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Abstract  

Purpose:  To assess and compare the validity of internal and external Australian Football (AF) 

training load measures for predicting match exercise intensity (MEI.min-1) and player rank 

score (PRScore) using a variable dose-response model. Methods: 25 professional AF players 

(23  3 y, 188.3  7.2 cm and 87.7  8.4 kg)  completed a 24-week in-season macrocycle. In-

season internal training and match load was quantified using session-RPE (sRPE) and external 

load from satellite and accelerometer data.  Using a training impulse (TRIMPs) calculation; 

external load (au) was represented as distance (TRIMPDist), distance  4.16m.s-1 (TRIMPsHS 

Dist) and player load (TRIMPPL).  In-season training load, MEI.min-1 and PRScore were applied 

to a variable dose-response model, which provided estimates of MEI.min-1 and PRScore. 

Predicted MEI.min-1 and PRScore were correlated with actual measures from each match. The 

magnitude of the difference between MEI.min-1 and PRScore estimates for each model input and 

the difference between the precision of internal and external load measures to predict MEI.min-

1 and PRScore were calculated using the effect-size  90% confidence interval [CI]. Results: 

Estimates of MEI.min-1 demonstrated very large associations with actual MEI.min-1 (r, 90% 

CI) (e.g. TRIMPsDist 0.76, 0.73-0.78 and sRPESkills 0.73, 0.70-0.76). Estimates of PRScore 

demonstrated associations of large magnitude with actual PRScore using the same inputs. 

Precision of actual MEI.min-1 was lowest using sRPE compared to (ES  90% CL) TRIMPSDist 

-0.67  0.34 and, TRIMPsPL -0.91  0.39. There were trivial and unclear differences in the 

precision of PRScore estimates between TRIMPS and sRPE inputs. Conclusions:  Dose-

response models from multiple training load inputs can predict within-individual variation of 

MEI.min-1 and PRScore. Internal and external training input methods exhibited comparable 

predictive power.    

Keywords: internal training load, external training load, variable dose-response model 
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Introduction  

Mathematical fitness-fatigue models have been proposed to assist sport science and 

conditioning staff to prescribe the optimal distribution of training load with a higher degree of 

precision1,2. With a systems model approach, physical training represents the input dose and 

performance represents the responses or system output.  A mathematical model approach to 

training was first proposed by Bannister et al., in 19752.  Studies have attempted to validate the 

predictive power of the first and more recently refined variable dose-response model versions, 

using empirical data from different training scenarios: recreational runners3-5, elite swimmers6, 

elite female gymnasts7 and weightlifters8.  These studies have reported associations between 

modelled and actual performance ranging in magnitude from moderate to very large 3-7.  

Quantification of training load is paramount for variable-dose-response model 

construction1,2.  Numerous studies have examined the effectiveness of methods for quantifying 

training load, each with varying degrees of ecological validity 4,9
.  In professional Australian 

Football (AF), micro technology devices provide satellite and accelerometer data, enabling the 

quantification of external match and training load 10-12.  Due to its simplicity, strong validity 

and global representative nature, the quantification of internal match and training load occurs 

using the session-RPE method 13.  To build robust models and increase the predicative power, 

it has been recommended that individual athletes undertake between 15 and 200 performance 

assessments within a short time.  

At present, all previous investigations using a variable dose-response model have used 

training and performance data from athletes competing in individual, predominately endurance 

based sports.  The broader application of applying a variable dose-response model approach in 

high performance team sport settings to predict performance responses is unsubstantiated 

within the literature.  Specifically, despite refinements in modelling techniques leading to 

enhanced predictive accuracy, their adequacy has not been investigated at an individual level 
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in professional AF. This is largely attributable to the fact that variable dose-response model 

construction requires a single measure to represent performance, which may limit their 

application in AF, whereby technical and tactical performance represents true performance and 

is difficult to quantify and express as a single measure.   

