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ABSTRACT 22 

Purpose: To assess in-season alterations of biceps femoris long head (BFlh) fascicle length in 23 

elite Australian footballers with and without a history of HSI.   24 

Methods: Thirty elite Australian football players were recruited. Twelve had a history of 25 

unilateral HSI. Eighteen had no HSI history. All had their BFlh architecture assessed at  26 

approximately monthly intervals, six times across a competitive season.    27 

Results: The previously injured limb’s BFlh fascicles increased from the start of the season and 28 

peaked at week 5. Fascicle length gradually decreased until the end of the season, where they 29 

were shortest. The contralateral uninjured limb’s fascicles were the longest when assessed at 30 

week 5 and showed a reduction in-season where weeks 17 and 23 were shorter than the first. 31 

Control group fascicles were longest at week 5 and reduced in-season. The previously injured 32 

limb’s BFlh fascicles were shorter than the control group at all weeks and the contralateral 33 

uninjured limb at week 5. Compared to the control group, the contralateral uninjured limb had 34 

shorter fascicles from weeks 9 to 23. 35 

Conclusion: Athletes with a history of HSI end the season with shorter fascicles than they start. 36 

Limbs without a history of HSI display similar BFlh fascicle lengths at the end of the season as 37 

they begin with. All athletes increase fascicle length at the beginning of the season however the 38 

extent of these differed based on history of HSI. These findings show that a HSI history may 39 

influence structural adaptation of the BFlh in-season.  40 

 41 
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INTRODUCTION 42 

For more than 20 years hamstring strain injuries (HSIs) have been the leading cause of lost 43 

playing and training time in elite Australian football (26). Furthermore, HSIs commonly re-occur 44 

and typically result in a reduced level of performance following a return to competitive match 45 

play.(35) These injuries represent a significant financial burden for the athlete and/or their 46 

organisation(14). Given that a history of HSI has been consistently shown to increase the risk of 47 

future a HSI (11, 25), investigations involving previously injured individuals have attempted to 48 

determine if retrospective deficits in structure and/or function of the hamstrings contribute to the 49 

elevated risk of re-injury (7, 21-23, 27, 30).  50 

 51 

Recently, variations in biceps femoris long head (BFlh) architectural characteristics and their 52 

role in the aetiology of HSI have been brought to the attention of researchers and practitioners 53 

(30-33). Elite soccer players with shorter BFlh fascicles were reported to have a 4.1 fold 54 

increased risk of future HSI and this was amplified in those athletes with a history of HSI (32). 55 

These data, coupled with the finding that a previously injured BFlh consistently displays shorter 56 

fascicles than the uninjured contralateral limb (30), suggests that architectural characteristics of 57 

those with a history of HSI likely contribute to the elevated rate of re-injury.       58 

 59 

Providing interventions for athletes that present with shorter fascicles following ultrasonic 60 

examination would appear to be relatively straight forward. This is due to the increasing 61 

evidence that resistance exercise, particularly eccentric training targeting the hamstrings, can 62 

increase BFlh fascicle length (6, 33, 34). However those with a prior HSI might exhibit a 63 

reduced scope for positive adaptation as a result of a diminished capacity to activate the 64 
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previously injured muscle, per the inhibition hypothesis (7, 10, 22). This reduced ability to 65 

activate the previously injured muscle may also limit the extent of strain within the contractile 66 

tissue, which in turn may dampen the stimulus needed to increase fascicle length and eccentric 67 

strength (4, 13, 18). One study has examined the impact of a prior HSI on the adaptation of the 68 

hamstrings, reporting that elite Australian footballers with a HSI in the prior 12 months increased 69 

eccentric knee flexor strength to a lesser extent across a pre-season training period than 70 

individuals without a HSI(24). A restricted capacity to improve eccentric knee flexor strength is 71 

at least one mechanism through which prior HSI could increase the risk of future injury (20, 32).   72 

 73 

Despite the aforementioned findings, it remains unclear as to whether a history of HSI impacts 74 

upon the adaptive capacity of other risk factors, such as BFlh fascicle length, particularly during 75 

the in-season period. Recovery time and competition travel schedules can also limit when 76 

physical training can be implemented during a season. It is well established that physical 77 

performance variables tend to decline across the in-season period in elite Australian footballers 78 

