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ABSTRACT 1 

 The aim of this study was to compare the computational performances of two 2 

direct methods for solving large-scale, nonlinear, optimal control problems in human 3 

movement. Direct shooting and direct collocation were implemented on an 8-4 

segment, 48-muscle model of the body (24 muscles on each side) to compute the 5 

optimal control solution for maximum-height jumping. Both algorithms were executed 6 

on a freely-available musculoskeletal modeling platform called OpenSim. Direct 7 

collocation converged to essentially the same optimal solution up to 249 times faster 8 

than direct shooting when the same initial guess was assumed (3.4 hours of CPU 9 

time for direct collocation versus 35.3 days for direct shooting). The model 10 

predictions were in good agreement with the time histories of joint angles, ground 11 

reaction forces and muscle activation patterns measured for subjects jumping to their 12 

maximum achievable heights. Both methods converged to essentially the same 13 

solution when started from the same initial guess, but computation time was 14 

sensitive to the initial guess assumed. Direct collocation demonstrates exceptional 15 

computational performance and is well suited to performing predictive simulations of 16 

movement using large-scale musculoskeletal models. 17 

Keywords: direct shooting, collocation, musculoskeletal model, motion tracking, 18 

trajectory optimization, predictive simulation. 19 

 20 

 21 

22 
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INTRODUCTION 1 

Inverse- and forward-dynamics methods are commonly used in conjunction 2 

with optimization theory to calculate muscle forces during movement22,31. Inverse 3 

dynamics uses measured joint motion and ground force data as inputs to a model to 4 

determine the net moments applied about each joint. Static optimization is then 5 

applied to solve the net moment – muscle force redundancy problem3,9. Because this 6 

approach solves a different optimization problem at each time instant, the goal of the 7 

motor task (e.g., minimizing metabolic energy over one gait cycle) is not easily 8 

incorporated in the formulation of the problem22. 9 

Forward-dynamics or optimal control theory uses neural excitations as inputs to 10 

drive a model of the neuromusculoskeletal system in a forward simulation of 11 

movement. Optimal control theory presents the most powerful framework for 12 

determining muscle forces because this approach incorporates a model of both the 13 

system dynamics and the goal of the motor task (i.e., the performance criterion) in 14 

the formulation of the optimization problem3,4,10,13,23,25. Computed muscle control28 15 

and neuromuscular tracking26 are two recent approaches that use optimal control 16 

theory to track experimental gait data. This formulation of the optimal control problem 17 

is often referred to as ‘state estimation6,7. Because the time histories of joint motions 18 

and external forces are used explicitly in the calculation of muscle forces, novel 19 

movements cannot be predicted using this approach. A more powerful application of 20 

optimal control theory is the formulation of a ‘trajectory optimization problem’, where 21 

all quantities of interest (i.e., joint motion, ground forces and muscle activation 22 

patterns) are predicted concurrently.  23 

Numerical methods for solving optimal control problems are often divided into 24 

two categories: indirect methods and direct methods6. An indirect method applies the 25 
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calculus of variations to derive analytical expressions for the necessary conditions 1 

for optimal control, which are specified in terms of the adjoint differential equations, 2 

Pontryagin’s maximum principle, and the associated boundary conditions13,25. The 3 

result is a two-point-boundary-value problem that can be challenging to solve for two 4 

reasons: firstly, finding an initial guess for the adjoint variables is problematic as 5 

these quantities often have no physical interpretation; and secondly, backward 6 

integration of the adjoint differential equations is numerically unstable because these 7 

equations are highly nonlinear. 8 

Direct methods do not require either analytical expressions for the necessary 9 

conditions for optimal control or an initial guess for the adjoint variables. Instead, the 10 

control and/or state variables are approximated using parameterization and the 11 

optimal control problem is transcribed to a nonlinear programming problem. Direct 12 

shooting is the numerical method used to solve the optimal control problem when 13 

only the control variables are parameterized3,4,8,14,19,23, whereas direct collocation 14 

involves parameterization of both the control and state variables1,17,27. 15 

Whilst the application of direct shooting results in fewer design variables 16 

compared to direct collocation, direct shooting is computationally more expensive as 17 

small time steps are needed to integrate a set of stiff differential equations during the 18 

optimization procedure. Furthermore, a gradient-based optimizer would require 19 

additional CPU time to calculate the derivatives of the performance criterion and 20 

constraints with respect to the controls because each perturbation of the controls 21 

requires a numerical integration of the system dynamical equations13,22. Anderson 22 

and Pandy3 computed a minimum-metabolic-energy solution for walking with the 23 

body represented as a 3D, 23-degree-of-freedom skeleton actuated by 54 muscles. 24 

A direct shooting method23 required the model equations to be integrated ~900 times 25 
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per iteration of the computational algorithm. Convergence to the optimal solution 1 

took ~10,000 hours of CPU time using multiple processors on an IBM SP-2 parallel 2 

supercomputer, making this method impractical. 3 

Direct collocation offers a more efficient means of solving large-scale, 4 

nonlinear, optimal control problems as both the states and controls are discretized 5 

and the system dynamical equations are converted into algebraic constraints, thus 6 

circumventing the need for explicit integration. In addition, the nonlinear 7 

programming problem is characterized by a sparsely populated constraint Jacobian 8 

matrix that can be solved efficiently. Direct collocation has been combined with 9 

musculoskeletal modeling to solve state estimation (tracking) problems and produce 10 

stable forward simulations of human movement17, 29. However, relatively few studies 11 

have used this approach to solve a trajectory optimization problem and predict 12 

movement biomechanics independent of experimental data1,2,12,18,20,27. Stelzer and 13 

von Stryk27 and Eriksson12 applied simple models of the body to simulate kicking and 14 

arm lifting, respectively. Ackermann and van den Bogert1 used a 9-degree-of-15 

freedom skeleton actuated by 16 muscles to study how changes in the performance 16 

criterion affect the optimal control solution computed for normal walking. Kaplan and 17 