Common practice in professional AF is to routinely assess the relevant sport-specific 

physical capacities through a variety of maximal field tests.  However, these capacity 

assessments are fatiguing which is problematic during an AF in-season and potentially limits 

there use as model performance inputs.14 Studies in professional soccer and AF have identified 

relationships between adaptation to prescribed external and internal load and improvements in 

physical capacity15-17.  Further, these studies have identified links between physical capacity 

and the increased ability to produce high match exercise intensity (MEI.min-1), which has 

further been correlated with individual player success17-19 as assessed via coaches’ perceptions 

of performance.  Collectively, these findings suggest that MEI.min-1 may be a casual indicator 

of overall match technical/tactical performance.  However, recent work  indicates that skill 

performance rather than increased MEI.min-1 and physical activity profiles, is more important 

to coaches’ perceptions of performance20. The official commercial statistical provider 

(Champion Data) of the Australian Football League (AFL) provide a global measure of player 

skill performance termed PRScore, which has been reported to be largely associated with 

coaches’ subjective ratings20. In comparison to maximal field-test assessments, both MEI.min-

1 and PRScore are able to be assessed, (i.e from each competitive match) during the in-season, at 

a frequency that satisfies the recommended requirements for model construction.  Despite the 

widespread quantification of MEI.min-1 and availaibility of skill performance data in AF, little 

empirical knowledge relating to the individual cumulative dose-response effects of training 

load on subsequent MEI.min-1 and PRScore exits.  The present study, using a variable dose-

response model and a longitudinal post facto experimental design, will compare the within-
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individual predictive accuracy of model estimates of MEI.min-1 and PRScore with actual 

measures obtained from an entire in-season macrocycle. The study will also compare and assess 

the validity of internal and external methods for quantifying in-season AF training load.   

Methods 

Subjects 

Forty-five professional AF athletes from the same team (188.3 ± 7.2 cm, 87.7 ±8.4 kg, 

and 22.3 ± 3.3 y), participated in the study. Ethical approval was granted by the university 

research committee and informed consent was obtained before the commencement of the 

research.  

Experimental Design 

A retrospective longitudinal observational research study design was used to compare 

model predicted estimates of MEI.min-1 and PRScore with actual measures collected across an 

entire 24-week competitive season.  

Methodology 

Match exercise intensity performance 

Four thousand and fifty-seven individual training sessions were analyzed during the 

investigative in-season training and competition macrocycle.  Individuals completed an 

average of 190.3  7.5 individual training sessions during the season.  From each competitive 

match of the 2015 AFL premierships season, MEI.min-1 (CV, 8.11  3.75%), was quantified 

for each player in accordance with previous protocols17. To reduce the likelihood of reporting 

artificially low match intensities, rest time and any stoppage time during the match were 

excluded from the analyses for each participant.  An individual player’s MEI.min-1 was 

excluded from analysis if he was injured (but was selected to play) or injured in game (but 

continued to play). Further, match performance data were removed for analyses if the game 
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was played indoors or influenced by environmental conditions (i.e. rain). To reduce the 

likelihood of reporting artificially high MEI.min-1 intensities, activity profiles were only 

accepted if the participant played >75% of the total game time and absolute variables were 

divided by the on-field active duration. MEI.min-1 from each eligible match was converted into 

a percentage of seasonal best performance.  

Champion Data Player Rank Score  

After each competitive match, individual player match skill performance assessed via 

PRScore (CV, 21.87  5.91%) was retrieved from software provided by the official commercial 

statistical provider of the AFL (Champion Data, VIC, Australia).  PRScore is calculated from a 

player’s involvement in selected match activities (i.e., specific skills) that are assigned positive 

or negative numerical value based on the outcome of the skill execution. The summative score 

objectively provides an index of an individual players’ impact on a match.   

Training load quantification  

A variety of methods (n=5) were used to quantify each in-season training session as 

either internal or external load (au) to act as input data for a variable dose-response model for 

each individual athlete.  