(8). However, it remains to be seen if a specific pathological history might influence these 79 

changes. An improved understanding of the in-season changes in BFlh fascicle length, in 80 

previously injured and uninjured limbs, may inform on whether those with a history of HSI 81 

respond differently to the demands of a competitive season. Such data may have implications for 82 

the provision of risk mitigating interventions that are tailored to individuals based on their injury 83 

history. Therefore, the purpose of this study was to observe the in-season time course of changes 84 

to BFlh architecture in elite Australian footballers, with and without a history of HSI.            85 

 86 
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METHODS 87 
Participants  88 

Participants 89 

Paragraph 90 

In total, 30 elite male Australian footballers participated in this study. All participants provided 91 

written informed consent prior to collection of any data. For all athletes, team medical staff 92 

completed a retrospective injury questionnaire that detailed their history of hamstring, 93 

quadriceps, groin and calf strain injuries and chronic groin pain in the past 12 months, as well as 94 

the history of anterior cruciate ligament (ACL) injury at any stage throughout their career. This 95 

information was sourced from club medical records via the team doctor or physiotherapist. Of 96 

the 30 participants, 18 had no history of HSI or any other significant lower limb injury (including 97 

ACL) and formed the control group. Twelve athletes had suffered a unilateral BFlh strain injury 98 

in the prior 12 months and formed the previously injured group. Ethical approval for the study 99 

was granted by the Australian Catholic University Human Research Ethics Committee (approval 100 

number 2016-145E). 101 

Study design 102 

Paragraph 103 

This observational, retrospective cohort study was completed during the 2016 Australian 104 

Football League season which consists of 23 weeks of competitive matches (March 2016 to 105 

August 2016). All participants had their BFlh architecture assessed via two-dimensional 106 

ultrasound (Figure 1) approximately once every month on six separate occasions throughout the 107 

in-season period, at a consistent tie of day. These assessments occurred at weeks 1, 5, 9, 13, 17 108 

and 23 (final week of competitive games) of the in-season period. . .  109 
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BFlh architecture assessment 110 

Paragraph 111 

The protocol for the collection of BFlh muscle architecture has been described previously (29-112 

33). Muscle thickness, pennation angle and fascicle length of the BFlh was determined from 113 

ultrasound images taken along the longitudinal axis of the muscle belly utilising a two 114 

dimensional, B-mode ultrasound (frequency, 12Mhz; depth, 8cm; field of view, 14 x 47mm) (GE 115 

Healthcare Vivid-i, Wauwatosa, U.S.A). The scanning site was determined as the halfway point 116 

between the ischial tuberosity and the knee joint fold, along the line of the BFlh. All architectural 117 

assessments were performed with participants in a prone position, with the hip in neutral and the 118 

knee fully extended, following at least 5 minutes of inactivity. To gather ultrasound images, the 119 

linear array ultrasound probe, with a layer of conductive gel, was placed on the skin over the 120 

scanning site and aligned longitudinally and perpendicular to the posterior thigh. Care was taken 121 

to ensure minimal pressure was placed on the skin by the probe. Finally, the orientation of the 122 

probe was manipulated slightly by the assessor (RGT) if the superficial and intermediate 123 

aponeuroses were not parallel. Reliability of the assessor (RGT) has been previously reported for 124 

the assessment of BFlh architectural characteristics (intraclass correlations range from 0.93 to 125 

0.98 and typical error as a % coefficient of variation range from 2.1 to 3.4)(30). The assessor 126 

(RGT) has experience in the assessment of muscle architecture utilising two-dimensional 127 

ultrasound, specifically when assessing the BFlh (6, 30-33).  128 

Paragraph 129 

Once the images were collected, analysis was undertaken off-line (MicroDicom, Version 0.7.8, 130 

Bulgaria). For each image (Figure 1),  fascicle length estimation was performed as described by 131 

