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Highlights 

 Higher clustering and longer path length in brain-injured patients. 
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 Graph metrics can be used to diagnose and differentiate TBI patients. 

 TBI patients show a shift away from balanced small-world structure. 

 We reveal a pattern of change to be used to guide hypothesis-driven research. 

 

Abstract 

IMMS, P., A. Clemente, M. Cook, W. D’Souza, P. H. Wilson, D. K., Jones & K. 

Caeyenberghs. Insights into traumatic brain injury from graph theory: A meta-analysis. 

NEUROSCI BIOBEHAV REV 95(1) XXX-XXX, 2018. - Although recent structural 

connectivity studies of traumatic brain injury (TBI) have used graph theory to evaluate 

alterations in global integration and functional segregation, pooled analysis is needed to 

examine the robust patterns of change in graph metrics across studies. Following a systematic 

search, 15 studies met the inclusion criteria for review. Of these, ten studies were included in 

a random-effects meta-analysis of global graph metrics, and subgroup analyses examined the 

confounding effects of severity and time since injury. The meta-analysis revealed 

significantly higher values of normalised clustering coefficient (g=1.445, CI=[0.512, 2.378], 

p=0.002) and longer characteristic path length (g=0.514, CI=[0.190, 0.838], p=0.002) in TBI 

patients compared with healthy controls. Our findings suggest that the TBI structural network 

has shifted away from the balanced small-world network towards a regular lattice. Therefore, 

these graph metrics may be useful markers of neurocognitive dysfunction in TBI. We 

conclude that the pattern of change revealed by our analysis should be used to guide 

hypothesis-driven research into the role of graph metrics as diagnostic and prognostic 

biomarkers.  

Key words: Traumatic Brain Injury; graph theory; graph metrics; structural connectomics; 

network analysis; diffusion MRI; biomarkers; meta-analysis; systematic search; narrative 

review. 
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1. Introduction 

Traumatic Brain Injury (TBI) is one of the leading causes of death and disability in 

young people, affecting 10 million people worldwide every year (Humphreys et al., 2013; 

Hyder et al., 2007). The severity of a brain injury is typically described as mild, moderate, or 

severe, based on time spent unconscious and/or coma rating score, the duration of post-

traumatic amnesia, and neuroimaging results. Cognitive deficits (e.g., slow processing speed 

and poor concentration), motor control deficits (e.g., poor manual dexterity, balance deficits), 

and behavioural problems (e.g., impulsivity) are particularly common (Rabinowitz & Levin, 

2014; Rossi & Sullivan, 1996). Approximately 15-30% of mild TBI cases (Shenton et al., 

2012) and up to 65% of moderate-severe cases (Rabinowitz & Levin, 2014; Selassie et al., 

2008) report long-term problems. These persistent deficits cause disability and interfere with 

a patient’s ability to perform day-to-day tasks, for example getting dressed, planning ahead, 

and preparing food (Rabinowitz & Levin, 2014). Isolating neurological biomarkers holds 

promise as a means to identify which patients are at risk of long-term disability; which has 

implications for patient management and development of economically sustainable treatment 

options.   

There is mounting evidence supporting diffusion MRI as a sensitive diagnostic tool in 

the care of patients with TBI (for reviews, see Delouche et al., 2016; Hulkower et al., 2013; 

Hutchinson et al., 2018; Xiong et al., 2014). First, changes in white matter organisation 

following TBI have been demonstrated in several important fibre bundles of the brain 

(Bendlin et al., 2008), including the superior longitudinal fasciculus (e .g., Farbota et al., 

2012; Spitz et al., 2013) and the corpus callosum (e.g., Levin et al., 2008; Mayer et al., 2010; 

Rutgers et al., 2008). For example, in a meta-analysis of 13 diffusion studies of TBI, 
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significant increases in fractional anisotropy (FA) and decreases in mean diffusivity (MD) 

were found in the posterior parts of the corpus callosum (Aoki et al., 2012).  

Second, decreased white matter organization has been shown to predict poorer 

outcome in chronic TBI patients of all severity types (Kinnunen et al., 2011; Kraus et al., 

2007), and in acute mild TBI patients with persistent symptoms (Niogi et al., 2008). Lower 

FA in the subregions of the corpus callosum has been associated with poorer bimanual 

coordination (Caeyenberghs et al., 2011a) and slower processing speed (e.g., Levin et al., 

2008; Wilde et al., 2006) in moderate-severe TBI patients. Similarly, lower FA in the 

cerebellum has been associated with poorer manual dexterity (Caeyenberghs et al., 2011b). 

Despite multiple reports of altered diffusion metrics, the regional analyses reported in these 

studies cannot identify how whole brain networks are affected by white matter damage 

following TBI.  

Because TBI may be considered a ‘disconnection syndrome’, where symptoms are 

accounted for by altered connectivity between regions of the brain, it is important to take 

global network disruption into account (Catani & Ffytche, 2005; Griffa et al., 2013). Where 

traditional diffusion approaches such as those outlined above examine isolated brain regions, 

graph theoretical analysis (GTA) can characterise the global structure of the brain network 

(or ‘connectome’; Bullmore & Bassett, 2011; Hagmann et al., 2008; Sporns, 2013). Structural 

GTA represents the brain as a set of ‘edges’ (white matter pathways) that pass between 

‘nodes’ (brain regions), using the reconstruction of white matter tracts as weights. This graph 

is then used to calculate graph metrics, which estimate network properties such as global 

integration and functional segregation (see Supplementary Material 1 for definitions, 

interpretations, and calculations for the graph metrics included in this review).  

