
 

 

 
 
 

Research Bank
Journal article

Predictive simulations of neuromuscular coordination and joint-

contact loading in human gait

Lin, Yi-Chung, Walter, Jonathan P. and Pandy, Marcus G.

This version of the article has been accepted for publication, after peer review (when 

applicable) and is subject to Springer Nature’s AM terms of use 

(https://www.springernature.com/gp/open-research/policies/accepted-ma...), but is not 

the Version of Record and does not reflect post-acceptance improvements, or any 

corrections. The Version of Record is available online at: https://doi.org/10.1007/s10439-

018-2026-6

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/s10439-018-2026-6
https://doi.org/10.1007/s10439-018-2026-6


Lin et al. 

1 
 

PREDICTIVE SIMULATIONS OF NEUROMUSCULAR COORDINATION AND  

JOINT-CONTACT LOADING IN HUMAN GAIT 

 

Yi-Chung Lin1, Jonathan P. Walter2, and Marcus G. Pandy1 

1Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia 

2CED Technologies, 6817 Southpoint Pkwy, Suite 190, Jacksonville, FL 32216, USA 

 

REVISION 1 

Submitted to Annals of Biomedical Engineering 

28 March 2018 

Word count (Abstract through References): 5910 

 

Running head: Predictive simulations of human walking at different speeds 

 

 

 

Address for correspondence: 

Yi-Chung Lin, Ph.D. 

Department of Mechanical Engineering 

The University of Melbourne 

Parkville, Victoria 3010, Australia 

Email: linyc@unimelb.edu.au  

mailto:linyc@unimelb.edu.au


Lin et al. 

2 
 

ABSTRACT 

We implemented direct collocation on a full-body neuromusculoskeletal model to 

calculate muscle forces, ground reaction forces and knee contact loading simultaneously for 

one cycle of human gait. A data-tracking collocation problem was solved for walking at the 

normal speed to establish the practicality of incorporating a 3D model of articular contact 

and a model of foot-ground interaction explicitly in a dynamic optimization simulation. The 

data-tracking solution then was used as an initial guess to solve predictive collocation 

problems, where novel patterns of movement were generated for walking at slow and fast 

speeds, independent of experimental data. The data-tracking solutions accurately 

reproduced joint motion, ground forces and knee contact loads measured for two total knee 

arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were 

< 2.0 degrees for rotations and < 0.3 cm for translations while errors in the model-computed 

ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The 

predictive solutions were also consistent with joint kinematics, ground forces, knee contact 

loads and muscle activation patterns measured for slow and fast walking. The results 

demonstrate the feasibility of performing computationally-efficient, predictive, dynamic 

optimization simulations of movement using full-body, muscle-actuated models with 

realistic representations of joint function. 

 

Keywords: musculoskeletal model, dynamic optimization, collocation, knee contact model, 

foot-ground interaction 
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INTRODUCTION 

The ability to perform predictive simulations is arguably the last grand challenge for 

bio-scientists and engineers interested in computational modelling of human movement. 

Model simulations that predict biomechanical function may aid in the design of more 

effective (targeted) exercise-based therapies for patients with movement abnormalities 

resulting from stroke13, cerebral palsy5 and osteoarthritis9, 39. Predictive biomechanical 

simulations of movement may also assist in pre-operative planning of orthopaedic surgical 

procedures such as knee-ligament reconstructions and joint replacement, while the ability 

to predict novel movements would be valuable to sport scientists and coaches aiming to 

improve the techniques used by Olympic-calibre athletes to achieve exceptional 

performance. 

