
applied  
sciences

Article

Long-Range Dependence and Multifractality of Ship Flow
Sequences in Container Ports: A Comparison of Shanghai,
Singapore, and Rotterdam

Chan-Juan Liu 1,* , Jinran Wu 2,* , Harshanie Lakshika Jayetileke 3 and Zhi-Hua Hu 4

����������
�������

Citation: Liu, C.-J.; Wu, J.; Jayetileke,

H.L.; Hu, Z.-H. Long-Range

Dependence and Multifractality of

Ship Flow Sequences in Container

Ports: A Comparison of Shanghai,

Singapore, and Rotterdam. Appl. Sci.

2021, 11, 10378. https://doi.org/

10.3390/app112110378

Academic Editor: Giovanni Randazzo

Received: 28 September 2021

Accepted: 29 October 2021

Published: 5 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Business Administration and Customs Affairs, Shanghai Customs College, Shanghai 201204, China
2 School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
3 Department of Mathematics, Faculty of Science, University of Ruhuna, Matara 81000, Sri Lanka;

harshaniejayetileke@gmail.com
4 Logistics Research Center, Shanghai Maritime University, Shanghai 201306, China; zhhu@shmtu.edu.cn
* Correspondence: liuchanjuan@shcc.edu.cn (C.-J.L.); j73.wu@qut.edu.au (J.W.)

Abstract: The prediction of ship traffic flow is an important fundamental preparation for layout
and design of ports as well as management of ship navigation. However, until now, the temporal
characteristics and accurate prediction of ship flow sequence in port are rarely studied. Therefore, in
this study, we investigated the presence of long-range dependence in container ship flow sequences
using the Multifractal Detrended Fluctuation Analysis (MF-DFA). We considered three representative
container ports in the world—including Shanghai, Singapore, and Rotterdam container ports—as
the study sample, from 1 January 2013 to 31 December 2017. Empirical results suggested that the
ship flow sequences are deviated from normal distribution, and the sequences with different time
scales exhibited varying degrees of long-range dependence. Furthermore, the ship flow sequences
possessed a multifractal nature, where the larger the time scale of ship flow time series, the stronger
the multifractal characteristics are. The weekly ship flow sequence in the port of Singapore owned
the highest degree of multifractality. Furthermore, the multifractality presented in the ship flow
sequences of container ports are due to the correlation properties as well as the probability density
function of the ship flow sequences. The study outlines the importance of adopting these features for
an accurate modeling and prediction for maritime ship flow series.

Keywords: container ship traffic flow; volatility; generalized Hurst exponents; long-range depen-
dence; multifractality

1. Introduction

The analysis of the time series characteristics of port ship flow sequences and the
accurate prediction of port ship flow can provide references for the port layout design
and the management of ship navigation. Port congestion has been recognized as a serious
problem in all large ports in the world, which has a significant effect on the shipping date,
the transportation cost, economic loss of the owner of the goods, and even the development
of ports [1,2]. Nevertheless, understanding the arrival laws and accurate prediction of
the port ship traffic flow are two keys to solve this problem. Therefore, this paper aims
to study the arrival laws of ship traffic flow in container ports based on the long-range
correlation and multifractality, and then, to provide a reference and theoretical basis for
effective modeling and prediction of port ship flows.

There is an abundance of literature on long-range dependence for time series data, such
as biomedical data [3–5], stock returns [6–8], hydrology [9–11], and climatology [12–14].
However, only a few studies focus on traffic flow sequences [15,16] and the research on
maritime traffic flow sequences are very limited. This is mainly due to the difficulty in
obtaining data on port ship traffic flow in the maritime sector. However, in recent years,
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there are more and more relevant studies on the application of ship AIS data [17,18]. This
makes it possible to study the time series of maritime ship flow.

