
Logging Practices in Software Engineering:
A Systematic Mapping Study
Shenghui Gu , Guoping Rong , He Zhang, and Haifeng Shen

Abstract—Background: Logging practices provide the ability to record valuable runtime information of software systems to support

operations tasks such as service monitoring and troubleshooting. However, current logging practices face common challenges.

On the one hand, although the importance of logging practices has been broadly recognized, most of them are still conducted in an

arbitrary or ad-hoc manner, ending up with questionable or inadequate support to perform these tasks. On the other hand,

considerable research effort has been carried out on logging practices, however, few of the proposed techniques or methods have

been widely adopted in industry. Objective:This study aims to establish a comprehensive understanding of the research state of

logging practices, with a focus on unveiling possible problems and gaps which further shed light on the potential future research

directions. Method:We carried out a systematic mapping study on logging practices with 56 primary studies. Results:This study

provides a holistic report of the existing research on logging practices by systematically synthesizing and analyzing the focus and

inter-relationship of the existing research in terms of issues, research topics and solution approaches. Using 3W1H—Why to log,

Where to log, What to log and How well is the logging—as the categorization standard, we find that: (1) the best known issues in

logging practices have been repeatedly investigated; (2) the issues are often studied separately without considering their intricate

relationships; (3) the Where and What questions have attracted the majority of research attention while little research effort has

been made on the Why and How well questions; and (4) the relationships between issues, research topics, and approaches

regarding logging practices appear many-to-many, which indicates a lack of profound understanding of the issues in practice and

how they should be appropriately tackled. Conclusions:This study indicates a need to advance the state of research on logging

practices. For example, more research effort should be invested on why to log to set the anchor of logging practices as well as on

how well is the logging to close the loop. In addition, a holistic process perspective should be taken into account in both the research

and the adoption related to logging practices.

Index Terms—Logging practices, log, systematic mapping, empirical study

Ç

1 INTRODUCTION

RECENTLY, along with the popularity of DevOps, continu-
ity has been widely recognized as an inherent require-

ment for many on-line software services [1]. This situation
makes it more prominent than ever to monitor software
services and address anomalies in a timely manner. Mean-
while, modern software systems are getting larger and
more distributed, making it more challenging to detect
anomalies and locate the corresponding root causes particu-
larly in intricate software systems. Information such as

runtime behavior of software systems is thus believed criti-
cal by many researchers and practitioners in detecting and
addressing anomalies. Logging is commonly used to cap-
ture such runtime behavior information. According to Zhao
et al.’s [Zhao 17] and Yuan et al.’s [Yuan 12b] studies, the
information contained in logs is often the only source avail-
able for software engineers to troubleshoot and diagnose
software failures in a production environment.

As an intensively investigated research topic, there are
many similar terms describing key concepts around logging.
To avoid confusion, we summarize common concepts
in Table 1, which will be consistently used throughout this
paper. Apparently, the information contained in logs is deter-
mined by the log statements that developers insert in source
code, which will generate logs when being triggered. Fig. 1
depicts relevant logging entities. The upper part of this figure
is an example of a log statement, which normally occurs in
the source code as necessary. After it has been executed
under certain conditions, the log statement will generate a
‘Log’, as shown by the lower part of Fig. 1. A ‘Log’ usually
contains a large number of entries, aka ‘Log messages’. In
general, ‘Log level’, ‘Log content’, and a suitable place to put
a log statement in are usually decided by developers during
software development. One focus of the current research is
the 2-W questions, i.e., the context of a logging-prone code
snippet (where to log?) and the content or level of a log state-
ment (what to log?) [2], [Chen 20], [Chen 17a].

� Shenghui Gu, Guoping Rong, and He Zhang are with the State Key Labora-
tory for Novel Software Technology, Nanjing University, Nanjing 210093,
China. E-mail: shenghui.gu@smail.nju.edu.cn, {ronggp, hezhang}@nju.edu.cn.

� Haifeng Shen is with HilstLab, Peter Faber Business School, Australian
Catholic University, Sydney, NSW 2060, Australia. E-mail: haifeng.
shen@acu.edu.au.

Manuscript received 20 Sept. 2021; revised 2 Mar. 2022; accepted 5 Apr. 2022.
Date of publication 12 Apr. 2022; date of current version 13 Feb. 2023.
This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2019YFE0105500, in part by the
Research Council of Norway under Grant 309494, in part by the National
Natural Science Foundation of China under Grant 62072227, in part by the
Key Research and Development Program of Jiangsu Province under Grant
BE2021002-2, and in part by the Intergovernmental Bilateral Innovation Proj-
ect of Jiangsu Province under Grant BZ2020017.
(Corresponding author: Guoping Rong.)
Recommended for acceptance by A.M. Moreno.
Digital Object Identifier no. 10.1109/TSE.2022.3166924

902 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6414-815X
https://orcid.org/0000-0001-6414-815X
https://orcid.org/0000-0001-6414-815X
https://orcid.org/0000-0001-6414-815X
https://orcid.org/0000-0001-6414-815X
https://orcid.org/0000-0003-4576-0524
https://orcid.org/0000-0003-4576-0524
https://orcid.org/0000-0003-4576-0524
https://orcid.org/0000-0003-4576-0524
https://orcid.org/0000-0003-4576-0524
https://orcid.org/0000-0002-8221-981X
https://orcid.org/0000-0002-8221-981X
https://orcid.org/0000-0002-8221-981X
https://orcid.org/0000-0002-8221-981X
https://orcid.org/0000-0002-8221-981X
mailto:shenghui.gu@smail.nju.edu.cn
mailto:ronggp@nju.edu.cn
mailto:hezhang@nju.edu.cn
mailto:haifeng.shen@acu.edu.au
mailto:haifeng.shen@acu.edu.au

1.1 Problem Description and Research Motivation

Although the importance of logging practices has been
broadly recognized in industry [Kabi 16b], [Pecc 15], [Yuan
12b],[3], such practices are still far from satisfactory [Liu
20]. As a matter of fact, current logging practices are basi-
cally carried out manually and heavily rely on the expertise,
experience and preference of software engineers [Pecc 15],
[Yuan 12b], [Yuan 12c]. Typically, software engineers need
to consider the 2-W questions during coding, easily leading
to either insufficient or excessive logging. For example,
studies carried out both in industry and academia revealed
several typical issues in current logging practices, including
low and divergent density of log statements [Rong 18],[4],
misuse of log levels [Rong 18], [Yuan 12b], and lack of nec-
essary information-capturing variables [Yuan 12a],[4].
These issues may easily lead to questionable realization of
the primary purpose to carry out logging practices [Li 20a],
[Rong 20], i.e., capturing the runtime behavior of software
systems as intended. Meanwhile, although relatively exten-
sive research has been done to improve logging practices, it
seems that the industry has not benefited from these
research outcomes. For instance, optimizing log location
and enhancing log content have been well proposed in the
literature to improve logging practices, however, they are
rarely adopted by the most widely used logging tools
in daily development tasks [Fu 14], [Li 18b], [Yuan 12b],
[Zhu 15].

To uncover possible reasons behind this phenomenon, it
is important to establish a holistic view on the research sta-
tus of logging practices, including the challenges in logging
practices and the proposed solutions, and more importantly
the possible problems and gaps in the existing research
which may further shed light on the potential future
research directions. Only a handful of studies have been
conducted [2], [5], [6], [7] to review the challenges and the
solutions available. However, the issues in the existing

research are rarely analyzed and discussed. To this end, this
work is motivated by the need to depict a landscape of log-
ging practices, identify gaps between challenges and solu-
tions, and suggest potential remedies and future research
directions to close the loop through a systematic mapping
study (SMS). To be specific, we describe the goal of this
study using a Goal-Question-Metric (GQM) [8] style as
follows:

By aggregating and synthesizing the existing issues, research
topics, and proposed approaches related to logging practices

For the purpose of systematically establishing an insight to the
state-of-the-art in the area of logging practices, revealing omis-
sions/problems and hence indicating potential research directions

From the perspective of software engineering researchers and
practitioners

In the context of logging practices in the development and
maintenance of regular business software systems.

The description of the research goal implies the focus of
this study which is elaborated in detail in Section 2.2. In
short, we are only concerned with software engineers’ log-
ging practices when instrumenting log statements in regular
business software systems. As a result, log analysis or build-
ing logging framework/infrastructure is beyond the scope
of this work.

1.2 Research Approach and Contribution

A systematic mapping study (SMS) provides an overview of
a research area through classification and counting contri-
butions in relation to the categories of that classification [9].
It is a suitable approach to addressing the research goal pre-
sented in the above subsection. By following the guide-
lines [9], [10], [11], [12], we examined 56 primary studies
published in the mainstream Software Engineering (SE)
venues with a focus on logging practices. As the result, we
are able to provide a holistic view of the existing research,
clarify the issues in logging practices and summarize rele-
vant solutions or approaches. More importantly, through
cross analysis, we are able to identify gaps and derive
potential follow-up research directions that may bring sig-
nificant benefits to the whole community that heavily relies
on logging in their software development and maintenance
tasks. The main contributions of this paper can be summa-
rized as follows:

TABLE 1
Logging Related Terms

Term Description

Log statement A log statement is a statement placed in the source code that outputs a record of the behavior of the
specified program during execution.

Log message A log message is the information generated by the program at runtime based on a log statement.
Log A log is a collection of the execution outputs of log statements, usually stored in a text file or a database.
Log level Log levels reflect the verbosity or severity of the log messages, and log messages are usually clustered for

analysis based on these log levels.
Log content Log content refers to the information carried by the log statement, including static text and variables.
Log location A log location is the place where a log statement is inserted.
Log placement Log placement is a strategic design and implementation of the 2-W questions for all log statements in the

source code of a system or component.
Logging Logging is a developer’s action of inserting a log statement to a certain code snippet. Apparently, the

developer needs to decide the 2-Wwhen conducting logging.
Logging practice A logging practice refers to any practice pertinent to the insertion or revision of log statements for a system

or component, which is also the research object in this study.