Dynamic optimization or optimal control theory is well suited to exploring the 

interactions between the neuromuscular and musculoskeletal systems because it enables all 

quantities of interest (i.e., joint motion, external (ground reaction) forces and muscle 

coordination patterns) to be predicted, independent of experiment. Hatze12 pioneered the 

application of this approach to the study of human motion biomechanics by predicting the 

neuromuscular patterns needed to produce a minimum-time kicking motion. Since then, 

dynamic optimization has been used to simulate various other tasks, including jumping4, 28, 

30, 31, 45, cycling14, 32, walking1, 3, 7, 25 and running26 (see also Pandy29 for a review). Many other 

studies have applied an alternate formulation of the optimal control problem called ‘data-

tracking’ (known more commonly as ‘state estimation’ in the literature on control systems 

theory), where model-computed joint kinematics, ground reaction forces, and sometimes 

muscle activations as well, are constrained to reproduce corresponding experimental data 

obtained in vivo36, 42. Data-tracking enables efficient calculation of the internal states of the 
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system, for example, the time histories of individual muscle forces and muscle-fibre lengths; 

however, it is fundamentally descriptive and not amenable to generating novel movements. 

We recently implemented an implicit computational method called ‘direct 

collocation’ on a complex neuromusculoskeletal model with foot-ground contact to 

generate 3D data-tracking simulations of human locomotion23. Here we deploy direct 

collocation on a model of even greater complexity to perform predictive simulations of 

walking at different speeds. Our specific aims were firstly, to solve a data-tracking 

collocation problem for normal gait (i.e., walking at the preferred speed) using a full-body 

neuromusculoskeletal model in which the knee is represented as a 6-DOF joint with articular 

contact; and secondly, to perform predictive simulations of walking at slow and fast speeds 

using the data-tracking solution for normal gait as an initial guess. 

 

MATERIALS AND METHODS 

Gait experiments 

Experimental data were obtained from the Third and Fourth “Grand Challenge 

Competitions to Predict In Vivo Knee Loads”10, 16. Data were collected from two participants 

(participant 1: female; age, 69 years; mass, 78 kg; height, 1.70 m; and participant 2: male, 

age, 80 years; mass, 68 kg; height, 1.70 m) implanted with instrumented knee replacements 

which measured the net tibiofemoral contact force6, 17. Data for participant 1 were obtained 

from the 3rd competition and that for participant 2 from the 4th competition. Both 

participants walked over ground at their preferred speeds (1.1 m/s and 1.3 m/s for 

participants 1 and 2, respectively) and participant 2 also walked at the much slower speed 

of 0.8 m/s on a treadmill. Skin-marker motion, ground reaction forces, knee contact forces, 

and muscle electromyographic (EMG) signals were recorded simultaneously for each trial. 
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The measured ground reaction forces and knee contact forces were used to directly validate 

the corresponding model-predicted quantities, while the EMG data were used to 

qualitatively verify the sequence and timing of the calculated muscle excitations. Data were 

extracted and processed so that one complete stride cycle began and ended at ipsilateral 

heel strike. The leg with the knee implant was selected as the ipsilateral limb (participant 1, 

left leg; participant 2, right leg).  

 

Neuromusculoskeletal model of the body 

A full-body musculoskeletal model of each participant was created in OpenSim8. The 

body was represented as a 25-degree-of-freedom (DOF) skeleton actuated by 80 muscle-

tendon units. The pelvis was connected to the ground by a 6-DOF free joint and articulated 

with the torso via a 3-DOF ball-and-socket back joint. Each hip was represented as a 3-DOF 

ball-and-socket joint, each ankle as a 2-DOF universal joint, and the contralateral knee as a 

1-DOF translating hinge joint. The ipsilateral knee was represented as a 6-DOF joint with 

articular contact between the femur and tibia simulated using a model of surrogate joint 

contact21, 22, 46. The surrogate contact model was developed to perform computationally 

efficient contact analyses within multi-body dynamic simulations by eliminating repeated 

geometry evaluations required by deformable-body-contact models. Details of the creation 

of the surrogate contact model are given by Walter and Pandy46. The model skeleton was 

actuated by 80 muscle-tendon units with each unit represented as a Hill-type muscle in 

series with an elastic tendon. Muscle excitation-contraction (activation) dynamics was 

represented as a first-order model with activation and deactivation time constants of 10 ms 

and 40 ms, respectively47. To reduce computational time during a simulation, tendon was 

assumed to be inextensible whenever tendon slack length was less than the optimum fibre 



Lin et al. 

