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Abstract

Accurate power load forecasting has a significant effect on a smart grid by ensuring effective supply and

dispatching of power. However, electric load data generally possesses the characteristics of nonlinearity,

periodicity, and seasonality. In particular, for complex electric load systems, the presence of redundant

information potentially reduces the real pattern extraction for load forecasting. Bearing in mind these

issues, we propose an effective forecasting model in which a feature extraction module is introduced that

is combined with the variational mode decomposition (VMD) with the variational autoencoder (VAE).

In this combination, VMD is utilized for decomposing complex load series and VAE is used to filter

the redundant information (noises) from each decomposed series. With two real data sets from China,

we demonstrate that the proposed model can achieve highly accurate predictions, as we find the mean

absolute percentage error (MAPE) values for one-step-ahead prediction to be 1% (Nanjing) and 0.8%

(Taixing), respectively.

Keywords: Deep learning, Decomposition-ensemble method, Feature extraction, Load forecasting

1. Introduction

In recent years, given that there are insufficient energy resources, the establishment of reliable energy

management system (EMS) has become the focus [1, 2, 3], and high-performance power load forecasting

is the basis of EMS automatic management. Power load forecasting is the most important issue in

EMS [4, 5, 6] and it affects power generation, power dispatch, power purchase, resource management,

grid security, and stability [7]. Therefore, accurate electric load prediction can ensure the safety and

reliability of EMS. In addition, the improvement in the accuracy of power load forecasting can further

reduce the cost of power operations. According to Xiao et al. [8] and Dong et al. [9], for every 1% increase

in the accuracy of power forecasts, the cost of smart grid operations will likely be reduced by millions of
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dollars. In summary, a power load forecasting model with excellent performance is essential for building

a reliable and efficient EMS [10].

1.1. Literature reviews

According to the duration of forecast, power load forecasting can be divided into long-term load

forecasting (LTLF) [11], medium-term load forecasting (MTLF) [12], and short-term load forecasting

(STLF) [13, 14, 15]. STLF serves to formulate power generation plans and transmission schemes. It

is an important part of EMS. This paper focuses on SLTF based on time series modelling due to

its immense practicality. Substantial research has been conducted by several researchers to advance to

forecasting performance of the power load forecasting model [16, 17, 18].

Since power load data often exhibit complex characteristics—non-stationary, non-linearity, and multi-

seasonality—power load data has numerous dimensions. Before forecasting, it is necessary to preprocess

electric load data, as this is expected to strengthen prediction performance. The traditional power load

data processing methods include modal decomposition and data dimensionality reduction. Decomposition

algorithms such as empirical mode decomposition (EMD) [19], ensemble empirical mode decomposition

(EEMD) [20], and complete ensemble empirical mode decomposition (CEEMD) [21] can handle nonlinear

and unstable sequences well and have been extensively utilized in time series prediction since they were

proposed [20].

Principal component analysis (PCA) [22] and linear discriminant analysis (LDA) [23] are traditional

unsupervised and supervised linear dimensionality reduction methods, respectively. As a traditional

generation model, variational autoencoder (VAE) proposed by Kingma and Welling [24] has received

much attention in recent years for its dimensionality reduction ability. Compared with autoencoder

(AE), VAE adds a few restrictions in the encoding process, thereby forcing the generated latent vector

to roughly follow a standard normal distribution [25, 26]. Moreover, VAE retains the features that are

important for prediction and eliminates noise. Xu et al. [27] compared the hidden layer learning of

hidden layer in conventional AE and VAE. VAE can generate different data to strengthen the sample

data that shows better performance. Laubscher and Rousseau [28] combined VAE with deep neural

networks (DNNs) to forecast, where VAE is responsible for generating low-dimensional encoded data. In

these studies, VAE reduces the dimensionality of input data and compresses high-dimensional data to

extract features.

Power load forecasting models are generally divided into two main classifications: traditional statis-

tical methods [29] and deep learning methods [30]. Statistical methods include regression prediction,

trend extrapolation, and time-series analysis methods, in which the method of analysing time series

includes auto regression (AR) [31] and the auto-regressive integrated moving average model (ARIMA)

[32]. ARIMA is constituted of AR and the moving average model (MA). The model coefficients can be

updated according to least squares or gradient descent. ArunKumar et al. [33] used ARIMA to forecast

epidemiological trends and confirmed the existence of seasonality in data. Abdalla et al. [34] used ARIMA
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to analyze the short-term uncertainty that existed in wind forecasts, and various methods are proposed

for its influence. However, for complex nonlinear systems, models based on traditional statistical methods

are not entirely applicable, and the forecast performance is poor [35, 36].

Since the 1980s, numerous scholars have begun to study deep learning methods and successfully apply

them to power load forecasting, including support vector machines (SVM) [37, 38] and neural networks

[39, 40]. Extreme learning machine (ELM) is an emerging generalized single hidden layer feed-forward

neural network learning algorithm, which can generate random hidden variable parameters to calculate

output weights and is widely used in forecasting [41]. Yang et al. [42] improved the whale optimization

algorithm and applied it with the robust ELM. Further, Yang et al. [43] implemented general robust

parameterized ELM by redesigning the statistical framework in robust parameterization to improve the

forecasting effect of ELM. Wu et al. [44] proposed a new SVR, which incorporates a linear cost function

and the insensitivity parameter.