Fig. 1. Logging related terms in an example.

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 903

� It presents a comprehensive understanding on the
state-of-the-art research on logging practices using
3W1H—Why to log, Where to log, What to log and How
well is the logging—as the categorization standard.

� It discovers that the current research focus regarding
logging practices has been on the 2-W questions. In
other words, the majority of issues, research topics
and solution approaches fall in the categories of
Where to log and What to log, in contrast, little
research effort has been made onWhy to log and How
well is the logging.

� It unveils possible problems in the existing research
through cross analysis, e.g., “lack of research to
address critical issues”, “unrealistic expectation of
general yet adaptable solutions” and “separated
research within logging practices and between log-
ging practices and log analysis”.

� It suggests several potential future research direc-
tions, for example, considering a process perspective
to logging practices and recognizing the anchor
value of logging intentions and concerns (I&C).

1.3 Organization

The rest of this paper is organized as follows. Section 2 elab-
orates our research method. The metadata results are pre-
sented in Section 3. In Section 4, we explain the 3W1H
categorization scheme that is applied throughout the whole
study. The results and findings to each research question
are presented in Section 5. In Section 6, we discuss possible
reasons behind the current status quo, and several consider-
ations for the next-step research on logging practices. The
threats to validity are discussed in Section 7. To position
this work among all relevant empirical studies, we describe
the related work in Section 8. Finally, we conclude this
paper in Section 9.

2 RESEARCH METHOD

In this section, we elaborate the research questions, the
research scope, the roles and responsibilities of participating
researchers, and the research tasks, followed by the detailed
process for literature search as well as the processes for data
extraction, synthesis and analysis.

2.1 Research Questions

To address the research goal and shed proper light on the
research state of logging practices, four research questions
(RQs) are promoted as follows.

RQ1: What major issues regarding logging practices have been
identified by existing research?

Researchers dedicated to logging practices are
usually at a better position to understand the issues
that are targeted in relevant studies. In this sense, this
research question aims to aggregate these issues to
better understand themajor challenges and necessary
contextual information regarding logging practices.

RQ2: What major research topics regarding logging practices
have been investigated by existing research?

This research question aims to reveal the hot
spots in logging practices that researchers have
been investigating. It attempts to portray the land-
scape of major research topics around logging
practices.

RQ3: What solutions/approaches are proposed in existing
research?

This research question aims to summarize and
classify the solutions or approaches proposed by
existing studies, through which we may be able to
establish a fair understanding of the research prog-
ress towards addressing the issues identified in RQ1
and the topics identified in RQ2.

RQ4: What gaps exist between the identified issues regarding
logging practices and the research efforts in tackling these
issues?

This research question aims to reveal the extent to
which existing research is able to address the issues
in logging practices and pinpoint possible gaps
between the issues/topics identified in RQ1/RQ2
and the solutions/approaches proposed in RQ3.

2.2 Research Scope

It is important to clearly define the scope of a study so that
only relevant primary studies are reviewed to answer the
research questions.

First of all, the scope of this study is limited to the starting
point of logging, i.e., the practices used to generate logs dur-
ing software development and maintenance, which is simi-
lar to that of Chen’s survey paper [2], i.e., the Log
Instrumentation Phase. Therefore, research on log analysis,
which is the ending point of logging and concentrates on uti-
lizing the information in logs to achieve development or
management objectives such as detecting bugs, optimizing
system performance or performing recommendations, is
out of the scope of this study. That said, it is worth noting
that from a process perspective, knowing the information
needs in log analysis may have a positive impact on
improving the practices for log generation. However, the
process perspective has not been established in existing
research and we have found that the work reporting the
impact of log analysis on logging practices is generally
scarce. Therefore, it makes sense to exclude log analysis in
the scope of this study.

Second, we only focus on the logging practices that assist
in generating logs used to diagnose errors or failures con-
tained in the software systems therein. Therefore, those log-
ging practices generating logs of end user behavior analysis
for business needs, e.g., audit logs [13] and security
logs [14], are beyond the scope of this study.

In a nutshell, the scope of this study is thus constrained
to the studies that investigate how an appropriate log state-
ment is placed in a suitable place in source code to effec-
tively generate logs for capturing runtime behavior so as to
support defect detection in the software system. See
Appendix B, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2022.3166924, for more detail and examples.

904 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3166924
http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3166924

2.3 Roles and Responsibilities

In addition to the listed authors, this study also involved
eight master students from a seminar series over a span of 5
months. All the participants met weekly or as needed for
publication screening, data extraction, consolidation, and
discussion.

In detail, one author (the supervisor) took charge of the dis-
cussion on research questions, researchmethodology, and data
extraction schema at the time of designing the SMSprotocol.

When it came to literature screening and data extraction,
at least two students handled each paper independently
and the supervisor cross-checked all the work accomplished
by the students. In the process of data synthesis, one doc-
toral student of the authors led the whole process with the
participation of the eight master students, and the supervi-
sor also cross-checked their outcomes.

To reach consensuses and avoid potential biases, we
established several mechanisms as follows.

1) We carried out several trial runs in the seminar series
to train these students for mastering data extraction
and synthesis methods. The students are required to
present and discuss their findings at the end of each
trial run.

2) All participants needed to vote for each finding with
the options of ‘agree’, ‘object’, and ‘not object’. The
option of ‘not object’ is a neutral opinion, meaning
one does not fully agree on a finding but can accept
it. A consensus requires at least one ‘agree’ and no
‘object’ at the same time.

3) If a consensus is not reached on a finding, a dis-
cussion meeting is organized to sort out the
discrepancies.

2.4 Research Tasks

To answer the four research questions, three research tasks
were conducted: the ‘setup’ task is to set up the literature
review; the ‘aggregation&synthesis’ task is dedicated to col-
lecting evidence to answer research questions RQ1, RQ2
and RQ3; the ‘cross analysis’ task is conducted to synthesize
the information to answer RQ4. The tasks were conducted
in a sequential manner and interconnected through a num-
ber of artifacts generated by their subtasks. The overall
research process is illustrated in Fig. 2 and detailed as
below.

The ‘setup’ task includes definition of the research ques-
tions and the review protocol, selection of search venues and
databases, definition and revision of the search string, and
identification of the primary studies. The detailed steps in this
task is presented in Section 2.5. The ‘aggregation&synthesis’
task was conducted to extract the data from the primary stud-
ies in terms of the research questions, and then to map the
data into four categories, i.e.,Why to log? Where to log? What to
log? and How well is the logging? (cf. Section 4). Further, we
used an iterative coding process to identify the main catego-
ries of the extracted data for each research question, which is
detailed in Section 2.7. In the ‘cross analysis’ task, we synthe-
sized the review results and performed cross analysis so as to

Fig. 2. Research process.

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 905

further reveal several implications to answer RQ4, which is
presented in Section 5.4.

2.5 Search Process

A strict and repeatable search process is one important char-
acteristic of an SMS. We applied several strategies to boost
this characteristic in the search process of our study. In gen-
eral, an explicitly defined search process is required, as
illustrated in the ‘setup’ task in Fig. 2. First, we conducted a
manual search from the premier SE conferences and jour-
nals, and retrieved 11 papers. Based on these papers, a
search string was formed, revised and used for automated
search in the selected digital libraries. At that point, 7,669
papers were retrieved. By applying the predefined inclu-
sion/exclusion criteria (as shown in Table 2), these papers
were then quickly screened manually, reducing to 109
papers. After reading the full-text of these 109 papers for
further screening, we finally ended up with 54 papers. As
the last step, a complementary snowballing search process
was performed to obtain potentially relevant studies so as
to pursue a comprehensive set of relevant studies. From this
step, we obtained two more papers, making a final set of 56
papers selected as the primary studies for this work.

2.5.1 Manual Search

The manual search was carried out on the following major
software engineering conferences and journals:

� International Conference on Software Engineering
(ICSE)

� IEEE Transactions on Software Engineering (TSE)
� Empirical Software Engineering (EMSE)
� IEEE International Conference on Software Mainte-

nance and Evolution (ICSME)
� IEEE Working Conference on Mining Software

Repositories (MSR)
� Journal of Systems and Software (JSS)
The purpose of manual search was not to cover all poten-

tial sources, but only a portion that contains the most high-
quality studies relevant to our RQs according to our initial
knowledge. The publication time span was constrained
from 2000 to 2020 for the reason that the number of papers
related to logging practices is quite small before 2000,

according to our previous study [5]. As the result, we gath-
ered 11 papers on logging practices from the manual search.

2.5.2 Search String

We developed the search string using the following steps in
the light of the guidelines proposed in [15], [16].

Step 1: We first derived major search terms from our RQs
and the keywords in the relevant publications we
obtained from manual search.

Step 2: We then combined the identified search terms into
a set of candidate search strings.

Step 3: At last, we performed several pilot searches to
improve and determine the most suitable search
string according to the Quasi-Gold Standard (QGS)
based systematic search approach [17]. With refer-
ence to our previous experience[5], this time we
keep 90.9% and 0.13% for sensitivity and precision
respectively, so as to include as much literature as
possible.

As the result, we have the search string as below.
(logging OR log OR logs) AND (practice OR practices OR

statement OR statements OR construct OR constructs OR format
OR formats OR code)

Note that the search string needs to be coded according
to different digital libraries’ search syntax.

2.5.3 Automated Search

The automated search was performed in the following digi-
tal libraries.

� ACMDigital Library1

� IEEE Xplore2

� ScienceDirect3

� Scopus4

� Wiley Online Library5

With reference to many existing systematic mapping and
review studies, as well as the statistics of the literature
search engines [17], these selected digital libraries are
believed to provide a wide coverage of relevant primary
studies.

2.5.4 Study Identification

Three steps are performed to identify and determine the set
of primary studies for final analysis, including quick scan-
ning to filter out irrelevant studies, full text reading to assure
quality of the relevant studies, and snowballing to ensure
that the chance of missing important relevant studies is
minimized as much as possible. We detail these steps in the
following paragraphs.