6 
 

length of the corresponding muscle33. Twenty-two of the 80 muscle-tendon units were 

comprised of a rigid tendon based on this assumption (see Supplementary Material). Foot-

ground interaction was simulated with six Hunt-Crossley contact spheres placed under each 

foot: four under the hind foot and two under the toes. Normal forces at each contact sphere 

were generated by a nonlinear spring-damper system while shear forces were simulated by 

applying a model of Coulomb friction. The foot-ground contact model was based on that 

described by Lin and Pandy23. Details of the neuromusculoskeletal model used in this study 

can be found at https://simtk.org/home/DCwithJtContact/. 

 

Data-tracking collocation problem  

Direct collocation was used to calculate a set of states and controls needed to 

reproduce measurements of the time histories of body-segmental motions and ground 

reaction forces obtained from both participants walking at their preferred speeds. The 

states were comprised of 25 generalized coordinates, 25 generalized speeds, 80 muscle 

activations, and 58 muscle-fiber lengths, while the controls consisted of 80 muscle 

excitations. Only 58 muscle-fiber lengths were included as states because the remaining 22 

muscle-tendon units possessed rigid tendons, and the associated muscle-fiber lengths were 

therefore determined by the measured generalized coordinates. The time histories of the 

states and controls were each discretized on a grid of 80 evenly-spaced nodes over one gait 

cycle.  

Each collocation problem was solved by minimizing three sources of errors that arise 

during a simulation of movement: defect errors, data-tracking errors, and the violation of 

periodic boundary conditions. Defect errors consisted of (25+25+80+58)×79=14,852 

equations, which represented the errors resulting from trapezoidal approximations of the 
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dynamic equations of motion (see Eq. (2) in Lin and Pandy19); defect errors were calculated 

79 times (number of nodes - 1) for each state variable because the trapezoidal 

approximation was applied to each pair of two adjacent nodes. Data-tracking errors 

consisted of two sets of 6×80=480 equations: the first set of these equations accounted for 

differences between the six measured and calculated ground reaction forces at each instant 

during the gait cycle (three components of the ground force acting under each foot, hence 6 

ground forces in total); the second set of equations represented the errors between the 

measured and calculated pelvic generalized coordinates (6 coordinates in total) over the 

entire gait cycle. Periodic boundary conditions consisted of 268-6=262 equations, which 

required all control and state variables (268 in total) to be identical at the start and end of 

the gait cycle, except for the six tracked pelvic generalized coordinates.  

Each data-tracking problem was formulated as a nonlinear least-squares problem as 

there were more unknowns than equations. Specifically, each data-tracking problem 

consisted of 21,440 control and state variables (80×80=6,400 control variables plus 

188×80=15,040 state variables) and 16,074 equations (14,852 defect error equations + 

2×480 data-tracking error equations + 262 equations for violation of the periodic boundary 

conditions). A nonlinear system solver called ‘fsolve’ was used in conjunction with a 

Levenberg-Marquardt algorithm available in MATLAB (Mathworks,Natick, MA, USA) to solve 

the least-squares problem by minimizing sum of the squares of the residuals of the 16,074 

equations.  

Static optimization was used to generate an initial guess for each data-tracking 

collocation solution. First, an inverse kinematics analysis was performed to calculate the 

generalized coordinates corresponding to the measured marker motion. This step involved 

solving a weighted least-squares optimization problem which minimized the sum of the 
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squares of the differences between the positions of virtual markers defined in the model 

and reflective markers mounted on the subject24. All three tibiofemoral translations as well 

as the knee abduction-adduction angle were set to zero during this analysis due to the 

effect of soft-tissue artefact resulting from skin-mounted markers2, 40. Knee internal-external 

rotation was determined by the inverse kinematics analysis because X-ray fluoroscopy 

studies have shown that this motion is less affected by soft-tissue artefact than the 

abduction-adduction angle during gait2, 40. The resulting generalized coordinates and 

generalized speeds were used together with the force-plate data to calculate the net 

moments exerted about each joint. The muscle force-joint moment redundancy problem 

was then solved by applying static optimization and minimizing the sum of the squares of all 

muscle activations subject to each muscle’s force-length-velocity property. The entire 

procedure was performed in OpenSim without including either the foot-ground contact 

model or the surrogate joint contact model. Thus, the values of the generalized coordinates, 

generalized speeds, muscle fiber-lengths and muscle activations derived from static 

optimization were used as an initial guess for the states, while the values of the muscle 

activations were equated to the muscle excitations and used as an initial guess for the 

controls. 