Studies on maritime traffic flow, especially the ship flow sequences in the ports, are
very important as they can provide basic decisions for the allocation of port operation
infrastructures, rational port planning, and port investment. Furthermore, if the ship flow
sequences in ports are long-range dependent and multifractal, then the traditional ships
flow prediction models should revalue to incorporate this type of volatility. Unfortunately,
there is no universally accepted theory to define the volatility of traffic flow sequence. In
order to understand the irregular patterns of ship flow time series, especially for prediction,
we need to know whether the maritime traffic flow system follows chaotic, random, or
deterministic structural patterns. The complex pattern is the motivation behind the study
of maritime ship flow series through the Multifractal Detrended Fluctuation Analysis
(MF-DFA).

The contributions of this study are threefold: First, we present a descriptive statistics of
the ship traffic flow time series. Second, we analyze the long-range dependence correlation
characteristics of the ship traffic flow series using the Hurst exponent. Third, we determine
the degree of multifractality of the ship traffic flow of the different ports through the
Multifractal Detrended Fluctuation Analysis, and compare them based on the MF-DFA
results. Our results suggested that the ship flow sequences at different time scales in
the ports of Shanghai, Singapore, and Rotterdam showed different degrees of long-range
dependency. Therefore, the ship flow prediction models should incorporate the long-range
dependency in forecasting. In addition, the results indicated that the ship flow sequences
in container ports are multifractal, where the degree of multifractality is much higher for
the port of Singapore compared with Shanghai and Rotterdam.

The rest of the paper is organized as follows: Section 2 presents a brief review on the
literature. Section 3 introduces the methodology used in this paper. Section 4 describes the
sample data. Section 5 presents empirical results. Finally, Section 6 provides concluding
observations based on the findings of the study.

2. Literature Review

In the last few decades, researchers discovered more characteristics of volatility in
terms of long-range dependence and multifractality of the data in numerous fields in-
cluding DNA sequences [3,4,19], climatology and hydrological time series [11,20,21], and
stocks and other financial market data [6,7,22,23]. In most of these studies, the complex
long-range correlations and multifractality behaviors of the time series were measured
by the so called Hurst exponent, which was originally developed in hydrology for the
practical matter of determining optimum dam sizing for the Nile river’s volatile rain and
drought conditions [22,24].

The long-range correlations can be captured using several methods, including Rescaled
Range Analysis (R/S) [22], Detrended Fluctuation Analysis (DFA) [3], Wavelet analysis [25],
Multifractal Detrended Fluctuation Analysis [25], and so on. Coronado et al. [26] com-
pared various methods on Hurst exponent and pointed that DFA is superior to other
methods since it is less influenced by the time series finite size than others. As a general-
ization of DFA, MF-DFA is a popular method for the nonstationary time series, which has
been applied with great success in several areas of research. Several literatures have also
demonstrated the possibility of detecting the multifractal properties in time series through
MF-DFA method [9,27].

MF-DFA is a good method to study the characteristics of time series of stock market
and complex traffic flow. For example, Mensi et al. [28] and Ali et al. [29] stated that MF-
DFA is an acceptable choice to study comparative efficiency and the multifractality of stock
markets. They found that the Islamic stock markets’ adjustment to speculative activity is,
in fact, higher than their conventional counterparts, and all stock market returns exhibited
multifractal features. Besides, some scholars used MF-DFA to examine the highway traffic
flow time series in Beijing, Shanghai and other places and discovered that the long-range
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dependence behavior is ubiquitous in time series of road traffic flows. Moreover, the length
of the time scale was significantly impacted on the multifractal characteristics of traffic
flow sequences [30–32].

At present, a broad consensus has emerged that long-range dependence and mul-
tifractality are somewhat realistic phenomena in traffic flow series [15,33,34]. However,
there is no research on the long-range correlations of the time series of maritime traffic flow.
Therefore, motivated by the importance of temporal structure and long-range correlations
for modeling and prediction of maritime ship flow series, we investigated the complex
temporal structure and long-range correlation behaviors of the ship flow sequences of
container ports from the multifractal perspective using the MF-DFA method. Evaluation of
such results for container ship flow in different time scales and different container ports
will facilitate the production of more insights on evolution dynamics of these ports and
global trade.