Blazevich and colleagues(5). Muscle thickness was defined as the distance between the 132 
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superficial and intermediate aponeuroses of the BFlh. A fascicle of interest was outlined and 133 

marked on the image and the angle at which it inserted onto the intermediate aponeurosis was 134 

determined as the pennation angle. The superficial and intermediate aponeurosis angles were 135 

determined as the angle between the line marked as the aponeurosis and an intersecting 136 

horizontal reference line across the captured image(5, 16). As the entire fascicle was not visible 137 

in probe’s field of view, it was estimated via the following equation from Blazevich and 138 

colleagues(5, 16):  139 

FL=sin (AA+90°) x MT/sin(180°-(AA+180°-PA)). 140 

Where FL=fascicle length, AA=aponeurosis angle, MT=muscle thickness and PA=pennation 141 

angle. Fascicle length was reported in absolute terms (cm) from a single image and fascicle. The 142 

same assessor (RGT) collected and analysed all scans and was blinded to participant identifiers 143 

(name, limb and group) during the collection and analysis of the images.    144 

Statistical analyses 145 

Paragraph 146 

All data (including age, height and weight) were analysed using a custom spreadsheet which 147 

assessed the magnitude of difference across the season within groups as well as the extent of any 148 

between group differences in muscle architecture, at each time point (15). As there were no 149 

differences between limbs in the control group at all weeks, the two-limb averages were used for 150 

all comparisons.  In order to reduce bias associated with non-uniformity of error, all data were 151 

log-transformed and effect sizes (Cohen’s d) with ± 90% confidence interval (CI) were 152 

calculated. Effect sizes of ≥0.2, ≥0.5 and ≥0.8 were defined as small, moderate and large, 153 

respectively, with effect sizes of <0.2 deemed as trivial. Finally, any effects where the 90% CI 154 
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simultaneously overlapped the positive (≥0.2) and negative (≤-0.2) thresholds of a small effect,  155 

were defined as being unclear(2).      156 

 157 

RESULTS 158 

Power calculations 159 

Power analysis was undertaken a priori using G-Power(9). The analysis was based on 160 

anticipated differences in BFlh fascicle length between the injured and contralateral uninjured 161 

limbs, using a split plot ANOVA model. Effect size estimates were based on previous 162 

research(30) which reported an effect size of 1.34 when comparing  BFlh fascicle length between 163 

injured and uninjured limbs. Therefore an effect size of 1.2 was deemed as a reasonable and 164 

conservative starting point for determining sample size. A calculated sample size of 10 per group 165 

was determined utilising the below parameters: 166 

• Power (1-β err probability) = 0.80 167 

• α = 0.05 168 

• Effect size = 1.2  169 

Participant details 170 

There were no clear differences between the two groups with respect to age (unclear effect; d = 171 

0.11 ± 0.60), height (unclear effect; d = 0.06 ± 0.59) and body mass (unclear effect; d = 0.26 ± 172 

0.59) (previously injured group age = 22.9 ± 2.6 yrs, height = 1.87 ± 0.06 m, body mass = 86.0 ± 173 

6.3 kg; control group age = 23.5 ± 3.9 yrs, height = 1.88 ± 0.10 m, body mass = 88.7 ± 10.4 kg). 174 

Percentage of total time on ground throughout the entire competitive season did not differ 175 

between the previously injured (80.6 ± 3.7%) and the control group (79.8 ± 5.4%; unclear effect; 176 
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d = 0.17 ± 0.58). There were also no within group differences, across the season, in the 177 

percentage of total time on ground for either the previously injured (trivial effects; d range: 0.15 178 

to 0.17) or control groups (trivial effects: d range: 0.13 to 0.17).  179 

Throughout the study, three participants suffered a HSI. Two of these were from the control 180 

group with one being from the previously injured group. The injuries for the control group 181 

participants occurred between weeks 13 and 17. As a result, these two participants were excluded 182 

from analysis at weeks 17 and 23. The previously injured participant’s incident occurred after 183 

week 23 and was not removed from any analysis due to the injury occurring after the final 184 

assessment was completed.   185 

BFlh architectural characteristics  186 

Fascicle length 187 

Temporal changes across the in-season period 188 

Previously injured limbs 189 

Fascicle length in the previously injured limbs increased from week 1 to week 5 (small effect; d 190 

= 0.20 ± 0.32) and fascicles were longer at all time points when compared to week 23 (small to 191 

moderate effects; d range: 0.22 to 0.75; Table 1 and 2, Figure 2). Furthermore, fascicles were 192 

longer at weeks 5 and 9 compared to weeks 13 and 17 (small effect; d range = 0.22 to 0.31; 193 

