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Abstract: The use of underwater wireless sensor networks (UWSNSs) for collaborative monitoring
and marine data collection tasks is rapidly increasing. One of the major challenges associated with
building these networks is handover prediction; this is because the mobility model of the sensor nodes
is different from that of ground-based wireless sensor network (WSN) devices. Therefore, handover
prediction is the focus of the present work. There have been limited efforts in addressing the handover
prediction problem in UWSNSs and in the use of ensemble learning in handover prediction for UWSNS.
Hence, we propose the simulation of the sensor node mobility using real marine data collected by the
Korea Hydrographic and Oceanographic Agency. These data include the water current speed and
direction between data. The proposed simulation consists of a large number of sensor nodes and base
stations in a UWSN. Next, we collected the handover events from the simulation, which were utilized
as a dataset for the handover prediction task. Finally, we utilized four machine learning prediction
algorithms (i.e., gradient boosting, decision tree (DT), Gaussian naive Bayes (GNB), and K-nearest
neighbor (KNN)) to predict handover events based on historically collected handover events. The
obtained prediction accuracy rates were above 95%. The best prediction accuracy rate achieved by
the state-of-the-art method was 56% for any UWSN. Moreover, when the proposed models were
evaluated on performance metrics, the measured evolution scores emphasized the high quality of the
proposed prediction models. While the ensemble learning model outperformed the GNB and KNN
models, the performance of ensemble learning and decision tree models was almost identical.

Keywords: ensemble learning; gradient boost; handover prediction; machine learning; sea buoys;
underwater wireless sensor networks

1. Introduction

With the dramatic growth in marine monitoring (especially oceans), recently devel-
oped technologies must be deployed in UWSNS, also called acoustic networks, to obtain
environmental details. These network-based monitoring systems consist of collaborative
underwater sensors that can communicate, capture, and process data [1]. However, the
highly dynamic nature of UWSNs increases the node mobility due to water currents. Un-
derwater artifacts can travel at 2-3 knots or 3-6 km/h in a normal underwater state at a
speed following empirical observations [2]. This speed hinders the coherent tracking of
such sensor locations or allocation to the nearest buoy. A robust handover process could
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ensure continuous and consistent timely data transmission over the network and achieve
uninterrupted communication.

Several proposed handover prediction methods utilize machine learning models
(e.g., [3,4]) to obtain better communication on terrestrial sensor networks. Other works
applying machine learning models to improve the handover prediction problem in UWSNs
include [1,5]. The authors in [3] developed a new technique to predict blind spots and
handover associated with the movement of Wi-Fi devices, where video buffers are stuffed
with low-resolution video frames before resources are reallocated or the connection is lost.
The proposed prediction method is based on a machine learning system, where the pattern
of the received signal strength indicator (RSSI) is used to determine a future handover
over time. In [4], the authors proposed two different methods to predict the handovers of
a mobile user using the user’s behavior information given by the networks. To validate
their method, the authors compared the performance of the proposed handover prediction
mechanism to decision tree classification and K-nearest neighbors.

In the UWSN model, sensor nodes usually move by themselves (i.e., autonomous
underwater vehicles) [6] or passively move due to flows and other natural impacts [7]. It
is very difficult to define and control the locations of passive nodes. The authors in [5]
proposed machine learning models to predict the flow directions of the sensor nodes
that flowed in the surface layers of the ocean. In [1], the authors proposed a new model
based on machine learning techniques for handover prediction problems in the Internet of
Underwater Things (IoUT). The prediction model removes the overhead associated with
channel measurement to reduce the power consumed by underwater things. In [1,5], the
obtained prediction accuracy rates were very low (approximately 56%). In addition to the
low prediction accuracy of the existing methods, the authors did not make the dataset
publicly available. Thus, it is impossible to reproduce the results reported in [1,5].

The dynamicity and continuous flow of sensor nodes make them shift away from
their locations toward other sectors. When this occurs, successful and timely handover is
vital to guide the sensor node to the nearest sea buoy in order to guarantee efficient and
uninterrupted data transmission. However, existing acoustic handover mechanisms are
not feasible due to their long propagation time, unreliable sensor node location, and poor
transmission rates. Since machine learning techniques are rarely used in handover predic-
tion in UWSNs, we are motivated to utilize ensemble learning (e.g., gradient boosting) to
predict handover events in UWSNSs, as ensemble learning has not been used to address
this problem.