Heegard17 solved a tracking problem with a simplified model of human pedaling 18 

dynamics and showed that direct collocation converges more quickly than direct 19 

shooting. To our knowledge, no study has quantitatively compared the computational 20 

performance of direct collocation to that of direct shooting when these two methods 21 

are used to solve the same trajectory optimization problem for human movement. In 22 

addition, no study has described the sensitivity of large-scale optimal control 23 

solutions to a change in the initial guess. 24 
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The overall goal of the present study was to compare the computational 1 

performances of the direct shooting and direct collocation methods in solving large-2 

scale optimal control problems in human movement. Both methods were 3 

implemented on a detailed musculoskeletal model of the body to compute the 4 

optimal control solution for maximum-height jumping. This task was chosen because 5 

it presents a relatively unambiguous performance criterion (i.e., to maximize the 6 

height reached by the center of mass (COM) of the body). Our specific aims were to 7 

(1) implement the direct shooting and direct collocation computational algorithms on 8 

a freely-available musculoskeletal modeling platform called OpenSim; (2) compare 9 

the CPU times needed to converge to the optimal solutions computed by direct 10 

shooting and direct collocation using the same initial guess; (3) quantitatively 11 

evaluate the optimal solution derived from each method against the time histories of 12 

joint angular displacements, ground reaction forces, and muscle EMG activity 13 

measured for subjects jumping to their maximum achievable heights; and (4) 14 

determine the sensitivity of the optimal control solution to a change in the initial 15 

guess. 16 

METHODS 17 

Musculoskeletal model 18 

A model of the body was created based on the ‘Generic Gait2392 model’ 19 

available in OpenSim (version 3.2)11. The skeleton was modeled as a planar, 8-20 

segment, 10-degree-of-freedom linkage (Fig. 1). The pelvis was connected to the 21 

ground via a 3-degree-of-freedom planar joint with two translations and one rotation. 22 

The head, arms and torso were represented by a single rigid body that articulated 23 

with the pelvis via a hinge joint. The hip and ankle were each modeled as single-24 

degree-of-freedom hinge joints whereas the knee was represented as a 1-degree-of-25 
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freedom translating hinge joint11. Joint hyperextension was prevented by applying a 1 

passive torque at each joint that represented the actions of the ligaments. The 2 

skeleton was actuated by 48 muscle-tendon units (24 muscles on each side of the 3 

body), with each unit represented as a Hill-type muscle in series with an elastic 4 

tendon. Muscle lines-of-action were represented in 3D based on the attachment sites 5 

assumed in the generic OpenSim model. 6 

Eight spheres were placed under the model foot to simulate the interaction of 7 

the foot with the ground; five spheres were located under the hind-foot and three 8 

were placed under the toes (Fig. 1). The normal contact force applied by each 9 

sphere was found by summing the Hertzian contact force16 and a Hunt-Crossley 10 

damping force15. The stiffness and damping coefficients of the contact spheres were 11 

found by solving optimization problems that reproduced the vertical ground forces 12 

measured for walking at the self-selected speed (1.4 m/s) and for running at 7 m/s 13 

(Supplementary Material). These tasks were chosen because they capture all 14 

possible movements of the foot (i.e., making, maintaining and breaking contact with 15 

the ground) across a wide range of locomotion speeds. The fore-aft component of 16 

the ground force was assumed to arise purely from friction, and a value of 0.8 was 17 

assumed for the static and dynamic friction coefficients21. Data defining the structure 18 

and parameters of the model are available at https://simtk.org/home/vertical_jump/. 19 

Optimal control problem 20 

Jumping was assumed to be bilaterally symmetric4,24, and so 7 independent 21 

generalized coordinates in the model (i.e., anterior-posterior and vertical pelvic 22 

translations, pelvic tilt, lumbar extension, and flexion-extension of the hip, knee and 23 

ankle) were actuated by 24 independent muscle excitations. The system dynamical 24 

equations can be represented explicitly as: 25 
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, (1) 1 

where q  is a 7x1 vector of generalized coordinates; q  is a 7x1 vector of generalized 2 

velocities; 
M

l  is a 24x1 vector of muscle-fiber lengths; a  is a 24x1 vector of muscle 3 

activations; u  is a 24x1 vector of muscle excitations (controls); )(qM  is a 7x7 mass 4 

matrix; ),( qqC   is a 7x1 vector of centrifugal and Coriolis forces and torques; )(qG  is 5 

a 7x1 vector of gravitational forces and torques; )(qR  is a 7x24 matrix of muscle 6 

moment arms; 
MT

F  is a 24x1 vector of muscle-tendon forces; ),( qqT foot
  is a 7x1 7 

vector of spring forces used to simulate foot-ground interaction; and ),( qqT lig
  is a 8 

7x1 vector of ligament and damping torques. Equation (1) can be expressed in 9 

compact form as:  10 

),,( tuxfx  .         (2) 11 

where x  is a 62x1 state vector defined by 
TM

alqqx ),,,(  . For prescribed values of 12 

the controls and states at each time instant, equation (2) was evaluated using 13 

OpenSim API (version 3.2) by executing a MEX-function that provided an interface 14 

between OpenSim and MATLAB. 15 

The performance criterion was to maximize the height reached by the COM 16 

during the jump25 : 17 
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where )( fC tY and )( fC tY are the vertical position and velocity of the COM at the final 1 

lift-off time, ft ; and g  is the gravitational acceleration constant. An inequality 2 

constraint was imposed to prevent the COM from countermoving prior to upward 3 

propulsion:5 4 

 7,...,2,1);()( 1   ntYtY nCnC
 ,      (4) 5 

where )( nC tY  is the vertical acceleration of the COM at the thn  temporal node. 6 