In addition to these above methods, long short-term memory network (LSTM) is also utilized for power

load prediction. LSTM is a time loop neural network. During the training process of long sequences,

LSTM can provide solutions for gradient disappearance and gradient explosion [45]. To improve prediction

accuracy, numerous scholars have used modal decomposition algorithms to improve LSTM. Cheng et al.

[46] combined EMD and backpropagation long short-term memory (B-LSTM) to develop estimation and

prediction models. Jana et al. [47] proposed a granular deep learning approach consisting of maximal

overlap discrete wavelet transformation (MODWT) and LSTM for predicting the energy consumption.

However, when the data is noisy, using these traditional decomposition algorithms will likely lead to lead

to modal aliasing.

Variational modal decomposition (VMD) is widely used due to its strong robustness to data and its

ability to avoid modal aliasing [48]. In recent years, scholars have been concerned about improving the

feature extraction efficiency of VMD. Li et al. [49] proposed a two-stage short-term wind power forecast

method by optimizing VMD parameters through the flower pollination algorithm (FPA). Zhang et al.

[50] introduced a two-layer decomposition technique based on the combination of VMD and ensemble

empirical modal decomposition (EEMD). Therefore, it is effective to combine VAE with VMD to improve

the ability to extract features.

In summary, the current demand for accurate forecasting of power loads is increasing. First, more

advanced deep learning methods are required to build hybrid models to improve prediction accuracy.

Second, the extraction of more effective features from data to meet the forecast demand of different

regions is another problem.

1.2. Contributions of this Study

In response to the above problems, a hybrid load forecasting model called VMD-VAE-LSTM is pro-

posed in this paper. In this model, VMD as the data processing module splits data into multiple sub-

sequences, VAE performs feature extraction on the decomposed sequence, and finally LSTM is used for
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prediction. The results reveal that the hybrid model we proposed can effectively improve the forecasting

accuracy. This paper makes the following contributions to literature:

(a) To improve the accuracy of electric load forecasting, a new hybrid model is proposed in this paper.

The model combines LSTM with VMD and VAE. The raw electric load data is decomposed utilizing VMD,

and the features of the input sequence are extracted using VAE, which effectively improves the prediction

accuracy of LSTM.

(b) The introduction of VAE into the decomposition sequence to extract effective features greatly

reduces the dimension of the data, particularly for the extraction of efficacious information from compo-

nents.

(c) The proposed hybrid load forecasting model is used to execute multi-step-ahead forecasting on

two real power load data sets in Nanjing and Taixing. Compared with AE, VAE significantly improved

the prediction accuracy in both examples. In the one, three, and five-step-ahead forecasting of Example

1, MAPE decreased by 61.5%, 23.8%, and 32.1%, respectively. In the one, three, and five-step-ahead

forecasting of Example 2, MAPE decreased by 55.6%, 40.9%, and 22.2%, respectively.

1.3. The structure of the paper

The remainder of this paper is organized in the following manner: Section 2 details the methodology

employed in this study. Section 3 presents the specific process of VMD-VAE-LSTM. Section 4 presents the

application and the experiment error indexes of the proposed model on the electric load data of Nanjing

and Taixing. Finally, Section 5 summarizes the above experiments and provides criticism, discussion,

and suggestions.

2. Methodology

2.1. Variational mode decomposition

EMD has been widely applied in nonlinear and nonstationary signal analysis, but the intrinsic mode

function(IMF) components obtained by this method have mode aliasing. The appearance of mode aliasing

leads to false time-frequency distribution. In addition, the IMF with features cannot be accurately

generated. Considering this, Dragomiretskiy and Zosso [51] proposed a VMD method that can transfer

the acquisition process of signal components to the variational framework. Simultaneously, the method is

a completely no-recursive variational pattern decomposition model and a simultaneous extraction mode.

VMD reproduces the input signal by searching the component and centre frequency. After demodulation

to the baseband, each mode is smooth. Compared with other decomposition algorithms, VMD has better

performance in terms of the accuracy of decomposing complex data and the anti-interference ability of

noise.

In this paper, the electric load data L(t) is decomposed by VMD into sub-sequences (or modes), where

um represents the mth mode after decomposition, m belongs to [1, n], and wm represents the mth centre

frequency. The detailed realization steps of VMD method are described below.
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Step 1: VMD constructs a variational problem. K mode components are generated by decomposing

the raw signal f . Each component should have a limited bandwidth of the central frequency, and the

sum of these estimated bandwidths should be the smallest. Therefore, the constraint condition that the

sum of all mode components is equal to the raw signal can be assumed,

min
{uk},{ωk}

{∑
k

∥∥∥∥∂t {[∇(t) +
j

tπ
] ∗ uk(t)

}
e−jωkt

∥∥∥∥2
2

}
,

s.t.

K∑
k=1

uk = f,

(1)

where {uk} and {ωk} correspond to the kth model component and centre frequency, respectively, K is

the number of decomposed modes, ∇ denotes the Dirac distribution, and ∗ is a convolution operator.

Step 2: By introducing the Lagrangian operator λ, the constrained variational problem is transformed

into an unconstrained variational problem, and the augmented Lagrangian expression is as given below:

L({uk} , {ωk} , λ) =

α

{∑
k

∥∥∥∥∂t[(∇(t) +
j

tπ
) ∗ uk(t)]e

−jωkt

∥∥∥∥2
2

}
+

∥f(t)−
∑
k

uk(t)∥22 + ⟨λ(t), f(t)−
∑
k

uk(t)⟩,

(2)

where α is the quadratic penalty factor for reducing Gaussian noise interference.