Connectome analyses have rapidly found applications in the clinical neurosciences 

because the balance between integration and segregation necessary to support complex 
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function may be affected by disease or injury. In their seminal review, Griffa et al. (2013) 

propose that graph metrics show promise as biomarkers in neurodevelopmental disorders 

such as ADHD (e.g., Cao et al., 2013), neurodegenerative diseases like Alzheimer’s disease 

(e.g., Lo et al., 2010), and psychiatric disorders such as schizophrenia (e.g., Fornito et al., 

2012). In one of the first structural GTA studies of TBI, Caeyenberghs et al. (2012) have 

revealed that young TBI patients have decreased connectivity degree within the brain, which 

correlated significantly with poor balance. Similarly, Kim et al. (2014) found that longer path 

length in adults with moderate-severe TBI correlated with poorer higher-order cognitive 

processes like executive function and verbal learning. Since then, more research has 

suggested that graph metrics could be ‘biomarkers’ of TBI (e.g., Hellyer et al., 2015; Yuan et 

al., 2015; Yuan et al., 2017b).  

With recent growth in the use of structural GTA in all types of TBI, there is a need to 

conduct a meta-analytical review to probe consistent patterns of change in graph metrics to 

see which hold promise as biomarkers. In the study presented here, we conduct a narrative 

review of diffusion MRI papers comparing healthy controls (HCs) using GTA, and the first 

meta-analysis to date of graph metrics in TBI. Heterogeneity in patient samples is addressed 

using subgroup analyses. This divides up an already small body of research, and as such the 

results are for hypothesis generation only. It was also our aim to draw inferences from this 

data about how graph metrics might be used as biomarkers in TBI, and to provide a 

framework for hypotheses in future GTA studies.  

2. Method 

2.1 Search and Selection Strategy 

A systematic literature search was conducted using Medline, CINAHL, PsycINFO, 

and Web of Science for all relevant articles published from 1999 until the last search date (4th 

of April 2018; see Figure 1 for PRISMA diagram). The search terms were [((TI OR AB) 
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“traumatic brain injur*” OR TBI)) AND ((TI OR AB) connectom* OR “structural connect*” 

OR “graph theor*” OR “graph metric*” OR “graph analys*” OR “network analys*”)] (see 

Supplementary Material 2 for Mesh headings).  

Abstracts and titles of 247 unique papers were returned from this search. The 

reference lists of review papers were searched for additional studies (but none were found). 

After screening titles and abstracts, we excluded studies of functional MRI, electro-

encephalography (EEG) or magneto-encephalography (MEG), animal models of TBI, and 

other causes of acquired brain injury (such as brain tumours or stroke). Also excluded were 

studies that did not employ a network analysis (for example, tract-based comparisons of FA), 

any publications that were not peer-reviewed (e.g., conference abstracts), and review papers.  

<<Figure 1. PRISMA flow diagram of the systematic literature search>> 

The remaining 26 articles were examined in full to assess eligibility. Studies that did 

not compare the structural connectomes between TBI patients and HCs, or that did not 

calculate graph metrics or run network-based statistics (NBS) were excluded, leaving 15 

studies for inclusion in the narrative review. Of these, ten studies were included in the meta-

analysis, addressing global graph metrics that directly compared the structural connectomes 

of TBI patients and HCs. The five studies not included in the meta-analysis were Fagerholm 

et al. (2015) and Mitra et al. (2016), both of which applied machine learning techniques; 

Dall’Acqua et al. (2016) which employed Network Based Statistics (NBS) for the group 

comparisons; and finally Solmaz et al. (2017) and Caeyenberghs et al. (2013), who only 

investigated group differences in regional graph metrics.  

2.2 Quality Assessment 

Two authors (PI, AC) assessed the methodological quality of each study 

independently, using a quality checklist for diffusion MRI studies adapted from Strakowski et 

al. (2000). This checklist has been used to measure methodological quality of papers in 
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previous meta-analyses on schizophrenia (e.g., Baiano et al., 2007; Shepherd et al., 2012), 

major depressive disorder (e.g., Jiang et al., 2017), and bipolar disorder (Strakowski et al., 

2000). As shown in Supplementary Material 3, the checklist included three categories: (i) 

subjects (items 1-4); (ii) image acquisition methodology and analysis (items 5-10); and (iii) 

results and conclusions (items 11-13). For each item, scores of 1, 0.5, and 0 were assigned (1 

= criteria fully met; 0.5 = criteria partially met; 0 = not met). Total scores vary from 0 to 13. 

Currently, there are no established cut-off scores for high- and low-quality studies using this 

tool, however, it was decided by the research team that any study with less than half the total 

score would be excluded from the analysis for poor methodological quality. Disagreements 

between reviewers were resolved by a third review from the senior author (KC). 

2.3 Data Extraction for Quantitative Synthesis 

Global graph metrics estimating global integration (global efficiency, normalised path 

length, and characteristic path length); functional segregation (normalised clustering 

coefficient, transitivity, mean local efficiency, modularity); centrality, resilience 

(betweenness centrality, small-worldness, assortativity); and basic measures (degree, density, 

and strength) were extracted across studies (see Supplementary Material 1 for comprehensive 

definitions of these graph metrics). To calculate effect sizes, means and standard deviations 

were extracted from published articles, supplementary materials, or via email correspondence 

with the authors (Caeyenberghs et al., 2014; Kim et al., 2014; van der Horn et al., 2016). In 

one study, p-values and t-scores were used to estimate the effect size (Hellyer et al., 2015). 

For longitudinal GTA studies (Yuan et al., 2017a; Yuan et al., 2017b), only the baseline 

(‘pre-training’) comparisons between TBI and HCs were included. Two papers reported TBI 

connectivity data in separate subgroups, one according to severity level (Königs et al., 2017), 

and the other by post-traumatic complaints (van der Horn et al., 2016). The latter provided 

pooled data for the purpose of the overall synthesis via email. For Königs et al. (2017) the 
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averages across the TBI group were pooled for the global synthesis in Microsoft Excel (using 

calculations included in Supplementary Material 4). Graph metrics that were calculated at the 

local or nodal level were excluded (i.e., local efficiency, eigenvector centrality, and 

betweenness centrality of singular nodes not averaged across the network) to constrain the 

scope of the analysis to network-level dysfunction. 