Equation (4) was enforced to reproduce the conditions under which human subjects 7 

performed a non-countermovement jump from an initial squatting position. A set of 8 

inequality constraints was also imposed to constrain the values of the muscle 9 

excitations: 10 

 1)(0  tu ,         (5) 11 

where 1u  and 0u  represent the fully excited and fully de-excited states of a 12 

muscle, respectively. Additional upper and lower bounds were imposed on the state 13 

variables when implementing the direct collocation method: 14 

 maxmin
)( xtxx  .        (6) 15 

Thus, the optimal control problem was to maximize the performance criterion 16 

(equation (3)) subject to the system dynamical equations (equation (2)) and a set of 17 

linear inequality constraints (equations (4)-(5) for direct shooting and equations (4)-18 

(6) for direct collocation). 19 

Creating an initial guess 20 

Optimal control solutions for jumping were computed using two different initial 21 

guesses. In each case, the model began from a prescribed static squatting position. 22 

The first initial guess was created by using computed muscle control28 to calculate 23 

the muscle excitation histories needed to drive the model in a forward simulation to 24 
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track the joint angular displacements and velocities calculated from a previously 1 

published simulation of jumping4. Direct shooting and direct collocation were then 2 

applied separately to compute the optimal control solution assuming a free final lift-3 

off time, ft . Direct shooting required an initial guess only for the controls (muscle 4 

excitations), whereas direct collocation required initial guesses for both the states 5 

and controls. 6 

A second initial guess was created using a previously reported ‘bang-bang’ 7 

optimal control solution for jumping24 . The bang-bang (on-off) muscle excitation 8 

histories were input to the model and the system dynamical equations were 9 

integrated to compute the corresponding states. Direct shooting and direct 10 

collocation were then applied separately to solve the same free-final-time problem 11 

using the second initial guess. The solutions computed for the first and second initial 12 

guesses were compared to determine the sensitivity of each method to a change in 13 

the initial guess. 14 

Computation of the optimal controls 15 

Direct shooting was implemented by discretizing the control histories 16 

corresponding to the initial guess and transcribing the optimal control problem to a 17 

nonlinear programming problem14,23. The time interval ],[ 0 ftt  was discretized evenly 18 

into 28 subintervals and the control histories were parameterized using 29 nodal 19 

points. This number of nodes was based on that used to solve the direct collocation 20 

problem (see below). Since the model began from a prescribed static position, the 21 

values of the control nodes at 0tt   were known. Thus, the  optimal control problem 22 

for direct shooting was defined by 28*24=672 control variables, a free final time ft , 7 23 
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path constraints (equation (4)), and (672+1)*2=1,346 inequality constraints (equation 1 

(5)) (see Table 1).  2 

The direct collocation method was implemented by discretizing both the control 3 

and state histories using 29 nodal points and replacing the system dynamical 4 

equations with 62*28=1,736 algebraic equality constraints or defects, Δ, using 5 

Euler’s method: 6 
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Twenty-nine nodes were used to reproduce the nodal density selected by Ackerman 8 

and van den Bogert1 in their simulation of human gait (i.e., 1 node per 10 ms of 9 

simulation time). Analogous to direct shooting, the values of the controls and states 10 

at 0tt  were known. Thus, the optimal control problem for direct collocation was 11 

defined by 2,409 design variables (24*28 control variables, 62*28 state variables, 12 

and the final time, ft ), 7 path constraints (equation (4)), (24*28+62*28+1)*2=4,818 13 

inequality constraints (equations (5)-(6)), and 28*62=1,736 equality constraints 14 

(equation (7)) (Table 1).  15 

Both optimal control problems were solved using an interior-point algorithm 16 

available within the fmincon function defined in the optimization toolbox of MATLAB 17 

(Toolbox Version 7.0 R2014a, MathWorks Inc., Natick, MA). For the direct shooting 18 

problem, the derivatives of the performance criterion and constraints with respect to 19 

the design variables were calculated using central differences; thus, the system 20 

equations were integrated 2*673=1,346 times per iteration of the computational 21 

algorithm. The optimal control solution was computed until the value of jump height 22 

improved by less than 10-6 m and the values of the constraints were satisfied to a 23 

tolerance of 10-3. 24 
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Efficient computation of the Jacobian matrix 1 

The defect constraints (equation (7)) were functions of only the two neighboring 2 

temporal nodes, and so the constraint Jacobian matrix, which contained the 3 

derivatives of the constraints with respect to the states and controls, was sparse 4 

(Fig. 2). The computational performance of the direct collocation method can be 5 

improved by accounting for this sparse structure. For the jumping problem, the 6 

constraint Jacobian comprised of 62*86*28*28+62*28 or 4,182,024 total entries (Fig. 7 

2). However, the vast majority of these entries were zeros; indeed, at most only 8 

2*27*(62*86)+62*86+28*62=294,996 or 7.1% of the entries within the entire grid 9 

structure of the Jacobian were non-zero (Fig. 2, blue squares and blue line in bottom 10 

panel), leaving 3,887,028 entries or 92.9% of the entire grid structure with zeros. 11 

These zero entries were taken into account in computing the optimal control solution 12 

using direct collocation. Additional zeros within each block of the constraint Jacobian 13 

(Fig. 2, top panel) could not be taken into account because of the built-in functionality 14 

provided by OpenSim (see Discussion below). The constraint Jacobian matrix was 15 

calculated using central differences to approximate the derivatives (Supplementary 16 

Material).  17 

All calculations were performed on a 3.4 GHz PC (Intel® Core™ i7-3770 18 

Processor). Jump height was calculated as the difference between the maximum 19 

height reached by the COM during the jump and the height of the COM at standing. 20 