Step 3: VMD optimizes each modal component and the center frequency, by the Fourier isometric

transform and the alternate direction method of multipliers (ADMM). By searching the saddle point

of the augmented Lagrangian function, the uk, ωk, and λ are optimized alternately after iteration. The

specific equation is shown below:

ûn+1
k (ω) =

f̂(ω)−
∑

i ̸=k ûi(ω) +
λ̂(ω)
2

1 + 2α(ω − ωk)2
, (3)

ωn+1
k =

∫∞
0

ω
∣∣ûn+1

k (ω)
∣∣2 dω∫∞

0

∣∣ûn+1
k (ω)

∣∣2 dω , (4)

λ̂n+1(ω) = λ̂n(ω) + τ(f̂(ω)−
∑
k

ûn+1
k (ω)), (5)

where τ is the noise tolerance that meets the fidelity requirements after signal decomposition, ûn+1
k (ω),

ûi(ω), f̂(ω), and λ̂(ω) correspond to un+1
k (t), ui(t), f(t), and λ(t) in Fourier transform, respectively.

2.2. Variational autoencoder

VAE is a special AE based on variable Bayesian reasoning [24]. Like AE, VAE is composed of an

encoder and a decoder, which are two kinds of neural networks with different structures. The encoder is

responsible for extracting feature information. The decoder reconstructs this information to achieve an

outcome, which is similar to the original data.
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The encoder represents z = σ(ωx+ b), where x denotes the original data, and z denotes the extracted

feature information. The decoder represents x′ = σ′(ω′z+b′), where x′ denotes the reconstruction result.

VAE learns the feature through the loss function Loss(x, x′) = ∥x− x′∥2.

Different from AE, VAE has the characteristics of probabilistic AE and generative AE. Therefore,

VAE is divided into a corresponding reasoning network and a generation network. The encoder is an

inference network. The hidden variables are obtained by the variational inference treatments on original

data, and the variational probability distribution is further obtained from this data. The decoder is called

the generation network, which generates data approximate to original data.

In addition, VAE has better robustness than AE. This is because Gaussian noise is added to the

encoder of VAE, which enhances its ability to resist noise in an actual scenario.

2.3. Long short-term memory network

The LSTM network is developed depending on the recurrent neural network (RNN), which controls

the transmission state through the gate structure [52]. Compared with ordinary neural networks, RNN

can effectively manage sequential data. RNN has the advantage of processing data that varies in terms

of sequence, which can take advantage of the past timestamp to estimate current load requirements.

However, RNN has disadvantages in that it has the potential situation of gradient disappearance and

gradient explosion. These issues are improved by the introduction of gates in the structure of the LSTM.

The LSTM is implemented in three steps, as described below.

Step 1: The forget gate (fg = σ(Wf [hg−1, xg] + bf )) decides which information will be discarded

from the cell state. The forget gate determines the retention of the previous cell state Cg−1 by learning

the output hg−1 of the previous reservoir and the input xg of the current sequence. The output result

determines the dependence of the current cell state on Cg−1. 0 is abandoned and 1 is completely passed.

Step 2: The preparation of the update of the cell state is done in two parts. First, the input gate

(ig = σ(bi + Wi[hg−1, xg])) determines which values to update and prepares a candidate vector (C̃g =

tanh(bC+WC [hg−1, xg])). Second, forget gate and Cg−1, input gate and C̃g−1 are multiplied and summed

to obtain updated results (Cg = fg × Cg−1 + ig × C̃g).

Step 3: The output gate (og = σ(Wo[hg−1, xg] + bo)) determines which parts of the cell state to be

output of current state. The final hidden layer output (hg = og × tanh(Cg)) is obtained by multiplying

og with Cg, and it acts on the next cell state.

3. The proposed model

Electric load forecasting uses historical electric load data to estimate the load data at a certain time

in the future. The result of STLF spans a few minutes to a week. STLF is widely employed in daily

load scheduling in various fields due to its strong practical value. As mentioned above, there are two

difficulties in STLF. One is the development of a model that can satisfy the various complex nonlinear
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load data, and the other is the forecasting performance of the existing models to be improved. Because

of these difficulties, LSTM is designed to predict mass data. In addition, VMD is used to extract feature

sub-sequences, and VAE is adopted to reduce the dimensionality of data. Finally, VMD-VAE-LSTM is

proposed. The specific process of the corresponding framework establishment can be summarized in five

steps as described below.

Step 1: Feature extraction. The K value was set manually, which is mentioned in Section 2.1.

Then, the desired sub-sequence set can be achieved from VMD. VMD is employed to extract the sub-

sequences with features from power load data Xp(p = 1, 2, 3, · · · , S) according to frequency, where S is

the total amount of raw data. Finally, VMD outputs N sub-sequences Modj (j = 1, 2, 3, · · · , N).

Step 2: Dimensionality reduction. According to the proportion of 80%-20%, the training set and

testing set is generated by the division of each sub-sequence Modj (j = 1, 2, 3, · · · , N) in Step 1. Then,

the training set is fed into VAE for the establishment of the network, and the hyper-parameters of VAE

are adjusted by the fitting degree of the testing set on VAE. Finally, VAE outputs the reconstruction

results Rr (r = 1, 2, 3, · · · , T ) based on the best reconstruction outcomes and the least dimension.