3. Methodology

We analyzed the ship flow sequences of three representative container ports by the MF-
DFA method, which is a generalization of DFA method [35,36]. To obtain the generalized
Hurst exponent, we followed the five-step procedure introduced by [9,36] to measure the
multifractality and nonstationary behavior of Brazilian rivers. Rego et al. [9] pointed out
that the periodic components in the sequence should be removed at the first stage before
beginning with the general procedure of Kantelhardt et al. [36].

For a record x(i), i = 1, 2, ..., N, where N denotes the length of the record, the MF-DFA
consists of the following steps [35,36]:

Step 1: We first integrate the series and obtain the profile y(j),

y(j) =
j

∑
i=1

[xi − µ], (1)

where µ is the mean value of the entire series.
Step 2: The integrated series y(j) is divided into boxes of equal length s.
Step 3: In each box of length s, we calculate a polynomial fitting of y(j), which

represents the trend in that box. The shape of the polynomial trend is defined by the order
m. A higher order m yield a more complex shape of the trend, but might lead to overfitting
for a time series within small segment sizes. Therefore, in this study, we choose m equal to
2 as suggested by Ihlen (2012) [37]. The y coordinate of the fit line in each box is denoted
by ys(j).

Step 4: The integrated series y(j) is detrended by subtracting the local trend ys(j) in
each box of length s.

Step 5: For a given box size,

Fq(s) =

[
1
N

N

∑
j=1
|y(j)− ys(j)|q

] 1
q

. (2)

If the series is long-range and the power-law is correlated for large values of the time
scales, the fluctuation functions Fq(s) can be written as Equation (3):

Fq(s) ∼ sH(q), (3)

where H(q) is the generalized Hurst exponent. The generalized Hurst exponent H(q)
can be obtained by observing the slope of the log–log plots of Fq(s) and scale s through
the method of ordinary least squares (OLS). If H(q) is independent of q, the time series
is monofractal, otherwise, it is multifractal. Table 1 shows the relationship between the
long-range dependence of time series and the generalized Hurst exponent.
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Table 1. The relationship between the long-range dependence of time series and the generalized
Hurst exponent.

Hurst Exponent Long-Range Dependence Characteristics of Time Series

H(q) = 0.5 There is no long-range dependence in time series and the time series is a
completely independent process.

0.5 < H(q) The time series has positive long-range dependence and the overall trend
in the future will be consistent with past trend.

H(q) < 0.5 The time series has negative long-range dependence and the overall trend
in the future will be contrary to the past trend.

The value of the generalized Hurst exponent equal to 0.5 indicates an uncorrelated
time series. A generalized Hurst exponent value larger than 0.5 indicates a positive
long-range dependence and persistence of the series. In other words, the larger the H
value is, the stronger the persistence is. A generalized Hurst exponent value smaller than
0.5 indicates a negative long-range dependence and antipersistence of the series. This
means the closer the H value is to 0, the stronger the antipersistence is.

When q is equal to two, H(2) is identical to the well-known Hurst exponent. Generally,
the Hurst exponent is between 0 and 1. However, it is worth noting that the generalized
Hurst index obtained by applying the MF-DFA method in this study may be greater than
1 [36,38].

The singularity spectrum f (α) is introduced to measure the degree of multifractality
of the series and can be obtained through Legendre transform:

α = H(q) + qH′(q), (4)

f (α) = q[α− H(q)] + 1. (5)

Here, α is the singularity strength and used to characterize the singularities of the time
series. f (α) indicates the dimension of the subset of sequences that is characterized by α.
The strength of multifractality can be estimated by the spans of singularity given by

∆α = αmax − αmin. (6)

4. Data

As this research investigates the long-range dependence and multifractality for ship
flow sequences in container ports, we extracted required container ship flow data from the
Automatic Identification System (AIS) database. The data span is from 1 January 2013 to
31 December 2017 for three representative container ports in the world—that is, Shanghai,
Singapore, and Rotterdam. Figure 1 represents the original data of ship flow at different
time scales for these three container ports.