The direct shooting and direct collocation solutions were compared against 21 

experimental data reported for healthy young subjects jumping to their maximum 22 

achievable heights4. 23 
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RESULTS 1 

Computational performance 2 

Direct shooting required 602 iterations and 846.4 hours (35.3 days) of CPU 3 

time to converge to the optimal control solution for jumping using the first initial 4 

guess (Fig. 3 and Table 2). By comparison, direct collocation required 702 iterations 5 

and 3.4 hours of CPU time (249 times faster than direct shooting) to converge to 6 

essentially the same optimal solution from the same initial guess. The computational 7 

performance of direct collocation remained far superior to that of direct shooting 8 

when the second initial guess was used, but the speed-up in CPU time (103 times) 9 

was less (9.6 hours versus 990.1 hours (41.3 days)). 10 

Comparison of model and experiment 11 

The model simulations reproduced the salient features of maximum-height 12 

jumping. The optimal muscle excitation histories predicted by the model were 13 

consistent with measured EMG (Fig. 4). In agreement with experiment, the erector 14 

spinae, gluteus maximus, vasti, soleus and gastrocnemius were fully activated in the 15 

model for the majority of ground contact time. Some differences between model and 16 

experiment were also evident. For example, the biarticular hamstring was activated 17 

only at the beginning of the simulated jump, whereas subjects activated their 18 

hamstrings during the entire propulsion phase (Fig. 4, SEMIMEM).  19 

Peak vertical ground forces predicted by direct shooting and direct collocation 20 

were 3.0 BW and 3.1 BW, respectively, compared with measured values ranging 21 

from 2.5 BW to 3.0 BW (Fig. 5). Consistent with experiment, the model generated 22 

much smaller forces in the fore-aft direction. However, peak fore-aft ground forces 23 

predicted by both methods (~0.7 BW) were higher than the range of values recorded 24 

from experiment (0.2-0.4 BW).  25 
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Trajectories of the vertical position and velocity of the COM predicted by the 1 

model were consistent with experimental results (Fig. 5). Direct shooting and direct 2 

collocation both predicted a vertical COM velocity at lift-off of 2.2 m/s compared to 3 

2.0-2.5 m/s measured for subjects. Both methods predicted a maximum jump height 4 

of ~36 cm, which agreed closely with the values obtained from experiment (mean, 5 

36.9 cm; range: 33-41 cm)4 (Table 2). Ground contact times predicted by direct 6 

shooting and direct collocation were 0.31 sec and 0.28 sec, respectively, which also 7 

compared well with the average time of 0.30 sec recorded for subjects (range: 0.25-8 

0.39 sec). 9 

The joint angular displacements predicted by both methods were generally 10 

consistent with experiment (Fig. 5). The model extended the hip, knee and ankle 11 

joints in a similar fashion to that measured for subjects, although one noticeable 12 

difference was that the hip and knee in the model were slightly more flexed during 13 

initial propulsion (Fig. 5). The pattern of back extension calculated in the model was 14 

substantially different from that recorded from experiment, but there was 15 

considerable variability in the experimental data. 16 

Sensitivity of the optimal solution to the initial guess 17 

Both methods were sensitive to the initial guess assumed. Although the second 18 

initial guess was much farther from the optimal solution than the first, as evidenced 19 

by the uncoordinated motion of the joints (Figs 6-7, gray and black stick figures) and 20 

a calculated jump height of 0.2 cm lower than the standing height, there were 21 

similarities in the optimal joint angles, COM motion, and ground forces computed 22 

using the two initial guesses (Figs 6-7, heavy and light lines). However, some clear 23 

differences were also evident. For both direct shooting and direct collocation, the 24 

peak vertical ground force predicted for the second initial guess was noticeably lower 25 
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(~0.5 BW) than that calculated for the first, resulting in a ~7 cm difference in jump 1 

height (Table 2). 2 

DISCUSSION 3 

The aim of this study was to compare the computational performances of two 4 

direct methods for solving large-scale, nonlinear, optimal control problems in human 5 

movement. Direct shooting and direct collocation were implemented on a detailed 6 

musculoskeletal model to compute a free-final-time optimal control solution for 7 

maximum-height jumping. Both computational algorithms were executed on an open-8 

source musculoskeletal modeling platform, OpenSim. Direct collocation converged to 9 

essentially the same optimal solution up to 249 times faster than direct shooting 10 

using the same initial guess. There was good agreement between the optimal joint 11 

angles, ground forces, and muscle excitation patterns predicted by the model and 12 

corresponding experimental data. Maximum jump heights predicted by the two 13 

methods were virtually identical and in close agreement with the mean value 14 

obtained from experiment. The model converged to a quantitatively different optimal 15 

solution depending on the initial guess assumed. However, both methods converged 16 

to the same solution when started from the same initial guess.  17 

Few previous studies have used direct collocation to solve a trajectory 18 

optimization problem and predict movement biomechanics independent of 19 

experimental data1,12,27. The models used by Stelzer and von Stryk27  and Eriksson12 20 

were relatively simple with the body represented as a 2-degree-of-freedom linkage 21 

and actuated by fewer than 10 muscles. Ackermann and van den Bogert1  used a 22 

planar, 7-segment, 16-muscle model of the body to study how changes in the 23 

performance criterion affect the optimal solution computed for gait. In the present 24 

study a planar, 8-segment, 48-muscle model of the body (24 muscles on each side) 25 
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was used to compute the optimal control solution for maximum-height jumping, and 1 

the model predictions were quantitatively compared against measurements of the 2 

joint angles, COM position and velocity, ground forces, and muscle activation 3 

patterns obtained as subjects jumped to their maximum achievable heights. We also 4 

compared the computational performances of direct shooting and direct collocation 5 

when the same optimal control problem was solved using the same initial guess. In 6 