Table 1 and 2, Figure 2) 194 

Contralateral uninjured limbs 195 

Fascicle length was longest at week 5 compared to all other weeks (small to large effects; d 196 

range = 0.40 to 0.89; Table 1 and 2, Figure 2). Furthermore, fascicle lengths were longer at 197 

weeks 1 and 9 compared to weeks 17 and 23 (small to moderate effects; d range =  0.35 to 0.50; 198 
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Table 1 and 2, Figure 2). Week 9 also displayed longer fascicles compared to week 13 (small 199 

effect; d = 0.21 ± 0.19; Table 1 and 2, Figure 2), whilst at week 13 fascicles were longer 200 

compared to week 23 (small effect; d = 0.22 ± 0.17; Table 1 and 2, Figure 2).   201 

Control group 202 

Longer fascicles were observed in the control group at weeks 5, 9 and 13 when compared to 203 

weeks 1, 17 and 23 (small to large effects; d range: 0.34 to 1.01; Table 1 and 2, Figure 2). 204 

Furthermore, fascicles were longer at week 5 compared to week 13 (small effect; d = 0.33 ± 205 

0.23; Table 1 and 2, Figure 2) and longer at week 17 compared to week 23 (small effect; d = 0.42 206 

± 0.26; Table 1 and 2, Figure 2). 207 

Between group comparisons 208 

Previously injured limbs compared to contralateral uninjured limb 209 

The previously injured limb displayed shorter fascicle lengths compared to the contralateral 210 

uninjured limb only at week 5 (moderate effect; d = -0.76 ± 0.68; Table 3).  211 

Previously injured limbs compared to control group 212 

Fascicle length of the previously injured limb was shorter than the control group at all time 213 

points (moderate to large effects; d range: -1.15 to -0.77; Table 3).  214 

Contralateral uninjured limb compared to control group 215 

The contralateral uninjured limb displayed shorter fascicles compared to the control group 216 

average at weeks 9, 13, 17, 23 (moderate to large effect; d range = -0.87 to -0.54; Table 3)  217 
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Pennation angle 218 

Temporal changes across the in-season period 219 

Previously injured limbs 220 

Pennation angle in the previously injured limb was smaller at all weeks compared to week 23 221 

(moderate to large effects; d = -1.13 to -0.60, Table 1). Pennation angle was also lesser at week 5 222 

compared to week 17 (small effect; d = 0.26 ± 0.44, Table 1).  223 

Contralateral uninjured limb 224 

Pennation angle was less at week 5 compared to all other weeks (moderate to large effect; d 225 

range = -1.61 to -0.71, Table 1). In contrast, pennation angle was larger at week 23 compared to 226 

all other time points (small to large effects; d range = 1.61 to 0.35, Table 1). Pennation angle was 227 

also lesser at week 1 compared to week 13 (small effect; d = 0.36 ± 0.50, Table 1).  228 

Control group 229 

Pennation angle was greatest at weeks 1 and 23 when compared to all other weeks (small to large 230 

effects; d range = 0.21 to 0.94, Table 1). Further, pennation angle was greater at weeks 13 and 17 231 

when compared to weeks 5 and 9 (small effects; d range = 0.23 to 0.33, Table 1).  232 

Between group comparisons 233 

Paragraph 234 

Previously injured limbs compared to contralateral uninjured limb 235 

Pennation angle in the previously injured limb was larger compared to the contralateral uninjured 236 

limbs at weeks 5 and 23 (moderate to large effects; d range = 0.61 to 1.04; Table 3). 237 

Previously injured limbs compared to control group 238 

When compared to the control group, previously injured limbs had greater pennation angles at 239 

weeks 5, 9, 13 and 23 (moderate to large effects; d range = 0.50 to 1.01; Table 3).   240 
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Contralateral uninjured limb compared to control group 241 

The contralateral uninjured limb’s pennation angle was greater than the control group average at 242 

week 9 (d = 0.61 ± 0.60) and 13 (d = 0.46 ± 0.62). 243 

 244 

Muscle thickness 245 

Temporal changes across the in-season period 246 

Previously injured limbs 247 

Muscle thickness was greater at week 23 compared to week 1 (small effect; d = 0.26 ± 0.45, 248 

Table 1). 249 

Contralateral uninjured limb 250 

No small, moderate or large effects were detected for muscle thickness across all time points. 251 