Step 3: Model training. According to the segmentation data set method in Step 2, the reconstruc-

tion results in Step 2 are divided into the training set and testing set. To achieve different prediction

objectives, the training set and testing set are divided into sample set and label set, respectively. LSTM

was trained and verified by the training set and the testing set separately. Then, the hidden layer param-

eters are adjusted adaptively by calculating the loss function of prediction results and label set in each

iteration. Finally, the training of the prediction model is conducted.

Step 4: Multi-step forecasting. The prediction result Perl (l = 1, 2, 3, · · · ,M) is obtained by

inputting each sub-sequence with its testing set. Multi-step forecasting can be finally realized according

to the label sets with different prediction objectives.

Step 5: Accumulation results. The output of each sub-sequence forecasting Perl are added to

calculate the forecasting result of raw data.

Remark 1. It should be noted that the choice of the parameter K in Step 1 (Feature extraction) would

determine the performance of our proposed dimensionality reduction approach. In our proposed pro-

cedure, the tuning value of K is set by the empirical method. Some advanced methods like successive

approximation [53] can be used to optimize the parameter K for further improving the effectiveness of

our proposed approach.

For a more clear and comprehensive expression, the specific steps of VMD-VAE-LSTM are displayed

more intuitively and concisely. Figure 1 illustrates the specific steps of the developed model. Figure 1

shows the specific steps of the developed model.

The network structure of VMD-VAE-LSTM is illustrated in Figure 2. The specific implementation

process of VMD-VAE-LSTM is provided in Algorithm 1. In this paper, the value of K is used in accordance
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Figure 1: The flowchart of the VMD-VAE-LSTM model.

with the empirical method, which is determined by the experimental results through several experiments.

To verify the applicability and reliability of this method, the regional load data sets of Nanjing and

Taixing are used. Section 4 provides an in-depth explanation of the above methods and forecasting

results.

4. Case study

In this section, the experimental results are comprehensively analyzed by answering the following

questions.

(1) How do the different decomposition algorithms affect load forecasting? Can VMD provide higher

forecasting accuracy?

(2) How does the reduction of data dimensionality influence load forecasting? Does VAE perform

better in load forecasting?

(3) Compared with other popular forecasting models, how does VMD-VAE-LSTM perform?

By designing comparative experiments, the performance of VMD-VAE-LSTM is further verified. All

models involved in this investigation are listed in Table 1. These models can be divided into three

categories: benchmark models, popular models, and the model proposed in this paper. The detailed

hyperparametric settings of different benchmark models are provided in Appendix A. Further, the

adopted data are from Nanjing and Taixing, respectively. The overall verification process is conducted

using Matlab R2020a and PyCharm Community Edition 2021.1.3 x64 environment with Windows 10 and

a 2.30 GHz Intel Core i5-8300H CPU, with 64-bit support and 8GB RAM.

To objectively measure the simulation effect and fitting degree of different models, various indica-

tors are adopted in Appendix B to quantitatively analyze the forecasting results. The mathematical

expressions of the error indexes are described in Appendix B, where S represents the statistics of data
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Figure 2: The network structure of the VMD-VAE-LSTM model.

quantity, P and P̂ indicate the true and forecasted values, respectively. Specifically, when root mean

square error (RMSE) or mean absolute error (MAE) gradually approaches 0, the prediction result is also

close to the actual result. In addition, MAPE indicates the quality of the model in terms of percentage.

When the value of MAPE approaches or exceeds 100%, it indicates the model has poor performance.

The forecasting accuracy of the model increases with the decrease in MAPE.

Note that, that popular EEMD, CEEMD, and CEEMDAN are designed to show the advantage of

VMD. The performance verification of VMD-VAE-LSTM is studied with respect to two common models:

RNN and LSTM, where the learning rate is 0.01, the iteration round is set to 200, and hidden neurons

are (256, 128, 64, 1). The goal of this research is to utilize historical electric load data to forecast the

electric load data before the one-step, three-step, and five-step-ahead forecasting, respectively.
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Algorithm 1 The VMD-VAE-LSTM model

Input: Power load data from Nanjing or Taixing

Output: Predicted value of power load data

1: if DP ̸= 1 then

2: Convert P to one-dimensional vector

3: end if

4: Set the value of expected patterns (K)

5: Obtain K decomposed sub-sequences (S) with L× 1, L is the length of P

6: for all i = 1, 2, 3, · · · ,K do

7: Set the size (W ) of window in Sliding Window Algorithm

8: Obtain V matrix with (L−W )×W

9: Set the desired dimension (R)

10: Obtain the result of dimension reduction matrix (V̂ ) with (L−W )×R

11: end for

12: for all i = 1, 2, 3, · · · ,K do

13: Segment V̂ into samples (A) and labels (B)

14: Segment (A) and (B) into training set(Aa,Ba) and testing set(Ae,Be), respectively

15: Create batch data

16: Training model with Aa and S

17: Feed the trained model with Ae and S

18: Obtain the predicted value

19: end for

The experimental outcomes of both data sets are analysed from three perspectives: the improvement of

prediction accuracy from different decomposition algorithms, the dimensions of data, and the forecasting

accuracy of various popular forecasting models. The subsections below describe these aspects.