addition, the present study described the sensitivity of large-scale optimal control 7 

solutions to a change in the initial guess. 8 

The computational performance of direct collocation was vastly superior to that 9 

of direct shooting even though many more iterations were needed to converge to the 10 

optimal solution (Table 2). This is because the CPU time per iteration was ~300 11 

times less for direct collocation compared to direct shooting. CPU time per iteration 12 

for direct shooting was significantly greater because 2*673=1,346 forward 13 

integrations of the system dynamical equations were needed to evaluate the 14 

derivatives of the constraints (using central differences) and determine a search 15 

direction at each iteration. In contrast, direct collocation solved the system equations 16 

implicitly by enforcing a set of defect constraints (equation (7)) at each of the state 17 

nodal points. This process involved the simultaneous solution of a set of nonlinear 18 

algebraic equations and was less expensive computationally than repeated 19 

integration of the system dynamical equations.  20 

The variation in CPU time across iterations was much larger for direct shooting 21 

than direct collocation. For direct shooting, CPU times per iteration for the solutions 22 

derived from the first and second initial guesses were 84.3 ± 32.4 min and 90.1 ± 23 

38.4 min, respectively, compared to 0.3 ± 0.0 min and 0.3 ± 0.1 min for direct 24 

collocation (Table 2). The high standard deviation in CPU time for direct shooting 25 
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was due to different step sizes used during the forward integrations performed to 1 

evaluate the derivatives. When the dynamics of the simulated jump changed rapidly, 2 

as evidenced by a rapid change in the vertical ground force, the step size selected 3 

by the integrator was necessarily small, causing an increase in the time taken to 4 

integrate the system equations. Conversely, when the dynamics of the simulated 5 

jump changed more slowly, step size was larger, and the time taken to integrate the 6 

system equations was proportionately less. This led to large fluctuations in the CPU 7 

time per iteration for direct shooting. In contrast, CPU time per iteration for direct 8 

collocation was nearly constant because the time taken to calculate a search 9 

direction did not depend on how the dynamics of the simulated jump was changing. 10 

In theory a global optimal control solution can be computed from an arbitrary 11 

initial guess. We found that the optimal solutions computed for maximum-height 12 

jumping using direct shooting and direct collocation were slightly different (i.e., jump 13 

height was 5-7 mm higher for direct shooting), and neither can be guaranteed to 14 

represent the global optimum. There are at least two explanations for this result. 15 

Firstly, different discretization schemes were used to approximate the continuous-16 

time dynamics for the present direct shooting and direct collocation problems. We 17 

used Euler’s method with 29 evenly-spaced nodes to solve the collocation problem, 18 

whereas an OpenSim built-in 5th-order Runge-Kutta method with a variable step size 19 

was used to solve the direct shooting problem. Secondly, the derivatives of the 20 

performance criterion and constraints were evaluated differently during a solution of 21 

the direct shooting and direct collocation problems, and this information was then 22 

used by a nonlinear programming solver to determine a search direction. To illustrate 23 

the effects of each of these factors on the computation of the optimal solution, we 24 

solved a standard optimal control problem using the direct shooting and direct 25 
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collocation methods (Supplementary Material). This analysis clearly demonstrated 1 

that both methods again converged to different solutions regardless of the size of the 2 

optimal control problem. 3 

The model converged to a quantitatively different optimal solution depending on 4 

the initial guess assumed (Figs 6-7). In particular, optimal jump heights predicted by 5 

the two methods using the second initial guess (29.9 cm and 29.4 cm for direct 6 

shooting and direct collocation, respectively) were much lower than those calculated 7 

using the first initial guess (36.7 cm and 36.0 cm, respectively). This result is most 8 

likely explained by the nature of gradient-based algorithms, which may have difficulty 9 

converging when the initial guess is at some distance from the neighborhood of the 10 

optimal solution. This was demonstrated in the present study where both methods 11 

converged to a sub-optimal solution for the second initial guess with a maximum 12 

jump height that was 7 cm lower than that computed for the first initial guess. These 13 

results emphasize the fact that computation of the optimal controls is sensitive to the 14 

initial guess and that caution should be exercised in generating an initial guess. For 15 

the direct collocation method, an initial guess is needed for both the control and state 16 

trajectories. One option is to apply computed muscle control or neuromuscular 17 

tracking to compute the muscle excitations needed to track joint angle trajectories 18 

measured from experiment26,28. However, this approach is limited when the aim is to 19 

predict novel movements that result from changes in a model parameter such as 20 

muscle strength. In these instances, the best approach may be to solve the direct 21 

collocation problem repeatedly using a series of different initial guesses to gain 22 

confidence that the solution indeed represents a global optimum. 23 

A noticeable difference between the two methods was the strategy used to 24 

optimize the performance criterion. Jump height increased rapidly during the first few 25 
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iterations of the direct collocation solution, accompanied by relatively large errors in 1 

the constraints (Fig. 8, red lines). As the constraint errors were subsequently 2 

reduced, jump height also decreased markedly. Once the constraint errors were 3 

sufficiently small, however, jump height increased nearly monotonically prior to 4 

convergence. In contrast, the direct shooting solution was characterized by a more 5 

gradual improvement in jump height with much smaller constraint errors generated 6 

throughout (Fig. 8, blue lines). The constraint errors were larger for the collocation 7 

solution because ~5,000 additional constraints (1,736 defect constraints plus 3,472 8 

upper and lower bounds on the state variables) were prescribed for this problem 9 

compared with that for direct shooting (Table 1). Because the system equations were 10 

integrated explicitly in direct shooting, only a set of linear inequality constraints on 11 

the control variables (equation (5)) and 7 non-linear path constraints (equation(4)) 12 

had to be satisfied, making it possible for the optimizer to find a search direction that 13 

improved jump height without committing large errors in the constraints. 14 

The computational performance of direct collocation remained far superior to 15 

that of direct shooting when the second initial guess was used, but the speed-up in 16 