2.4 Data Analysis for Quantitative Synthesis 

Hedge’s g, the standardised mean difference score between groups, was calculated for 

each outcome variable (i.e., graph metric) using the Comprehensive Meta-Analysis software, 

and analysed using a random-effects model (CMA; Biostat, USA, v2.2.064). In basic terms, a 

separate meta-analysis for each graph metric was run, as each metric should be treated as a 

separate outcome measure. To calculate the overall effect sizes, mean effects of each metric 

were pooled across studies and weighted by sample size and the 95% confidence intervals 

(CI). A positive effect size indicated that the TBI group had a higher mean value of the graph 

metric compared with the HC group, while a negative value indicated higher mean values in 

the HC group. Effect sizes were regarded as small if g ≥0.2, medium if g ≥0.5 and large if g 

≥0.8 (Cohen, 1988). Also, subgroup analyses on graph metrics were conducted for injury 

severity (mild, moderate-severe), chronicity (time since injury) (acute: <6 months post injury; 

chronic: >6 months post injury), and age at injury (paediatric : <18 years old; adult: 18-65 

years old).  The results of our meta-analysis should be considered as hypothesis generation 

only, as suggested by the Cochrane guidelines when the number of studies in the analysis is 

low (Sambunjak et al., 2017).  

The I2 statistic was used to index heterogeneity in the data, i.e. the percentage of observed 

variability that is greater than what would be expected by chance or sampling error alone. 

High scores (I2 >75%) suggest heterogeneity due to differences in sample demographics 

(Higgins et al., 2003). Low I2 scores (I2 <50%) represent homogenous data, supporting a real 
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effect between HC and TBI groups. Publication bias was assessed using Egger’s test for 

asymmetry in a funnel plot (Egger et al., 1997).  

Finally, false discovery rate (FDR) correction (p<0.002) was conducted for all analyses 

in accordance with recommendations by Wang and Ware (2013). Interdependencies between 

outcomes were accounted for using the Benjamini-Yekutieli procedure on the Bioinformatics 

toolbox in MATLAB_R2018a (Benjamini & Yekutieli, 2001).   

 

3. Results 

3.1 Sample characteristics 

The TBI patient pool included 429 participants, and the HC pool 306, with an age range 

of 8 – 65 years old. Four studies included mTBI patients only, six studies included moderate-

severe TBI patients only, and two studies included both severity types (see Table 1). 

Chronicity varied widely between studies, with TBI groups ranging from acute (e.g., within 

96 hours post injury; Yuan et al., 2015) to chronic (e.g., 5.91 years post injury, ± 3.1 years; 

Yuan et al., 2017a). Six studies recruited paediatric TBI patients, two studies included both 

children and young adults, and four studies recruited adult TBI patients. 

<<Table 1. Demographics and Processing Methods for Graph Theoretical Studies of 

TBI>> 

3.2 Quality Assessment 

Table 2 summarises the quality of the 13 papers according to the diffusion MRI 

checklist categories, ranked according to overall score (maximum score 13). Most papers 

scored full points for describing parameters of the diffusion scanning sequences. Points were 

often deducted for poor description of graph metric calculations and failing to correct for 

multiple comparisons. The ‘subjects’ category of the checklist had the highest average score 
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(3.6/4, 90.5%), followed by ‘methodology’ (5.4/6, 89.7%), and ‘results/conclusions’ (2.5/3, 

83.3%). Overall, the total quality score was high, and varied from 9 to 12.5 points out of a 

possible 13 (average score: 11.5/13, 88.5%). The study of Verhelst et al. (2018) had the 

highest methodological quality. There was no significant effect of publication bias (Egger’s 

regression intercept=1.81, CI: [-1.94, 5.57], p=0.34), and all studies met the benchmark for 

inclusion in the meta-analysis, showing that the published studies are a good representation of 

available evidence. 

<<Table 2 Quality Assessment Results>> 

3.3 Meta-Analysis 

Table 3 summarises the differences in global graph metrics between TBI and HC cohorts 

across studies. For each graph metric, the direction of significant group differences between 

TBI and HCs was the same across studies, with the exception of small-worldness and 

normalised path length. The overall effect sizes for normalised clustering coefficient, global 

efficiency, density, and characteristic path length were found to be significant (p<0.05), with 

moderate to large Hedge’s g effect sizes (g >0.5) (see Figure 2, and Supplementary Material 

5 for statistics). However, only normalised clustering coefficient and characteristic path 

length remained significant following FDR correction (p<0.002). The subgroup analyses 

revealed longer normalised path length in acute/mild patients; higher small-worldness in 

chronic patients; higher small-worldness in paediatric TBI patients; and higher normalised 

clustering coefficient in paediatric TBI patients compared to HCs (FDR corrected, p<0.001, 

see Table 4). In the next paragraphs, we will present the results of key overall effects and 

subgroup analyses for each graph metric that was significant after FDR correction. 

<<Table 3. Graph Metrics in Patients with TBI compared to Healthy Controls>> 

<<Figure 2. Inverted forest plot of the overall effect sizes for each graph metric>> 
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<<Table 4. Results of the Subgroup Analyses>> 

3.3.1 Global Integration 

Four of the ten studies investigated characteristic path length. (Caeyenberghs et al., 

2014; Hellyer et al., 2015; Kim et al., 2014; Königs et al., 2017). Of the 142 patients in this 

analysis, 114 were moderate to severe; 63 acute patients were on average 5.5 months post-

injury, while 79 chronic patients were on average 3.5 years post-injury; and 101 were adults 

(average age: ~26.9 years) and 41 were paediatric  (average age: ~10.5 years) at injury. 

Across this entire cohort, characteristic path length was longer in the TBI patients compared 

with HCs (g = 0.514, p = 0.002, I2 =28.601%). The heterogeneity value of this graph metric 

was low, indicating that the dataset was homogenous.  

