 0.751, p = 0.006) or marrow adiposity was added to FN 

aBMD and age (AUC 0.825 vs. 0.751, p = 0.002). The model including FN aBMD, 

age, cortical porosity, trabecular thickness and marrow adiposity had an AUC = 0.888. 

Results were similar for the distal radius. Whether marrow adiposity and cortical 

porosity indices improve identification of women at risk for fractures requires 

validation in prospective studies. 

Key Words Cortical porosity, HR-pQCT, marrow adiposity, nonvertebral fracture, 

women 

Introduction 

Ageing is associated with development of abnormalities in bone remodeling.(1) Around 

midlife in women, remodeling becomes unbalanced and rapid. Less bone is deposited 

than resorbed by each remodeling event resulting in microstructural deterioration. 

Porosity increases, cortices thin and become fragmented, trabeculae thin, perforate and 

may eventually disappear.(2-5) Unbalanced remodeling upon the endocortical surface 

erodes the cortex and increases the medullary compartment volume, which in turn 

becomes occupied by fat cells, non-fat cells and extracellular water. 
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The mechanisms responsible for the reduction in the volume of bone deposited 

by each remodeling event are unclear. However, osteoblasts and adipocytes share 

common precursor cells in the bone marrow, and decreased bone formation may be 

partly the result of enhanced adipogenesis in favour of osteoblastogenesis.(6-10) 

There is an age-related increase in marrow adiposity and a reciprocal reduction 

in trabecular bone volume.(11-14) We propose that the proportions of this non-mineral 

compartment can be distinguished because fat cells attenuate photons less than the 

attenuation produced by water and non-fat cells.(15,16) Accordingly, we validated a 

method for identifying marrow adipose tissue from high-resolution peripheral 

quantitative computed tomography (HR-pQCT) images and we estimated a marrow 

adiposity index. 

Combining microstructural deterioration with areal bone mineral density 

(aBMD) and the Fracture Risk Assessment Tool (FRAX) leaves more than half of the 

women with fractures unidentified.(17) We hypothesized that a higher marrow 

adiposity index, will be associated with microstructural deterioration and contribute to 

fracture risk independently of cortical porosity, and each will improve discrimination 

of women with fractures from controls when added to femoral neck aBMD. 

Materials and Methods 

Validation of marrow fat assessment using HR-pQCT with histology as gold 

standard 

It has been shown using histologic assessment as gold standard, that Dual Energy 

Computed Tomography (DECT) can be used to accurately measure marrow fat.(18) We 

determined whether marrow fat could be accurately measured from images acquired 
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using HR-pQCT and analyzed using StrAx software, with co-registered histologic 

examinations as gold standard. Twenty fresh sheep radii specimens were collected 

and stored at -20 degrees Celsius. Sheep are commonly used as animal model for 

research in bone diseases, because their bone architecture is similar to that of 

humans.(19) Specimens were sectioned at a 1.5 cm location proximal to the sheep wrist 

joint. The proximal part was sealed to avoid any loss of fat or bone tissue and scanned 

using HR-pQCT. After HR-pQCT imaging, proximal parts were cut and a 1 cm thick 

sections was kept. These sections were decalcified. The sections were cut into left and 

right halves to fit the field of view of the microscope for histological imaging. Each 

half was embedded in paraffin wax and stained with hematoxylin and eosin (H&E). 

The scanning protocol ensured that the first HR-pQCT slice corresponded to the 

histological section in which marrow fat was measured. The process of co-registration 

of histologic cross-sections with HR-pQCT imaging; and an example of adipose 

tissue seen after H&E staining is shown in Fig. 1. 

HR-pQCT imaging and marrow fat measurement 

A 110 HR-pQCT slices were obtained from the distal end of sheep radii and scanned 

moving proximally as per manufacturer protocol used to collect HR-pQCT images in 

vivo with an Xtreme CT II (Scanco Medical AG, Brüttisellen, Switzerland) but using 

XtremeCT I equivalent protocol. Images were analysed using StrAx software. The 

proportion of fat voxels within the marrow cavity – i.e. adipose volume (AV) to total 

marrow volume (TV) was outputted. 

Histological imaging and marrow fat measurement 

A full digital image of each half cross-section was captured using Olympus VS120 

microscope (Olympus Corporation manufacturer, Tokyo. Japan) with a color camera 
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at X 20 magnification. The images were analyzed using ImageJ.(20) In brief, the scale 

was calibrated to 512 pixels/mm and the images were converted to an 8-bit gray scale. 