The port of Shanghai is not only the largest container port in China, but also the world’s
largest container port. Its shipping routes reach the world’s 12 largest shipping areas, and it
has established business contacts with more than 500 ports in nearly 200 countries and
regions. As the world’s second largest container port, Singapore is also the largest transit
port in the Asia-Pacific region. The Port of Rotterdam is the largest port in Europe, as well
as the European Gateway. Therefore, in this study, the ports of Shanghai, Singapore,
and Rotterdam were chosen to represent all the ports around the globe.

We analyzed and compared the long-range correlation and multifractality characteris-
tics of the ship flow sequences of both Asian and European ports and the gateway ports
and transit ports. In general, the ship flow sequences for the three ports depicted different
characteristics at different time scales. Among them, the ship flow series of Shanghai
and Rotterdam with daily and weekly time scales showed a more significant upward
trend than the ship flow series of Singapore port. Ship flow sequences of the three ports
with monthly scale fluctuated up and down along the time line, indicating a nonlinear
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and nonstationary feature. Generally, these fluctuations are not random, but relate to the
seasonal and monthly cycles.
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Figure 1. Original data of ship flow of different time scales in three ports.

5. Empirical Results
5.1. Descriptive Statistics

It is a well-known fact that the statistical properties of time series vary with time and
depend on time windows. Table 2 presents the descriptive statistics for the original ship
flow series at different time scales.

Table 2. Descriptive statistics of the original ship flow series.

Time Scale Port Average Standard Deviation Skewness Kurtosis ADF(p) KPSS(p)

Daily
Shanghai 31 8.437 −0.420 0.464 −8.152(0.105) 14.418(0.01)
Singapore 34 7.567 −0.393 2.156 −7.639(0.108) 0.598(0.01)
Rotterdam 15 4.557 0.263 0.161 −8.989(0.290) 15.130(0.01)

Weekly
Shanghai 218 42.618 −0.177 −0.926 −4.962(0.301) 5.777(0.01)
Singapore 235 34.244 −0.367 2.004 −3.675(0.226) 0.307(0.01)
Rotterdam 104 19.488 −0.008 −0.820 −4.085(0.201) 6.009(0.01)

Monthly
Shanghai 950 176.878 −0.110 −1.053 −2.385(0.419) 1.443(0.01)
Singapore 1019 134.381 0.164 −0.581 −2.684(0.299) 0.102(0.01)
Rotterdam 453 81.193 −0.003 −1.115 −2.494(0.375) 1.640(0.01)
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According to Table 2, the average number of ships arriving in the port of Singapore is
greater than that of the Shanghai port at any time scale. Therefore, although Shanghai’s
container port ranks first in the world list, the port of Singapore is still the busiest container
port in the world. This is mainly due to its unique geographical location and its role as the
largest transit port in the Asia-Pacific region.

Besides, the standard deviation of ship flow sequences in port of Shanghai is larger
than that of Singapore and Rotterdam ports, regardless of the time scale. This shows that
the numbers of arriving ships in the ports of Rotterdam and Singapore are relatively stable
compared to Shanghai.

The results from skewness and kurtosis analysis demonstrated that the different
time scales significantly affect the temporal structure of the ship flow sequence. Indeed,
skewness reflects the degree of symmetry in the distribution. Table 2 shows that the
skewness in almost all the ship flow sequences are negative, except for the daily ship flow
sequence of Rotterdam (0.263) and monthly ship flow sequence of Singapore (0.164). This
indicates that all of the ship flow sequences are leftward distributions, except for the daily
ship flow sequence of Rotterdam and monthly ship flow sequence of Singapore.