Quick Scanning. During this step, a quick screening of the
titles and abstracts of the potential studies was performed
by following the inclusion/exclusion criteria detailed
in Table 2. For those papers that are unable to be excluded
by checking title and abstract, we postponed the decision to

TABLE 2
Criteria to Include/Exclude a Study

Inclusion criteria

I1 Studies must be published by conferences, journals, or symposiums*.

I2 Studies must be written in English.

I3 Studies must be published after 2000.

I4 Studies must be primary research.

I5 Studies must focus on logging practices.

Exclusion criteria

E1 Studies investigate log analysis or usage of log messages.

E2 Studies investigate techniques for logging user behaviors.

E3 Studies do not explicitly discuss logging practices.

E4 Studies are published by workshops.

E5 Studies are published as position papers or work in progress.

E6 Studies replicate work in previous publications.

* Only for those well-known symposiums, e.g., ISSRE, ESEM.

1. https://dl.acm.org/
2. https://ieeexplore.ieee.org/
3. https://www.sciencedirect.com/
4. https://www.scopus.com/
5. https://onlinelibrary.wiley.com/

906 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.sciencedirect.com/
https://www.scopus.com/
https://onlinelibrary.wiley.com/

the following steps. As the result, we had 109 papers after
this step.

Full Text Reading. With the 109 papers, we read their full-
text to make further exclusion and then eliminate the irrele-
vant ones from the previous step. It is worth noting that the
same study may have been published in multiple papers,
and in this case we only keep the most complete version by
reading and comparing the content of all versions of the
work in detail. As the result, we retained 54 papers after
this step.

Snowballing. We performed a snowballing search to fur-
ther retrieve potential relevant studies, which consists of
backward snowballing, forward snowballing, and author snow-
balling. Detailed steps are listed as the following.

Backward Snowballing: Based on the reference lists of the
54 papers derived from the previous steps, we retrieved
papers using the criteria from Table 2.

Forward Snowballing: Use Google Scholar to identify
papers citing the current 54 papers. Meanwhile, the selec-
tion criteria were also applied to identify and include an
extra relevant paper.

Author Snowballing: All publications of each author of the
54 identified papers were further checked against the selec-
tion criteria for final possible inclusion.

As the result, two new papers were identified in the for-
ward snowballing step.

2.6 Data Extraction

The relevant data was extracted from the 56 selected studies
according to a predefined extraction schema, as depicted
in Table 3, that covers two major aspects of information, i.e.,
metadata and specific information, respectively.

The metadata includes information such as author, year,
title, and publishing venue, which provides a big picture of
the overall research state, for instance, the number of stud-
ies each year, the potential trend, and the distribution of
publication venues.

Meanwhile, the specific information is derived from the
research questions of this study. The relationship between
the specific information and research questions is listed
in Table 3. Note that answering RQ4 requires a cross analy-
sis of the information used to answer RQ1, RQ2 and RQ3.

2.7 Data Synthesis

We applied both quantitative and qualitative methods to
synthesize the evidence to answer all the research questions.
This subsection elaborates the data synthesis methods we
adopted in this research.

Descriptive statistics is the major quantitative method
used to describe and summarize data characteristics. To be
specific, it was adopted to synthesize the quantitative data
to present trend (Fig. 3), distribution (Fig. 4), etc.

Thematic analysis is the major qualitative method applied
in our study to identify common themes within data [18]. It
was used to understand commonly raised issues, research
topics, proposed approaches regarding logging practices. To
assist thematic analysis, coding, the process of labeling and
organizing qualitative data, was applied to identify and dis-
tinguish themes and the relationships between them [19].
Basically, we used open coding and axial coding to attain high-
level concepts from the extracted data for each research ques-
tion.Open coding is conducted to identify the conceptual cate-
gories from the original data, where the generated ‘code’ is
designed to retain the exact words as much as possible.Axial
coding is used to generate a set of new ‘codes’ by comparing
and merging the ‘codes’ identified in open coding as appro-
priate. For example, “useless log messages” and “arbitrarily
placed log statements likely generate a lot of trivial logs that may be
redundant or useless”were further coded as “redundant or use-
less log messages”.

3 RESULTS

We first summarize the results of metadata in this section to
provide a bird’s eye view of the studies included in our
study.

A full list of the 56 studies is presented in Appendix A,
available in the online supplemental material. Table 4
describes the distribution of the 56 studies across different
electronic libraries. Note that one study may be indexed by
multiple digital libraries. Apparently, ACM Digital Library,
IEEE Xplore and Scopus contribute the vast majority of
studies to our SMS.

The distribution of the publishing time can be illustrated
by grouping these studies into years, as shown in Fig. 3. In
general, a roughly ascending trend can be observed regard-
ing the number of studies over years, especially in the recent

TABLE 3
Data Extraction Schema

Attribute Description RQ

Author The authors of the publication. Meta
Title The title of the publication.
Year The published year of the publication.
Venue type The venue type of the publication (conference, journal, etc).
Venue name The venue name of the publication.
Logging issue The issues and problems in current logging practices. RQ1, RQ4
Research motivation The motivation of the selected study. RQ2, RQ4
Research question The research questions of the selected study.
Research subject The subject of the selected research.
Proposed approach The approach, method, tool or algorithm proposed by the selected

research, as well as their description, pros and cons.
RQ3, RQ4

Research contribution The main contribution of the selected study.
Research conclusion The conclusion of the selected study.

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 907

years, indicating an increasing attention among researchers
to logging practice.

The publication venues of these 56 studies tend to be
diverse. However, we could observe that more than half of
the selected studies in our SMS are published at premier
venues such as TSE, EMSE, and ICSE, which to some extent
implies the high quality of the research as well as the inten-
sive interest in the community.

4 3W1H—ESSENTIALS ABOUT LOGGING

To provide a basis for data synthesis, a taxonomy scheme is
necessary to be defined in the beginning. Therefore, we
applied the thematic analysis elaborated in Section 2.7
together with our previous experience [Rong 20],[5] and
current knowledge on logging practice research (e.g., [2], [Li
20a], [Fu 14], [Liu 19], [Kabi 16b]) to categorize the relevant
studies. As the scope of this study is limited to investigating
developers (Who) instrumenting log statements during soft-
ware development (When), the Who and When categories
are fixed and hence removed from the final category set. As
elaborated in Section 2.2, the 56 primary studies are catego-
rized into the four themes of 3W1H: Why to log? Where to
log?What to log? and How well is the logging?

�Why to log?
This question is related to the original intention to carry

out logging practices. Through log statements, most devel-
opers’ intention is to capture and record information rele-
vant to dynamic system behaviors. However, this practice
incurs cost/overhead, which triggers concerns to most

developers as well. To a certain degree, the intrinsic Inten-
tions & Concerns (I&Cs) play the role of initiating logging
practices. Several researchers have raised the awareness of
the importance of I&Cs for logging practices. For example,
Jia et al. present a model to describe the logging intentions,
which is a typical reason to answer why to log [Jia 18]. Never-
theless, our previous work on this topic revealed major gaps
between the developers’ I&Cs and the actual log statements
in the source code of real-world projects [Rong 20].

�Where to log?
This question considers one of the critical aspects regard-

ing logging practices, i.e., to determine the location of log
statements in source code. Usually the answer to this ques-
tion only provides a general guidance on where to place a
log statement [Li 20b], [Fu 14]. As one of the most concerned
questions by researchers, many studies have been con-
ducted to determine and improve the location of log state-
ments in source code. For example, a high-level strategy on
logging practices is achieved by importing information
entropy theory into logging practices to optimize the loca-
tion of log statements [Zhao 17]. Lal et al. conducted a series
of studies adopting machine learning to predict log state-
ments in different code snippets [Lal 17], [Lal 16a], [Lal
16c], [Lal 16b], [Lal 19].

�What to log?
This question involves with the subtle consideration

about concrete content (e.g., what variables should be
recorded? what is the suitable verbosity level?) of a log
statement. Various methods have been proposed to develop
the concrete content of a log statement. For example, some
tools have been designed to assist developers in deciding
verbosity level of log statements [Anu 19], [Li 17a], while
some tools have been designed to determine which varia-
bles to log [Liu 19].

� How well is the logging?
In general, this question is concerned about the degree to

which developers’ I&Cs can be fulfilled in the implemented
source code and evolve over time. In this sense, the how well
question is only valid on existing log statements and can be
considered from two aspects. One is the deviation between
the implemented source code and some generally accepted
rule-of-thumb guidelines/rules regarding logging practi-
ces [20], [21], [22]. Although these guidelines/rules may be
followed to convey developers’ I&Cs, they are not always
necessarily able to reflect the true I&Cs. The other aspect is
the deviation between the implemented source code and the
developers’ original I&Cs. In this sense, the importance of rel-
evant practices is self-evident. Some research in this category
focuses on evaluating the effectiveness of existing logging
mechanisms in the context of real-world case studies [CinqFig. 4. Study distribution over publication venues.

TABLE 4
Study Distribution Over Electronic Libraries

Electronic library # Retrieved studies # Relevant studies

ACM Digital Library 1,757 26
IEEE Xplore 2,472 28
ScienceDirect 983 1
Scopus 548 37
Wiley Online Library 1,909 2

Fig. 3. Study distribution over years.

908 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

10]. Other research focuses on the revision of log statements
after the delivery/release of a software product, for example,
to repair faults or to improve performance or other quality
attributes. A typical example is the study carried out by Chen
et al. [Chen 19]. In this study, researchers extracted the histor-
ical issues in log statements and revealed that the log state-
ments had not been well revised when the corresponding
business code evolved tomeet new business requirements.