CPU time was less; direct collocation computed the optimal solution 103 times faster 17 

for the second initial guess compared to 249 times faster for the first initial guess. 18 

This result may be explained by the contrasting strategies used by these two 19 

methods to compute the optimal control solution for jumping. Figure 8 shows that the 20 

constraint errors increased by more than a factor of two during the first few iterations 21 

of the direct collocation solution when the second initial guess was used, which 22 

required a larger number of iterations for convergence. In contrast, the constraint 23 

errors generated during the first few iterations of the direct shooting solution were 24 

similar for the first and second initial guesses. This finding suggests that the 25 
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computational performance of direct collocation is more sensitive to a change in the 1 

initial guess than that of direct shooting. 2 

To our knowledge, this is the first study to implement direct collocation in 3 

OpenSim, a widely used open-source modeling and simulation environment for 4 

studying movement biomechanics. Previous studies have used custom 5 

musculoskeletal models and software to solve trajectory optimization problems in 6 

human movement1,3,10,13,20,27,30. The present study demonstrates the potential of 7 

performing predictive simulations of movement using direct collocation within 8 

OpenSim. While the results are encouraging, there are some limitations which 9 

require further consideration. 10 

First, the structure of the sparsely populated constraint Jacobian matrix was not 11 

fully exploited when solving the collocation problem. As described in the Methods 12 

section, the constraint Jacobian comprised of 62*86*28*28+62*28=4,182,024 total 13 

entries (Fig. 2). By examining an exploded view of a representative block of the 14 

Jacobian grid structure (Fig. 2, blue squares in bottom panel), it can be seen that 15 

only 406 entries (Fig. 2, blue dots in top panel) out of 62*86=5,332 total entries in 16 

each block were non-zero, leaving 4,926 entries or 92.4% of each block containing 17 

zeros. Thus, only 2*27*406+406+28*62=24,066 entries or 0.6% of all entries within 18 

the constraint Jacobian were non-zero for the jumping problem. The results of Fig. 3 19 

did not account for the zero entries within each block, which meant that 20 

4,926*(2*27)+4,926=270,930 additional zeros (6.5% of all entries in the constraint 21 

Jacobian) were unnecessarily computed while forming the derivatives of the 22 

constraints. We were unable to account for the additional zeros within each block 23 

because calculation of the derivatives of the constraints is currently limited to the 24 

built-in functionality provided by OpenSim. Future work should focus on developing 25 
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the software needed to customize these calculations so that the sparse structure of 1 

the constraint Jacobian matrix can be fully exploited. 2 

Second, an explicit formulation of the dynamical equations of motion was used 3 

in the present study. An optimal control problem can be solved either by explicitly 4 

(i.e., equation (2)) or implicitly formulating the equations for neuromusculoskeletal 5 

dynamics. The latter approach has been shown to be more efficient computationally 6 

because analytical expressions are given for the various entries of the constraint 7 

Jacobian29. Recent studies have applied implicit direct collocation and derived 8 

optimal control solutions for human movement using less than 30 minutes of CPU 9 

time20,30.  While it is theoretically possible to solve our jumping problem using implicit 10 

direct collocation, OpenSim currently provides only an explicit formulation of the 11 

dynamical equations of motion, and a significant amount of customization would 12 

therefore be needed to export the implicit form of these equations from OpenSim. 13 

This issue warrants careful consideration when contemplating the solution of an 14 

optimal control problem in OpenSim using direct collocation.  15 

ACKNOWLEDGMENTS 16 

This work was supported by a VESKI Innovation Fellowship awarded to MGP. 17 

A University of Melbourne Postgraduate Scholarship to SP is also gratefully 18 

acknowledged. 19 

REFERENCES 20 

1. Ackermann M. and A. J. van den Bogert. Optimality principles for 21 

model-based prediction of human gait. Journal of Biomechanics 43: 1055-1060, 22 

2010. 23 



Porsa et al. 
 

22 
 

2. Ackermann M. and A. J. van den Bogert. Predictive simulation of gait at 1 

low gravity reveals skipping as the preferred locomotion strategy. Journal of 2 

Biomechanics 45: 1293-1298, 2012. 3 

3. Anderson F. C. and M. G. Pandy. Dynamic optimization of human 4 

walking. Journal of Biomechanical Engineering 123: 381-390, 2001. 5 

4. Anderson F. C. and M. G. Pandy. A dynamic optimization solution for 6 

vertical jumping in three dimensions. Comput Methods Biomech Biomed Engin 2: 7 

201-231, 1999. 8 

5. Anderson F. C. and M. G. Pandy. Storage and utilization of elastic 9 

strain energy during jumping. Journal of Biomechanics 26: 1413-1427, 1993. 10 

6. Betts J. T. Survey of numerical methods for trajectory optimization. 11 

Journal of Guidance, Control, and Dynamics 21: 193-207, 1998. 12 

7. Bryson A. E. Applied optimal control: Optimization, estimation and 13 

control. CRC Press, 1975. 14 

8. Celik H. and S. J. Piazza. Simulation of aperiodic bipedal sprinting. 15 

Journal of Biomechanical Engineering 135: 081008-081008, 2013. 16 

9. Crowninshield R. D. Use of optimization techniques to predict muscle 17 

forces. Journal of Biomechanical Engineering 100: 88-92, 1978. 18 

10. Davy D. T. and M. L. Audu. A dynamic optimization technique for 19 

predicting muscle forces in the swing phase of gait. Journal of Biomechanics 20: 20 

187-201, 1987. 21 

11. Delp S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, 22 

E. Guendelman and D. G. Thelen. Opensim: Open-source software to create and 23 

analyze dynamic simulations of movement. IEEE Transactions on Biomedical 24 

Engineering 54: 1940-1950, 2007. 25 



Porsa et al. 
 