4.1. Example 1: Nanjing

Example 1 adopts the load data from the total electric consumption in Nanjing. The electric load

data in Nanjing is collected every 15 minutes. The Nanjing data set has 22272 data points (from 00:00

on November 1, 2002 to 23:45 on June 26, 2003). The descriptive statistics of the data set in Nanjing is

presented in Table 2. This data set is split 80% and 20% to produce two subsets. One is the training set

with 17862 data points, and the other is the testing set with 4410 data points. Table 3 presents the error

indexes of the experiment in Example 1. The actual power load data and prediction results based on

VMD-VAE-LSTM from Nanjing are presents in Figure 4. Then, the experiment is specifically analyzed.
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Table 1: All models adopted in the experiment.

Model Abbreviation Definition

Benchmark Models RNN Recurrent Neural Network [54]

LSTM Long Short-Term Memory Networks [52]

Popular Models EMD-LSTM LSTM with Empirical Mode Decomposition [46]

EEMD-LSTM LSTM with Ensemble Empirical Mode

Decomposition [20]

CEEMD-LSTM LSTM with Complete Ensemble Empirical Mode

Decomposition [21]

CEEMDAN-LSTM LSTM with Complete Ensemble Empirical Mode

Decomposition with Adaptive Noise [55]

VMD-LSTM LSTM with Variational Mode Decomposition [51]

VMD-AE-LSTM LSTM with Variational Mode Decomposition

and Autoencoder [56]

Proposed Models VMD-VAE-LSTM LSTM with Variational Mode Decomposition

and Variational Autoencoder

Table 2: The descriptive statistics of the Nanjing data set.

data set Size Min. Max. Median Mean Std. Dev.

Total data 22272 1154.501 3354.927 1910.669 1921.220 405.395

Training data 17862 1154.501 3354.927 1786.841 1849.930 395.040

Testing data 4410 1394.058 3221.731 2145.908 2209.973 306.547

The unit of load data in Nanjing data set is MW.

4.1.1. Comparison among EMD-LSTM, EEMD-LSTM, CEEMD-LSTM, CEEMDAN-LSTM, and VMD-

LSTM

To verify the improvement of VMD in the prediction performance of VMD-VAE-LSTM, several de-

composition algorithms are designed for comparison in this experiment. In this experiment, the empirical

method is used to test several setups of the K value (the number of expected patterns) in the decom-

position algorithm. Figure 3 presents the decomposition effect of VMD. Because the original data set

is too large, it is not easy to display clearly. 960 data points (from 00:00 on November 1, 2002 to

23:45 on November 4, 2002) are selected for display. As depicted in Figure 3, the original data set is

decomposed into nine IMFs and one residual component. These components have periodic and regular

components, which have advantages for forecasting. Figure 4 exhibits the power load forecasting curves

in this comparison.
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Figure 3: VMD components of the partial Nanjing data set (The time of the partial Nanjing data set is from 00:00 on

November 1, 2002 to 23:45 on November 4, 2002).

The comparison reveals that the model with VMD has the best effect on prediction than other models

with different decomposition algorithms. Compared with the model that only the decomposition algo-

rithm, Figure 4 reveals that the electric load forecasting curve of VMD-LSTM is closer to the actual power

data curve than the other four curves. In Table 3, VMD-LSTM obtains the smallest error indexes than

other models only using decomposition algorithms. The goodness-of-fit (R2) of VMD-LSTM in one-step,

three-step, and five-step-ahead forecasting are 0.930, 0.928, and 0.914, respectively. The MAPE values

are 0.032, 0.031, and 0.031, respectively. The MAE values are 69.638, 66.045, and 68.148, respectively.

The RMSE values are 80.092, 81.327, and 88.832, respectively. The outcomes verify that LSTM with

decomposition algorithm has a better prediction effect than other comparison models. Further, VMD

can be used as a better data processing unit to obtain data that is more suitable for prediction.
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(a) One-step-ahead forecasting.

(b) Three-step-ahead forecasting.

(c) Five-step-ahead forecasting.

Figure 4: One-, three- and five-step-ahead forecasting of various hybrid models in the Nanjing data set (The load data of

Nanjing is from 23:15 on June 9, 2003 to 1:30 on June 10, 2003).

4.1.2. Comparison among VMD-LSTM, VMD-AE-LSTM, and VMD-VAE-LSTM

In order to examine the effectiveness of VAE in improving prediction performance, by reducing the

dimension of data, VMD-VAE-LSTM is designed to compare with VMD-LSTM and VMD-AE-LSTM. It

is evident from Figure 4 that VMD-AE-LSTM has a better fitting degree than VMD-LSTM and VMD-

VAE-LSTM has better fitting degree than VMD-AE-LSTM. These indicate that the prediction effect of

this model is better than that of other models. In Table 3, the R2 of VMD-VAE-LSTM in one-step,

three-step and five-step-ahead prediction are 0.993, 0.98, and 0.970, respectively. The MAPE values

are 0.010, 0.016, and 0.019, respectively. The MAE values are 21.194, 35.032, and 41.152, respectively.

The RMSE values are 25.747, 43.276, and 52.324, respectively. Compared with VMD-AE-LSTM, VMD-
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VAE-LSTM significantly improved the prediction accuracy in both examples. In the one-step ahead

prediction, MAPE decreased by 61.5%. In the three-step ahead prediction, MAPE decreased by 23.8%.