The trabecular compartment in each cross-sectional half was segmented. Areas in the 

marrow cavity occupied by adipocyte tissue were identified as void spaces remaining 

from the H&E staining. Areas with artifacts were avoided during the quantification 

process. AV/TV was calculated for each half. After excluding 5 of the 20 samples 

with artifacts such as folding during preparation, the analysis was restricted to the 

remaining 15 samples. 

Subjects 

We recruited 84 women above 40 years of age within 14 days of having had a 

nonvertebral fracture, to minimize the likelihood that changes in cortical porosity or 

medullary composition was following the fracture (Fig. 2). These women presented to 

the Emergency Department at Austin Health, Melbourne, Australia. The 84 fracture 

cases had fracture at the distal forearm (n = 52), upper arm (n = 5), elbow (n = 5), 

hand (n = 2), rib (n = 1), hip (n = 3), lower leg (n = 6), ankle (n = 9), and toe (n = 1). 

After excluding 5 women receiving hormone replacement therapy (HRT), and 2 and 

10 women with movement artifact during image acquisition of distal tibia and distal 

radius, 77 and 69 women with fracture remained with valid measurements of distal 

tibia and distal radius, respectively. 

We compared the measurements with those of healthy twins from the Twins 

Research Australia (n = 653).(3,21,22) Among these controls, we excluded 30 women 

taking HRT, 108 women below 40 years of age and 170 women with a prior fracture, 

11 and 37 women with movement artifacts of distal tibia and distal radius, leaving 334 

and 308 controls with valid measurements of distal tibia and distal radius, 
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respectively. Of the 334 controls with valid measurements of distal tibia, 118 were 

singletons and 216 were twins. We randomly selected one twin from each pair (n = 

108), and 118 + 108 = 226 singletons were left included as controls in the analysis of 

distal tibia measurements. Of the 308 controls with valid measurements of distal 

radius, 120 were singletons and 188 were twins. We randomly selected one twin for 

each pair (n = 94), and 120 + 94 = 214 singletons were left included as controls in the 

analysis of distal radius measurements. 

The participants answered a questionnaire including information on their prior 

fracture, diseases, use of medication, menstruation, menopause and lifestyle, including 

weekly hours they participated in light (walking, lawn bowls, light gardening), 

moderate (social tennis, golf, hiking) or vigorous physical activity (competitive active 

sports). A physical activity index was made by adding hours of light, moderate and 

vigorous activity, giving the hours with moderate and vigorous physical activity 

double and triple weight: index = light + 2moderate + 3vigorous. Women were 

classified as postmenopausal (amenorrhea for more than 1 year), perimenopausal (no 

cycles for 3-12 months) and premenopausal (a regular cycle in the last 3 months). All 

women gave written informed consent. The Austin Health Human Research Ethics 

Committee approved the study. 

Measurements 

Height and weight were measured while wearing light clothing and no shoes. HR-

pQCT (XtremeCT, Scanco Medical AG, Brüttisellen, Switzerland, isotropic resolution 

of 82 µm) was used to obtain images at the nondominant distal tibia and distal 

radius.(23) In those with fracture at the nondominant side, the opposite side was 

scanned. The 110 CT slices were obtained at a standardized distance of 22.5 and 9.5 
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mm from a reference line that was manually placed at the endplate of the distal tibia 

and distal radius, respectively. The 49 most proximal slices in 110 slices of region of 

interest were chosen because the thicker cortex allows accurate assessment of cortical 

porosity.(21,22,24) 

Cortical and trabecular morphology and a marrow adiposity index, a surrogate 

marrow fat, were quantified using StrAx software (StraxCorp, Melbourne, Australia), 

a non-threshold based method that selects attenuation profile curves and segments the 

bone into the compact-appearing cortex, outer (OTZ) and inner transitional zones 

(ITZ), and trabecular compartment.(25) Local bone edges were identified as the 

beginning and the end of the rising and falling S-shaped portions of the profile curve 

enabling the delineation of the compartments. The density profile curve produced had 

two plateaus; one corresponding to the compact-appearing cortex and one 

corresponding to the trabecular compartment. Between these plateaus was a 

descending S-shaped curve or transition between the two plateaus. This was the 

transitional zone.(25) The porosity quantified by the StrAx algorithm is the proportion 

of void within each voxel. This method confine cortical porosity and cortical 

fragments to the transitional zone, and not to the medullary canal yielding a higher 

cortical porosity than reported using threshold based methods.(25,26) The precision of 

the measurements had coefficients of variation (CV) < 4%.(25) Trabecular number, 

thickness, separation, trabecular bone volume per tissue volume (BV/TV) and 

volumetric BMD (vBMD) were also quantified using the StrAx software. 