Control group 252 

Muscle thickness was greater at week 5 (d = 0.29 ± 0.19, Table 1) and week 13 (d = 0.20 ± 0.13, 253 

Table 1) compared to week 17. 254 

 255 

Between group comparisons 256 

Previously injured limbs compared to contralateral uninjured limb 257 

No small, moderate or large effects were detected for muscle thickness between the previously 258 

injured and uninjured contralateral limbs. 259 

Previously injured limbs compared to control group 260 

Compared to the control group the previously injured limbs had decreased muscle thickness at 261 

weeks 1, 5 and 13 (moderate effect; d range -0.56 to -0.48; Table 3) 262 

Contralateral uninjured limb compared to control group 263 
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No small, moderate or large effects were detected. 264 

DISCUSSION 265 
The main findings of this study were 1) those with a history of unilateral HSI end the in-season 266 

period with shorter BFlh fascicles compared to the start of the in-season period in both their 267 

previously injured and contralateral uninjured limb; 2) uninjured limbs display similar BFlh 268 

fascicle lengths at the start of the in-season period compared to the end of the in-season period; 269 

3) increases in BFlh fascicle length were observed early in-season across all athletes, however 270 

the magnitude of this increase differed based on history of HSI.  271 

 272 

BFlh fascicle length has been identified as a modifiable risk factor for HSI (32), however, it was 273 

previously unclear as to how or if this parameter changed across a season in elite Australian 274 

footballers. In the current study all groups increased BFlh fascicle length during the early part of 275 

the in-season period, which then progressively shortened until the end of the competitive season. 276 

Of note, the increase was largest in the control group (moderate effect, d = 0.67 ± 0.33), followed 277 

by the contralateral uninjured limbs (small effect, d = 0.47 ± 0.27) and finally the previously 278 

injured limbs (small effect, d = 0.20 ± 0.32). This divergence in early in-season responses across 279 

groups appears to be a factor that ultimately results in both limbs from the previously injured 280 

athlete possessing shorter fascicles at the conclusion of the season compared to the start of the 281 

season. From weeks 5 to 23, the control group displays the largest decline in fascicle length 282 

(large effect, d = -1.01 ± 0.31), followed by the contralateral uninjured limbs (large effect, d = -283 

0.89 ± 0.35) and then the previously injured limbs (moderate effect, d = -0.75 ± 0.37). These 284 

findings differ to work which has examined in-season alterations in vastus lateralis fascicle 285 

length, in softball and track and field (3, 19). In these studies, an initial decline in the first half of 286 
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the competitive season was counteracted by an increase at the end of the season(3, 19). However 287 

as the vastus lateralis acts in an anti-gravity nature, it is likely that the differing roles of the knee 288 

extensors and flexors contribute to these divergent findings, as would the differing demands 289 

between the sports examined.   290 

 291 

The current data suggest that the early in-season period (i.e. within the first one to two months of 292 

the commencement of the season) may be an important time to continue to implement 293 

interventions to increase BFlh fascicle length, particularly in Australian footballers with a history 294 

of HSI. Simplistically, there is the possibility that this could be achieved with high-intensity, 295 

eccentric loading strategies that can elicit favourable adaptations within 2 weeks (33). However, 296 

there are likely a number of practical considerations that may limit or preclude such a strategy in 297 

elite sporting environments compared to those observed from lab-based studies in recreational 298 

athletes. These may include coach/athlete apprehension towards eccentrically induced muscle 299 

damage often reported in response to unaccustomed training(1) (which can be accentuated by the 300 

extent of the muscle strain undertaken during lengthening contractions (17)). Also a greater 301 

emphasis placed on recovery between matches at the expense of loading exposures (12, 28), as 302 

well as the presence or accumulation of other lower limb injuries that might not result in on-field 303 

time loss but do require modifications to resistance exercise prescription. Prior evidence has 304 

suggested that the de-training effect for BFlh fascicles following eccentric training interventions 305 

can occur in as little as four weeks(33), which would justify the need for constant application of 306 

an eccentric strength training stimulus, yet implementation appears to be challenging in practice 307 

(1).      308 

 309 
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It should be acknowledged that the current paper is limited as no architecture data was captured 310 

during the pre-season period, which spans November to February. It is certainly possible that the 311 

previously injured athletes increased fascicle length substantially during this period and future 312 

work should seek to explore this possibility. Nevertheless, across the entire in-season period, the 313 

previously injured hamstrings possessed shorter fascicles than the control group at all weeks 314 