In this work, we simulate the movement of UWSN sensor nodes using real open ocean
marine data such as water current speed and direction. We utilize real-time data provided
by the Korea Hydrographic and Oceanographic Agency (https://www.khoa.go.kr/eng/
(accessed on 26 August 2021)) for this purpose. This agency monitors the southeastern
coasts of the Korean Peninsula [1,5]. The simulation captures the handover events, which
are used as a dataset for the proposed work. Finally, we utilize several machine learning
methods to predict the future coverage cell for the sensor nodes in handover events. Finally,
we utilize several machine learning methods, including DT, GNB, KNN, and gradient
boosting to predict the future coverage cell for the sensor nodes in handover events. The
major contributions of this paper can be summarized as follows.

¢ To the best of our knowledge, this is the first work that provides a handover dataset
created from real open ocean marine data (https://github.com/Ahmed-Fathalla/
UWSN (accessed on 26 August 2021)). This is also the first work to provide the
utilized datasets and source code in the field of UWSN handover prediction; thus, the
reported results are reproducible.

¢ To the best of our knowledge, this is the first effort to employ an ensemble learning
approach in a UWSN that explores the handover prediction of sensor nodes.

®  The proposed handover prediction models outperform the existing state-of-the-art
methods with a huge performance gap.


https://www.khoa.go.kr/eng/
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The remainder of the paper is organized as follows. The background of this work
is discussed in Section 2. Section 3 discusses the state-of-the-art methods. In Section 4,
we explain the proposed handover prediction system. Section 5 discusses the proposed
experiments and obtained results. Finally, the paper is concluded in Section 6.

2. Background

Machine learning and its applications have proven their success in many
applications [8-10]. Therefore, in this paper, several machine learning models have been
utilized, including DT, GNB, KNN, and gradient boosting. In this section, we explain the
background of each of these models.

2.1. Decision Tree

The DT model is currently one of the most widely used mechanisms in several appli-
cations for predictive modeling, including regression and classification. The decision tree
algorithm works very well and continuously if the data are discontinuous, even if noise
appears. Moreover, it can handle collinearity efficiently and provide excellent prediction
explanation. On the other hand, DTs suffer from higher complexity, especially when deal-
ing with complicated datasets, and consequently may lose valuable information (i.e., in the
case of continuous variables).

Several techniques have been used to determine the best way to split the input data.
One of the main goals of the DT model is to find the most significant splits between tree
nodes and further optimize the data into correct classifications. To achieve this goal, it is
necessary to apply proper decision rules to the proposed data, which significantly affects
the algorithm’s performance.

Information gain (IG) is used with the DT model. The decision tree model aims to find
the best split node that guarantees high accuracy. The IG method seeks to find the most
suitable nodes that return the highest information gain, which can be measured using an
entropy factor. The entropy factor is used to determine the degree of disorganization in the
system. The entropy for the output can be calculated using the following formula:

E(s) = ) —pilog, p;. 1)
i=1

2.2. Gaussian Naive Bayes

The GNB model is considered a conditional probability model (i.e., the probability
that an event will occur if another event occurs), and the information about the latter event
is provided to the model. Using the conditional probability and the information provided
by previous events, the probability of a future event can be obtained using Equation (2):

P(B|A)P(A)
P(B)

where P(A|B) is a posterior probability and represents the likelihood of A by the value of B;
P(B|A) represents the probability of B given a value of A; P(A) is the prior probability and
represents the probability of event A; and P(B) is a marginal probability and represents
the probability of event B. Using Bayes’ theorem as a basis, the GNB can be formulated as
follows:

P(AB) = @

P(x1, ..., xjly) P(y)
P(x1, ..., X))

P(y|x1, ..., xj) = (©)
where P(y|x1, ..., x;) is a posterior probability and represents the data probability of the
model including class y given the feature value from x1 to xj. P(xy,..., x;|y) is the likeli-
hood of feature values given their y class. P(y) is a prior probability, and P(x1...,x;) is a
marginal probability.