Six studies investigated normalized path length (Caeyenberghs et al., 2012; 

Caeyenberghs et al., 2014; Verhelst et al., 2018; Yuan et al., 2017a; Yuan et al., 2015; Yuan 

et al., 2017b) with no overall group effect (g = 0.815, p = 0.129, I2 =92.1%). Of the 112 

patients in this analysis, 67 were moderate to severe; 45 acute patients were between 96 hours 

and 4 months post-injury, while 67 chronic patients were on average 4 years post-injury; and 

21 were adults (average age: ~21.3 years) and 91 were paediatric  (average age: ~12.1 years) 

at injury. Subgroup analysis revealed that the acute/mild TBI group showed significantly 

increased normalised path length compared with HCs (g =0.965, p <0.001, I2 =0.0%), with a 

decreased heterogeneity value. The effect size for the chronic/moderate-severe group was not 

significant.  

3.3.2 Functional segregation 

Seven studies calculated normalized clustering coefficient (Caeyenberghs et al., 2012; 

Caeyenberghs et al., 2014; van der Horn et al., 2016; Verhelst et al., 2018; Yuan et al., 2017a; 

Yuan et al., 2015; Yuan et al., 2017b). Of the 165 patients in this analysis, 67 were moderate 
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to severe; 98 acute patients were between 96 hours and 4 months post-injury, while 67 

chronic patients were on average 4 years post-injury; and 74 were adults (average age: ~27.4 

years) and 91 were paediatric  (average age: ~12.1 years) at injury. Normalised clustering 

coefficient was higher in TBI patients in the overall meta-analysis (g =1.445, p =0.002, I2 

=91.484). In the chronicity and severity subgroup-analysis, the effect remained significant in 

the chronic/moderate-severe patients only (chronic/moderate-severe: g =1.924 p=.014, I2 

=92.440%). However, this effect retained a high heterogeneity value. Similarly in the age at 

injury subgroup analysis, normalised clustering coefficient was significantly higher in the 

paediatric TBI patients than HCs (g = 2.00, p = 0.001, I2 = 89.82). This effect was not 

observed for adult TBI patients. However, grouping by age at injury only lowered the 

observed heterogeneity in normalised clustering coefficient by ~2%. 

3.3.3 Small-Worldness 

 Six studies reported on small-worldness differences between TBI and HCs 

(Caeyenberghs et al., 2012; Caeyenberghs et al., 2014; Hellyer et al., 2015; Yuan et al., 

2017a; Yuan et al., 2015; Yuan et al., 2017b), with no significant effect size overall; 

however, a trend was evident for larger values in TBI patients (g =0.794, p =0.06, I2 

=89.736%). Of the 158 patients in this analysis, 105 were moderate to severe; 108 acute 

patients were between 96 hours and 5.5 months post-injury, while 50 chronic patients were 

on average 4.6 years post-injury; and 84 were adults (average age: ~26.6 years) and 74 were 

paediatric  (average age: ~11.8 years) at injury. Subgroup analysis showed a significant effect 

size for chronic patients only, with increased small-worldness in chronic TBI patients 

compared with HCs (g =0.950, p=.001, I2 =39.536%). Grouping by chronicity also greatly 

reduced heterogeneity in the chronic group. Subgroup analysis by severity revealed larger 

small worldness values for the mild group (g =1.309, p=.020, I2 =81.922%); however, 

heterogeneity remained high and did not survive FDR correction. Finally, small-worldness 
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was significantly higher in the paediatric TBI patients (but not adult TBI patients) compared 

to HCs (g = 1.25, p < 0.001, I2 = 56.949). Grouping by age at injury reduced the 

heterogeneity observed in small-worldness, meaning that age at injury could be explaining 

some of the differences in small-worldness between TBI patients and HCs. 

4. Discussion 

Our study is the first meta-analysis to assess the consistency of recent graph 

theoretical studies of TBI. The overall quality of the papers was high, and all met the 

benchmark for inclusion in the review. Findings suggest that normalized clustering 

coefficient and characteristic path length may be sensitive diagnostic biomarkers to 

distinguish TBI patients from HCs, with the former particularly high in chronic/moderate-

severe and paediatric TBI patients after subgroup analyses. Furthermore, we suggest that 

values of normalised path length may be increased in acute/mild patients, and small 

worldness may be higher in chronic and paediatric TBI patients. In the following sections we 

will examine the use of graph metrics from a critical view. Specifically, we will discuss the 

following topics: (4.1) evidence that the TBI network is closer to a regular lattice structure 

than HCs, and (4.2) the use of graph metrics as diagnostic and prognostic biomarkers in 

longitudinal studies. In (4.3) we will also point out a number of methodological issues and 

provide recommendations for the future study of structural connectomics in TBI. Finally, in 

(4.4) we will address any limitations of this pooled analysis, including heterogeneity in 

patient samples and parcellation schemes.  

4.1 Towards a regular network structure in TBI patients 

The hypotheses presented in the research papers reflect the exploratory nature of GTA 

in TBI studies. Clear rationales and a priori hypotheses regarding the specific choice of graph 

metrics (together with the expected direction of effect) was omitted in many of the studies 
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analysed. For example, Yuan et al. (2017b) ambiguously predicted that metrics would be 

“abnormal at baseline but would normalise after training”. Only Yuan et al. (2015) and 

Königs et al. (2017) justified their choice of each graph metric. While exploratory research is 

necessary, a clear rationale concerning the selection of graph metrics will advance theoretical 

reasoning in the field. Furthermore, having a priori hypotheses about the expected direction 

of effect will minimise multiple comparisons, thereby reducing chance findings that inflate 

the false positive rate. The findings from our meta-analysis, outlined in the following 

paragraphs, can serve as a guide in the development of hypotheses for the next generation of 

GTA studies in TBI.  

Small-worldness is the ratio of normalised clustering coefficient to normalised path 

length, and represents the balance between segregation for local specialization and global 

integration (Watts & Strogatz, 1998). While all studies found that the TBI connectome is still 

a small-world network, there was evidence of a shift towards a regular lattice structure. 

Small-worldness values were significantly higher for TBI patients greater than 6 months post 

injury, and for children with TBI. These results suggest a shift in network structure, which is 

probably due to a secondary process of neurodegeneration and/or is specific to those patients 

injured during childhood. However, further research is needed to evaluate the neurobiological 

mechanisms underlying increases in small-worldness. Yuan et al. (2015) and Yuan et al. 