The medullary canal contains fat cells, mineralized matrix, non-fat cells and 

water. Voxels containing fat cells can be identified because their photons attenuation 

is below that of water. Thus, in HR-pQCT images, adipose volume (AV) was defined 
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as the total volume of the marrow cavity (TV) occupied by voxels with attenuation 

below that of water. We expressed the fat proportion (FP) = 100 * AV/TV (%). As 

age-related endocortical resorption increases the medullary cavity, this reduces the fat 

proportion but not the nonmineral apparent density produced by the fat cells, non-fat 

cells and water. We calculated a relative medullary density (RMD) as a percentage of 

fully mineralized bone matrix (1200 mg HA/cm³). As the RMD decreases as fat cells 

increase, we subtracted this value from 100 for ease of comprehension, and RMD 

(%) = 100 − [100 ∗  
Mean Medullary Density1200 ] (Fig. 3). The Marrow Adiposity Index 

(MAI) is a function of the fat proportion and the relative medullary density, MAI =

FP∗RMD100 . As we did not measure the absolute content of fat cells in the medullary 

cavity, we refer to a medullary adiposity index as an indicator of the presence of fat 

cells. 

Femoral neck (FN) aBMD was assessed using dual-energy x-ray 

absorptiometry (DXA, Lunar Prodigy, Lunar Corporation, Madison, WI, USA) at the 

left femur, and CV was 2.6%. The women were categorized into those with normal FN 

aBMD (T score > -1.0), osteopenia (T-score between -2.5 and -1.0) and osteoporosis 

(T-score < -2.5) using the World Health Organization (WHO) classification.(27) 

Statistical analyses 

To validate StrAx software quantification of marrow fat in sheep radii, linear 

regression was used to determine the R2 between the gold-standard and StrAx 

measurements. The Root Mean Square Error (RMSE) between StrAx measurement 

and the gold standard was quantified. Bland-Altman Plot was used to assess the 

difference between the two measurement methods. 
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In women, summary statistics are presented as mean and standard deviation 

(SD). We compared distal tibia and distal radius parameters in cases and controls, 

taking into account the menopausal status, physical activity and age, using a semi-

parametric regression model. We used fracture status, menopausal status, and physical 

activity as parametric variables and age as a non-parametric variable, because age had 

a non-linear relationship with bone parameters, with almost no change from 40 until 

about 47 years of age. Menopausal status alone was associated with bone parameters 

before but not after adjustment for age. The semi-parametric regression models were 

also used to assess the associations of cortical and trabecular morphology as a function 

of the marrow adiposity index, adjusted for height, weight, physical activity and 

fracture status (when significant) as parametric variables, and age as a non-parametric 

variable. Coefficients and standard errors (SE) with three decimals, exact p-values and 

R-square are presented together to illustrate which of the variables are most strongly 

associated. 

Odds ratio (OR) for fracture per 1 SD change in cortical porosity, marrow 

adiposity index and other cortical and trabecular bone morphology were calculated in 

logistic regression analyses adjusted for age (quadratic model) and FN aBMD. Distal 

tibia and distal radius variables were standardised to have mean = 0 and SD = 1 in the 

linear and logistic regression analysis. In final multivariable models, we combined 

cortical porosity and marrow adiposity index in the same models, adjusted for age, FN 

aBMD and covariates that were the best subsets of variables.(28) We calculated area 

under the receiver operating characteristic curve (AUC) using logistic regression 

analysis to determine whether discrimination of women with fractures from controls 

was improved when adding microstructure and marrow adiposity index to the 

reference model 1 (age, age² and FN aBMD), and the reference model 2 (age, age², 
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FN aBMD and marrow adiposity index). The final models were also adjusted for 

significant covariates. Chi-square p-value was used to compare the AUC after 

additional adjustment for covariates. Analyses were performed using STATA 

Software package, v14 (StataCorp, LP, Texas, USA) and SAS software package, v9.4 

(SAS Institute Inc., Cary, NC, USA). All tests were two-sided and p < 0.05 

considered significant. 

Results 

Accuracy of the marrow fat measurement in sheep radii 

AV/TV measured from HR-pQCT images using StrAx predicted the gold standard 

histological measurement of marrow with an R² of 0.86 (p < 0.001) and a RMSE of 

0.96% (Fig. 4). Bland-Altman Plot showed that HR-pQCT overestimated AV/TV by 

on average 2.67 ± 1.00 % (p <0.001). 