Sensors 2021, 21, 5777

40f16

The GNB is a generative model and is considered a simple and a powerful model that
can be used in solving prediction problems. In addition, this model can utilize less data for
training. However, the GNB has limited use in the real world as it assumes all features are
independent.

2.3. K-Nearest Neighbor

The KNN model is one of the simplest and most straightforward supervised learning
models in machine learning. The key idea of this algorithm is to decide a predicted value
based on the labeled data points of the training set that are near the query data point.
KNN starts by loading the training data points in memory. Then, the classification task is
completed by finding the nearest K data points. Finally, a vote of the K closest points to
the query point will determine the class of the query data point. One critical decision
that needs to be made is the selection of the distance function. Several distance functions
have been proposed to compute the distance between two data points; however, the most
common methods are cosine similarity and Euclidean distance.

The Euclidean distance can be calculated by subtracting the training data point from
the point to be classified, as in Equation (4):

E(x,y) = ,/i)(xi Ly @

The calculation of the marginal probability can be ignored in this model, as it has the
same value as in the GNB calculations. In this calculation, we determine the data point
class based on the best posterior probability value. Although KNN contains a limited
number of hyperparameters (i.e., the k-value and distance function), which makes it a
simple model, the K-value can dramatically affect the model performance. Similar to DT,
the KNN model has a large computation cost if the dataset is large.

2.4. Gradient Boosting

Boosting is a well-known weighted ensemble method in which each base algorithm
is sequentially implemented. The weights are modified and updated to place a greater
emphasis on training tuples, especially those that were misclassified by the previous
classifier. Gradient boosting is a subset of boosting where the loss function is minimized
using DT as a weak learner, as well as gradient descent. Additionally, the loss function is
employed to enhance the performance of the learner in subsequent iterations. Typically, the
relative weights of the previous misclassified tuples are modified in each iteration of the
boosting classifier. As a result, the boosting classifier, which is based on the reinforcement
learning principle [7], is extremely robust. In this work, we focus on the use of gradient
boosting in decision trees.

Various problems, such as regression, multiclass classification, and ranking, can be
resolved using gradient boosting [11]. Gradient boosting outperforms other classification
algorithms with regard to processing categorical features (i.e., a distinct set of incomparable
values) while maintaining high accuracy. Categorical features in gradient boosting are han-
dled at the preprocessing phase, which entails substituting one or more numerical values
for the original categorical variables. In addition, missing value support, ordered boosting
implementation, ease of using graphics processing unit (GPU) training, and visualization
are significant characteristics of gradient boosting. It also enables the estimation of leaf
values using random permutations while selecting the tree structure (i.e., binary decision
tree) to avoid the overfitting associated with the gradient algorithms.

3. Literature Review

In this section, we highlight the recent handover mechanisms in wireless networks,
which mainly deploy prediction approaches (e.g., classification models). Then, we address
the basic problems associated with UWSNs and list efforts directed to their applications.
Finally, we narrow this literature review to describe handover problems in UWSNSs.



Sensors 2021, 21, 5777

50f16

In the last few years, several studies have proposed solutions to enable smooth mo-
bility in wireless networks by improving the handover process. In [12], authors proposed
two prediction mechanisms to estimate mobile user handovers using user-network as-
sociation patterns. They conducted a series of experiments using real data to compare
the performance of such mechanisms against more advanced and complex prediction
systems. In another study, the handover process of Wi-Fi networks was predicted using a
novel technique [3]. The primary purpose of this technique is to maintain the connections
between resources when they are reallocated or fill out the video buffer with low-definition
video frames before the user loses the connection. In addition, a recent study proposed
clustering and classifying algorithms to streamline the 5G handover procedure and enhance
the network connectivity [4].

A UWSN consists of a set of sensor nodes placed in a specific marine area which
communicate over an acoustic channel, as shown in Figure 1. This communication can be
established under restricted circumstances with a possibility of long propagation delay
and high bit error rates, considering the restrictions of batteries [13,14]. In [15], the authors
proposed a new technique to correct the bit error based on energy analysis and considering
the network conditions.

(]
= Handover node
é Sector 2
2 [ |

—

g Sector 3

—

-

Sensor nodes \ D -

Figure 1. Schematic diagram of the use of machine learning models to predict the handover of a
sensor node in a UWSN.