23 
 

12. Eriksson A. Optimization in target movement simulations. Computer 1 

Methods in Applied Mechanics and Engineering 197: 4207-4215, 2008. 2 

13. Hatze H. The complete optimization of a human motion. Mathematical 3 

Biosciences 28: 99-135, 1976. 4 

14. Hull D. G. Conversion of optimal control problems into parameter 5 

optimization problems. Journal of Guidance, Control, and Dynamics 20: 57-60, 1997. 6 

15. Hunt K. and F. Crossley. Coefficient of restitution interpreted as 7 

damping in vibroimpact. Journal of Applied Mechanics 42: 440-445, 1975. 8 

16. Johnson K. Contact mechanics. Cambridge University Press, 1985. 9 

17. Kaplan M. L. and J. H. Heegaard. Predictive algorithms for 10 

neuromuscular control of human locomotion. Journal of Biomechanics 34: 1077-11 

1083, 2001. 12 

18. Kistemaker D. A., J. D. Wong and P. L. Gribble. The cost of moving 13 

optimally: Kinematic path selection. Journal of Neurophysiology 112: 1815-1824, 14 

2014. 15 

19. Miller R. H., S. C. Brandon and K. J. Deluzio. Predicting sagittal plane 16 

biomechanics that minimize the axial knee joint contact force during walking. Journal 17 

of Biomechanical Engineering 135: 011007, 2013. 18 

20. Miller R. H. and J. Hamill. Optimal footfall patterns for cost minimization 19 

in running. Journal of Biomechanics 2015. 20 

21. Miller R. H., B. R. Umberger and G. E. Caldwell. Limitations to 21 

maximum sprinting speed imposed by muscle mechanical properties. Journal of 22 

Biomechanics 45: 1092-1097, 2012. 23 

22. Pandy M. G. Computer modeling and simulation of human movement. 24 

Annual Review of Biomedical Engineering 3: 245-273, 2001. 25 



Porsa et al. 
 

24 
 

23. Pandy M. G., F. C. Anderson and D. G. Hull. A parameter optimization 1 

approach for the optimal control of large-scale musculoskeletal systems. Journal of 2 

Biomechanical Engineering 114: 450-460, 1992. 3 

24. Pandy M. G. and F. E. Zajac. Optimal muscular coordination strategies 4 

for jumping. Journal of Biomechanics 24: 1-10, 1991. 5 

25. Pandy M. G., F. E. Zajac, E. Sim and W. S. Levine. An optimal control 6 

model for maximum-height human jumping. Journal of Biomechanics 23: 1185-1198, 7 

1990. 8 

26. Seth A. and M. G. Pandy. A neuromusculoskeletal tracking method for 9 

estimating individual muscle forces in human movement. Journal of Biomechanics 10 

40: 356-366, 2007. 11 

27. Stelzer M. and O. Von Stryk. Efficient forward dynamics simulation and 12 

optimization of human body dynamics. ZAMM Journal of Applied Mathematics and 13 

Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 86: 828-840, 2006. 14 

28. Thelen D. G. and F. C. Anderson. Using computed muscle control to 15 

generate forward dynamic simulations of human walking from experimental data. 16 

Journal of Biomechanics 39: 1107-1115, 2006. 17 

29. van den Bogert A. J., D. Blana and Heinrich. Implicit methods for 18 

efficient musculoskeletal simulation and optimal control. Procedia IUTAM 2: 297-316, 19 

2011. 20 

30. Van den Bogert A. J., M. Hupperets, H. Schlarb and B. Krabbe. 21 

Predictive musculoskeletal simulation using optimal control: Effects of added limb 22 

mass on energy cost and kinematics of walking and running. Proceedings of the 23 

Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and 24 

Technology 1754337112440644, 2012. 25 



Porsa et al. 
 

25 
 

31. Zajac F. E. and M. E. Gordon. Determining muscle's force and action in 1 

multi-articular movement. Exercise and Sport Sciences Reviews 17: 187-230, 1989. 2 

 3 

FIGURE CAPTIONS 4 

Fig. 1:  Schematic diagram of the musculoskeletal model used in this study. Only 5 

those muscles on the right side of the body are shown for clarity. Foot-6 

ground contact was modeled using eight contact spheres per foot (inset). 7 

Forces were applied to the model foot at the points of ground contact. There 8 

is no contact force between the spheres even though some spheres overlap 9 

with each other as illustrated in this figure. 10 

Fig. 2: Structure of the constraint Jacobian matrix computed for the musculoskeletal 11 

model used in this study (see Fig. 1). The ith block-row of the 28*28 grid 12 

(bottom panel) represents the derivatives of all defect constraints with 13 

respect to the control and state variables at the ith node. Because the defect 14 

constraints were a function of two neighboring nodes, each row contained 15 

only two non-zero blocks (blue squares); the entries of the remaining 26 16 

blocks were all zeros (empty squares). Please note that the derivatives of all 17 

defect constraints with respect to the final time variable were all non-zeros 18 

and were represented as a blue line at the bottom of the grid. Further 19 

improvement in computational speed may be obtained by exploiting the 20 

sparse structure of the Jacobian matrix inside each block as illustrated in the 21 

exploded view given in the top panel. Each row of each block contained 62 22 

entries related to the defect constraints as defined in equation (7) (i.e., 7 23 

entries related to joint angular displacements ( q );7 entries related to joint 24 

angular velocities ( q ); 24 entries related to muscle-fiber lengths ( L ); and 25 
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24 entries related to muscle activations ( a )). Each column of each block 1 