(2017a) suggested that higher small-worldness is primarily driven by an increase in local 

clustering. Still, changes in small-worldness alone do not provide insight into the nature of 

the group differences. Instead, researchers could focus on more specific metrics that can 

differentiate between alterations in segregation and integration (Fornito et al., 2013; Papo et 

al., 2016), including measures of clustering and path length as described next. 
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In line with the observed shift towards a regular network, our review revealed that 

normalised clustering coefficient was significantly higher in the TBI group compared to HCs. 

This result indicates that TBI patients have more ‘closed triangles’ in their network graph 

compared to the controls, denoting greater functional specialisation. We also observed that 

this effect remained significant in the paediatric group but not the adult group. Yuan et al. 

(2015) suggested that this finding in paediatric TBI patients reflected an adaptive response to 

the injury, whereby local connections are increased because they are less vulnerable to 

damage than long-range connections. However, we argue that this is a costly adaptation, as it 

would increase the number of steps needed for information to travel between any two regions 

(Fornito et al., 2016; Sporns, 2011). In fact, our meta-analysis also showed that characteristic 

path length was significantly longer in the TBI population compared to the HCs, meaning 

there are a greater number of steps between any two nodes on average in the TBI network 

than in the HC network. Furthermore, the subgroup analysis demonstrated that normalised 

path length in the acute mild TBI group (but not the chronic moderate-severe group) was 

significantly higher than HCs. However due to the paucity of data available, it was 

impossible to determine whether this effect was driven by chronicity or severity. Despite the 

lack of data, our findings support the idea that the TBI network topology departs from the 

economical random-graph (Sporns, 2011). 

4.2 Use of graph metrics as diagnostic and prognostic biomarkers 

The effects described in section 4.1 support the use of normalised clustering 

coefficient and characteristic path length as diagnostic biomarkers to identify group 

differences between TBI patients and HCs. Graph metrics can also be used to detect the 

presence or absence of diffuse axonal injuries (DAI) within TBI patients. Two papers 

included in the review (Fagerholm et al., 2015; Mitra et al., 2016) employed machine 

ACCEPTED M
ANUSCRIP

T



learning methods on graph metrics to classify patients. Fagerholm and colleagues were able 

to classify the presence of DAI in TBI patients with a high accuracy rate of 93.4%, and found 

that betweenness centrality had the highest ‘feature importance’ when differentiating between 

patients with microbleeds and HCs. Using a similar machine learning technique, Mitra et al. 

found that connectivity strength could differentiate mild TBI patients with DAI from HCs 

with an accuracy rate of 68.16%. These are very promising techniques that clearly 

demonstrate the use of graph metrics as diagnostic biomarkers. 

Another important aspect of evaluating a diagnostic biomarker is the association of 

the metric with behavioural/clinical outcomes, which was done in all studies apart from one 

(Hellyer et al., 2015). For example, longer characteristic path length correlated with worse 

performance on verbal learning task as well as executive dysfunction in moderate-severe TBI 

patients (Kim et al., 2014). Longer characteristic path length also coincided with lower 

intelligence scores and shorter working memory span in moderate-severe TBI patients 

(Königs et al., 2017). Lower normalised clustering coefficient was found to be associated 

with slower processing speed in mild TBI patients (van der Horn et al., 2016). These 

significant correlations highlight the potential of normalised clustering coefficient and 

characteristic path length as biomarkers of behavioural deficits following TBI. However, 

reminding us of the preliminary nature of this work, a number of studies did not correct for 

multiple comparisons when running correlations between graph metrics and behavioural tests 

(Kim et al., 2014; Yaun et al., 2017a). While uncorrected thresholds can be useful for 

exploratory research, correction for multiple comparisons would strengthen the validity of 

these findings. Finally, comparison between studies is problematic because different outcome 

measures were used across studies. We recommend the use of a core set of behavioural tests 

in the future (e.g., Wefel et al., 2011).  
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Finally, we wanted to explore whether graph metrics can be used as prognostic 

biomarkers to predict treatment response. Longitudinal studies are necessary to investigate 

which graph metrics change in response to training. Only two GTA studies (by the same 

group, Yuan et al., 2017a; Yuan et al., 2017b) so far have conducted longitudinal training 

studies. Yuan et al. (2017a) found that normalised clustering-coefficient and small-worldness 

values decreased following 10 weeks of attention and executive function training in TBI 

patients, but remained the same in the HCs. In an aerobic training study, Yuan et al. (2017b) 

found that improved Post-Concussion Symptom Inventory scores following 4 – 16 weeks of 

training correlated with increased global efficiency and lower normalised path length. 

However, this study did not investigate the interaction effect between group and time 

directly. Overall, there is some evidence that network measures can be used as prognostic 

biomarkers, but further longitudinal analyses are needed to investigate the predictive value of 

graph metrics.  

4.3 Methodological considerations and further recommendations 

As a tentative conclusion, our meta-analysis showed that normalized clustering 

coefficient and characteristic path length are potential diagnostic biomarkers that may be 

sensitive to group differences between TBI and controls. However, GTA is a mathematical 

framework that has only recently been applied in neuroscience (for a critical review, see 

Fornito et al., 2013), and the underlying biological mechanism of change (e.g., increase in 

axon density, diameter, myelination, sprouting of synapses) is so far unknown. Due to 

inherent limitations in tractography, we do not know yet whether graph metrics directly 

reflect white matter integrity (e.g., Jones et al., 2013). Therefore, it is important to refrain 

from diagnosing ‘abnormal’ graph metrics, when comparing TBI patients to HCs (e.g., Yuan 

et al., 2017b), until we know the biological mechanisms underpinning graph metrics. 
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Validated neuro-psychometric testing could couple structural connectome measures such as 

graph metrics (and other diffusion-based measures) to multimodal data with known 

information processing properties. Until then, structural graph metrics represent the necessary 

but insufficient properties of the network to function (Sporns, 2012). However, we can get a 

better understanding if we first obtain reliable patterns of brain connectivity.   