The relationships between the 3W1H questions are illus-
trated in Fig. 5. In general, the question of why to log seeks
the developer’s I&Cs, both implicitly and explicitly, which
translate to the 2-W questions (i.e., where to log and what to
log) in log placement. The question of where to log specifies
the log location, whereas the what to log question specifies
both log content and log level. To close the loop, the how
well question not only verifies whether log placement is
properly reflected in actual source code, but more impor-
tantly, it also validates that the I&Cs are adequately satis-
fied. With the 3W1H categorization scheme, we are not only
able to properly classify the issues, research topics and solu-
tion approaches in current studies but also lay a solid foun-
dation for synthesis according to the inherent relationships
across the four questions.

To achieve a consistent understanding, a team discussion
is conducted to assign a proper category to a study accord-
ing to the specific research question and the corresponding
relevant evidence. It is noteworthy that one study may
occur in multiple categories simultaneously. For example, if
the issue (RQ1) is about the ‘performance overhead’, then it
may cover both where to log and what to log. Besides, one
study may also appear in different categories providing evi-
dence to answer different research questions. For example,
a study with the concern on ‘performance overhead’ may be
categorized as where to log in RQ1. If the relevant solution
pertains to the I&Cs, it may also appear in the category of
why to log in RQ3.

5 SYNTHESIS AND FINDINGS

In this section, we answer the four RQs using the evidence
we collected and synthesized from the review. By adopting
the 3W1H questions (cf. Section 4), we classified all the 56
studies into different categories according to the specific

research question and the corresponding relevant evidence.
The rest of this section elaborates our major observations
and findings.

5.1 Issues in Logging Practices (RQ1)

Wefirst categorize the issues raised or discovered in the primary
studies through a manual coding approach (cf. Section 2.7).
Although the issues discovered in these primary studies may
contain higher credibility since concrete evidence is provided,
we also include the issues directly claimed by researchers with
the consideration that researchers focusing on the exact area
may better understand the various pains of logging practice.
Then from a different perspective, we further categorize the
issues into different 3W1H questions.With these two orthogonal
perspectives, we aim to present a big picture about the various
pains of logging practice.

In general, we identified 8 types of issues covering differ-
ent 3W1H questions except the question of why to log. The
detailed distribution of issues in logging practices is shown
in Table 5 and the relationship between these issues and
3W1H questions is illustrated in Fig. 6. It is clear that 3/4 of
the issues regarding logging practices fall into the 2-W ques-
tions. In contrast, only 1/4 issues are related to the question
of how well is logging, while no issue has been identified to
be relevant to the why to log question. This finding implies
that certain aspects of logging practice have been neglected
in the community. Note that the percentage of each issue
denotes the proportion of the primary studies in relation to
this issue. Since one study may raise different issues and
occur in different categories, the sum of all the percentage
may exceed 100%. In the following subsections, we elabo-
rate these issues in detail for each 3W1H question.

5.1.1 “What to Log” Issues

This category has the most issues related to logging
practices.

Lacking crucial messages in log statements turns out to
be the most discussed issue, which is reported in 35 (62.5%)
studies. In practice, key decisions about logging are nor-
mally left to the programming stage, which easily ends up
with insufficient logging [Cinq 09]. Several studies [Zhi 19],
[Yuan 12b], [Cinq 12], [Rong 18], [Li 18b], [Tova 13], [Hass
18], [Kubo 20], [Cinq 20] directly pointed out or implied this
issue or the like. In fact, insufficient logging may be derived
from either less than expected log statements [Fu 14], [Ghol
20], [Jia 18], [Lal 16b], [Lal 17], [Lal 15], [Lal 16a], [Lal 16c],

Fig. 5. The relationships between the questions in the 3W1H
categorization.

Fig. 6. Relationship between issues and the 3W1H categorization.

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 909

[Lal 19], [Li 20b], [Li 17a], [Li 17b], [Luo 18], [Mizo 19], [Sain
16], [Yao 18], [Zeng 19], [Zhao 17] or missing key variables
in log statements [Liu 19]. Both create obstacles for log
analysis [Yuan 12c], [Li 18a], i.e., lacking crucial messages.
In [Yuan 12a], it is confirmed that the majority of failures do
not have failure-related log messages. Moreover, Li et al.
conducted a qualitative study and confirmed that missing
log messages may lead to extra effort in subsequent analysis
and even confuse users [Li 20a], which is also confirmed
in [Cinq 10].

Redundant or useless messages in log statements become
an issue on the opposite end of the spectrum, which has also
been pointed by many researchers, 23 (41.1%) studies to be
specific. Excessive logging may be one of the reasons for
redundant or useless messages [Fu 14]. Meanwhile, with
the increasing complexity of software systems and the way
to construct and deploy them (e.g., microservice architec-
ture), software systems or services are producing more log
messages than before [23], [24], [25]. A large portion of log
messages are redundant or useless as mentioned by many
studies [Cinq 09], [Zhi 19], [Cinq 12], [Marr 18], [Ding 15],
[Li 18b], [Tova 13], [Hass 18], [Fu 14], [Li 17a], in which
valuable log messages may be obscured by these ‘garbage’
noises [Li 18a], [Anu 19], [Lal 17], [Lal 16a], [Lal 16c], [Li
20b], [Liu 20], [Liu 19], [Sain 16], [Shan 14], [Zeng 19], [Zhu
15], [Li 20a], creating big challenges to store and analyze the
logs to satisfy the original intention of logging practices,
e.g., failure detection, diagnosis and recovery.

Incorrect or ambiguous messages in log statements are
another notable issue, which has been mentioned by 13
(23.2%) studies. Several studies report that some events and

information captured by the logs may be incorrect or mis-
leading and unable to support further operations [Cinq 09],
[Zhi 19], [Cinq 10], [Kim 19], [Pecc 12], [Pecc 15], [Tova 13],
[Hass 18], [Chen 17a], [Cinq 12], [He 18], [Li 19]. For exam-
ple, Cinque et al. stated the presence of misleading log mes-
sages may cause inaccurate log analysis, compromising the
ability of discriminating events related to actual failures
from presumed ones [Cinq 09]. Li et al. also claimed that
incorrect log content or levels may confuse developers in
debugging [Li 20a].

Heterogeneity of log messages is also an issue attracting
researcher’s attention, which has been mentioned in 9 (16.1%)
studies. Due to the unstructured nature of log content itself and
the arbitrariness of logging practices, the format and content of
log messages is generally heterogeneous [Liu 20], [He 18],
[Pecc 15], [Marr 18], [Ghol 20], [Tova 13], [Salf 04], especially
with the increase of system complexity, which naturally
involves more developers [Cinq 09]. The format of log mes-
sages is usually determined by the logging tools or libraries in
use, while the content of log messages is normally determined
by developers’ intentions or information needs. Both aspects
can vary with different developers or projects, leading to het-
erogeneity of log messages and further influencing the effec-
tiveness of log analysis [Cinq 09].

Leakage of sensitive data is an issue pertaining to infor-
mation security. Log files may contain sensitive information
due to security breaches in logging practices. Zhi et al. iden-
tified several common root causes of this issue [Zhi 20], e.g.,
insecure whole-object logging in which developers make
logging calls with direct reference to composite objects and
incorrect permission assignment that leads to leak of

TABLE 5
Distribution of Issues in Logging Practices

Category Issue Primary studies Percentage

Where &What Performance overhead [Chen 17a], [Chow 18], [Ding 15], [Fu 14], [Ghol 20],
[Jia 18], [Kabi 16a], [Lal 16b], [Lal 17], [Lal 15], [Lal
16a], [Lal 16c], [Lal 19], [Li 20b], [Li 17a], [Li 17b], [Li
18a], [Li 20a], [Liu 20], [Liu 19], [Luo 18], [Marr 18],
[Mizo 19], [Sain 16], [Shan 14], [Yao 18], [Yuan 12b],
[Yuan 12a], [Zeng 19], [Zhao 17], [Zhu 15]

55.4%

What Lacking crucial messages [Cinq 09], [Cinq 10], [Cinq 20], [Cinq 12], [Fu 14],
[Ghol 20], [Hass 18], [Jia 18], [Kubo 20], [Lal 16b], [Lal
17], [Lal 15], [Lal 16a], [Lal 16c], [Lal 19], [Li 20b], [Li
17a], [Li 17b], [Li 18a], [Li 18b], [Li 20a], [Liu 20], [Liu
19], [Luo 18], [Mizo 19], [Rong 18], [Sain 16], [Tova 13],
[Yao 18], [Yuan 12b], [Yuan 12a], [Yuan 12c], [Zeng
19], [Zhao 17], [Zhi 19]

62.5%

Redundant or useless messages [Anu 19], [Cinq 09], [Cinq 12], [Ding 15], [Fu 14], [Hass
18], [Lal 17], [Lal 16a], [Lal 16c], [Li 20b], [Li 17a], [Li
18a], [Li 18b], [Li 20a], [Liu 20], [Liu 19], [Marr 18],
[Sain 16], [Shan 14], [Tova 13], [Zeng 19], [Zhi 19],
[Zhu 15]

41.1%

Incorrect or ambiguous messages [Chen 17a], [Cinq 09], [Cinq 10], [Cinq 12], [Hass 18],
[He 18], [Kim 19], [Li 19], [Li 20a], [Pecc 15], [Pecc 12],
[Tova 13], [Zhi 19]

23.2%

Heterogeneity of the log messages [Chen 20], [Cinq 09], [Ghol 20], [He 18], [Liu 20], [Marr
18], [Pecc 15], [Salf 04], [Tova 13]

16.1%

Leakage of sensitive data [Li 20a], [Zhi 20], [Zhou 20] 5.4%

How well Maintenance barriers [Chen 17b], [Chen 19], [Chen 17a], [Ghol 20], [Li 18b],
[Pecc 15], [Yuan 12b], [Li 20a], [Kabi 16b], [Shan 14]

17.9%

Difficulties in V&V of log statements [Chen 19], [Rong 20] 3.6%

910 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

sensitive information in log files. Although it is only men-
tioned in three studies [Zhou 20], [Li 20a], [Zhi 20] (5.4% of
the overall studies), this type of privacy and security vulner-
abilities can not be neglected.