Sector 1

0 "'IZI“"

Recently, numerous research papers have developed solutions to improve underwater
applications and ocean exploration needs. One of the most critical applications is the
monitoring of the physical environment (e.g., battlefields, floods, volcanoes), and other
applications that rely on data from these sensors [16,17].

Additionally, interest in underwater communication systems for ocean observation has
dramatically grown over the last decade. Through ocean monitoring, many applications
are addressed, including military plans, marine weather forecasting, oceanographic data
compilation, and environmental observation [18]. These applications involve autonomous
underwater vehicle (AUV) communications, oil extraction, ocean pollution, and aquacul-
ture [19,20]. AUVs, sea buoys, and sensor nodes are positioned in a geographic region
to collaboratively monitor and gather data in underwater sensor networks. Currently, a
higher bandwidth with adequate communication schemes is required to accommodate
the deployment of AUVs and sensors that continuously collect real-time data (i.e., images,
videos, water temperature, and salinity). However, the lack of interactive communication
among installed devices can impede data delivery and lead to a loss of the collected data.

A new approach was presented in [21] to expand the handover protocol in clustered ad
hoc diver networks to enhance the reliability and flexibility of the connections. Moreover,
a new method was implemented and tested with different nodes to allow multi-hop
connections using a low-cost solar-powered underwater modem in [22]. The proposed
method checks whether the diver leaves the communication range; if so, the model applies
the handover process by using the diver as a bridge between the receiver and the transmitter.
The model presents a suggestion for the handover concepts to be applied only and does
not provide an experiment or investigate the proposed idea. Additionally, the proposed
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method does not consider placing any restrictions on the distance between nodes, since the
model uses visual light.

Nevertheless, efficient determination of the positions of the sensor nodes and their
signal intensity is a crucial challenge in UWSNs. The sensor nodes must be attached to
the appropriate buoy to ensure constant data delivery [23]. Another critical issue that
affects the data gathering and forwarding operations between sensor nodes and buoys is
the successful handover in underwater environments. Unlike handovers in ground-based
WSNs, the delay time in UWSNSs is longer, and it is more difficult to test signal strength.
According to recent studies [1,5,24], handover in UWSNs solely depends on location-based
potentials. The cited works do not provide their datasets nor their source code; thus, it
is impossible to reproduce their experiments. The use of any machine learning classifier
model (e.g., decision tree) with different parameter values results in different accuracy rates.
The authors of [1,5,24] did not discuss the parameters of the utilized machine learning
models. Moreover, the obtained handover prediction scores are considered very low: less
than 56% for the top rank 1 prediction.

To the best of our knowledge, handover prediction techniques for UWSNSs utilizing
marine data have only been proposed in [1,5,24]. This lack of previous research and
standards leads to an unsystematic system for researchers in the future. This paper is the
first attempt to address the solution of the handover problem using ensemble learning for
large UWSNSs, as shown in Figure 1.

4. The Proposed System
4.1. An Overview

The UWSN in the proposed work consists of a set of sensor nodes and sea buoys that
are replaced in a specified area (Figure 1). In this non-static network where node mobility
is presented due to the continuous water currents, sensor nodes can move far from their
sea buoy (cell centroid). This consequently can lead to the loss of connection between
the sensor node and its sea buoy, which requires a successful handover process to help
the sensor node to safely attach to a new sea buoy. According to Figure 2, the classifier
initiates a training phase based on historical data (i.e., from the Korea Hydrographic and
Oceanographic Agency dataset). The proposed ML model considers the sensor’s location,
the received signal strength from neighboring buoys, and the weather forecast to predict
the suitable buoy to complete the handover process successfully. Finally, in the test phase,
the proposed model assists the sensor node in making adequate handover decisions. The
structure of the cells is illustrated in Figures 3 and 4.

TRAINING PHASE TEST PHASE

=

N
vy

HISTORICAL DATA

Figure 2. Overview of the proposed system.
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——FORECAST—>
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Figure 3. An example for a cell with its six neighboring cells.