In the five-step ahead prediction, MAPE decreased by 32.1%. In conclusion, VMD-VAE-LSTM is more

accurate.

4.1.3. Comparison among EMD-LSTM, EEMD-LSTM, CEEMD-LSTM, CEEMDAN-LSTM, VMD-LSTM,

and VMD-VAE-LSTM

In this section, further comparison is conducted between five different popular models and the de-

veloped model—EMD-LSTM, EEMD-LSTM, CEEMD-LSTM, CEEMDAN-LSTM, VMD-LSTM, and

VMD-VAE-LSTM.

In contrast, the prediction result of VMD-VAE-LSTM is closer to the actual power load than other

contrast models. For example, in Table 3, the R2 of EMD-LSTM, EEMD-LSTM, CEEMD-LSTM,

CEEMDAN-LSTM, and VMD-LSTM are (0.881, 0.763, 0.653), (0.908, 0.806, 0.843), (0.900, 0.835,

0.649), (0.918, 0.908, 0.892), and (0.930, 0.928, 0.914), (The values in brackets represent the prediction

results of one, three, and five steps of one model, respectively). In comparison, the R2 of VMD-VAE-

LSTM are (0.993, 0.980, 0.970). From the analysis above, the R2 of VMD-VAE-LSTM is higher than

that of EMD-LSTM, EEMD-LSTM, CEEMD-LSTM, CEEMDAN-LSTM, and VMD-LSTM, respectively.

MAPE, MAE, and RMSE of VMD-VAE-LSTM were lower than those of EMD-LSTM, EEMD-LSTM,

CEEMD-LSTM, CEEMDAN-LSTM, and VMD-LSTM, respectively.

VMD-VAE-LSTM maintains the lowest prediction error in multi-step prediction. When forecasting

the actual power load data from Nanjing, VMD-VAE-LSTM provides better performance for load data

forecasting.

4.2. Example 2: Taixing

This section describes an additional evaluation. The performance of VMD-VAE-LSTM in this paper

is also evaluated through the electric load data from Taixing. The power load data in Taixing is collected

every 24 hours. The data set presents the total electricity consumption of Taixing. The data set in

Taixing has 939 data points (from 00:00 in May 13, 2018 to 00:00 on December 5, 2020). The descriptive

statistics information of the data set in Taixing is presented in Table 4. The segmentation of the data

set reference Section 4.1 is separated into two parts: The training set has 780 data points, the testing set

has 159 data points. The actual electric load value and the predicted results based on VMD-VAE-LSTM

are presented in Figure 6. The outcomes of the experiment in Example 2 are presented in Table 5. The

details of the experiment are provided below.

4.2.1. Comparison among EMD-LSTM, EEMD-LSTM, CEEMD-LSTM, CEEMDAN-LSTM, and VMD-

LSTM

To verify the improvement of VMD in the forecasting performance of VMD-VAE-LSTM in a different

data set, this section adopts Taixing data set. The empirical method is used in VMD to set up the
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Table 3: Multi-step forecasting results of VMD-VAE-LSTM with its comparison model in the Nanjing data set.

Multi-step forecasting Model R2 MAPE MAE RMSE

RNN 0.757 0.051 110.498 149.446

LSTM 0.823 0.042 91.882 127.566

EMD-LSTM 0.881 0.040 85.727 104.427

One-step-ahead forecasting EEMD-LSTM 0.908 0.036 78.884 91.984

CEEMD-LSTM 0.900 0.036 78.131 96.119

CEEMDAN-LSTM 0.918 0.030 65.996 86.638

VMD-LSTM 0.930 0.032 69.638 80.092

VMD-AE-LSTM 0.963 0.026 56.157 58.375

VMD-VAE-LSTM 0.993 0.010 21.194 25.747

RNN 0.674 0.064 138.664 196.544

LSTM 0.772 0.049 106.839 144.939

EMD-LSTM 0.763 0.056 121.453 147.755

Three-step-ahead forecasting EEMD-LSTM 0.806 0.051 110.514 133.66

CEEMD-LSTM 0.835 0.044 94.211 123.210

CEEMDAN-LSTM 0.908 0.034 72.949 92.216

VMD-LSTM 0.928 0.031 66.045 81.327

VMD-AE-LSTM 0.957 0.021 47.163 62.670

VMD-VAE-LSTM 0.980 0.016 35.032 43.276

RNN 0.531 0.076 161.365 235.502

LSTM 0.728 0.054 116.902 158.026

EMD-LSTM 0.653 0.068 147.843 178.646

Five-step-ahead forecasting EEMD-LSTM 0.843 0.044 95.920 120.276

CEEMD-LSTM 0.649 0.070 150.790 179.587

CEEMDAN-LSTM 0.892 0.035 75.971 99.795

VMD-LSTM 0.914 0.031 68.148 88.832

VMD-AE-LSTM 0.943 0.028 60.994 72.365

VMD-VAE-LSTM 0.970 0.019 41.152 52.324

value of K. Finally, according to several experiments, Taixing data set was decomposed into 9 IMFs

and one residual component. As depicted in Figure 5, 412 data points (from 00:00 on May 13, 2018

to 00:00 on June 28, 2019) are selected to show decomposition results. These components have the

characteristics of being periodic and regular, which is useful for learning more information from data and

promoting forecasting accuracy. In addition, the experimental in this section is designed with several

different decomposition algorithms to compare with VMD-LSTM. To show the different performances of
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Table 4: The descriptive statistics of the Taixing data set.

data set Size Min. Max. Median Mean Std. Dev.