5.1.2 “How Well is Logging” Issues

We identified two issues related to how well is logging.
Maintenance barriers is a major issue in this category,

which has been reported in 10 (17.9%) studies. As men-
tioned in [Kabi 16b], logs are often unstable, e.g., the log
statements often change without considering other stake-
holders, influencing the subsequent analysis and increasing
the maintenance cost. Some of the modifications may even
introduce errors into the target systems [Shan 14] and
approximately one third of modifications of log statements
are after-thoughts when there is no proper log statement in
the first place [Yuan 12b]. Moreover, log statements often
co-evolve with bug fixes or feature updates, making it even
more challenging to maintain them in frequently evolving
systems [Li 18b], [Chen 17a], [Chen 17b], [Chen 19], [Ghol
20], [Yuan 12b], [Pecc 15]. A notable point is that too many
log statements inside the business code may also decrease
code readability and quality [Li 20a], [Chen 17a], thereby
further hindering the maintainability of both log statements
and business code, which needs extra efforts [Li 20a].

Difficulties in V&V of log statements are one of the two
issues identified in this category, which has been mentioned
in 2 (3.6%) studies. Unlike feature code or some code types
of cross-cutting concerns (e.g., exception handling or config-
uration), whose correctness easily attracts attention and can
also be verified and validated via immediate practices such
as software testing, it is quite challenging to verify and vali-
date log statements [Chen 19]. As a result, log statements in
source code may thus incorrectly reflect developer’s I&Cs,
as confirmed in [Rong 20].

5.1.3 Issues Across Multiple Categories

While the issues discussed above belong to a single cate-
gory, there is one issue covering a relatively wider range of
categories.

Performance overhead caused by log statements is a
major issue in the 2-W questions, which has been mentioned
in 31 (55.4%) studies. Both the location and content of log
statements can cause performance overhead. On the one
hand, adequate logging is important to understand the sys-
tem behavior comprehensively. The more log statements,
the more information to be captured in the log files. On the
other hand, excessive log statements may lead to unex-
pected side effects such as performance slowdown or high
cost to disk I/O bandwidth [Shan 14], [Chow 18], [Liu 20],
[Chen 17a], [Zeng 19], [Li 17b], [Li 17a], [Liu 19], [Li 20a]. In
this sense, finding an appropriate trade-off between benefits
and costs of log placement is thus both crucial and challeng-
ing. Although this issue in most cases is regarded as the
issue in programming, researchers began to realize the
importance of design in solving this issue [Lal 17], [Lal 16a],
[Zhu 15], [Marr 18], [Ding 15], [Yao 18], [Sain 16], [Ghol 20],
[Lal 16c], [Lal 16b], [Mizo 19], [Jia 18], [Lal 19], [Luo 18], [Li
20b], [Kabi 16a], [Yuan 12b], [Yuan 12a].

Finding 1: Most studies focus on the issues related to log
content (what to log), which directly impacts the informa-
tion captured in log files. Among them, lacking crucial
messages and performance overhead have attracted the
majority of researchers’ attention. The latter issue is also
related to log location (where to log). In sum, the 2-W
questions (where to log and what to log) are the top con-
cerns to researchers. A noteworthy phenomenon is that
there are no specific issues associated to the category of
why to log.

5.2 Research Topics on Logging Practices (RQ2)

In this section, we categorized the research topics through
manual coding with the 3W1H questions. Generally, we
identified 10 research topics and mapped them into the
3W1H questions/categories. The detailed distribution of
research topics is listed in Table 6 and the relationship
between the research topics and the 3W1H questions is
shown in Fig. 7. It is obvious that most research topics per-
tain to the 2-W questions, which is consistent with the

TABLE 6
Distribution of Research Topics

Category Topic Primary studies Percentage

Why Logging intention [Jia 18], [Li 18a], [Li 20a], [Pecc 15], [Rong 20] 8.9%
Where Log location [Cinq 09], [Cinq 10], [Cinq 12], [Fu 14], [Ghol 20], [Jia

18], [Kubo 20], [Lal 16b], [Lal 17], [Lal 15], [Lal 16a],
[Lal 16c], [Lal 19], [Li 20b], [Pecc 15], [Rong 18], [Sain
16], [Yao 18], [Yuan 12a], [Zhao 17], [Zhu 15]

37.2%

Where &What Logging cost [Chow 18], [Ding 15], [Li 20a], [Marr 18], [Zeng 19] 8.9%

What Log content [He 18], [Liu 20], [Liu 19], [Luo 18], [Marr 18], [Salf 04],
[Tova 13], [Yuan 12c], [Zhi 19]

16.1%

Log level [Anu 19], [Kim 19], [Li 17a], [Marr 18], [Mizo 19],
[Rong 18]

10.7%

Logging security [Zhi 20], [Zhou 20] 3.6%

How well Log evolution [Chen 17b], [Kabi 16b], [Li 17b], [Li 18b], [Pecc 15],
[Shan 14], [Yuan 12b], [Chen 20], [Kabi 16a], [Zhi 19]

17.9%

Assessment of logging mechanisms [Cinq 10], [Cinq 20], [Pecc 12] 5.4%
Logging anti-pattern [Chen 17a], [Li 19] 3.6%
Defects in log statements [Chen 19], [Hass 18] 3.6%

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 911

findings we discussed in RQ1, i.e., most issues falling into
the 2-W questions. In contrast, there are relatively few stud-
ies focusing on research topics in the categories such as why
to log and how well is logging.

The identified research topics in each category of 3W1H
are elaborated as follows.

5.2.1 “Why to Log” Topics

There is only one research topic in this category.
Logging intention is the only one we identified in this

category, which has been raised by 5 (8.9%) studies. Li et al.
performed a qualitative study to understand the benefits
and costs towards logging practices from developers’
perspectives [Li 20a]. In addition, approaches to balancing
both aspects were also summarized in this study. Both bene-
fits and costs to a certain degree were able to reflect the I&Cs
that developers may have when making logging decisions.
Rong et al. carried out a case study at a real-world company
to understand developers’ I&Cs on logging and found that
the I&Cs always had not been reflected well in the actual
source code [Rong 20]. Pecchia et al. investigated the reasons
for logging practices and found three major purposes of
logging, i.e., state dump, execution tracing and event
reporting [Pecc 15]. While these studies directly investigate
logging intentions, several others explore the adoption of
logging intentions in their research. For example, Li et al.
studied the relationship between the topics of a code snip-
pet and the likelihood of a code snippet being logged, where
such topics can be regarded as intentions [Li 18a]. Jia et al.
proposed two models to describe logging intentions, and
further designed and implemented an automatic log place-
ment tool based on the intention models [Jia 18]. One reason
for investigating logging intentions is that developers may
not be fully aware of them, leading to uncertainty about
whether developers’ intentions are properly reflected by
the actual log statements in source code. In addition, auto-
mated approaches to logging improvement might not be
convincing enough to developers without a clear under-
standing of developers’ logging intentions [Li 20a].

5.2.2 “Where to Log” Topics

We identified one research topic in this category.
Log location, i.e., where to log, is a major research topic that

has been investigated by 21 (37.2%) studies. As one part of the
2-W questions, location of log statements affects performance,
storage overheads, and many other aspects of the target sys-
tem.Hence researchers attempted to establish an understand-
ing of log location [Zhu 15], [Rong 18], [Pecc 15], [Fu 14], [Li
20b] and optimize log location [Cinq 09], [Cinq 10], [Yuan

12a], [Cinq 12], [Yao 18], [Sain 16], [Ghol 20], [Jia 18], [Kubo
20] so as to make logging practices more useful. In general,
most studies attempted to predict log location and provided
convenient tools to support developers in making such deci-
sions. For instance, Lal et al. [Lal 17], [Lal 16a], [Lal 16c], [Lal
16b], [Lal 19], [Lal 15] conducted a set of studies that used
machine learning to predict log statements in different code
snippets. Several other studies tried to optimize log location
through better log design. For example, Zhao et al. proposed
an algorithm that can automate the placement of log state-
ments in source code based on ‘entropy’ theory [Zhao 17].

5.2.3 “What to Log” Topics

We identified 3 research topics in this category.
Log content and log level are two research topics that

appear at the same time in many cases. These two topics
constitute the major part of what to log, which has been
investigated by 9 (16.1%) studies and 6 (10.7%) studies,
respectively. Researchers have identified the characteristics
of log level and log content [Rong 18], [He 18], [Liu 20],
[Marr 18], [Zhi 19] and also proposed several approaches to
effectively capturing the information the log statements
carry with from multiple perspectives, e.g., suitable log
level [Anu 19], [Kim 19], [Mizo 19], [Li 17a], static text [Salf
04], [Yuan 12c], [Luo 18], [Tova 13], and necessary
variables [Liu 19]. Similar to the research on log location,
studies on log level/content also mainly focus on the pre-
diction of appropriate level/content and the approaches to
designing proper log level/content.

Logging security is another research topic in this category
which contains two (3.6%) studies. In [Zhou 20], they pointed
out the risk of data leakage of sensitive information through
logging practices and studied its impact. Zhi et al. investigated
the vulnerabilities that expose sensitive information through
logging, and found the top root cause for the vulnerabilities is
insecure whole-object logging, i.e., developers make logging
calls with direct reference to composite objects [Zhi 20].

5.2.4 “How Well is Logging” Topics

Three research topics have been identified in the category of
how well is logging.

Log evolution is a major research topic in this category
involving 10 (17.9%) studies. These studies investigated the
factors that influence the evolution of log statements and
how they evolve. The research results of these studies can,
to some extent, guide the implementation of log statements
to reduce the overhead required for subsequent log mainte-
nance. For example, several studies [Yuan 12b], [Chen 17b],
[Shan 14], [Pecc 15] answered the question “how do develop-
ers change log statements?” from several different aspects,
e.g., frequency and content of modification. Kabinna et al.
examined the changes to log statements in four open source
projects in order to reduce the maintenance effort [Kabi
16b]. Li et al. attempted to explore the reasons for changes
made to log statements and thus provided suggestions on
log evolution [Li 17b]. Similarly, Li et al. aimed to learn
log evolution proactively from software evolution and pro-
vided a tool to guide log evolution [Li 18b]. Besides these
studies, some researchers focused on the utilities support-
ing logging practices in terms of evolution. For example,

Fig. 7. Relationship between research topics and 3W1H categorization.