Internal load  

The sRPE method was used to quantify internal load and represent the “global” (all 

field based, skill, strength and conditioning, rehabilitative and active recovery sessions) in-

season training load 21.  Subsequently, perception of effort (RPE) for the skills and conditioning 

component was differentiated from the total in-season sRPE load.  All participants were 

familiar with the RPE process for over 12 months leading up to the study period.   
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External Load 

For each in-season match and training session a portable micro technology device 

(Optimeye S5, Catapult Innovations, Melbourne, Australia) activity profile data.  Satellite data 

sampled at 10Hz provided measures of total distance and high speed running distance (Distance 

covered  4.16m.s-1).  Player Load (PL au), which is a vector of magnitude representing the 

square root of the sum of the instantaneous rate of change in acceleration in the x, y and z axes 

divided by 100 was obtained from the accelerometer sampling at 100Hzs and has been reported 

to be reliable and valid22.  At the conclusion of each session, data was downloaded and analyzed 

using the manufacturer specific software (Catapult Openfield v 11.1.2 software, Catapult 

Innovations, Melbourne, Australia).  Outcome variables to quantify external load were relative 

distance to specific velocity bands corresponding to (Zone 1 - 0-1.5m.s-1, Zone 2 - 1.5-3m.s-1, 

Zone 3 - 3-4.16m.s-1, Zone 4 - 4.16-5.5m.s-1, Zone 5 -  5.5-7m.s-1, Zone 6 - >7m.s-1) and Player 

Load relative to specific intensity bands corresponding to (Zone 1 - 0-1 m.s-1, Zone 2 - 1-2 m.s-

1, Zone 3 - 2-3 m.s-1, Zone 4 - 3-4 m.s-1, Zone 5 - 4-5 m.s-1, Zone 6 >5 m.s-1). The validity and 

reliability of GPS devices and the metrics used in this study have been extensively reviewed 

elsewhere (for review18,20,22).  In brief, it appears that the validity and reliability for measuring 

distance, player load and velocity is improved with a higher sampling frequency18,20. External 

load was expressed in arbitrary units, using an adapted TRIMP calculation, proposed by 

Edwards et al., (1993)23. Distance and player load accumulated in each of the six velocity and 

player load zones was multiplied by a corresponding exponentially weighted intensity 

coefficient, which placed greater weighting to higher intensities (Table 1).  The multiplying 

coefficient factors used were provided in the manufacturer specific software (Catapult Sprint v 

5.0.9 software, Catapult Innovations, Melbourne, Australia).   
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Fitting the Model 

Individual in-season training load, MEI.min-1 and PRScore data units for each player 

were applied to a variable dose-response model proposed by Busso et al., 20031.  

Mathematically, the variable dose-response model used has been previously described1. The 

set of individual parameters were determined by fitting the model performances with actual 

performance via successive minimizations of a recursive least squares algorithm24 using the 

GRC Nonlinear Solver function in Microsoft Excel (Microsoft, Redman, USA). Ten models 

were generated for each player, representing each of the training input methods and MEI.min-

1 and PRScore, respectively.   

Statistical Analyses 

Within-individual correlations between actual and predicted estimates of MEI.min-1 

and PRScore were analyzed using Pearson’s correlation coefficient (r) and reported with 95% 

confidence intervals (CI).  The magnitude of the correlation between predicted and actual 

MEI.min-1 and PRScore was described as <0.1 trivial, 0.1-0.3 small, 0.3-0.5 moderate, 0.5-0.7 

large, 0.7-0.9 very large and 0.9-1.0 almost perfect. Traditionally, a 1-way analysis of variance 

(ANOVA) has been used to compare the predictive power of variable dose-response models 

using different quantitative training input methods.4  In this study, magnitude based inferences 

(effect-size statistic  90% CI) were calculated to determine the practical differences between 

MEI.min-1 and PRScore estimates for each model input (i.e. difference in correlation between 

actual and predicted).  In addition, the magnitude of the difference  90% CI between the 

precision of internal and external load measures to predict MEI.min-1 and PRScore was also 

calculated. Differences were represented as ES ± 90% CI and classified as trivial (< 0.2), small 

(0.2 – 0.59) and moderate (0.6 – 1.19)25. Where the 90% CI simultaneously overlapped the 

smallest important ES (0.2) the magnitude of the difference was considered “unclear”25.  The 
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results are presented as mean  SD and differences as effect size  90% CI with a qualitative 

descriptor to represent the likelihood of exceeding the 0.2 threshold.   