 

Predictive collocation problem  

Direct collocation was also used to perform predictive simulations of slow and fast 

walking for participant 2. The data-tracking solution derived for walking at the preferred 

speed was used as an initial guess in these simulations. The optimization problem was to 

find a set of states and controls needed to reproduce the prescribed walking speed (0.8 m/s 
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and 2.0 m/s for slow and fast walking, respectively) while minimizing the cost of transport, J 

(Joules/kg.m), over one stride cycle, thus: 

  
     
 
 

    
 (1) 

where the metabolic rate,     (Joules), represents the sum of the activation heat rate, 

maintenance rate, shortening heat rate, and mechanical work rate of each muscle;    

represents the horizontal displacement of the center of mass of the pelvis over one stride 

cycle; and m is the mass of the whole body. The final time, T, was left free and included as 

an additional design variable in the optimization problem.   was calculated using the model 

of muscle energy expenditure described by Umberger44 via an OpenSim API (version 3.3) 

function called ‘Umberger2010MuscleMetabolicsProbe’. 

The predictive collocation problem was solved subject to a set of equality path 

constraints, boundary constraints, and path bounds. The equality path constraints were 

identical with the trapezoidal approximations of the system dynamic equations derived for 

the data-tracking collocation problem described above. A set of boundary constraints were 

formulated to impose periodic boundary conditions on all of the states and controls, except 

the anterior-posterior translation of the pelvis. An additional boundary constraint was 

included to ensure the target walking speed (V) was achieved: 

  
  

 
 (2) 

Upper- and lower-bound constraints were also imposed on the control and state variables at 

each time instant as follows: 

            

            

      
             

  (3) 



Lin et al. 

10 
 

                             

                                  

where u is a 80   1 vector of muscle excitations; a is an 80   1 vector of muscle activations; 

   and  l
o

m  are 58   1 vectors of muscle-fiber lengths and optimum muscle-fiber lengths, 

respectively;   and     are 25   1 vectors of generalized coordinates and generalized speeds, 

respectively;     and      are 25   1 vectors of generalized coordinates and generalized 

speeds obtained from the data-tracking collocation solution; and      and       are 25   1 

time-independent vectors defining the range of each DOF specified in     and     , 

respectively. The predictive collocation solution was computed using a nonlinear 

programming algorithm called ‘fmincon’ available in MATLAB.  

For both the data-tracking and predictive collocation problems, the derivatives of 

the performance criterion and constraints were calculated using central differences as 

described by Porsa et al.31 Articular contact forces for the ipsilateral knee were calculated 

using the surrogate contact model while the joint reaction force acting at the contralateral 

knee was found using the Joint Reaction Analysis available in OpenSim41. All calculations 

were performed on a 3.4 GHz desktop computer (Intel® Core™ i7-4770 Processor) and 

parallelized across four cores using the Matlab Parallel Computing Toolbox. 

 

RESULTS 

The data-tracking collocation solutions accurately reproduced the body-segmental 

displacements, ground reaction forces and knee contact loads measured for both 

participants walking at their preferred speeds (Table 1 and Figs 1-2). The measured pelvic 

motion was tracked with RMS errors < 0.3 degrees for rotations and < 0.3 cm for 
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translations whilst RMS errors for all remaining generalized coordinates were < 2.2 degrees 

(Table 1 and Fig. 1). The measured ground forces were tracked with RMS errors < 0.03 body 

weight (BW), 0.08 BW and 0.03 BW in the fore-aft, vertical, and mediolateral directions, 

respectively (Table 1 and Fig. 2). Although not explicitly tracked, the model-computed knee-

contact loads were also in good agreement with corresponding measurements obtained 

from the instrumented implants, with RMS errors of < 0.4 BW (Table 1 and Fig. 2).  