Marrow adiposity index is associated with microstructure 

Fracture cases had higher distal tibial marrow adiposity index, higher porosity, lower 

trabecular BV/TV and FN aBMD than controls, adjusted for menopausal status, 

physical activity and age (all p < 0.01, Table 1). Each SD higher medullary adiposity 

index was associated with 0.14, 0.17 and 0.80 SD higher porosity of the compact 

appearing cortex, outer and inner transitional zones, 0.16 SD thinner cortices, 0.60 SD 

lower trabecular number, 0.24 SD thinner and 0.72 SD more separated trabeculae (all 

p ≤ 0.01, Table 2). Marrow adiposity index explained 5 to 66% of the variance in 

cortical and 10 to 86% of the variance in trabecular parameters. All results were 

adjusted for age, fracture status, physical activity, height and weight. Results were 

similar for distal radius as shown in Table 1 and Table 2. 
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Marrow adiposity index and cortical porosity improved discrimination of 

fractures 

Each SD increment in marrow adiposity index of distal tibia was associated with 

fractures adjusted for age, FN aBMD and cortical porosity (OR 3.39, 95% confidence 

interval (CI) 2.14-5.38, Table 3). Each SD higher cortical porosity was associated with 

fractures adjusted for age, FN aBMD and marrow adiposity index (OR 1.79, 95% CI 

1.14-2.80). There were no interactions between marrow adiposity index, FN aBMD or 

cortical porosity. Discrimination of women with fractures from controls was improved 

when distal tibia cortical porosity was added to FN aBMD and age (AUC 0.778 vs. 

0.751, p = 0.006) or marrow adiposity index was added to FN aBMD and age (AUC 

0.825 vs. 0.751, p = 0.002) (Table 4). The model including distal tibia cortical 

porosity, trabecular thickness, marrow adiposity index, FN aBMD, age and weight had 

an AUC = 0.888. Results were similar for distal radius as shown in Table 3 and Table 

4. 

Discussion 

We report that marrow fat can be accurately measured from the analysis of HR-pQCT 

images acquired in vivo in clinical and research settings. We further extended these 

findings by showing that marrow fat so measured can be used to produce a marrow 

adiposity index that improves the identification of women with nonvertebral fractures 

and does so independently of other metrics such as cortical porosity and FN aBMD. 

Historically, clinical assessment of marrow adiposity required a bone biopsy. 

Recently, with advancing in imaging techniques, there is increasing evidence that the 

role of marrow adiposity on skeletal health can be studied directly and non-invasively. 
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Until lately, non-invasive assessment of marrow fat has been limited to Magnetic 

Resonance Imaging (MRI). However, MRI is not readily available for the purpose of 

quantifying marrow fat, and is costly. Thus, the need to develop more readily 

available, inexpensive and rapid approaches to quantify bone marrow fat in in vivo 

settings. It is reported that marrow fat measured from histological images processed 

after H&E staining agreed with marrow fat quantified using in vivo imaging 

modalities-i.e., DECT and MRI.(25) There are also studies showing that single energy 

high resolution-QCT can be used to measured marrow fat.(29) In this study, we 

complemented these findings, by showing that marrow fat measured from HR-pQCT 

images showed an excellent correlation with marrow fat measured from histological 

images after H&E staining. 

Most fragility fractures occur in women with osteopenia or normal aBMD, not 

women with osteoporosis.(30) High vertebral marrow adiposity is associated with 

vertebral fracture independent of aBMD,(13,31) Vertebral marrow adiposity is 10% and 

5% higher in patients with osteoporosis and osteopenia without fracture, respectively, 

compared to age-matched healthy controls,(15,31-34) suggesting an association between 

marrow adiposity and aBMD.(15) We found that the distal tibia marrow adiposity 

index, together with cortical porosity and trabecular thickness best discriminated 

women with fracture from controls, and did so independent of FN aBMD and age. 

Another study reported that a combination of cortical and trabecular microstructure 

improved fracture prediction.(35) 

Marrow adiposity was associated with porosity of each cortical compartments, 

particularly of the inner transitional zone adjacent to the medullary cavity. However, 

the association between marrow adiposity index and the porosity of the compact 
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cortex, located more distant from the marrow cavity, is likely to be more important in 

compromising bending strength.(36) Marrow adiposity index was also associated with 

fewer, thinner more separated trabeculae, lower trabecular BV/TV and vBMD. 

Nevertheless, marrow adiposity index was associated with fracture prevalence 

independently of cortical and trabecular microstructure. We also took into account 

height, weight, physical activity and the menopausal status in the analysis of this 

current study, however, when the effect of age was taken into account, the menopausal 

status made no additional contribution to the association between bone and fat traits. 