There are methodological challenges associated with investigating graph metrics in 

patients with TBI. These include applying appropriate MRI acquisition and preprocessing 

techniques, connectome construction, and specifying edge weights (see Table 1 for a 

summary of the methods used in the studies in this review). Future research should (a) utilise 

advanced diffusion sequences (e.g., multishell, not used by any studies in the review) with 

accelerated acquisition speed to accommodate for non-compliance due to poor concentration 

(e.g., multiband/compressive sensing); (b) employ robust estimation approaches for diffusion 

MRI metrics (e.g., Slicewise OutLIer Detection (SOLID; Sairanen et al., 2018)); and (c) 

apply a model that can resolve crossing fibre orientations (e.g., constrained spherical 

deconvolution, only used by two papers in the current review). Furthermore, although 

connection density has a noticeable impact on graph metrics (van Wijk et al., 2010), only six 

of the thirteen studies in the quality assessment accounted for differences in network density 

(as suggested by Bullmore & Basset, 2011) when comparing structural networks of TBI and 

HCs (Caeyenberghs et al., 2012; Hellyer et al., 2015; Königs et al., 2017; Solmaz et al., 2017; 

van der Horn et al., 2016; Yuan et al., 2015). Similarly, researchers should consider using 

multiple edge weighting and parcellation schemes to examine the robustness of data (Qi et 

al., 2015; Sotiropoulos & Zalesky, 2017), as was done by Caeyenberghs et al. (2012, 2013, 

2014), Fagerholm et al. (2015), and Königs et al. (2017). Finally, future studies should 

employ advanced measures of white matter such as fibre density and cross section (Raffelt et 

al., 2017) as edge weights, because FA (used by three studies) and number of ‘streamlines’ 
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(used by eight studies) lack the microstructural specificity to fully characterise the integrity of 

the structural network. In summary, by using more advanced MRI acquisition and pre-

processing techniques we can get closer to an understanding of the biological underpinnings 

of the TBI structural connectome.  

4.4 Limitations of the pooled analysis  

4.4.1 Heterogeneity in parcellation schemes 

One limitation of combining different graph analyses is that it inevitably requires 

pooling data obtained with different parcellation schemes. Differences in the way the cortex 

is parcellated can significantly impact the results of GTA (Zalesky et al., 2010). As shown in 

Table 1, five different parcellation schemes (e.g., the Desikan atlas from Freesurfer and the 

Automated Anatomical Labeling atlas) were used across the papers included in the meta-

analysis, each with a different number of regions of interest or ‘nodes’ (range: 82-164). 

Parcellation schemes with higher resolution (i.e., more nodes) will demonstrate gradual 

increases in normalised path length and reductions in normalised clustering coefficient 

(Bassett et al., 2011), while measures of network organisation (e.g., small-worldness) will 

remain largely the same (Qi, Meesters, Nicolay, ter Haar Romeny, & Ossenblok, 2015). 

However, because whole brain node templates in this current study were of similar spatial 

scales, impact on pooled graph metrics should be negligible (Zalesky et al., 2010), and it is 

therefore likely that this effect is small and does not detract from the overall findings.  

4.4.2 Heterogeneity in the TBI samples 

Patients with TBI are diverse, and several clinical and demographic factors (such as 

severity, chronicity, and age at injury) will impact the comparability of patient cohorts across 

studies. In the present meta-analysis, we attempted to address the issue of heterogeneity in 
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our pooled TBI population by conducting subgroup analyses. However, the heterogeneity 

values remained above 75% for the majority of the subgroup analyses, indicating that results 

may still have been driven by differences in sample demographics (Higgins et al., 2003). This 

is not surprising given the diversity present in the structure of an injured brain, which may 

include focal lesions, diffuse axonal injury, or both. There were also limited studies that 

could be included in this review, making some subgroup analyses hard to interpret. For 

example, there were no studies of moderate-severe TBI patients in the acute phase, or mild 

TBI patients in the chronic phase that could be included in the normalised path length 

subgroup analyses (see Table 4). Therefore it is impossible to determine whether normalised 

path length was increased in the acute/mild group due to the time since injury, or the severity 

of the injury. Overall, this meta-analysis allows us to see universal trends that are present in 

the structural connectome of TBI patients; however more research is needed that spans across 

all TBI subgroups, so that future pooled analyses can better distinguish between all TBI 

populations.  

5.0 Conclusion 

Despite the complexity of applying GTA to the heterogeneous TBI population, our 

meta-analysis of structural connectivity studies revealed that normalised clustering 

coefficient and characteristic path length can be regarded as diagnostic biomarkers of TBI. 

These findings provide an evidentiary framework for future research. The emerging evidence 

suggests that average path length and clustering is increased in TBI patients, with the overall 

network more closely resembling a regular lattice. Using graph metrics we are able to 

differentiate between TBI population and healthy controls on the one hand, and the 

presence/absence of DAI on the other hand. Also, there is preliminary evidence that graph 

metrics predict future response to training. Despite the promising results, the biological 
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mechanisms underlying alterations in graph metrics is unclear. Future research should 

employ advanced diffusion MRI tools and obtain biologically-validated measures of 

structural connectivity in longitudinal studies. 
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Figure 1. PRISMA flow diagram of the systematic literature search. 

 

Studies included in meta-analysis 
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Excluded from meta-analysis (n=3) 

a) NBS (n=1) 

b) Regional graph metrics only 

(n=2) 

 

Studies included in quality assessment 

(n=13) 

Excluded from quality assessment (n=2) 

1. Machine Learning (n=2) 

 

ACCEPTED M
ANUSCRIP

T



 
Figure 2. Inverted forest plot of the overall effect sizes and 95% confidence intervals for each 

graph metric, including heterogeneity values (I2). The size of the markers on the I2 graph 

represent the number of studies in each pooled analysis (range: n=1 to n=7), with larger circles 

indicating a larger n. 
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Table 1. Demographics and Processing Methods for Graph Theoretical Studies of Traumatic Brain Injury  
 

a Time is from the injury/onset until MRI scan for TBI patients, described in months; M(SD)). NA = Not Applicable.  
b 55 of the 63 TBI patients were moderate-severe, and as such Hellyer et al. (2015) was included in the moderate-severe subgroup analyses.    