The patterns of muscle excitations predicted by the data-tracking solutions were 

temporally consistent with EMG activity measured for walking at the preferred speed (Fig. 3; 

see also Supplementary Material). In both the model and the subjects, the vasti and ankle 

plantarflexors were activated during early and late stance, respectively, while the gluteal 

muscles (maximus and medius) remained active for the duration of the stance phase. Some 

differences in timing between model and experiment were also evident, particularly in 

relation to the muscle excitations predicted for vasti and gluteus maximus during terminal 

swing. 

The predictive collocation solutions obtained for slow and fast walking were also 

consistent with experiment (Figs 4-6). Stride cycle times predicted for slow and fast walking 

were 1.30 s and 0.92 s, respectively, which agreed well with the average times of 1.45 s and 

0.93 s measured for the subjects. There was also good agreement between the measured 

and predicted generalized coordinates for both walking speeds, although some differences 

were evident in hip rotation and ankle dorsiflexion at the slower speed (Fig. 4). The 

predicted ground reaction forces and knee contact loads were similar in shape and 

magnitude to the results obtained from the gait experiments (Fig. 5). However, the first 

peak in the vertical ground force predicted for fast walking was 0.4 BW greater than the 
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second peak, in contrast to experiment where two peaks of similar magnitude were 

registered by the force plate. 

The time histories of muscle excitations predicted for slow and fast walking were 

consistent with EMG measurements and showed that peak muscle excitations increased 

with walking speed (Fig. 6). For example, peak soleus and gastrocnemius excitations 

predicted for fast walking were approximately 2.5 times greater than those calculated for 

slow walking. 

Muscle and knee contact forces computed for the ipsilateral and contralateral legs 

were similar for walking at the slow and preferred speeds, while larger differences were 

evident at the fast speed (Figs 7 and 8). For the knee-spanning muscles, the peak force 

developed by the contralateral gastrocnemius was higher than that developed by the 

ipsilateral gastrocnemius for both participants across all speeds, while the peak force 

developed by the contralateral vasti was higher than that developed by the ipsilateral vasti 

for participant 2 walking at the fast speed. For the non-knee-spanning muscles, the peak 

force developed by the contralateral gluteus medius was higher than that developed by the 

ipsilateral gluteus medius for both participants at all speeds. Differences in knee contact 

force between the ipsilateral and contralateral legs were most pronounced at the fast 

walking speed (Fig. 8).  

CPU time required to converge to a predictive collocation solution was considerably 

greater than that needed to generate a data-tracking solution. Collocation took 3 hours and 

5 hours of CPU time, respectively, to solve the data-tracking problems for participants 1 and 

2 walking at their preferred speeds. By comparison, 17 hours and 13 hours of CPU time 

were needed to compute the predictive dynamic optimization solutions for slow and fast 

walking, respectively. 
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DISCUSSION 

We implemented direct collocation on a full-body 3D neuromusculoskeletal model to 

calculate muscle forces, ground reaction forces and knee contact forces simultaneously for 

one cycle of human gait. A data-tracking collocation problem was solved for normal gait 

(walking at the preferred speed) to establish the feasibility of incorporating a 6-DOF model 

of articular contact and a model of foot-ground interaction explicitly in a dynamic 

optimization simulation of movement. The data-tracking solution then served as an initial 

guess for solving predictive collocation problems, where novel patterns of movement were 

generated for walking at slow and fast speeds, independent of experimental data. 

A novel contribution of the present study is demonstrating the feasibility of 

performing computationally-efficient, predictive, dynamic optimization simulations of 

movement using a 3D neuromusculoskeletal model consisting of a 6-DOF knee model with 

articular contact and a model of foot-ground interaction. A free-final-time optimal control 

solution was computed for a target walking speed without tracking any experimental data. 