The reasons for the association of marrow adiposity index with deteriorated 

microstructure and the improved discrimination of fractures independently of bone 

microstructure are unclear. There may be a shift from osteogenesis to adipogenesis, 

remodeling imbalance, leading to reduced bone strength, and thus increase in fracture 

risk.(10,37) 

Low estrogen levels after menopause may contribute to increased 

adipogenesis, as estrogen treatment of osteoporotic postmenopausal women prevented 

increase in marrow adiposity compared with controls treated with placebo.(10,38) In the 

only study that we are aware of using pQCT for quantification of marrow cavity fat, 

loading was associated with lower marrow fat, which in turn was associated with 

greater bone strength, larger midtibial cortical area, not cortical vBMD.(39) In a study 

using MRI, runners had lower lumbar vertebral marrow fat fraction than non-sporting 

controls, suggesting that exercise may reduce the age-related increase in marrow 

adiposity.(40) 

This study has several limitations. As it was cross-sectional, we could not 

assess causation between marrow adiposity, microstructure and fracture. From HR-
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pQCT images, we assessed voxels within the marrow cavity not occupied by bone. 

The other components of those voxels are fat cells, non-fat content such as other cells 

and water. As we did not measure the absolute content of fat cells in the marrow 

cavity, we refer to a marrow adiposity index, an indicator of the presence of fat cells. 

Nevertheless, marrow fat measured from HR-pQCT images and directly from 

histological images showed agreement. As compared to histologic measurements, HR-

pQCT overestimated marrow fat with a bias by on average 2.67%. This bias can be 

explained by a partial volume effect resulting from voxels containing marrow fat and 

mineralized bone matrix at the edge between trabeculae and marrow fat are classified 

as fat voxels in HR-pQCT images. Increased marrow adiposity can result in 

considerable measurement errors in aBMD,(41,42) and may have confounded the 

associations observed in the current study to some unknown extent. 

In summary, marrow fat can be accurately measured from HR-pQCT images 

and used in vivo to provide a marrow adiposity index. A higher marrow adiposity 

index was associated with microstructural deterioration and the presence of 

nonvertebral fractures independent of this microstructural deterioration and femoral 

neck aBMD. Discrimination of fracture cases from controls may be improved when 

marrow adiposity and cortical porosity are combined with femoral neck aBMD. 

Prospective studies are needed to validate these observations. 
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Figures 

Fig. 1. Co-registration between histologic examination versus HR-pQCT imaging; 

and marrow fat after Hematoxylin and Eosin (H&E) staining. 

Panel A. Scout view of a sheep radius and an example of region of interest (ROI) 
placement. The first slice of the HR-pQCT image corresponds to the histological 
cross section. Panel B. Half of the cross-section after decalcification and H&E 
staining. The compact-cortex and the marrow cavity are visible. A distinct adjacent 
ulna (smaller bone) is also visible. Panel C. A magnified view of an area within the 
marrow cavity shows adipose tissue cells, which appear as empty spaces. This is due 
to the extraction of fat during processing. Panel D. A further magnification of the 
same area shows adipose tissue more clearly. A cross-section of a trabecula with 
osteocytes lacunae are also discernible. 
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Fig. 2. Participants in the case-control study in 2008-2012. 

 

Fig. 3. HR-pQCT image of a human distal radius showing voxels in the marrow 

cavity that are color-coded in a scale ranging from red to yellow depending on their 

attenuation relative to water. The larger the proportion of yellow bone marrow (fat 

cells) than red bone marrow (hematopoietic cells), the lower is the density. 
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Fig. 4. Left panel Correlation of adipose volume (AV) to total marrow volume (TV) 

(expressed as a percentage) as measured using HR-pQCT versus histology (gold 

standard). Right panel shows the corresponding Bland-Altman Plot. 

 

Table 1. Characteristics of women by fracture status 

 Cases Controls  

 n = 77 n = 226 p 

Age (years) 54.3 ± 6.4 51.0 ± 8.7  0.002 

Height (cm) 162.7 ± 6.5 162.9 ± 6.4  0.818 

Weight (kg) 72.3 ± 14.2 70.8 ± 15.5  0.432 

Light physical activity (hours/week) 5.0 ± 4.5 4.9 ± 3.5  0.863 

Moderate physical activity (hours/week) 1.5 ± 3.3 1.1 ± 2.0  0.091 

Vigorous physical activity (hours/week) 0.8 ± 2.2 0.8 ± 1.6  0.109 

Physical activity index  10.1 ± 11.1 9.5 ± 7.4  0.551 

Premenopausal women, n (%) 11 (14.3) 156 (57.5) < 0.001 

Perimenopausal women, n (%) 10 (13.0) 21 (9.3)  0.355 

Postmenopausal women, n (%) 56 (72.7) 75 (33.3) < 0.001 

Femoral neck (FN) aBMD (mg/cm2) 0.89 ± 0.12 0.98 ± 0.15 < 0.001 
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FN normal aBMD, n (%) 44 (57.9) 175 (78.5) < 0.001 