Figure 4. The proposed simulated UWSN with 61 base stations.
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Figure 5. Block diagram of the proposed system.
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Figure 5 depicts a block diagram of the proposed UWSN handover prediction system.
The proposed system consists of two phases: the data collection phase and the machine
learning phase. The data collection phase consists of collecting the handover occurrence
data. That is, when a handover occurs in the network, the sensor sends environmental data
(e.g., sensor location and signal strength of neighbor cells) of the last collected data before
the handover. The second phase (the machine learning phase) is responsible for training,
validating the machine learning models using handover data, and starting the deployment
of the UWSN handover prediction system.

4.2. Dataset Generation

The Korea Hydrographic and Oceanographic Agency collects a public real-time
dataset for information observation, which is updated every 30 min, as previously men-
tioned. The underwater network is located at 34.223611 latitude and 128.420555 longitude
(https:/ /www.khoa.go.kr/eng/ (accessed on 26 August 2021)). The region is divided into
sectors by centroid sea buoys, which relay data from nearby underwater sensors to the
aboveground base station. Prior to transmission, relevant information is processed by the
buoys, which includes measurements of the time, water salinity, water temperature, wave
height, sea surface direction, and flow speed. The aforementioned dataset is extremely rich
with vital marine information. This information can help to predict the movement of the
sensor nodes.

Several existing research works have discussed the mobility of devices and their
role in predicting handover events [25,26]. Most of these existing methods target on-land
handover prediction. A few exceptions discuss UWSN mobility models [27]. Underwater
sensor nodes are not stationary. Instead, they travel with water currents a result of various
activities and conditions present underwater. Thus, in this work we use real marine data
from the Korea Hydrographic and Oceanographic Agency to simulate the sensor node
movements. Then, the captures the movement of these sensor nodes, which is used as
a history of handover events. Finally, the captured handover events is utilized to train
several machine learning models to predict the next covering cell of a sensor node in a
handover event.

Underwater sensor network nodes can be static or non-static, similar to ground-based
sensor network nodes [28]. The latter type moves with water currents due to different
activities and circumstances in the underwater environment. This work focuses on non-
static sensor nodes. Figure 3 depicts a buoy that is surrounded by six different cells (i.e.,
buoys). Each buoy of the Korea Hydrographic and Oceanographic Agency is represented
by a hexagon that shows its coverage area. The simulation consists of a set of buoys, each
of which has a number of sensor nodes (i.e., dots), as shown in Figure 4. The movement of
each sensor node is based on the marine data collected by each buoy.

The simulation starts by initially placing the sensor nodes in the coverage area of
each buoy. Then, these sensor nodes wag in specific directions with the guidance of the
velocity and direction of the water currents. As a result, the data in the dataset aid in
sensor guidance by successfully recommending a nearby buoy, which results in an efficient
handover operation. Uninterrupted data transmission from sensor nodes is assured in
this manner.

During the movements of the sensor nodes, the simulation captures several pieces
of information, that is, the sensor node location in terms of latitude and longitude, the
ID of the buoy that provides the coverage, and the signal strength. During the simula-
tion, the sensor node location is updated based on the water speed and direction using
Equations (5) and (6) [27].

X1 = X+ a x s x sin(dir) (5)

Yii1 = Yi 4+ a X s X cos(dir) (6)
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where X; 1 and Y;; are the next latitude and longitude of the sensor node, respectively,
and X; and Y; are the current latitude and longitude of the sensor node, respectively. « is a
parameter to tune the speed of the sensor node based on the level at which the sensor node
is located under the water surface; if « = 1, the sensor node moves at the full speed of the
water. s and dir are the speed and direction of the water, respectively. Finally, the sin and
cos functions are from Newton’s second law of motion. Each node has a signal strength,
which is measured by the Friis transmission equation (Equation (7)) as follows:

A \2
P, = P,G;G, | — 7
r totar ( 4 d) ( )
where P, and P are the signal power of the receiver (i.e., sensor node) and transmitter (i.e.,
the buoy), respectively; G, and G; are the antenna gains of the receiver and transmitter,
respectively; d represents the distance between the receiver and the transmitter; and A is
the wavelength.