 

 
PARTICIPANTS 

DATA 

ACQUISITION 
PROCESSING PIPELINE 

Sampl

e size 

TBI 

(HC) 

Age 

range at 

scan 

(years)  

or 

M(SD) 

Ave 

age at 

injury 

(years

) 

Severity 

Timea 

since 

injury 

 

Number 

of 

direction

s 

 

b-value 
Parcellation 

Scheme 

Areas 

Removed 

Number 

of ROIs 

Orientation 

model 

Tractography
d 

Weighted 

Byc 

Caeyenberghs 

et al., 2012 
12(17) 8 - 20 10.5 

Moderat

e-severe 

42 

(31.2) 
45 800 (1 b0) 

Automated 

Anatomical 

Labelling 

-  116 
Principle 

eigenvector  
DT SD 

Caeyenberghs 

et al., 2013 
17(16) 16 - 34 21.2 

Moderat

e-severe 

51 

(29) 
64 

1000 (1 

b0) 
Switching Network -  22 

Principle 

eigenvector 
DT 

NOS 

FA 

Caeyenberghs 

et al., 2014 
21(17) 9 - 29 21.3 

Moderat

e-severe 

51 

(29) 
64 

1000 (1 

b0) 

Automated 

Anatomical 

Labelling 

-  116 
Principle 

eigenvector 
DT % 

Dall’Acqua et 

al., 2016 
51(53) 18 - 61 34.5 Mild 0.2 64 

1000 (1 

b0) 

Automated 

Anatomical 

Labelling 

Cerebellar 

regions 
90 

Principle 

eigenvector 
DT NOS 

Hellyer et al., 

2015 
63(26) 

37.4 

(12.4) 
31.9 Allb 

5.5 

(3.3) 
64 

1000 (4 

b0) 
Destreux (Freesurfer)  -  164 

Principle 

eigenvector 
PT FA 

Kim et al., 

2014 
22(18) 17 - 57 26.0 

Moderat

e-severe 

40.9 

(75.6) 
30 

1000 (1 

b0) 
Desikan (Freesurfer) 

Cerebellar 

regions 
95 

Principle 

eigenvector 
PT SCP 

Königs et al., 

2017 
36(27) 8 - 14 7.3 All 

33.6 

(13.2) 
30 750 (5 b0) 

Automated 

Anatomical 

Labelling and FIRST 

Cerebellar 

regions 
84 

Principle 

eigenvector 
PT 

SLD 

FA 

Solmaz et al., 

2017 
40(35) 18 - 64 NA 

Moderat

e-severe 
3.45 (0.6) 30 

1000 (7 

b0) 
Desikan (Freesurfer) - 86 

Principle 

eigenvector 
PT NOS 

van der Horn 

et al., 2016 
53(20) 18 - 65 33.4 Mild 

1 

(NA) 
60 

1000 (7 

b0)  

Desikan-Killianey 

and subcortical  

Cerebellar 

and ventricle 

regions 

85 CSD PT NOS 

Verhelst et 

al., 2018 
17(17) 11 - 17 13.4 

Moderat

e-severe 

28.3 

(13) 
64 

1200 (1 

b0) 

Individual 

parcellation 

(Freesurfer) 

Not known 82 CSD PT (ACT) NOS 

Yuan et al., 

2015 
23(20) 11 - 16 13.7 Mild 

0.1 

(NA) 
61 

1000 (1 

b0) 

Automated 

Anatomical 

Labelling 

Cerebellar 

regions 
90 

Principle 

eigenvector 
DT NOS 

Yuan, Treble-

Barna et al., 

2017 

17(11) 9 - 18 7.8 
Moderat

e-severe 

70.9 

(37.2) 
61 

1000 (1 

b0) 

Automated 

Anatomical 

Labelling 

Cerebellar 

regions 
90 

Principle 

eigenvector 
DT NOS 

Yuan, Wade 

et al., 2017 
22(20) 

15.45 

(1.72) 
15.3 Mild 1 - 4 61 

1000 (7 

b0) 

Automated 

Anatomical 

Labelling 

Cerebellar 

regions 
90 

Principle 

eigenvector 
DT NOS 
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c NOS = number of streamlines; FA = fractional anisotropy; % = percentage of all streamlines that pass through the node; SD = streamline density (number of fibre connections per unit surface); SLD = 

the probability of a tract connecting two ROIs; SCP = scaled conditional probability (the number of streamlines from node i to node j, divided by the number of streamlines seeded in node i, scaled by 

the surface area of the ROI i.  
d CSD = constrained spherical deconvolution; DT = deterministic tractography; PT = probabilistic tractography; ACT = anatomically constrained probabilistic tractography 

 

 

Table 2. Quality Assessment Results for Graph Theoretical Studies of Traumatic Brain Injury  
 SUBJECTS  METHODOLOGY  RESULTS/CONCLUSIONS   

 T1 T2 T3 T4 
Overall 

(/4) 
 T5 T6 T7 T8 T9 T10 

Overall 

(/6) 
 T11 T12 T13 

Overall 

(/3) 
 

FINAL 

SCORE 

Verhelst et al. (2018) 1 1 1 1 4  1 1 1 0.5 1 1 5.5  1 1 1 3  12.5/13 

Caeyenberghs et al. 

(2012) 1 1 1 0.5 3.5  1 1 1 1 1 0.5 5.5  1 1 1 3  12/13 

Dall’Acqua et al. 

(2016) 
1 1 1 1 4  1 0.5 0.5 1 1 1 5  1 1 1 3  12/13 

van der Horn et al. 

(2017) 1 1 1 0.5 3.5  1 1 1 0.5 1 1 5.5  1 1 1 3  12/13 

Yuan et al. (2015) 
1 1 1 1 4  1 1 1 0.5 0.5 1 5  1 1 1 3  12/13 

Caeyenberghs et al. 