FN osteopenia, n (%) 31 (40.8) 44 (19.7) < 0.001 

FN osteoporosis, n (%) 1 (1.3) 4 (1.8)  0.780 

    

Distal Tibia n = 77 n = 226  

Total cortical porosity (%) 64.5 ± 5.8  60.0 ± 6.2 7.7 x 10-7 

Compact cortex porosity (%) 46.7 ± 7.4  42.1 ± 7.2  0.0001 

Outer transitional zone porosity (%) 47.5 ± 6.6  43.1 ± 6.2 1.4 x 10-6 

Inner transitional zone porosity (%) 87.1 ± 3.2  84.7 ± 3.2 9.7 x 10-6 

Cortical thickness (mm)  2.36 ± 0.31  2.34 ± 0.24  0.157 

Trabecular number (1/mm)  2.15 ± 0.51 2.76 ± 0.66  3.3 x 10-11 

Trabecular thickness (mm)  0.20 ± 0.01 0.19 ± 0.01 1.1 x 10-5 

Trabecular separation (mm)  1.58 ± 0.31 1.32 ± 0.29 3.2 x 10-8 

Trabecular bone volume/tissue volume (%)  2.93 ± 1.46 4.13 ± 1.73 2.2 x 10-6 

Trabecular volumetric BMD (mg HA/cm³)  111 ± 40.5  131 ± 41.1 0.003 

Marrow adiposity index 43.5 ± 3.2  39.9 ± 3.9  5.5 x 10-12 

    

Distal Radius n = 69 n = 214  

Total cortical porosity (%) 57.8 ± 5.3  53.7 ± 6.1 1.7 x 10-6 

Compact cortex porosity (%) 40.4 ± 5.3  36.5 ± 5.6 1.2 x 10-6 

Outer transitional zone porosity (%) 43.6 ± 4.9  40.0 ± 4.9 3.7 x 10-8 

Inner transitional zone porosity (%) 86.9 ± 2.7  84.5 ± 2.9 3.1 x 10-6 

Cortical thickness (mm)  1.82 ± 0.19  1.81 ± 0.20  0.870 

Trabecular number (1/mm)  1.88 ± 0.55 2.34 ± 0.51 3.0 x 10-8 

Trabecular thickness (mm)  0.20 ± 0.01 0.19 ± 0.01  3.2 x 10-5 

Trabecular separation (mm)  1.65 ± 0.36 1.36 ± 0.30 6.2 x 10-7 

Trabecular bone volume/tissue volume (%)  1.84 ± 1.14 3.04 ± 1.57 3.6 x 10-6 
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Trabecular volumetric BMD (mg HA/cm³)  98.3 ± 41.5 122 ± 43.0 0.009 

Marrow adiposity index 48.3 ± 3.4  44.0 ± 4.3  2.4 x 10-11 

Numbers are mean ± standard deviation, or number (%). aBMD = areal bone 
mineral density. 

Cases and controls were compared using semi-parametric regression, adjusted 
for menopausal status and physical activity as parametric components and age as 
a non-parametric component.  

Table 2. Association of a 1 SD increment in marrow adiposity index 
(predictor) with each cortical and trabecular trait of distal tibia and distal 
radius (outcomes) 
 Distal tibia   Distal radius  

Outcome variables 
Coeff
icient 

S
E p 

R
² 

 Coeff
icient 

S
E p 

R² 

Total cortical porosity (%) 
 

0.334 

0.
04
2 

2.9 x 
10-14 

0.
3
2  

 
0.340 

0.
05
0 

9.
6 
x 
10
-11 

0.
29 

Compact cortex porosity (%) 
 

0.136 

0.
04
3 

0.00
2 

0.
2
0  

 
0.168 

0.
05
0 

0.
00
1 

0.
19 

Outer transitional zone porosity 
(%) 

 
0.170 

0.
04
2 

6.8 x 
10-5 

0.
1
9  

 
0.205 

0.
04
5 

8.
0 
x 
10
-6 

0.
20 

Inner transitional zone porosity 
(%) 