Guess et al.11 performed forward-dynamic simulations of walking using a whole-body 

musculoskeletal model that included a 12-DOF knee model (6 DOFs for each of the 

tibiofemoral and patellofemoral joints) and a foot-ground contact model. They used a 

proportional-integral-derivative (PID) feedback control scheme to track joint angles and 

muscle-tendon lengths derived from inverse kinematics. Meyer et al.25 used direct 

collocation to predict novel movement patterns for walking at 1.1 m/s without reference to 

experimental data. While these authors included a subject-specific ground contact model to 

simulate foot-ground interaction, the knee was represented as a 1-DOF hinge joint and the 

final simulation time was fixed.  
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In contrast to our previous work23, the process of solving a data-tracking collocation 

problem was simplified in the present study. Lin and Pandy23 recommended that the defect 

errors associated with the initial states and controls be minimized before these variables are 

amalgamated into an initial guess for a data-tracking optimization problem. Specifically, we 

proposed that the Matlab function ‘fsolve’ be implemented to minimize the defect errors 

before another function called ‘fmincon’ is used to track the measured ground forces. 

Whereas ‘fsolve’ required less than half an hour of CPU time to converge to a least-squares 

solution, at least 2 hours of CPU time was required by ‘fmincon’ to solve a nonlinear 

constrained optimization problem23. In the present study, the defect errors associated with 

the initial guess and the tracking errors corresponding to the ground forces were minimized 

simultaneously using ‘fsolve’ alone. This simplification obviated the need for ‘fmincon’ and 

enabled a more efficient solution of the data-tracking optimization problem. 

The accuracy of our data-tracking simulations is comparable to that derived by 

previous investigators using forward-dynamics methods and the same Grand Challenge 

dataset. Guess et al.11 reported RMS errors of 0.07 BW, 0.15 BW and 0.02 BW for the 

ground forces computed in the fore-aft, vertical and mediolateral directions when 

participant 2 walked at 1.4 m/s, slightly faster than this subject’s preferred speed of 1.3 m/s. 

Thelen et al.43 simulated five overground gait trials using a modified version of the 

computed muscle control (CMC) algorithm and reported an average RMS error of 0.51 BW 

in the calculated knee contact force when participant 2 walked at the preferred speed. 

More recently, Walter and Pandy46 used force-feedback-control to determine knee contact 

forces for participants 1 and 2 walking at their preferred speeds. They reported an average 

RMS error of 0.36 BW in the knee contact force, calculated over five gait trials for each 

participant. RMS errors obtained in the present study were of similar magnitudes, with peak 
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errors in the ground reaction force and knee contact load being < 0.1 BW and < 0.4 BW, 

respectively (Table 1). We note here that while the knee contact force may also be 

calculated accurately using more computationally-efficient methods such as inverse 

dynamics optimization27, 35, this approach is not suitable for predicting novel movements 

because experimental force and motion data are used explicitly in the optimization 

calculations. 

The data-tracking collocation solutions accurately reproduced the knee contact loads 

measured for both participants walking at their preferred speeds. In contrast to the ground 

forces, measurements of the knee contact loads were not explicitly tracked in these 

simulations. Ground reaction forces have been used as force-feedback control terms in 

forward-dynamic simulations to constrain the knee contact force within physiological 

limits39. Unfortunately, erroneous values of ground forces and knee contact loads result 

when the generalized coordinates and generalized speeds obtained from an inverse 

kinematics analysis are applied directly to a full-body model with foot-ground contact. These 

errors arise mainly from inconsistencies between the foot-ground forces calculated in the 

model and the joint motions obtained from experiment23. For example, RMS errors in the 

model-computed ground forces for participant 2 walking at the preferred speed were 0.21 

BW, 0.3 BW and 0.19 BW in the fore-aft, vertical, and mediolateral directions, respectively, 

while the corresponding RMS error in the knee contact load was 1.46 BW. These errors 

decreased substantially once the nonlinear system solver ‘fsolve’ was applied to the inverse 

kinematics solution: RMS errors in the vertical ground force decreased from 0.3 BW to 0.04 

BW, and in the knee contact force, from 1.46 BW to 0.32 BW. We conclude, therefore, that 

accurate estimates of ground reaction forces are necessary to ensure reasonable estimates 

of articular contact forces at the knee. This result can be especially useful when in vivo 
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measurements of articular contact loading are not available for direct validation of model-

computed joint contact forces.  