(moderate to large effects throughout). These findings are likely to at least partly explain the high 315 

rates of HSI recurrence seen in Australian footballers (26). Therefore consideration should be 316 

given to what previously injured Australian footballers are capable of doing during their off-317 

season program as a means of minimising any deficits at the commencement of the season. As 318 

exposure to high speed running can be minimised in the off-season, this may allow for the 319 

application of high-intensity strength training interventions targeted at increasing or at least 320 

minimising reductions in BFlh fascicle length, leading into the next pre- and in-season periods.                    321 

 322 

The current study indirectly infers the possibility that previously injured athletes/limbs are less 323 

capable of adapting positively to the rigours of in-season demands compared to those without a 324 

history of injury. Similar observational research has found that previously injured Australian 325 

footballers display less improvement in eccentric knee flexor strength across the pre-season 326 

compared to their uninjured counterparts(24). Such limited adaptation in previously injured 327 

athletes could be partly attributed to prolonged neuromuscular inhibition(10), which has been 328 

noted in previously injured athletes even after returning to pre-injured levels of competition(7, 329 

22, 23, 30). For example, a previously injured BFlh has been shown to be significantly less 330 

active than uninjured contralateral muscles during performance of the Nordic hamstring curl(7), 331 

which is an exercise commonly used in HSI rehabilitation(1). It is possible that this limited 332 
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activation may result in a reduced amount of strain within the tissue and limit the stimulus 333 

required to increase fascicle length (4, 13). However, from a mechanistic perspective, this 334 

phenomenon requires further investigation. No study has investigated whether individuals with 335 

and without a prior history of HSI respond differently to controlled interventions aimed at 336 

increasing eccentric strength and fascicle length. Should differences exist, further exploration as 337 

to whether inhibition manifests at the spinal or supraspinal level would be necessary to guide 338 

interventions targeted at restoring voluntary activation capacity after injury.      339 

 340 

The authors acknowledge there are limitations in the current study. First, there are 341 

methodological limitations with the use of two-dimensional ultrasound to estimate BFlh fascicle 342 

length. As the fascicles which were measured are longer than the field of view which was 343 

utilised, the entire fascicle was not captured. Therefore, estimation was required to determine 344 

BFlh fascicle length. The estimation process used has been previously validated against 345 

cadaveric samples(5, 16). However, it must be recognised that there is still error associated with 346 

the determination of BFlh fascicle length (in this assessment typical error is approximately 347 

0.30cm). Secondly, there was no concurrent collection of match and training exposure, internal 348 

and external training load and resistance training programming variables. As several factors are 349 

likely modulators of fascicle length, examining the interaction between previous injury status 350 

and the aforementioned variables needs to be the focus of the next series of studies in this area.  351 

 352 
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CONCLUSION 353 

Paragraph 354 

Elite Australian footballers with a history of HSI display shorter BFlh fascicles at the completion 355 

of the season compared to the start, in both their injured and uninjured limbs. In contrast, athletes 356 

without a history of HSI  finish the season with similar fascicle lengths to what they started with. 357 

Yet they do experience lengthening shortly after the commencement of the season which is then 358 

succeeded by a sustained period of shortening for the rest of the season. The impact of injury 359 

history on the structural and functional adaptations of the hamstrings requires further 360 

examination, as practitioners and clinicians search for novel strategies to mitigate the risk of 361 

recurrent HSI in their athletes.     362 
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Figure 1 472 

A two-dimensional ultrasound image of the biceps femoris long head. The image was along the 473 

longitudinal axis of the posterior thigh. From these images, it is possible to determine the 474 

superficial and intermediate aponeuroses, muscle thickness and angle of the fascicle in relation to 475 

the aponeurosis. Estimates of fascicle length can then be made via trigonometry using an 476 

equation validated against cadaveric tissue (5). 477 

Figure 2 478 

Fascicle length changes of the biceps femoris long head in previously hamstring strain injured 479 

limbs, the contralateral uninjured limb and two-limb average of the control group without a 480 

history of hamstring strain injury from elite Australian footballers. The weeks are each separated 481 

by ~28 days and all data were collected during the in-season period. Error bars represent 482 

standard deviations. 483 
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