Results 

Weekly mean values for training duration, distance, Player Load, and sRPE were 443 

 27 min, of 25259  2015 m, 2513.5  231.5 au, and 3846  232.4 au, respectively.  The 

difference in the precision of estimates was greater for MEI.min-1, compared to PRScore using 

(Training input, effect size  90% CL, qualitative descriptor); TRIMPsDist 0.60  33, 97% 

moderate, TRIMPsPL 0.58  0.34, small, TRIMPsHSDist 0.58  0.34, 89% small, and sRPESkills 

0.47  0.38, small. Trivial differences between MEI.min-1 and PRScore were evident using sRPE 

as the training input method.  

Modeled match exercise intensity 

Fluctuations in MEI.min-1 were observed across the entire in-season macrocycle and 

presented as Mean  SD (Fig 1. a). Modeled MEI.min-1 showed a strong fit with actual 

MEI.min-1 over season.  The average within-individual correlations between predicted and 

actual MEI.min-1 for the various training input methods were (Training input, r Mean  SD, 

qualitative descriptor), TRIMPsDist, 0.76  0.13, very large, TRIMPsPL, 0.77  0.12, very large, 

TRIMPsHSDist, 0.75  0.14,  very large, sRPE, 0.68  0.12  large, and sRPESkills, 0.73  0.14, 

very large for the, respectively.   Fig 2 shows an example of model simulation for one 

participant using in-season TRIMPsDist and MEI.min-1 data. Table 2 shows the retrospective 

precision of actual MEI.min-1 using the different internal and external training input methods. 

The mean  SD of the difference between predicted and actual performance is presented in 

(Fig. 3, a-e). 
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Modeled Player Rank Score performance 

Fluctuations in PRScore were observed across the entire in-season macrocycle and 

presented Mean  SD (Fig 1. b).  Modeled PRScore showed a strong fit with actual performance 

over season.  The average within-individual correlations were (Training input, r Mean  SD, 

qualitative descriptor); TRIMPsDist, 0.62  0.20 , large, TRIMPsPL, 0.63  0.19, large, 

TRIMPsHSDist, 0.67  0.16, large, sRPE, 0.63  0.16, large, and sRPESkills, 0.65  0.17, large, 

respectively.  Table 3 shows the retrospective precision of actual PRScore using the different 

internal and external training input methods. The mean  SD of the difference between 

predicted and actual performance are presented in (Fig. 4, a-e). 

Discussion  

The main purpose of this study was to validate the within-individual retrospective 

predictive power of MEI.min-1 and PRScore performance using a variable dose-response model.  

The main finding was that model derived estimates of MEI.min-1 and PRScore, appropriately 

predicted actual in-season MEI.min-1 and PRScore.  Since the initial systems proposed by 

Bannister et al., in 19752 the approach has been used to improve the understanding of the 

training process and has been applied to forecast training loads to maximize performance 

responses for individual athletes3-8. Several studies, using empirical training and performance 

data from highly trained endurance athletes, have demonstrated moderate to very large 

correlations between model predicted and actual performance3-7,26. Unfortunately, however, 

the broader application of a model approach to predict performance at an individual level within 

high performance team sport, such as professional AF, is unsubstantiated within the scientific 

literature. This is largely attributable to the fact that it is difficult to characterize or define 

performance in AF, as it involves complex interactions between physical capacity and skill 

proficiency which in combination is difficult to quantify and express as a single measure of 
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performance, an essential prerequisite for the construction of a variable dose-response model.  