912 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

Kabinna et al. studied logging library migrations within
open source projects to help developers mitigate the migra-
tion effort [Kabi 16a]. The research result suggested that log-
ging library migration is not a trivial task which requires
significant design so as to balance the benefits and costs. Zhi
et al. explored configurations of logging utilities in both
open source projects and industrial projects, and found that
about 12.9% of changes to logging configurations were to
enhance usability and strengthen maintainability of log
statements [Zhi 19]. To maintain high quality log state-
ments, Chen et al. conducted a large-scale empirical study
on the use of logging utilities in real-world projects and
found that as the software systems evolve and grow bigger,
the number of logging utilities also increased [Chen 20].

Assessment of logging mechanisms is a further research
topic in this category, which has been studied by 3 (5.4%)
studies. For example, Cinque et al. [Cinq 10] evaluated the
effectiveness of current loggingmechanisms in the context of
three real-world case studies and found that logs were not
able to provide useful information about failures in most
cases, which was further confirmed in their subsequent
work [Cinq 20]. Similarly, Pecchia et al. pointed out that it is
crucial to understand the reasons behind the issues in log-
gingmechanisms towards failure detection and the resultant
low efficiencies so as to increase the accuracy of logs pro-
duced at runtime [Pecc 12]. Therefore, they proposed an
experimental study on the factors determining accurate
detection of software failures through logs and found that
the effectiveness of the log location was related to the chance
of error propagation paths to be exercised at runtime.

Logging anti-pattern is also a research topic belonging to
the how well category, which is reported by 2 (3.6%) studies.
The anti-patterns in log statements are recurrent mistakes
which may hinder both the understandability and the main-
tainability of the resulted log files. Chen et al. [Chen 17a]
conducted a comprehensive study to characterize and
detect anti-patterns in log statements so as to develop and
maintain high-quality log statements. Six main anti-patterns
were identified by the authors, e.g., containing nullable
objects, wrong verbosity level, and malformed output of
variables without a human readable format. Similarly, as
one of code smells, duplication of log statements has been
studied by Li et al. [Li 19] to help developers improve their
logging practices.

Defects in log statements is another research topic
reported by 2 (3.6%) studies. The defects contained in log
statements have become one of the major concerns due to
the vast usage of logs in practice. Moreover, as claimed
in [Hass 18], it often takes longer time for issues regarding
log statement to be reported. Chen et al. extracted and
studied the historical issues in log statements and their
fixes based on several open source projects with the
attempt to support effective maintenance of log
statements [Chen 19].

5.2.5 Topics Across Multiple Categories

We also identified one research topic that is across the cat-
egories of where to log and what to log.

Logging cost attracts concerns in 5 (8.9%) studies. As
mentioned in Section 5.1.3, excessive logging may lead

to performance issues. Therefore, empirical studies have
been conducted to investigate this dilemma [Li 20a],
[Chow 18], [Zeng 19] and several cost-aware logging
mechanisms have been proposed. For example, Marron
proposed a logging system based on a set of design prin-
ciples to make logging more efficient [Marr 18]. Ding
et al. proposed a cost-aware logging mechanism that
helps achieve a balance between logging overhead and
effectiveness [Ding 15].

Finding 2: The distribution of research topics across mul-
tiple categories is generally similar to that of research
issues. One noticeable exception is ‘logging intention’,
one topic in the category of why to log, which received
certain attention from the researchers. However, effec-
tive methods to obtain and satisfy developers’ actual log-
ging intentions or the related obstacles and issues to do
so have never been essentially explored.

5.3 Proposed Approaches and Findings (RQ3)

Similarly, we also reviewed the approaches to logging practi-
ces through a manual coding process so as to understand the
research progress and trend.Using the 3W1H questions elabo-
rated in Section 4, we identified 7 types of approaches cover-
ing three categories except why to log. The detailed
distribution of the approaches is shown in Table 7. The rela-
tionship between the 3W1H questions and proposed
approaches is depicted in Fig. 8. Note that all the approaches
are categorized based on their inherent characteristics instead
of the issues they are addressing. Besides, the relatively small
percentages on the most right column imply that approxi-
mately half of the studies did not propose a concrete approach
or tool. Apparently, most approaches address the 2-W ques-
tions, which reasonably confirms the finding that the 2-W
questions are most concerned by the researchers in this com-
munity. In the following subsections, we elaborate the
approaches proposed in the primary studies in each category.

5.3.1 “Where to Log” Approaches

One approach has been identified in this category.
Rule-based logging approach instruments log statements

according to several manually or automatically defined
rules. There are 4 (7.1%) studies discussing this approach.
For example, Cinque et al. defined a minimal set of rules to

Fig. 8. Relationship between approaches and 3W1H categorization.

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 913

be followed during programming log statements in order to
effectively pinpoint failure locations [Cinq 09]. Their
another work introduces a novel rule-based logging
approach that leverages design artifacts to support effective
log placement into source code [Cinq 12]. The rule-based
logging approach was also applied in their follow-up
work [Cinq 20] to increase the amount of useful information
carried by log statements. In [Kubo 20], they developed a
tool for identifying typical data structures and applying
coding conventions (rules) to log statements so as to track
inter-thread data dependencies. The advantage of rule-
based logging is that key decisions can be designed in
advance, thus enabling the standardization of the log loca-
tion and content during the programming.

5.3.2 “What to Log” Approaches

We identified one approach in this category.
Content formatting is an approach to enforcing the

output format of logs by designing a mechanism for for-
matting log statements, which has been proposed by 2
(3.6%) studies. For example, a logging mechanism pro-
posed by Tovar�n�ak et al. [Tova 13] is able to produce
logs in a unified and extensible format allowing for effi-
cient and automated processing. The approach proposed
by Marron provides a suite of innovative log format and
level management techniques that enable a consistent
and unified log content [Marr 18]. As the result, the log
statements can be well formatted logs for easy manage-
ment and further processing.

5.3.3 Approaches Across Multiple Categories

As a matter of fact, most proposed approaches can be classi-
fied into multiple categories, which implies that these
approaches can be adopted to address issues across differ-
ent categories.

Static analysis is an approach to addressing the 2-W
questions, which has been proposed by 5 (8.9%) studies.
This approach analyzes the source code and thus builds
a model for specific tasks such as failure diagnosis. For
example, Yuan et al. [Yuan 12c], [Yuan 12a] developed a
tool that uses Saturn static analysis framework [26] to
identify potential unlogged exceptions. Similarly, Yao
et al. [Yao 18] and Fu et al. [Fu 14] applied static analysis
frameworks and tools to analyze source code in order to
suggest suitable log location. Li et al. used static analysis
to identify code smells of duplicate log statements to

provide data basis for developers to obtain a clearer
understanding of the system behavior and thus improve
the logging practices [Li 19].

Dynamic logging is an approach which allows the out-
put of log statements to be dynamically determined by
the logging strategy or mechanism at runtime. The
method has been advocated in 4 (7.1%) studies. For
instance, a tool proposed by Mizouchi et al. is able to
dynamically adjust the log level of a running system to
record detailed logs for the abnormal events while limit-
ing the amount/size of logs for normal events [Mizo 19].
Ding et al. presented a cost-aware logging system that can
automatically determine whether to record runtime infor-
mation according to predefined resource budget [Ding
15]. Similarly, Zhao et al. introduced an algorithm that
can automate the placement of log statements within a
specified threshold of performance overhead [Zhao 17].
Luo et al. presented a logging system for troubleshooting
transiently-recurrent problems, with which logging infor-
mation generated by a method over a period of time is
proportional to how often it is reported for various
misbehaviors [Luo 18]. In a nutshell, dynamic logging is a
strategy that is able to adjust log placement at runtime
according to the system status, predefined rules, or some
other metrics. Generally speaking, dynamic logging is
mainly used in scenarios where resource or additional
overhead is limited for logging.

Entropy theory in log design is another approach, which
was adopted by 2 (3.6%) studies. Such approach calculates
the entropy of the information carried by log statements or
their context, and thus optimizes the location or enhances
the content or level of these log statements. For example,
Zhao et al. applied entropy to optimizing the location of log
statements [Zhao 17]. Hassani et al. proposed a log level
checker that used entropy to calculate the proper level of
log statements based on the probability of appearance of
phrases in the log content [Hass 18]. Based on the informa-
tion contained in the content or context of the log statement,
information entropy is believed to be able to assist the
design of log placement.

Intention-based logging is an approach specifically to
the 2-W questions, which we identified in 2 (3.6%) stud-
ies. Jia et al. regarded the semantics of log context (usu-
ally the natural interpretation of the code comments) as
logging intention and suggested that a better log place-
ment strategy should take the logging intention into
consideration [Jia 18]. As the authors pointed out, log

TABLE 7
Distribution of Proposed Approaches

Category Approach Primary studies Percentage

Where Rule-based logging [Cinq 09], [Cinq 20], [Cinq 12], [Kubo 20] 7.1%

Where &What Static analysis [Fu 14], [Li 19], [Yao 18], [Yuan 12a], [Yuan 12c] 8.9%
Dynamic logging [Ding 15], [Luo 18], [Mizo 19], [Zhao 17] 7.1%
Entropy theory [Hass 18], [Zhao 17] 3.6%
Intention-based logging [Anu 19], [Jia 18] 3.6%

What Content formatting [Marr 18], [Tova 13] 3.6%
Where &What & How well Machine learning-based logging [Anu 19], [Fu 14], [Ghol 20], [Kim 19], [Lal 16b],

[Lal 17], [Lal 16a], [Lal 16c], [Lal 19], [Li 17a], [Li
17b], [Liu 19], [Sain 16], [Zhu 15]

25.0%

914 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

placement was far beyond certain rules. Therefore, the
authors proposed an Intention Description Model to
describe the intention of log statements for a better log
placement strategy. Similarly, Anu et al. also adopted the
concept of logging intention and then proposed an auto-
matic approach to assist decisions to appropriate log
level [Anu 19]. Nevertheless, as intangible as the concept
carries, intention is usually difficult to capture, commu-
nicate, implement and verify. As a result, there are usu-
ally many types of inconsistencies between the intention
and the actual log placement in practice [Rong 20].