 
0.797 

0.
03
5 

8.1 x 
10-68 

0.
6
6  

 
0.772 

0.
03
4 

7.
8 
x 
10
-65 

0.
64 

Cortical thickness (mm) 
-

0.161 

0.
06
4 

0.01
2 

0.
0
5  

-
0.058 

0.
06
1 

0.
34
8 

0.
00
3 

Trabecular number (1/mm) - linear 
-

0.601 

0.
04
1 

9.7 x 
10-38 

0.
5
9  

-
0.700 

0.
04
0 

6.
5 
x 
10
-47 

0.
53 
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Trabecular thickness (mm)  

-
0.244 

0.
06
2 

9.4 x 
10-5 

0.
1
0  

-
0.284 

0.
05
8 

1.
6 
x 
10
-6 

0.
13 

Trabecular separation (mm) - 
linear  

 
0.723 

0.
03
9 

3.9 x 
10-51 

0.
6
4  

 
0.782 

0.
03
5 

2.
2 
x 
10
-64 

0.
64 

Trabecular BV/TV (%) - linear 
-

3.023 

0.
31
0 

1.2 x 
10-19 

0.
8
6  

-
3.395 

0.
29
1 

6.
1 
x 
10
-26 

0.
89 

 - quadratic 
 

2.084 

0.
31
2 

1.2 x 
10-10   

 
2.464 

0.
29
3 

2.
1 
x 
10
-15  

Trabecular vBMD (mg HA/cm³) - 
linear 

-
2.542 

0.
52
1 

1.7 x 
10-6 

0.
6
1  

-
2.886 

0.
52
1 

7.
0 
x 
10
-8 

0.
64 

- qua
dra
tic  

1.770 

0.
52
2 

0.00
1   

 
2.084 

0.
52
5 

9.
2 
x 
10
-5  

 

Coefficient = standardised regression coefficient; SE = standard error; 
R

2 = Adjusted coefficient of determination (R-square). Semi-parametric 
regression model was fitted to the data, adjusted for height, weight, 
physical activity and fracture status whenever significant as parametric 
components and age as non-parametric component.  
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Table 3. Fracture risk by 1 standard deviation (SD) increment in cortical and 
trabecular bone morphology of distal tibia and distal radius 

 Odds Ratio (95% CI) p 

Unadjusted analysis   

Age (years) - linear 3.03 (1.88-4.87) 7.1 x 10-6 

 - quadratic  0.99 (0.986-0.995) 1.7 x 10-5 

Height (cm) 1.00 (0.96-1.04) 0.830 

Weight (kg) 1.01 (0.99-1.02) 0.427 

Physical activity (hours/week) 1.01 (0.98-1.04) 0.550 

Femoral neck (FN) aBMD (mg/cm2)  0.52 (0.38-0.70) 2.4 x 10-5 

   

Distal tibia     

Adjusted for age (quadratic) and FN aBMD   

Total cortical porosity (%) 2.31 (1.53-3.49) 8.7 x 10-5 

Compact cortex porosity (%) 1.90 (1.28-2.81) 0.002 

Outer transitional zone porosity (%) 2.22 (1.46-3.36) 2.1 x 10-4 

Inner transitional zone porosity (%) 2.05 (1.34-3.14) 0.001 

Cortical thickness (mm) 1.37 (1.03-1.83) 0.033 

Trabecular number (1/mm) 0.29 (0.19-0.46) 1.5 x 10-7 

Trabecular thickness (mm) 2.04 (1.50-2.77) 8.5 x 10-6 

Trabecular separation (mm) 2.35 (1.59-3.47) 2.3 x 10-5 

Trabecular bone volume/tissue volume (%) 0.41 (0.26-0.64) 1.4 x 10-4 

Trabecular volumetric BMD (mg HA/cm³) 0.76 (0.53-1.11) 0.158 

Marrow adiposity index 3.84 (2.44-6.04) 1.5 x 10-8 

Additional analysis adjusted for all covariates in multivariable models* 

Total cortical porosity (%) 2.62 (1.50-4.58) 0.001 

Cortical thickness (mm) 1.56 (1.08-2.28) 0.019 
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Trabecular thickness (mm) 2.30 (1.61-3.29) 9.7 x 10-6 

Marrow adiposity index 3.60 (2.20-5.90) 8.2 x 10-7 

   