To counteract the limitations associated with maximal capacity testing and the conjecture 

surrounding the relationship between MEI.min-1 and coaches’ perception of match 

performance, the researchers used both MEI.min-1 and PRScore as performance representative 

input data to a variable dose-response model.  The magnitudes of association between predicted 

and actual representatives of match performance were of comparable magnitude to those 

previously reported in model research using highly trained endurance athletes and assessments 

of physical capacity.  Most notably a trivial relationship between actual MEI.min-1 and PRScore 

was observed, accordingly these findings are in agreement with research suggesting MEI.min-

1 is unrelated to skill performance.20   The variable dose-response models constructed in this 

study were able to predict actual MEI.min-1 with greater precision than PRScore using the 

equivalent training input method.  Although the within-individual correlations for the internal 

and external load - PRScore predictive models were large, on average, the model estimates only 

explain 41% of the variance in actual PRScore.  Hence, multiple factors, besides in-season 

training load variability, which can’t be accounted for using a variable dose-response model, 

contribute to individual player on-field skill performance.   

This study also compared the validity and retrospective predictability of model 

estimates of MEI.min-1 and PRScore using various internal and external quantitative input 

methods.  The player load (PL) algorithm is suggested to incorporate all forms of movement 

including change of direction, skill- and contact-based activities relevant to professional AF 

and therefore provide a more global representation of external load than speed and distance 

metrics11,12. However, trivial differences in predictive power for both MEI.min-1 and PRScore 

using TRIMPsDist and TRIMPsPL were observed.  These findings are in accordance with related 

research, that has observed very large and near perfect correlations between distance and 

PL12,22.  The strength of the relationship between PL and distance depends on the type of 
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training performed.  The comparable retrospective predictability between TRIMPsDist and 

TRIMPsPL observed in this study suggests that a relatively small proportion of the in-season 

training load, involved impacts, collisions and/or multi-planar movements, consequently, foot 

strikes (vertical plane accelerations) and locomotor activity (forward acceleration) heavily 

contributed to and influenced the in-season PL.  Certainly, within professional AF the capture 

of both satellite and accelerometer data is common practice, however for teams regularly 

training or competing indoors, or situations where satellite variables are unavailable, these 

results support the use of a variable dose-response model using exclusively PL.  

Due to its simplicity, in-expensive nature and strong validity, high performance team 

sports commonly utilize sRPE to quantify the internal training and match load. Unlike the 

external load measures obtained from microtechnology in this study, sRPE was the only 

indicator of the “global” in-season training load (i.e. rehabilitative, strength and all skills and 

conditioning sessions).  However, despite this, differentiating the sRPESkills from the total sRPE 

arbitrary units, so as to align with all the external load measures, resulted in a comparable or in 

some cases enhanced level of prediction accuracy. For example, the sRPE-MEI.min-1 model 

demonstrated the lowest retrospective predictive capability of MEI.min-1.  Differentiating 

sRPESkills from sRPE internal load enhanced the predictive power of actual MEI.min-1, equaling 

the predictive accuracy of all the external training load-MEI.min-1 models.  Collectively, these 

results suggest that the in-season skills and conditioning load is relatively more important 

to MEI.min-1 performance than other training modalities during an in-season AFL 

program. The equivalent predictive power of both MEI.min-1 and PRScore using internal 

sRPESkills load  or external load input methods in this study, further validates the use of sRPE, 

and is consistent with previous research in high performance team sport demonstrating that 

sRPE load has very large association with external load measures from microtechnology27,28.  
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Anecdotally, training loads in professional AF are often planned and prescribed with 

biased consideration to external load parameters. Recent research has indicated that individual 

variability in characteristics such as, fitness, physiological, psychological status, training 

experience and position type are all mediators of the relationship between external training load 

and sRPE load27. Accordingly, relying entirely on sRPE to prescribe professional AF training 

load could compromise the likelihood of individual players achieving a predetermined external 

load, as individual players will modify their external output based on these mediating factors. 