(2013) 1 1 1 1 4  1 1 1 1 1 0.5 5.5  0 1 1 2  11.5/13 

Caeyenberghs et al. 

(2014) 1 1 1 0.5 3.5  1 1 1 1 1 0.5 5.5  1 0.5 1 2.5  11.5/13 

Konings et al. (2017) 
1 1 1 1 3.5  1 1 1 0.5 1 1 5.5  0 1 1 2  11.5/13 

Solmaz et al. (2017) 1 0.5 0.5 1 3  1 1 1 1 1 1 6  1 1 1 2.5  11.5/13 

Yuan et al. (2017a) 
1 1 1 1 3.5  1 1 1 0.5 1 0.5 5  0.5 1 1 2.5  11.5/13 

Hellyer et al. (2015) 
1 1 0.5 1 3.5  1 1 1 1 1 1 6  0 0.5 1 2.5  11/13 

Kim et al. (2014) 
1 1 0.5 1 3.5  1 1 1 0.5 1 1 5.5  0 1 1 2  11/13 

Yuan et al. (2017b) 
1 1 0.5 0.5 3  1 1 1 0.5 0.5 0.5 4.5  0 1 0.5 1.5  9/13 

* Fagerholm et al. (2015) and Mitra et al. (2016) were excluded from the quality assessment due to incompatibility with the questionnaire (machine learning experiments). 
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Table 3.  Graph Metrics in Patients with Traumatic Brain Injury compared to Healthy Controls. 
 

 

 GRAPH METRICS 

Segregation 
 

Integration 
Centrality/ 

General measures 

Cl γ Q Eloc T a Eglob L λ b σ k D s 

Caeyenberghs et al., 2012 • ↑ • ↓ • • • • ↓ ↑ ↑ • ↓ • 

Caeyenberghs et al., 2014 - - • • • • ↓ ↑ - • - • • - 

Hellyer et al., 2015 ↓ • • • • • • ↑ • • ↓ ↓ • • 

Kim et al., 2014 • • - • - • • ↑ • • • • - • 

Königs et al., 2017 • • - • - - • - • • • • • • 

van der Horn et al., 2016 - - - - • • - • • - • • • • 

Verhelst et al., 2018 • ↑ • • • • • • ↑ • • • ↓ - 

Yuan et al., 2015 • ↑ ↑ - • • ↓ • ↑ - ↑ • • • 

Yuan, Treble-Barna et 

al., 2017 
• -  - - • • - • - • ↑ • • • 

Yuan, Wade et al., 2017 • ↑ - - • • ↓ • ↑ • ↑ • • • 

Total* 3 7 6 5 2 1 5 4 6 3 6 1 3 2 

↑/ ↓ higher/lower respectively in TBI patients than in HCs; - no significant difference between TBI and HC; • this metric wasn’t measured 

* the total number of times this metric was measured. 

Cl 

Clustering 

γ 

Normalised 

Q 

Modularity 

Eloc 

Local 

T 

Transivity 

a 

Assortativity 

Eglob 

Global 

L 

Characteristic 

λ 

Normalised 

b 

Betweenness 

σ 

Small-

D 

Density 

k 

Degree 

s 

Strength 

ACCEPTED M
ANUSCRIP

T



 

  

coefficient clustering 

coefficient 

efficiency efficiency path length characteristic 

path length 

Centrality worldness 
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 Table 4. Results of the Subgroup Analyses 

 

OUTCOME SUBGROUP VARIABLE N HEDGES G 
LOWER 

LIMIT 

UPPER 

LIMIT 

Z-

VALUE 

P-

VALUE 

I-SQUARED 

(%) 

Global Efficiency (Eglob) Chronicity/Severity Acute/mild 3 -1.610 -3.402 0.181 -1.762 0.078 95.109 

  
Chronic/modsev 2 -0.485 -1.408 0.437 -1.031 0.302 71.268 

 Age at injury  Adult 2 -0.446 -1.368 0.475 -0.949 0.343 79.580 

  Pediatric 3 -1.625 -3.298 0.047 -1.905 0.057 92.912 

Local Efficiency (Eloc) Chronicity/Severity Acute/mild 3 0.031 -0.292 0.354 0.188 0.851 0.000 

  
Chronic/modsev 2 -0.677 -2.067 0.713 -0.995 0.340 89.863 

Modularity (Q) Chronicity Acute/mild 3 0.602 -0.479 1.683 1.091 0.275 89.877 

  
Chronic/modsev/both 3 -0.038 -0.379 0.302 -0.221 0.825 0.000 

 Age at injury Adult 2 -0.233 -0.625 0.159 -1.163 0.245 0.000 

  Pediatric 4 0.532 -0.182 1.247 1.460 0.144 81.165 

Normalised Clustering 

Coefficient (γ) 
Chronicity/Severity Acute/mild 3 0.915 -0.379 2.209 1.386 0.166 92.389 

  
Chronic/modsev 4 1.924 0.382 3.465 2.446 0.014 92.440 

 Age at injury Adult 2 0.150 -0.571 0.871 0.408 0.683 68.072 

  Pediatric 5 2.000 0.857 3.143 3.430 0.001 89.822 

Normalised Path Length (λ) Chronicity/Severity Acute/mild 2 0.965 0.523 1.408 4.274 *<0.001 0.000 

  
Chronic/modsev 4 0.789 -0.903 2.482 0.914 0.361 94.501 

Small Worldness (σ) Chronicity Acute 3 0.625 -0.892 2.142 0.808 0.419 94.950 

  
Chronic 3 0.950 0.402 1.499 3.396 *0.001 39.536 

 
Severity Mild 2 1.309 0.203 2.414 2.320 0.020 81.922 

  
Modsev 4 0.533 -0.491 1.558 1.021 0.307 89.792 

 Age at injury Adult 2 -0.087 -1.358 1.185 -0.133 0.894 90.342 

  Pediatric 4 1.246 0.694 1.798 4.423 *<0.001 56.949 

        
significant at p<.05 

        
*significant at p<.001 
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