Distal radius     

Adjusted for age (quadratic) and FN aBMD   

Total cortical porosity (%) 2.12 (1.48-3.05) 6.0 x 10-5  

Compact cortex porosity (%) 2.21 (1.52-3.21) 4.3 x 10-5  

Outer transitional zone porosity (%) 2.53 (1.67-3.84) 1.9 x 10-5  

Inner transitional zone porosity (%) 2.34 (1.54-3.55) 8.1 x 10-5  

Cortical thickness (mm) 1.11 (0.83-1.49) 0.476 

Trabecular number (1/mm) 0.37 (0.25-0.57) 6.1 x 10-6  

Trabecular thickness (mm) 1.95 (1.40-2.70) 9.0 x 10-5  

Trabecular separation (mm) 2.21 (1.51-3.23) 6.1 x 10-5  

Trabecular bone volume/tissue volume (%) 0.35 (0.22-0.57) 3.4 x 10-5  

Trabecular volumetric BMD (mg HA/cm³) 0.71 (0.49-1.03) 0.072 

Marrow adiposity index  4.35 (2.67-7.10) 1.1 x 10-8  

Additional analysis adjusted for all covariates in multivariable models* 

Total cortical porosity (%) 1.53 (0.99-2.37) 0.054  

Trabecular thickness (mm) 2.50 (1.71-3.65) 3.6 x 10-6  

Marrow adiposity index  4.25 (2.50-7.22) 1.9 x 10-7  

*The multivariable logistic regression models were adjusted for age, FN aBMD and 
all significant covariates. Distal tibia and distal radius variables were standardised to 
have mean = 0 and SD = 1. 
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Table 4. Area under the receiver operating characteristic curve (AUC) for the 
reference model and the incremental contribution of cortical and trabecular bone 
morphology of distal tibia and distal radius to prediction of fracture 

  AUC 95% CI 
Change in 

AUC  p 

Distal Tibia         

Reference model 1: age, age² and FN aBMD 0.751 0.69-0.81 

Total cortical porosity (%) 0.796 0.74-0.85 0.045 0.006* 

Compact cortex porosity (%) 0.778 0.72-0.84 0.028 0.039* 

Outer transitional zone porosity (%) 0.794 0.74-0.85 0.043 0.007* 

Inner transitional zone porosity (%) 0.776 0.71-0.84 0.025 0.119* 

Cortical thickness (mm) 0.758 0.70-0.82 0.007 0.556* 

Trabecular number (1/mm) 0.825 0.77-0.88 0.074 0.0002* 

Trabecular thickness (mm) 0.790 0.73-0.85 0.040 0.034* 

Trabecular separation (mm) 0.798 0.74-0.85 0.048 0.009* 

Trabecular bone volume/tissue volume (%) 0.787 0.73-0.85 0.037 0.060* 

Trabecular volumetric BMD (mg HA/cm³) 0.755 0.69-0.82 0.004 0.594* 

Marrow adiposity index (MAI) 0.825 0.77-0.88 0.075 0.002* 

Reference 2: age, age², FN aBMD and MAI   Ref 2  

Total cortical porosity (%) 0.843 0.79-0.89 0.017 0.049** 

Trabecular number (1/mm) 0.847 0.80-0.89 0.022 0.023** 

Trabecular thickness (mm) 0.870 0.83-0.91 0.044 0.007** 

     

Distal Radius         

Reference model 1: age, age² and FN aBMD 0.742 0.68-0.81 

Total cortical porosity (%) 0.788 0.73-0.85 0.047 0.013* 

Compact cortex porosity (%) 0.791 0.73-0.85 0.050 0.010* 

Outer transitional zone porosity (%) 0.796 0.73-0.86 0.054 0.007* 
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Inner transitional zone porosity (%) 0.775 0.71-0.84 0.034 0.116* 

Cortical thickness (mm) 0.742 0.68-0.81 0.001 0.889* 

Trabecular number (1/mm) 0.772 0.73-0.85 0.051 0.027* 

Trabecular thickness (mm) 0.775 0.71-0.84 0.034 0.119* 

Trabecular separation (mm) 0.778 0.72-0.84 0.037 0.079* 

Trabecular bone volume/tissue volume (%) 0.788 0.73-0.85 0.046 0.051* 

Trabecular volumetric BMD (mg HA/cm³) 0.745 0.68-0.81 0.003 0.764* 

Marrow adiposity index (MAI) 0.833 0.78-0.89 0.092 0.001* 

Reference 2: age, age², FN aBMD and MAI   Ref 2  

Total cortical porosity (%) 0.840 0.79-0.89 0.006 0.311** 

Trabecular number (1/mm) 0.835 0.78-0.89 0.001 0.797** 

Trabecular thickness (mm) 0.882 0.84-0.93 0.048 0.009** 

P-value for difference in AUC when compared to *reference model 1 and **reference 
model 2. 

FN aBMD = femoral neck areal bone mineral density. 

 