Machine learning-based logging is an approach that
covers all the categories except why to log, proposed by
14 (25.0%) studies. These studies typically rely on vari-
ous machine learning techniques for predicting the loca-
tion, content, level of log statements or the necessity to
make revisions. In essence, the prediction is a binary or
multi-label classification problem, e.g., whether a log
statement is needed [Li 17b] or which level should be
applied [Anu 19] given the classification derived from
various factors such as the contexts of code snippet [Zhu
15] or the characteristics (e.g., the number of variables,
the number of existing log statements, etc.) of the source
file containing log statements [Li 17a]. For example, sev-
eral studies [Zhu 15], [Fu 14], [Kim 19] applied decision
tree based algorithms as the learning model/classifier.
Random forest was also one of the most commonly used
classifiers for logging prediction [Anu 19], [Li 17b], [Sain
16], [Kim 19]. Several studies used multiple machine
learning algorithms at the same time, and further com-
pared their performance to find the best one. For exam-
ple, Lal et al. adopted five different machine learning
algorithms (i.e., Adaboost, Decision Trees, Random For-
est, Gaussian Naive Bayesian, K-Nearest Neighbor) in
their approaches [Lal 16c], [Lal 16b], [Lal 19]. Moreover,
in their further studies [Lal 17], [Lal 16a], they proposed
ensemble-based approaches to capturing the strength of
multiple base classifiers. Two studies [Sain 16], [Kim 19]
used support vector machine to recommend log state-
ments. In addition, deep learning [Ghol 20] and neural
networks [Liu 19] were also applied to logging predic-
tion for complicated multi-label classification tasks. Ordi-
nal regression model [Li 17a] was used when the
number of labels to the classification is small yet the rel-
ative ordering among these labels is critical. One notable
challenge of the machine learning based approach is that

the prediction performance highly relies on the quality
of the dataset used for model training. Nevertheless, as
implied in [Rong 18],[4], the quality of logging practices
is far from satisfactory in real-world software projects.
Therefore the quality of training dataset (normally based
on real-world software projects) is often questionable.

Finding 3: Only about half of the studies proposed con-
crete solution approaches to specific issues regarding
logging practices, mainly focusing on the categories of
where to log and what to log. Among them machine learn-
ing-based logging has received the most attention.

5.4 Cross Analysis (RQ4)

In this section, we aim to answer RQ4 by extending the anal-
ysis of the extracted data to across different research ques-
tions. Apparently, the current research work on logging
practices is anchored in issues. To this end, we detail RQ4
into three concrete Cross-Analysis Questions (CAQs) as
follows:

CAQ1: Are there trends or patterns in the investigation of issues
over the years?

CAQ2: Which research topics have received the most attention in
relation to different issues?

CAQ3: Which approaches have addressed the most number of
issues?

In the following, we present the findings from the cross
analysis.

5.4.1 Investigated Issues Over the Years (CAQ1)

To portray a general status of the issues under investiga-
tion over years, we list all the issues identified
in Section 5.1 according to the year of publication. The
result is shown in Table 8, from which two points seem to
be noteworthy.

First, some of the hot issues in the recent years did not
attract enough attention in the early years. For example, PO
(Performance Overhead) and LCM (Lacking Crucial Mes-
sages) are two issues attracting significant and continuous
attention recently. One possible reason for this may lie in
that these two issues are the most direct issues in carrying
out logging practices, compared to other issues. With more

TABLE 8
Issues Over Years

* PO (Performance Overhead); LCM (Lacking Crucial Messages); RUM (Redundant or Useless Messages); IAM (Incorrect or Ambiguous Messages); HLM
(Heterogeneity of the Log Messages); LSD (Leakage of Sensitive Data);MB (Maintenance Barriers); DVLS (Difficulties in V&V of Log Statements).

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 915

attention to logging practices, these two issues turn to be
increasingly prominent.

Second and more importantly, except for the LSD
(Leakage of Sensitive Data) and DVLS (Difficulties in
V&V of Log Statements) issues, all other issues raised in
the early years have been re-investigated several times
in the following years, which implies that they might not
be well addressed yet. Taking 2015 as a watershed, the
most studied issues before 2015 remain as the most
investigated ones after 2015.

Finding 4: The major issues regarding logging practices
have been continuously studied, implying these issues
are still yet to be completely solved. Findings 5–6 from
further cross-analysis have nailed down the major causes
leading to this outcome. Besides, leakage of sensitive data
and difficulties in V&V of log statements have been attract-
ing researchers’ attention since 2019.

5.4.2 Issues and Research Topics (CAQ2)

The result from the cross analysis between the issues
(cf. Section 5.1) and the research topics (cf. Section 5.2) is
presented in Table 9. It is worth noting that the numbers
outside the parentheses denote the number of studies in
which an issue was discussed or addressed under a certain
research topic, while the percentage in the parentheses indi-
cates the corresponding proportion. We elaborate several
interesting observations as follows.

First, from the issue’s perspective (i.e., horizontal view),
almost all issues appear across multiple research topics.
Among these issues, PO (Performance Overhead), LCM
(Lacking Crucial Messages), RUM (Redundant or Useless
Messages), IAM (Incorrect or Ambiguous Messages), HLM
(Heterogeneity of the Log Messages) and MB (Maintenance
Barriers) are covered by relatively more research topics.
Note that these are also the most investigated issues accord-
ing to the findings for RQ1.

Second, from the angle of research topic (i.e., vertical
view), we observe a similar pattern, i.e., nearly all research
topics cover multiple issues. For example, LIT (Logging
Intention), LLC (Log Location), LCS (Logging Cost), LCT
(Log Content), LLV (Log Level) and LEV (Log Evolution) all
investigate most of these issues.

The findings presented in Table 9 show that there are
many-to-many relationships between the issues and
research topics, which further imply that issues regarding
logging practices may be naturally entangled with each
other. Therefore, it is unlikely to rely solely on a single
research topic to address one issue at a time. A systematic
strategy which contains multiple aspects regarding logging
practices may be required to deal with the major issues.

Finding 5: There are a number of many-to-many relation-
ships between the issues and the research topics, i.e., an
issue appears in multiple research topics, and a research
topic attempts to address multiple issues. Some of the
issues even cover almost all topics, and vice versa. This
observation suggests a lack of profound understanding
of the issues and their intricate relationships and how
they should be appropriately tackled.

5.4.3 Issues and Proposed Approaches (CAQ3)

Similar to CAQ2, the evidence presented in Table 10 reveals the
relationship between issues (cf. Section 5.1) and approaches
(cf. Section 5.3). Apparently, the observation that one issue has
multiple approaches and one approach solves multiple issues
also exists in Table 10. To be specific, from the angle of issues,
PO (PerformanceOverhead),LCM (LackingCrucialMessages),
RUM (Redundant or Useless Messages), IAM (Incorrect or
Ambiguous Messages) and HLM (Heterogeneity of the Log
Messages) have all attracted multiple studies with various
approaches. On the other hand, all the approaches are claimed
to address multiple issues, among which, MLBL (Machine
Learning-Based Logging) is claimed to solve more issues than

TABLE 9
Issues versus Research Topics

* The same as Table 8.
y LIT (Logging Intention); LLC (Log Location); LCS (Logging Cost); LCT (Log Content); LLV (Log Level); LSC (Logging Security); LEV (Log Evolution);
ALM (Assessment of Logging Mechanisms); LAP (Logging Anti-Pattern); DLS (Defects in Log Statements).

916 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

other approaches do. However, no specific approach has been
proposed to address the issues of LSD (Leakage of Sensitive
Data) andDVLS (Difficulties inV&Vof Log Statements), which
to a certain degree implies the difficulty of solving these two
issues. The result listed in Table 10 confirms our conjecture that
there are no commonly accepted solutions to the major issues
in logging practices, given the fact that these issues have been
continuously studied in recent years. This observation partially
explains the low adoption of research solutions by the industry.

Finding 6: Similar to Finding 5, the relationships between
the issues and the proposed approaches are also mostly
many-to-many, i.e., one approach is often claimed to solve
multiple issues and vice versa. This again to a fair degree
reflects an inadequate analysis of the depth of an issue to
be addressed, which inevitably hinders tackling the issue
at an appropriate granularity and level. As a result, such a
solution is generally far from solving the intended issue
and the existence of multiple inadequate solutions makes
it even harder to adopt any one in practice.

6 DISCUSSIONS

In this section, we discuss possible reasons behind the cur-
rent status of the research and the adoption of logging prac-
tices as well as several next-step considerations for logging
practices.

6.1 Research Status and Reason Analysis

In essence, a log statement is quite similar to any business
statement in source code—they are both executable program
instructions. Both types of statements are supposed to imple-
ment certain ‘requirements’, which will produce a certain
‘result’ for their intended users later on. In a typical scenario,
the log statement usually generates logs for internal users
such as developers and maintainers while regular business
statements produce ‘results’ for external end-users. Unlike
copingwith conventional coding for features, which is signifi-
cantly supported by the state-of-the-art of SE, however, log-
ging practices currently still lack a systematic methodological

support for practitioners based on our observation derived
from this SMS. We reckon there are multiple reasons leading
to the current status of logging practices, among which “lack
of research to address critical issues”, “unrealistic expectation
of general yet adaptable solutions”, and “separated research
within logging practices and between logging practices and
log analysis” may have played an important role.