contained 86 entries associated with the state and control variables (i.e., 7 2 

joint angular displacements (q ), 7 joint angular velocities (q ), 24 muscle-3 

fiber lengths ( L ), 24 muscle activations (a ), and 24 controls (u )). Thus, the 4 

size of each block was 62*86=5,332 entries while that of the entire Jacobian 5 

matrix was 5332*28*28+62*28 =4,182,024 entries. 6 

Fig. 3: Top: Stick figures showing the configuration of the model at lift-off as a 7 

function of iteration number. Iteration number is expressed as a percentage 8 

of the total number of iterations performed using direct shooting and direct 9 

collocation in conjunction with the first initial guess (left panel) and the 10 

second initial guess (right panel). 11 

Bottom: Total CPU time plotted against the absolute number of iterations 12 

taken to converge to an optimal control solution for jumping using the direct 13 

shooting method (blue line) and the direct collocation method (red line) for 14 

the first initial guess (left panel) and the second initial guess (right panel). 15 

Fig. 4: Muscle excitation histories representing the first initial guess (black lines), 16 

optimal muscle excitations predicted by direct shooting starting from the first 17 

initial guess (blue lines), and optimal muscle excitations predicted by direct 18 

collocation starting from the first initial guess (red lines). Also shown are 19 

muscle EMG activation patterns recorded for one subject executing a 20 

maximum-height jump (gray lines)4. EMG data shown are for the subject that 21 

most closely matched the BMI of the model. EMG data for each muscle were 22 

normalized by the maximum electrode voltage recorded during a maximal 23 

voluntary contraction4. The vertical axes for the model muscle excitations 24 

and the EMG data therefore range from 0 to 1. Muscle abbreviations used 25 



Porsa et al. 
 

27 
 

are: ERCSPN, erector spinae; INTOBL, internal obliques; GMAX, medial  1 

gluteus maximus; SEMIMEM, semimembranosus; RF, rectus femoris; VASi, 2 

vastus intermedius; GAS, medial gastrocnemius; SOL, soleus. 3 

Fig. 5: Time histories of the vertical and fore-aft ground reaction forces and center-4 

of-mass vertical position and velocity (left column) and the angular 5 

displacements of the back, hip, knee and ankle joints (right column) 6 

generated by the first initial guess (black lines) compared to the optimal 7 

solutions predicted by direct shooting (blue lines) and direct collocation (red 8 

lines). The gray lines represent experimental data recorded for five subjects 9 

jumping to their maximum achievable heights4. Positive values represent 10 

back extension, hip flexion, knee extension, and ankle dorsiflexion. The stick 11 

figures above each column show the configuration of the body during ground 12 

contact time. The gray stick figures represent the experimental data 13 

averaged for the five subjects while the red stick figures represent the 14 

configuration of the model corresponding to the direct collocation solution. 15 

The configuration of the model corresponding to the direct shooting solution 16 

is indistinguishable from that corresponding to direct collocation and is 17 

therefore not shown. 18 

Fig. 6: Time histories of the fore-aft and vertical ground reaction forces and center-19 

of-mass vertical position and velocity generated by the first and second initial 20 

guesses (left column) compared to the optimal solutions predicted by direct 21 

shooting (middle column) and direct collocation (right column). In all panels, 22 

the light lines represent the first initial guess and its corresponding optimal 23 

solutions while the heavy lines represent the second initial guess and its 24 
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corresponding optimal solutions. The stick figures above each column show 1 

the configuration of the model during ground contact time. 2 

Fig. 7: Time histories of the back, hip, knee and ankle joint angular displacements 3 

generated by the first and second initial guesses (left column) compared to 4 

the optimal solutions predicted by direct shooting (middle column) and direct 5 

collocation (right column). In all panels, the light lines represent the first initial 6 

guess and its corresponding optimal solutions while the heavy lines 7 

represent the second initial guess and its corresponding optimal solutions. 8 

The stick figures above each column show the configuration of the model 9 

during ground contact time. 10 

Fig. 8: Variation in the values of the performance criterion (jump height) and 11 

maximum constraint error plotted against the percentage of total number of 12 

iterations for direct shooting (blue lines) and direct collocation (red lines). 13 

The light and heavy lines represent the optimal solutions derived using the 14 

first and second initial guesses, respectively. The unit of the maximum 15 

constraint error represented on the vertical axis in the bottom panel is not 16 

given as it varies according to the state possessing the maximum value. 17 

18 
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  Tables 1 

Table 1: Comparison of the design variables and constraints used in the 2 

formulation of the direct shooting and direct collocation problems. Note that the 3 

number of bounds is two times greater than the total number of design variables 4 

because an upper and lower bound was applied to each design variable. See text for 5 

details.  6 

  Design Variables  Constraints 

Method  Controls States Final Time Total  Path Defect Bounds Total 

Direct 

Shooting 

 

672 0 1 673 

 

7 0 1346 1353 

Direct 

Collocation 

 

672 1736 1 2409 

 

7 1736 4818 6561 

 7 

8 
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Table 2: Comparison of number of iterations, CPU time, jump height, and 1 

ground contact time for the direct shooting and direct collocation optimal control 2 

solutions. Average CPU time per iteration is expressed as mean ± one standard 3 

deviation. 4 

 Method 
Number of 

Iterations 

CPU Time 

(hours) 

CPU Time 

per Iteration 

(min) 

Jump 

Height 

(cm) 

Ground 

Contact 

Time (sec) 

First 

Initial 

Guess 

Direct 

Shooting 
602  846.4 84.3 ± 32.4 36.7 0.31 

Direct 

Collocation 
702  3.4 0.3 ± 0.0 36.0 0.28 

Second 

Initial 

Guess 

Direct 

Shooting 
661 990.1 90.1 ± 38.4 29.9 0.29 

Direct 

Collocation 
1683 9.6 0.3 ± 0.1 29.4 0.27 
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