Total data 939 1210.872 2578.343 1842.248 1842.845 216.967

Training data 780 1210.872 2516.598 1808.684 1805.465 198.727

Testing data 159 1605.078 2578.343 1970.314 2026.220 209.808

The unit of load data in Taixing data set is 10MW·h.

Figure 5: VMD components of the partial Taixing data set (The time of the partial Taixing data set is from 00:00 on May

13, 2018 to 00:00 on June 28, 2019).

EMD-LSTM, EEMD-LSTM, CEEMD-LSTM, CEEMDAN-LSTM, and VMD-LSTM, the corresponding

power load forecasting curves are presented in Figure 6. The error indexes of prediction performance

presented in Table 5 indicate that VMD-VAE-LSTM has the smallest error index and the best fitting

degree. They also reveal that VMD-VAE-LSTM has a better forecasting performance than other contrast

models.
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As indicated in Figure 6, the prediction model using the decomposition algorithm obtains a better

fitting degree than LSTM. In Table 5, through the error indexes, the forecasting performance of the

model using the decomposition algorithm is better than LSTM and RNN. Therefore, the decomposition

algorithm has the advantage of promoting the feature extraction performance of the prediction model.

Furthermore, VMD-LSTM has a better fitting degree than other contrast models. Compared with the

model that only uses the decomposition algorithm in Figures 4(a)–4(c), it explains that the power load

forecasting curve of VMD-LSTM has the highest fitting degree to the actual power data curve than that

of other contrast models. This represents that the forecasting effect of VMD-LSTM is better than other

models. Further, VMD can extract more effective feature information. Compared with other comparative

decomposition algorithms, VMD is a completely no-recursive variational pattern decomposition model.

Therefore, VMD can avoid errors caused during the calculation of recursion and the end of recursion.

VMD has a better decomposition performance. Therefore, VMD-LSTM has a great performance in

multi-step prediction. Meanwhile, the results presented in Table 5 show that VMD can decompose data

better according to frequency and has a wider range of applications. The power load data predicted by

VMD-LSTM is more accurate.

4.2.2. Comparison among VMD-LSTM, VMD-AE-LSTM, and VMD-VAE-LSTM

To study the improved performance of VMD-VAE-LSTM by using VAE to reduce the dimensional-

ity of data, this experiment compares VMD-VAE-LSTM with VMD-LSTM and VMD-AE-LSTM. The

corresponding prediction results are presented in Figure 6.

VAE can effectively promote the forecasting performance of the model. In Figure 6, compared with the

prediction result of VMD-LSTM, the prediction result using VAE is closer to actual data. This implies

that dimensionality reduction is beneficial for the performance of the prediction model. Meanwhile,

VMD-VAE-LSTM is compared with VMD-AE-LSTM. Compared with AE, VAE can learn smooth latent

state representations of the input data. Therefore, VAE can extract more important feature information.

As the results are shown in Table 5, VMD-VAE-LSTM maintains the lowest prediction error in multi-

step prediction. In actual power load forecasting, this model can achieve a better result of power load

forecasting. In brief, VMD-VAE-LSTM has higher forecasting accuracy.

4.2.3. Comparison among EMD-LSTM, EEMD-LSTM, CEEMD-LSTM, CEEMDAN-LSTM, VMD-LSTM,

and VMD-VAE-LSTM

VMD-VAE-LSTM has better forecasting performance as compared to popular models. We further

compare five popular prediction models and the developed model—EMD-LSTM, EEMD-LSTM, CEEMD-

LSTM, CEEMDAN-LSTM, VMD-LSTM, and VMD-VAE-LSTM.

The comparison reveals that the forecasting result of VMD-VAE-LSTM is closer to the actual power

load data than contrast models. In Table 5, the R2 of EMD-LSTM, EEMD-LSTM, CEEMD-LSTM,

CEEMDAN-LSTM, and VMD-LSTM are (0.876, 0.815, 0.768), (0.901, 0.885, 0.805), (0.859, 0.783, 0.761),

17



(a) One-step-ahead forecasting.

(b) Three-step-ahead forecasting.

(c) Five-step-ahead forecasting.

Figure 6: One-, three- and five-step-ahead forecasting of various hybrid models in the Taixing data set (The load data of

Taixing is from 00:00 on August 29, 2020 to 00:00 on September 8, 2020).

(0.888, 0.862, 0.850), and (0.916, 0.901, 0.898), respectively (The values in parentheses represent the

prediction results of one, three, and five steps of one model, respectively). In comparison, the R2 of VMD-

VAE-LSTM are (0.990, 0.977, 0.940). From these results, the R2 of VMD-VAE-LSTM is higher than

that of EMD-LSTM, EEMD-LSTM, CEEMD-LSTM, CEEMDAN-LSTM, and VMD-LSTM, respectively.

Moreover, MAPE, MAE, and RMSE of VMD-VAE-LSTM are lower than those of EMD-LSTM, EEMD-

LSTM, CEEMD-LSTM, CEEMDAN-LSTM, and VMD-LSTM, respectively.