On the other hand, the kurtosis reflects the sharpness of the image. The higher the
kurtosis, the sharper the center point on the image; in this sense, the kurtosis measures the
degree of data aggregation in the center. In this study, the traditional kurtosis is replaced
by the “super kurtosis” calculation method, which is to subtract the kurtosis 3 of the
normal distribution from the original kurtosis so that the comparison benchmark is zero.
Table 2 shows that the super kurtosis values of daily ship flow sequences are greater than
0, indicating that the daily ship flow sequence distributions are more concentrated and
have a longer tail than the normal distribution. In the weekly ship flow sequences, only
the super kurtosis of Singapore is greater than 0. The super kurtosis of all the monthly ship
flow sequences are less than 0, indicating that these sequences are scattered and have a
shorter tail than the normal distribution. Therefore, only the daily ship flow sequence of
three ports and the weekly ship flow sequence of Singapore exhibited the characteristic
of “sharp peak or fat tail”. Further, the ship flow sequences of three ports with different
time scales deviated from the normal distribution. The results are further validated by the
frequency and probability density distribution of ship flow at the port in Figures 2–4.

In addition, we investigated the stationarity of the above ship flow series with different
time scales. In general, the ADF and KPSS tests are complementarily used to evaluate the
stationarity in time series models. Therefore, both methods were used in this study to test
the stationarity of the ship flow time series with the intention of obtaining more precise
results. The null hypothesis of the ADF test was the presence of a unit root, indicating
the nonstationarity; the null hypothesis of the KPSS test was the absence of unit root,
indicating stability. Table 1 showed that the p values of the ADF test of all the ship flow
sequences were greater than 0.05; so, the null hypothesis is accepted—that is, the sequences
are nonstationary time series. Similarly, the KPSS test results indicated a p value less than
0.05, rejecting the null hypothesis. Therefore, all the ship flow sequences of three ports are
nonstationary time series.
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Figure 2. Frequency and probability density distribution of daily ship flow sequences.
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Figure 4. Frequency and probability density distribution of monthly ship flow sequences.

5.2. Long-Range Dependence and Multifractality

Figure 5 depicts the fluctuation function F versus scale for the ship flow sequences
of three ports with different time scales in log-coordinates and the OLS linear regression
for these curves when q is equal to two. We calculated the generalized Hurst exponents
from the slopes of these straight lines. The Hurst exponent of all the ship flow sequences
was greater than 0.5, which indicated a positive long-range dependence and persistence in
these ship flow sequences.
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Figure 5. Generalized Hurst exponent (q = 2) for three ports with different time scales.

Table 3 presents the results for long-range dependence in ship flow sequences of
three ports when q is equal to two. Empirical results suggested high Hurst exponents
for ship flow sequences. An important feature of these results implied that, in general,
Hurst exponents becomes larger as the time scale increases. The port of Singapore has
the highest Hurst exponent in weekly ship flow sequence, which is close to 1. However,
in the monthly ship flow sequences, Singapore obtains the lowest Hurst exponent, which
is just 0.751. Therefore, ship flow sequences in the port of Singapore have a higher Hurst
exponent when the time scale is small. On the contrary, the ship flow sequences in the
ports of Shanghai and Rotterdam have a higher Hurst exponent when the time scale is
larger. Moreover, the differences in Hurst exponents under different time scales seem to be
higher for the port of Singapore.

Table 3. Generalized Hurst exponents (q = 2) for ship flow sequences with different time scales.