Consequently, to optimize the in-season training process for professional AF, it appears that 

the desired approach, is to monitor the internal load response while prescribing and 

subsequently adjusting the in-season training dose using external load. However, from a 

perspective of predicting performance responses using a systems modelling approach, distinct 

from load management, results from this study indicate that both external and internal training 

inputs have comparable predictive power.  From a practical standpoint, quantification of in-

season training load using GPS micro technology is not an essential prerequisite to apply a 

systems modelling approach in professional AF to predict MEI.min-1 and PRScore.   

It has been reported that to gain stable fits and build robust models, 15 and 200 

performance tests are required within a short period of time29.  Despite an average of 17  5 

games being played by each participating athlete across the entire in-season macrocycle, 

exclusion criteria limited the amount of suitable match assessments to 11. Although high in 

comparison with previous modeling studies3-7,26, the stability of each of the models may be 

inadequate to fully describe the dose-response relationships reliably. Accordingly, a systems 

modeling approach to training and performance data may be limited to laboratory studies or 

highly trained endurance athlete cohorts.  Although it is unlikely that a single external or 

internal training load measure will describe all the variation in MEI.min-1 and PRScore, alternate 

variables to those investigated in this study may be able to provide enhanced predictive power. 
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Research has extracted player load activity below 2m.s-1, from total PL, which has been termed 

player load slow PLSlow
12.  Studies have demonstrated that PLSlow has small associations with 

distance, indicating that it provides different information than PL12.  It has been suggested that 

this variable may better represent multi planar movements performed at relatively low speed 

(e.g. grappling)12.  Another variable available from the microtechnology device which was not 

examined, was 2D PL12.  This variable, like PLslow, differentiates from PL, by just including the 

acceleration vectors from two planes (medio-lateral and anterio posterior).  The exclusion of 

the vertical vector, potentially reduces the influence of foot strikes and may provide insight 

into more non-locomotor load aspects applicable to professional AF12.  Similarly, previous 

model research, using highly trained endurance athletes has demonstrated improved fits using 

individualized TRIMP calculations (iTRIMPs), in comparison to sRPE methods4.  In the 

current study arbitrary zones and generic intensity coefficients were used to calculate TRIMPs 

for the respective external load input methods.  iTRIMPs that better account for individual 

performance characteristics4 may demonstrated stronger predictive capability. Finally, even 

though sRPE was used as an internal load quantitative input, discrepancies between modeled 

and actual estimates of MEI.min-1 and PRScore may further be explained by the fact that the 

variable dose-response model does not take into consideration the effect of recovery strategies, 

inter-individual variability in recovery potential, exercise capacity, non-training stress factors, 

and stress tolerance which all contribute to individual fitness, fatigue and performance 

responses.   

Practical Applications  

Variable dose-response models applied to in-season quantitative internal and external 

training input methods may be an appropriate planning and forecasting tool to assist with the 

maximization of both MEI.min-1 and PRScore at the individual level.  As in-season external and 
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internal sRPESkills quantitative training load methods provide the same level of prediction, 

systems modelling can be used without the need for microtechnology.  

Conclusions 

The main findings of this study are that variable dose-response models constructed from 

multiple training load input methods, can retrospectively predict, the within-individual 

variation of MEI.min-1 and PRScore. Variable dose-response models were able to predict 

MEI.min-1 with greater precision in comparison to PRScore using the equivalent training input 

methods. Both external and internal quantitative input methods can predict in-season MEI.min-

1 and PRScore with the same level of precision. Future research should aim to cross validate 

variable dose-response model application in other AF teams and high performance team sports. 

Further the prospective predictive capability, and the adequacy of applying a systems model 

approach during different training phases (i.e pre-season macrocycle) should be established. 