In summary, the VMD-VAE-LSTM model designed in this paper forecasts the electric load data from

Taixing, which has the characteristics of good robustness and high precision.
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Table 5: Multi-step forecasting results of VMD-VAE-LSTM with its comparison model in the Taixing data set.

Multi-step forecasting Model R2 MAPE MAE RMSE

RNN 0.752 0.039 77.292 104.166

LSTM 0.784 0.037 75.086 105.041

EMD-LSTM 0.876 0.030 59.643 73.701

One-step-ahead forecasting EEMD-LSTM 0.901 0.027 54.413 65.890

CEEMD-LSTM 0.859 0.028 56.818 78.526

CEEMDAN-LSTM 0.888 0.026 52.130 70.037

VMD-LSTM 0.916 0.022 43.490 60.437

VMD-AE-LSTM 0.949 0.018 35.285 47.400

VMD-VAE-LSTM 0.990 0.008 16.960 20.668

RNN 0.721 0.042 86.800 119.381

LSTM 0.671 0.046 93.168 129.555

EMD-LSTM 0.815 0.033 66.853 89.846

Three-step-ahead forecasting EEMD-LSTM 0.885 0.026 52.192 70.926

CEEMD-LSTM 0.783 0.037 74.538 97.388

CEEMDAN-LSTM 0.862 0.029 57.597 77.635

VMD-LSTM 0.901 0.024 48.529 65.911

VMD-AE-LSTM 0.932 0.0216 43.404 54.571

VMD-VAE-LSTM 0.977 0.013 25.288 31.838

RNN 0.501 0.057 116.403 159.631

LSTM 0.584 0.051 104.321 145.660

EMD-LSTM 0.768 0.039 78.295 100.723

Five-step-ahead forecasting EEMD-LSTM 0.805 0.034 68.541 92.303

CEEMD-LSTM 0.761 0.040 79.507 102.340

CEEMDAN-LSTM 0.850 0.028 56.840 81.033

VMD-LSTM 0.898 0.027 53.991 66.912

VMD-AE-LSTM 0.905 0.027 53.439 64.379

VMD-VAE-LSTM 0.940 0.021 42.125 51.226

5. Conclusion

An accurate and effective power load forecasting model plays a significant role in the safe operation of

a power grid. Nevertheless, the complexity of power load data and extraction of effective features brings

challenges to prediction. The existing prediction models cannot efficiently solve these challenges. There-

fore, the VMD-VAE-LSTM model has been developed in this paper to improve the accuracy of electric
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load forecasting. The model combines LSTM with VMD and VAE. VMD is used for the decomposition of

power load data, and VAE is used for processing complex data. The feature extraction module can pro-

vide more prominent feature information for sub-sequences. In addition, this paper performs multi-step

forecasting on two real power load data sets in Nanjing and Taixing and compares the VMD-VAE-LSTM

model with the other 7 models. The mean absolute percentage error values for one-step forecasts are 1%

and 0.8%, respectively. In conclusion, VMD-VAE-LSTM shows great advantages in processing complex

power load forecasting data and improving forecasting accuracy.

Although the VMD-VAE-LSTM model can achieve noteworthy advances, there still exist a few con-

straints, such as error accumulation when using VAE for feature extraction. In the future, we will apply

VMD-VAE-LSTM model to other time sequences prediction problems. In addition, differently from load

forecasting based on time-series, considering a few related external factors (such as temperature and hol-

idays) can have the potential to further improve forecasting accuracy. Thus, incorporating these external

factors for load forecasting can be further explored as a direction for future research.
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Table A.6: Parameter setting of the benchmark model.

Example Model Hyperparametric

Hidden neurons Learning rate (α) epochs K (the number of components)

RNN (256, 128, 64, 1) 0.01 100 -

LSTM (256, 128, 64, 1) 0.01 100 -

EMD-LSTM (256, 128, 64, 1) 0.01 100 10

Example 1 EEMD-LSTM (256, 128, 64, 1) 0.01 100 15

(Naijing) CEEMD-LSTM (256, 128, 64, 1) 0.01 100 9

CEEMDAN-LSTM (256, 128, 64, 1) 0.01 100 15

VMD-LSTM (256, 128, 64, 1) 0.01 100 10

RNN (256, 128, 64, 1) 0.01 100 -

LSTM (256, 128, 64, 1) 0.01 100 -

EMD-LSTM (256, 128, 64, 1) 0.01 100 7

Example 2 EEMD-LSTM (256, 128, 64, 1) 0.01 100 10

(Taixing) CEEMD-LSTM (256, 128, 64, 1) 0.01 100 9

CEEMDAN-LSTM (256, 128, 64, 1) 0.01 100 10

VMD-LSTM (256, 128, 64, 1) 0.01 100 10

Table B.7: Evaluation metrices.

Metrics Full name Expression

MAE Mean absolute error MAE = 1
S

S∑
i=1

|Pi − P̂i|

RMSE Root mean square error RMSE =

√
1
S

S∑
i=1

(Pi − P̂i)2

MAPE Absolute percentage error MAPE = 1
S

S∑
i=1

| 100×(Pi−P̂i)
Pi

|

R2 Goodness-of-fit R2 = 1−
S∑

i=1

(Pi − P̂i)
2/

S∑
i=1

(Pi − 1
S

S∑
i=1

Pi)
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