Ship Flow Sequences
Time Scale

Daily Weekly Monthly

Shanghai (m = 2) 0.677 0.836 0.866
Singapore (m = 2) 0.761 0.924 0.751
Rotterdam (m = 2) 0.573 0.759 0.958

Figure 6 presents the results for the MF-DFA methodology for q = [−10 : 10]. Qual-
itative results showed that the generalized Hurst exponent for all ship flow sequences
decreased with the increase in q; the generalized Hurst exponent of these ship flow se-
quences is dependent on the selection of q. However, for the monthly ship flow sequence
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in the ports of Shanghai and Rotterdam, this dependence on q was not significant. The dif-
ferences in generalized Hurst exponents of daily and weekly series for three ports seem to
be smaller as q increases. The generalized Hurst exponents for port of Singapore decreased
faster than those for Shanghai and Rotterdam with the increase in q in all time scales. In par-
ticular, there was no substantial change in generalized Hurst exponent of the monthly
ship flow series for Shanghai and Rotterdam; H(q) remained between 0.8 and 1.2 with the
increase in q. For the monthly sequence, when q is less than zero, the generalized Hurst
exponents of Singapore and Rotterdam are larger than that of Shanghai; meanwhile, when
q is larger than zero, the situation may change to the opposite, and the generalized Hurst
exponent of ship flow for Shanghai becomes the largest. These results suggest that these
differences are not spurious or due to error measures. An important additional comment
is that the degrees of multifractality of ship flow sequences in Shanghai and Singapore
container ports are much higher than the ones found for ship flow in Rotterdam port.

Figure 6. Hurst exponents of ship flow sequences calculated by Multifractal Detrended Fluctuation
Analysis (MF-DFA) for q = [−10 : 10].

The leveling of q-order Hurst exponent reflects that the q-order root-mean-square
(RMS) is insensitive to the magnitude of local fluctuations. The multifractal spectrum will
have a long left tail when the time series have a multifractal structure that is insensitive to
the local fluctuations with small magnitudes. In contrary, the multifractal spectrum will
have a long right tail when the time series have a multifractal structure that is insensitive
to the local fluctuations with small magnitudes [37].

Figure 7 depicts the multifractal spectrum for ship flow sequences of three ports
with different time scales. According to Figure 7, the multifractal spectrum of ship flow
sequences for all ports can be divided into two sections. However, the spans of the multi-
fractal singularity are different, implying that they have different multifractality strengths.
For the daily ship flow sequences, the port of Rotterdam has the lowest multifractal strength,
while the port of Singapore has the highest multifractal strength. Furthermore, the shape of
multifractal spectrum of daily ship flow for Singapore shifts to the right and the spectrum is
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slightly right-skewed, indicating that the scaling behavior of small fluctuations dominates
the fluctuation of the daily ship flow for Singapore port.

Figure 7. Multifractal spectra for ship flow sequences of three ports with different time scales.

Compared with the daily ship flow time series, the multifractal spectra of Shanghai and
Rotterdam obtained from weekly ship flow sequences shifted to the left and the spectrum is
slightly left-skewed. This indicates that the scaling behavior of large fluctuations dominates
the fluctuation of the weekly ship flow for Shanghai and Rotterdam port.

According to the multifractal theory, the strength of multifractality can be character-
ized by the span of the multifractal singularity strength function in Equation (6). The bigger
the ∆α is, the stronger the degree of multifractality becomes.

Table 4 presents the quantitative strength of multifractality of all the ship flow se-
quences of the three ports. It can be seen that the degree of multifractality of weekly series
is the strongest for all three ports, followed by the monthly time series, and the daily time
series has the weakest multifractality. The monthly ship flow sequence of Singapore port
has the highest degree of multifractality. An interpretation for this result is that the weekly
ship flow sequence of Singapore is very sensitive to the changes of various influencing
factors, and it is very hard to predict. Therefore, compared with the forecast of the ship
traffic flows of days and months, the weekly forecast is the most difficult for the ship flow
at the container port. This shows that the multifractal method is essential for the analysis
of ship flow sequences.
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Table 4. The strength of multifractality for ship flow sequences.

Ship Flow Sequences
Time Scale

Daily Weekly Monthly

Shanghai 0.296 0.999 0.459
Singapore 0.342 2.004 0.984
Rotterdam 0.182 1.643 0.383

5.3. Type of Multifractality

Another contribution of this study is to identify the type of multifractality presented
in the ship traffic flow data. We performed the same analysis on the randomly shuffled
series of the original ship traffic flow sequences. The randomly shuffled sequences were
obtained by shuffling the original ship flow sequences. The shuffled sequences remained
with the same fluctuation distributions, though it destroyed any temporal correlations in
the original data.