Model-computed muscle forces and knee contact loads were similar for the 

ipsilateral and contralateral legs in the simulations of walking at the slow and preferred 

speeds, but substantial differences were observed at the fast speed (Figs 7 and 8). Many 

studies have calculated muscle forces and knee contact loading sequentially, where muscle 

forces are first found using a full-body musculoskeletal model with the knee represented as 

a planar 1-DOF translating hinge15, 37, 38. The calculated values of muscle forces are then 

applied to a separate 3D knee model, and a quasi-static analysis performed to determine 

the articular contact forces transmitted at the joint. A few studies also have calculated 

muscle forces and knee contact loading simultaneously using a single musculoskeletal model 

with articular contact simulated at the knee11, 22, 27, 30, 46. No study to our knowledge has 

compared model-computed muscle forces and knee contact loading using two different 

knee models (i.e., a 1-DOF hinge knee without articular contact and a 6-DOF knee with 

articular contact) implemented in the same simulation. The results of Figures 7 and 8 

suggest that a planar 1-DOF hinge-knee model may be sufficient for accurate determination 

of muscle and knee contact forces when humans walk at or below their preferred speeds. 

In contrast, larger differences were observed in the muscle and knee contact forces 

calculated for the ipsilateral and contralateral legs at the much faster walking speed of 2 

m/s (Figs 7 and 8). Peak forces developed by the contralateral vasti and gastrocnemius 

muscles were, respectively, 2.0 BW and 0.5 BW higher than the forces developed by the 

corresponding ipsilateral leg muscles. These increases in muscle forces were understandably 

reflected in a higher knee contact force estimated for the contralateral leg, because vasti 

and gastrocnemius are major contributors to the first and second peaks, respectively, of the 
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resultant force transmitted at the knee34, 37, 38. Thus, muscle forces and knee contact loading 

computed for walking at faster speeds (e.g., near the transition speed of 2.0 m/s), and 

presumably for running as well, should be interpreted with caution due to the dependence 

of these calculations on knee model complexity.  

The predictive collocation problems were formulated by prescribing a target walking 

speed and leaving both stride length and stride duration (inverse of stride frequency) free to 

be determined by the performance criterion and physiological constraints (e.g., the force-

length-velocity properties of the leg muscles). The collocation algorithm altered stride 

length more than stride duration in computing the optimal solutions for slow and fast 

walking. For slow walking, stride length decreased by 24% relative to its value at the initial 

guess whereas stride duration increased by 21%. For fast walking, stride length increased by 

33% while stride duration decreased by just 14% relative to their values at the initial guess. 

Lim et al.19 performed a series of gait experiments using prescribed combinations of step 

length and step frequency to quantify the effects of these two variables on leg-muscle 

function across a range of walking speeds. They found that walking biomechanics and leg-

muscle function were more heavily influenced by changes in step length compared to step 

frequency. These results may explain why varying stride length rather than stride duration 

was favoured in the predictive dynamic optimization solutions derived here. 

The principal limitation of the present study was that experimental gait data from 

only two subjects were used to evaluate the model simulation results. Similar previous 

studies exploiting the same Grand Challenge dataset used measurements recorded from 

multiple gait trials performed by a single subject11, 25, 43. Deriving data-tracking and 

predictive simulations for a larger cohort of subjects and for a broader range of activities, 

for example, walking up and down ramps and stairs, would help to increase confidence in 
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the proposed simulation methods. A second potential limitation involves the motion of the 

metatarsal joint, which was prescribed using the values obtained from the inverse 

kinematics analysis performed for walking at the preferred speed. Constraining the motion 

of the metatarsal joint is likely to have affected the muscle and ground reaction forces 

computed near toe-off in the predictive simulations of gait. 
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FIGURE CAPTIONS 

Fig. 1  Comparison between model-predicted kinematics (blue solid lines) and 

corresponding experimental results (red dashed lines) obtained for two participants 

walking at their preferred speeds. 