Finally, the ecological validity of individual model estimates of fitness and fatigue should be 

examined.  
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Figure 1: Mean ± SD of the fluctuations in a MEI.min-1 and b PRScore across the 24-week in-

season macrocycle. 
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Figure 2: Variable dose-response model simulation from one athlete constructed from in-

season TRIMPsDist and MEI.min-1 data a predicted and actual MEI.min-1 performance b 

Individual model estimates of fitness and fatigue c daily in-season TRIMPsDist training load.  
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Figure 3: Mean  SD of the difference between modelled and actual MEI.min-1 performance 

using a TRIMPsDist , b TRIMPsPL c TRIMPsHSDist d sRPE e sRPESkills training input methods 

respectively, during the 24-week in-season macrocycle. 
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Figure 4: Mean  SD of the difference between predicted and actual PRScore performance using 

a TRIMPsDist, b TRIMPsPL c TRIMPsHSDist d sRPE e sRPESkills training input methods 

respectively, during the 24 week in-season macrocycle.  
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Table 1: TRIMP calculations used to covert the in-season external load into arbitrary units. 

 

 
TRIMPsDist = (Zone 1 Distance x 1) + (Zone 2 Distance x 1.2) + (Zone 3 Distance x 1.5) + 

 (Zone 4 Distance x 2.2) + (Zone 5 Distance x 4.5) + (Zone 6 Distance x 9)             
 
 TRIMPsHSDist = (Zone 4 Distance x 2.2) + (Zone 5 Distance x 4.5) + (Zone 6 Distance x 9) 

 
 TRIMPsPL = (Zone 1 PL au x 1) + (Zone 2 PL au x 1.2) + (Zone 3 PL au 1.5)  
 + (Zone 4 PL au x 2.2) + (Zone 5 PL au x 4.5) + (Zone 2 PL au x 9)  
                                                                                                                                   

 

 

 

Table 2: Matrix of the difference between the retrospective precision of actual MEI.min-1 using 

different internal and external training input methods  

 

Training Input 
Method 

TRIMPsDist TRIMPsPL TRIMPsHSDist sRPE 

 
TRIMPsPL 

 
-0.11  0.15  

trivial 
   

TRIMPsHSDist 
0.06  0.28  

unclear 
0.19  0.31  

trivial 
  

sRPE 
0.67  0.15 

 moderate  
0.91  0.39 

 large  
0.58  0.32  

small  
 

sRPESkills 
0.160.32  

trivial 
0.31  0.34  

small 
0.10  0.21  

trivial 
-0.50  0.27  

small  
     

Differences in the retrospective precision of actual MEI.min-1 using internal and external training input methods, 

represented as ES ±90% CI and classified as trivial (< 0.2), small (0.2 – 0.59) and moderate (0.6 – 1.19). Where 

the 90% CI simultaneously overlapped the smallest important ES (0.2) the magnitude of the difference was 

considered “unclear”. 

 denotes greater predictive accuracy of quantitative training input on y axis compared to x axis.  

 denotes lower predictive accuracy of quantitative training input on y axis compared to x axis.  
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Table 3: Matrix of the difference between the retrospective precision of actual PRScore using 

different internal and external training input methods  

 

Training Input 
Method 

TRIMPsDist TRIMPsPL TRIMPsHSDist sRPE 

 
TRIMPsPL 

 
-0.06  0.10  

trivial 
   

TRIMPsHSDist 
-0.18  0.31  

trivial 
-0.19  0.33  

trivial  
  

sRPE 
-0.08  0.29  

unclear 
-0.02  0.28  

unclear 
0.17  0.45  

unclear 
 

sRPESkills 
-0.160.20  

trivial 
-0.10  0.23  

trivial 
0.18  0.41  

unclear 
-0.09  0.32  

unclear 
     

Differences in the retrospective precision of actual PRScore using internal and external training input methods, 

represented as ES ±90% CI and classified as trivial (< 0.2), small (0.2 – 0.59) and moderate (0.6 – 1.19). Where 

the 90% CI simultaneously overlapped the smallest important ES (0.2) the magnitude of the difference was 

considered “unclear”. 
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