4.3. Evaluation Metrics

During the classification process, the evaluation metric is crucial for discriminating
and obtaining an optimal classifier. Hence, five essential metrics are considered in this
paper. Recall (r) is one of the metrics to find the percentage of the correctly classified
positive pattern that the classifier should collect. Precision (p) determines the fraction of
positive patterns in a positive class that are correctly predicted out of the overall predicted
patterns. Both terms are often used to assess the goodness of a model in predicting observed
instances [29,30]. Recall and precision are defined in Equations (8) and (9), respectively:

r= 0 ®)
tp +tn
tp
= )
b tp + fp

where t, and t, are the positive and negative instances that are correctly classified, respec-
tively, and f} is the number of misclassified positive patterns.

Recall and precision are known to detect the sensitivity and positive predictive value
of a classifier, respectively. However, they cannot be individually employed to evaluate
the handover prediction in the proposed simulation. In that, the F-score metric (F) is the
harmonic mean between recall and precision values. Further, the F-score combines both
metrics to obtain a scalar value as in Equation (10).

2pr
p+r

F1 — score = (10)

Another related metric is the accuracy (A), which is defined as the proportion of correct
predictions to all the predictions conducted (i.e., the total number of instances calculated).
While the accuracy is a significant metric, it cannot be used alone to determine the robustness
of the classifier. The accuracy (A) metric is calculated as shown in Equation (11).

_ tp+tn
tp+ fp+tn+ fu

(11)

where f;; is the number of misclassified negative instances.

Finally, a receiver operating characteristic (ROC) curve is a graphical representation
of the success of a classifier across all classification thresholds. The true positive rate
and false positive rate are the main parameters that build this graph. An ROC curve can
be generated by repeatedly running a logistic regression model. However, an aggregate
measure of performance is determined for the overall possible classification thresholds,
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which is known as the area under the curve (AUC). It is utilized to calculate the 2D area
under the ROC curve from (0, 0) to (1, 1).

5. Experimental Results
5.1. Setup

Table 1 lists the values of the parameters used in the simulation. The parameter values
were selected according to [31,32]. We conducted two types of experiments. In the first,
we supposed that the sensor node had a Global Positioning System (GPS) unit. Thus,
the distance between the sensor node and each buoy in the simulation was known, as
the buoys were static to their location. We called this type of experiment Exp-I. In Exp-I,
the current location of the sensor node was used as a feature in the prediction model in
addition to the other features, which were the signal strength, ID of the current cell, and
IDs of the neighboring cells. We called the second type of experiment Exp-IL In Exp-II, we
supposed that the location of the sensor node was unknown, and that the sensor node was
not equipped with a GPS unit. Thus, the signal strength played a vital role in the handover
prediction.

Table 1. Parameter values of the experiments.

Parameter Value
o 1
A 0.125 m
Pt 5mW
Gy 1
Gt 1

The simulation generated 216,578 different handover events. The collected marine data
in the simulation spanned six months (the first six months of 2020). The simulation included
61 buoys and 610 sensor nodes. While the Korea Hydrographic and Oceanographic Agency
has only 30 real buoys, the simulation duplicated the marine data of the nonreal buoys
from the closest real buoy.

The simulation framework was developed in the Python programming language.
Hence, to ensure results reproducibility, we made the simulation framework and the
dataset used in this work available online (https://github.com/Ahmed-Fathalla/UWSN
(accessed on 26 August 2021)). As mentioned above, the signal strength was used as an
effective feature in the handover process. The work in [33-35] considered the computation
of the received power with different parameter values. However, they did not consider
ocean or seawater environments. Thus, the values of the parameters in this experiment
relied on the first equation in [31,32]. The proposed system is generic and can handle any
network configurations.

5.2. Results and Discussion

The proposed system utilized four different classification techniques: decision tres,
K-nearest neighbor, Gaussian NB, and gradient boosting. The utilized classification models
were evaluated on six different metrics: precision (Equation (9)), recall (Equation (8)),
F1-score (Equation (10)), accuracy (Equation (11)), AUC-ROC, and confusion matrix.

Table 2 lists five evaluation metrics for Exp-I and Exp-II for the gradient boosting
classifier. The classifiers in Exp-I clearly had a superior overall performance to those in
Exp-II because the exact location of the sensor node was one of the input features. If
the base station (i.e., the static buoy) and sensor node locations are known, the task of
predicting the next cell to serve the sensor node should be easy. The problem becomes
more difficult when the handover prediction is based on the signal strength. Thus, the
results of Exp-I were higher than those of Exp-IL

Figures 6 and 7 depict the confusion matrices of the four different classifiers for Exp-
I and Exp-II, respectively. The obtained results emphasize the higher results of Exp-I
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compared to those of Exp-II. In addition, the gradient boosting classifier clearly had the
best performance among all classifiers.