Fig. 2:  Model-predicted ground reaction forces and knee contact loads (solid lines) 

calculated for two participants walking at their preferred speeds. The dashed lines 

represent corresponding experimental data. 

Fig. 3:  Comparison between model-predicted muscle excitations (blue solid lines) and 

measured EMG data (red dashed lines) obtained for two participants walking at their 

preferred speeds. EMG data for GMAX and GMED were obtained from Lin et al.20 as 

data were not available for the two TKA participants. Muscle symbols are as follows: 

LVAS, vastus lateralis; LGAS, lateral gastrocnemius; SOL, soleus; GMAX, gluteus 

maximus; GMED, gluteus medius. 

Fig. 4:  Model-predicted kinematics (blue solid lines) obtained for Participant 2 walking at a 

slow speed (0.8 m/s, top panel) and a fast speed (2.0 m/s, bottom panel). The 

shaded regions in the top panel represent ±1 standard deviation of the mean 

kinematics data recorded for Participant 2 walking at the slow speed of 0.8 m/s, 

while those in the bottom panel represent ±1 standard deviation of the mean 

kinematics data measured from 10 young subjects walking at 2.1 m/s (Lai et al.18). 

Fig. 5:  Model-predicted ground reaction forces (blue and red solid lines) and knee contact 

loads (blue solid lines, right-most panel) obtained for Participant 2 walking at a slow 

speed (0.8 m/s, top panel) and a fast speed (2.0 m/s, bottom panel). The shaded 

regions in the top panel represent ±1 standard deviation of the mean experimental 
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data recorded for Participant 2 walking at the slow speed of 0.8 m/s, while those in 

the bottom panel represent ±1 standard deviation of the mean experimental data 

obtained from 10 young subjects walking at 2.1 m/s (Lai et al.18). 

Fig. 6:  Model-predicted muscle excitations (blue solid lines) obtained for Participant 2 

walking at a slow speed (0.8 m/s, top panel) and a fast speed (2.0 m/s, bottom 

panel). The shaded regions in the top panel represent ±1 standard deviation of the 

mean EMG data recorded for Participant 2 walking at the slow speed of 0.8 m/s, 

while those in the bottom panel represent ±1 standard deviation of the mean EMG 

data measured from 10 young subjects walking at 2.1 m/s (Lai et al.18). EMG data for 

GMAX and GMED were not available for slow walking. 

Fig. 7:  Comparison of muscle forces calculated from a 6-DOF knee (ipsilateral knee) and a 1-

DOF knee (contralateral knee) for both participants walking across all speeds. 

Symbols appearing in the diagram are: HAMS, biceps femoris long head, biceps 

femoris short head, semimembranosus and semitendinosus combined; VAS, vastus 

medialis, vastus intermedius and vastus lateralis combined; RF, rectus femoris; GAS, 

medial and lateral portions of gastrocnemius combined; SOL, soleus; GMAX, 

superior, middle and inferior gluteus maximus combined; GMED, anterior, middle 

and posterior compartments of gluteus medius. 

Fig. 8: Comparison of knee contact forces calculated from a 6-DOF knee (ipsilateral knee) 

and a 1-DOF knee (contralateral knee) for both participants walking across all 

speeds. 
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TABLES 

Table 1: RMS errors between model and experiment for two participants walking at their 

preferred speeds. *Knee abduction-adduction and internal-external rotation were 

not included.  

 

 

 

 

Tracking Non-Tracking

Joint motion Knee contact force (BW)

Participant Rotational (deg) Translational (cm) Fore-aft Vertical Mediolateral Rotational (deg)*

1 0.09 0.27 0.02 0.07 0.02 2.18 0.24

2 0.21 0.20 0.02 0.04 0.02 1.98 0.32

Pelvis motion Ground reaction force (BW)
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