The process of shuffling can be depicted as the three steps presented by [39]. Firstly,
(p, q) pairs are generated from random integer numbers with p, q ≤ N, where N is the
length of the original time series. Secondly, p and q entries are swapped with each other.
Finally, the above two steps are repeated N = 20 times to ensure that the original series is
fully shuffled.

We shuffled the ship flow sequences and calculated Hshuffle(q). As seen in Figure 8,
the Hshuffle(q) is approximately 0.5 for most of the ship flow sequences except for the
weekly ship flow sequences of Singapore. The shuffled ship flow sequences with Hshuffle(q)
of about 0.5, indicating the multifractality of these ship flow sequences, are caused by
different fluctuations in correlations of small and large scales. However, the multifractality
of the weekly ship flow sequences of Singapore port is caused by a broadening of the
probability density function. This result is consistent with the results shown in Figure 3.
Therefore, the multifractality presented in the ship flow sequences of container ports are
due to the correlation properties as well as the probability density function of the ship
flow series.

Figure 8. Cont.
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Figure 8. Hurst exponents of the shuffled ship flow sequences for q = [−10 : 10].

6. Conclusions

In this study, we investigated the statistical properties of container ship flow time
series and made a detailed investigation on long-range behaviors and fractal characteristics
of ship flow sequences for three representative container ports in the world—Shanghai,
Singapore, and Rotterdam. This study concludes three main findings.

Firstly, the empirical evidence given in this study emphasize the significance of
long-range dependence behaviors and multifractal property in all ship flow sequences at
different time scales for three container ports.

Secondly, the empirical evidence from comparisons among these ship flow sequences
at different time scales implies that the long-range dependence becomes larger for each port
as the time scale increases, except for the port of Singapore. Shanghai and Rotterdam were
identified as the ports with the highest degree of long-range dependence in monthly ship
flow sequences, while Singapore was identified as having the highest degree of long-range
dependence in weekly ship flow sequence.

Finally, the empirical evidence confirmed the multifractal property as an impact factor
on the ship flow sequences of container ports. The analysis on the shuffled data indicated
that the presence of multifractality in the ship flow sequences of container ports is due to the
correlation properties as well as to the probability density function of the ship flow series.

The findings of this study provide some interesting implications. First, the existence
of long-range dependence and multifractality in container ship flow could be exploitable
and helpful for shipping companies and policy makers. In other words, the presence of
chaotic structure such as long-range dependence and multifractality in container ship flow
sequences implies that the volume and direction of container ship flow may demand certain
rules. Therefore, the shipping company can carry out short-term capacity allocation and
adjustment according to container ship flow prediction. Second, the presence of long-range
dependence and multifractality in the data suggests that container ship flow forecasting
models should account for existing nonlinearities in the data, otherwise, their results may
be biased and highly misleading.

Port groups can use these findings in forecasting the expected volatility in the number
of arriving container ships, and thereby, in developing and carrying out the layout planning
of the port infrastructure, shipping date planning, and even port expansion investment.
Moreover, some advanced modeling approaches can be employed for ship flow sequence
forecasting, such as statistical modeling [40,41] and machine learning methods [42,43].

In addition, we regarded the trends in the ship traffic flow time series in this study
as caused by external conditions. We identified and filtered out these trends in MF-DFA
analysis. However, these trends may not be completely caused by external conditions,
and some trends may carry endogenous power from data. At this time, when we explore
the long-range power-law dependence of the time series, whether to filter out the trend
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needs further discussion, as pointed out by Hu et al. [38]. The effect of trends on detrended
fluctuation analysis for ship traffic flow time series of ports can be further studied in the
future.
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