Table 2. Average handover prediction results for the gradient boosting model.

Recall Precision F1-Score Accuracy ROC-AUC
Exp-I

0.9816 0.9816 0.9816 0.9816 0.9996
Exp-II

0.9659 0.9659 0.9659 0.9659 0.9987
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Figure 6. Confusion matrices for Exp-I.

In Exp-I and Exp-II, the behaviour of the classes was almost the same for all of the
utilized machine learning models except GNB. This behaviour can be noticed in Exp-I
(e.g., Figures 7c and 9c¢) and it is obvious in Exp-II (e.g., Figures 8c and 10c). The lowest
performance of GNB can be linked to the assumption of independent predictor features.
The features UWSN handover prediction problem is somewhat related to the location
of cells and wave directions. Besides, these results indicate that the data of Exp-I were
easier to predict in comparison to the data of Exp-IL. In Exp-I, the classification rates of
the gradient boost and decision tree models were similar. On the other hand, at lower
classification rates, the performance of the KNN and GNB models was close. The lowest
class accuracy rates were 99.2%, 98.9%, 88.4%, and 85.7% for decision tree, gradient boost,
KNN, and GNB, respectively.

In Exp-II, the classification rates of the gradient boost and decision tree models were
almost identical. The KNN model’s performance was lower than that of gradient boost and
decision tree models. The GNB model’s accuracy was very low. The lowest class accuracy
rates were 97.4%, 95.9%, 88.1%, and 49.1% for decision tree, gradient boost, KNN, and
GNB, respectively. Figures 8 and 9 depict the precision—recall curves, and Figures 10 and 11
present the AUC-ROC curves. All of these results are consistent with the aforementioned.
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Figure 7. Confusion matrices for Exp-II.
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Figure 8. Precision-recall curves for Exp-1.
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Figure 10. AUC-ROC curves for Exp-I.

The performance of the GNB classifier in Exp-I and Exp-II was the lowest in com-
parison to the other classifiers. This is linked to the GNB classifier’s assumption that the
independence of features should hold true. In this dataset, the input features are dependent
to some extent (e.g., the location of the sensor node and the flow direction). The KNN
classifier’s performance was higher than that of the GNB classifier and lower than that
of the DTs and gradient boost. This is because there are imbalanced data of the classes.
For instance, the dataset contains a class/cell with 34,363 handover events, while another
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class/cell has 31,803 handover events. The KNN classifier’s performance is sensitive to
imbalanced data. This data imbalance can be linked to the flow direction. In other words,
the flow direction moves the sensors nodes toward certain cells/classes and away from
other cells/classes. Thus, the handover events for some classes are greater than for other
classes. The performance of the DT and gradient boost classifiers was higher than that of
the other two classifiers due to the ability of these two classifiers to handle imbalanced
data, and because they do not assume that there is independence of the input features.
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Figure 11. AUC-ROC curves for Exp-II.

6. Conclusions

We addressed the problem of handover prediction in UWSNs. Due to the highly
dynamic nature of UWSNSs, the sensor node mobility model is different from the ground-
based mobility model. In addition, the efforts to predict handover events in these networks
are very limited. Thus, we proposed the use of marine data to simulate the sensor nodes in
the UWSN based on data collected by the Korea Hydrographic and Oceanographic Agency.
We collected 216,578 handover events. Finally, we utilized four machine learning models
for prediction purposes: gradient boosting, decision tree, Gaussian naive Bayes, and KNN.
While the datasets of the state-of-the-art methods [1,5] and the utilized dataset in this work
are not identical, both datasets are based on the same marine data (i.e., Korea Hydrographic
and Oceanographic Agency data). The obtained prediction accuracy rates were above
95% for the proposed models, which is the highest reported accuracy for the problem of
handover prediction in UWSNs. Future research directions include utilizing deep learning
methods in the UWSN handover prediction task. This is because the performance of the
deep-learning-based models outperform the classic machine-learning-based models, but
this comes at the cost of higher training time and larger model size.
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