6.1.1 Lack of Research to Address Critical Issues

We noticed that most research effort has been invested on
the issues relating to the 2-W questions, essentially (if not
completely) neglecting two equally critical categories, i.e.,
why to log and how well is logging.

According to the elaboration in Section 4, why to log
answers the I&Cs of logging practices, which should serve
as the starting point of logging practices. Unfortunately,
very little effort has been put onto identifying and address-
ing issues in this important category. Just like regular soft-
ware development, lack of requirement analysis will
inevitably lead to deviations in software design and imple-
mentation. Logging practice without proper clarification of
I&Cs will also lead to major gaps between the I&Cs and the
actual log statements in source code, which has been
noticed and reported in [Rong 20], [Li 20a]. More impor-
tantly, I&Cs are the conceptual abstraction of why to log and
usually used to support communication among different
participants regarding logging practices. An I&C is imple-
mented via log placement by translating to log location, con-
tent, and level. Clearly, without properly understanding
and analyzing the true I&C, it is difficult to implement an
appropriate log placement that matches the context in
source code. For this reason, practitioners may encounter
barriers to adopting a logging approach or tool for log
placement.

Similarly, the issues relating to the category of how well is
logging have not been well addressed by the current
research on logging practices. Like the importance of V&V
in regular software development, without proper V&V in
logging practices, it is usually uncertain that log statements
actually reflect developer’s original I&Cs and capture the
system information needed for further analysis. As a result,

TABLE 10
Issues versus Approaches

Approach and corresponding category

Issue and corresponding
category

Where Where&What What Where&What&How Total

RBLy SAy DLy ETy IBLy CFy MLBLy
Where &What PO* 3 (16.7%) 4 (22.2%) 1 (5.6%) 1 (5.6%) 1 (5.6%) 10 (55.6%) 18 (100.0%)

What LCM* 4 (18.2%) 4 (18.2%) 3 (13.6%) 2 (9.1%) 1 (4.5%) 1 (4.5%) 9 (40.9%) 22 (100.0%)
RUM* 2 (15.4%) 1 (7.7%) 1 (7.7%) 1 (7.7%) 1 (7.7%) 2 (15.4%) 6 (46.2%) 13 (100.0%)
IAM* 2 (40.0%) 1 (20.0%) 1 (20.0%) 1 (20.0%) 5 (100.0%)
HLM* 1 (25.0%) 2 (50.0%) 1 (25.0%) 4 (100.0%)
LSD* 0 (0.0%)

How well MB* 1 (100.0%) 1 (100.0%)
DVLS* 0 (0.0%)

* The same as Table 8.
y RBL (Rule-Based Logging); SA (Static Analysis); DL (Dynamic Logging); ET (Entropy Theory); IBL (Intention-Based Logging); CF (Content Formatting);
MLBL (Machine Learning-Based Logging).

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 917

logging practices are inevitably subject to many question-
able log statements in actual source code. In fact, several
studies have emphasized the importance of fulfilling log-
ging I&Cs [Yao 18], [Anu 19], [Jia 18], but none of them pro-
vided concrete V&V mechanisms to ensure proper
implementation of logging I&Cs.

Given the current status elaborated above, a very inter-
esting analogy is that the state-of-the-art logging practices
are quite similar to the famous ‘Code and Fix’ software
development model in some sense. While it may work well
with software systems of small size, it will encounter huge
challenges to deal with large and complex software systems.
Similarly, typical scenarios of logging practices nowadays
always involve with large-scale software systems with com-
plex business logic. In this sense, it is not surprising that log-
ging practices are far from satisfactory in these software
systems [Rong 18],[4].

6.1.2 Unrealistic Expectation for General yet

Adaptable Solutions

An ultimate goal of research on logging practices is to pro-
vide guidance or assistance for software developers to per-
form better logging practices. To achieve this goal, several
approaches and tools have been proposed. However, in
practice, it is extremely challenging or even unrealistic to
expect solutions that are generally applicable to all logging
practices yet they are adaptable enough to perform the best
in various specific contexts.

One example is the expectation of general-purpose
guidelines. Many studies have mentioned the importance
to have practical guidelines for logging practices [Chen
17a], [Zhu 15], [He 18], [Liu 19], [Anu 19], [Liu 20], [Li
18a]. Not only is the academia committed to putting for-
ward such guidelines, but there are also similar requests
in industry. For example, some popular blogs have dis-
cussed the best or worst logging practices, e.g., [21], [22],
which could be taken as reference guidelines. Some
world-leading software companies have also introduced
internal guidelines for logging practices, e.g., Ali-
baba [20]. Most of these guidelines are so-called general-
purpose guidelines which guide logging practices with-
out an explicit and specific I&C. However, there is less
chance to promote general-purpose logging guidelines
due to the vast variety of I&Cs. Take two typical logging
intentions as an example. Failure diagnosis and perfor-
mance analysis may require completely different log
placement. The logical branches in source code may pro-
vide useful information for the former logging intention,
while the timestamps at the entries and exits of compli-
cated methods may support the latter logging intention
better. In this example, designing general-purpose log-
ging guidelines to satisfy both intentions might never be
feasible.

Another example is the prevailed adoption of machine
learning techniques to support logging practices, which
involves more number studies than others (cf. Table 7).
The main idea is to learn the contexts/features of code
snippets and recommend log statements at code snippets
with similar contexts/features. The challenge is, how-
ever, the efficacy of machine learning techniques largely

depends on the quality of the dataset used for training.
If only general-purpose log statements are included in
the training dataset, the trained models cannot support
specific I&C, i.e., there may be totally different log state-
ments at the exactly same location in the source code to
meet different I&Cs. It is worth noting that it is non-triv-
ial to ensure the quality of log placement in existing soft-
ware systems in the first place. We noticed that several
studies proposed methods for extracting I&Cs from
source code [Anu 19], [Jia 18]. This may bring some
opportunities for better use of machine learning techni-
ques to support logging practices as long as the I&Cs
can be adequately learned and included in the resulting
models.

Although a certain log placement is commonly related
to specific and concrete contexts (e.g., I&Cs, structure/
logic of the code nearby), the specific contexts normally
limit the generality of a certain log placement in return.
This is a dilemma. On the one hand, we need a solution
to logging practices (e.g., general purpose guidelines)
that is generally applicable to as many contexts as possi-
ble. Otherwise, the usage of the solution is inevitably
constrained by the contexts. On the other hand, the more
contexts involved, the more unlikely to find a suitable
log placement to address various I&Cs for various spe-
cific contexts.

6.1.3 Separated Research Within Logging Practices

and Between Logging Practices and Log Analysis

It seems that the related research around logs, log placement
and subsequent log analysis are in a state of separation. This
has resulted in a situation in which research on how to opti-
mize log placement is rarely considered from the perspective
of what information is needed for log analysis. On the con-
trary, in the related research on log analysis, most of the
research efforts have been spent on analysis and processing
algorithms using existing log data, researchers rarely express
concerns about the quality of the data source—log placement.
In short, there is a lack of positive interaction between log
placement and log analysis, which may be one of the reasons
for the current research status of logging practice. Take one of
the most studied issue (i.e., performance overhead) as an
example, without information requirement derived from the
corresponding log analysis need, reasonable trade-offs are
inherently impossible to achieve.

Within logging practices, while the research topics and
the proposed approaches are concentrated on the 2-W ques-
tions, some key aspects regarding logging practices spe-
cially around why and how well questions are essentially
neglected. This separation of research leads to the conse-
quence that some proposed approaches cannot be verified
and validated from the perspective of logging I&Cs. It is
very desirable to consider a holistic research approach that
takes into account all 3W1H aspects and the interaction
between logging practices and logging analysis.

6.2 Next Steps

The importance of logging practices in modern software
development and operations is undeniable. Therefore, we dis-
cuss several promising next-step research in this subsection.

918 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

6.2.1 A Process Perspective for Logging Practices

Apparently, the chance is slim to solve the critical issues
regarding logging practices (as shown in Table 5) by solely
considering one or two categories. For example, performance
overhead is obviously a compromise between the benefit and
cost of logging, which can not be completely addressed by
merely answering the 2-W questions. Without knowing spe-
cific information needs (perhaps derived from log analysis),
the issue of lacking crucial messages is unlikely to be
addressed, and further all the issues relating to ‘messages’
may be subject to this observation. Therefore, we advocate a
process perspective for logging practices in which not only
is logging systematically considered from log generation to
log utilization but can logging issues be also holistically
investigated. For example, we may borrow the idea from
regular software development processes, given the essen-
tially similar paradigm to develop and maintain both log
statements and regular business statements. The concept of
Software Development Life Cycle (SDLC) [27] has already
taken shape in existing studies regarding logging practices.

For example, Jia et al. proposed an ‘intention’ description
model that is able to represent developer’s intentions of log
statements [Jia 18]. Based on the ‘intention’ description
model, they implemented an intention-aware log automa-
tion tool to insert log statements at proper places. An
‘intention’ is similar to the concept of a requirement in
SDLC. Cinque et al. proposed a rule-based logging approach
based on the artifacts generated at the design stage [Cinq
12]. Zhao et al. proposed an algorithm to optimize the loca-
tion of log statements in source code based on information
theory [Zhao 17]. Kabinna et al. examined changes to log
statements in order to help developers instrument more sta-
ble log statements [Kabi 16b]. The maintenance of log state-
ments was brought into the limelight. Nevertheless, to close
the loop, the value of V&V (i.e., how well is logging) should
be taken seriously in logging practices.

Moreover, apart from the process perspective, some com-
mon good practices in SE can also be useful to logging practi-
ces due to the fact that log statements are source code in
essence. For example, several studies have realized that con-
ducting logging practices in a ‘Code and Fix’ fashion is prob-
lematic, and thus summarized a set of anti-patterns [Chen
17a]. Along this thread, adapting the well-known best practi-
ces in regular SE to logging practices may also be a valuable
research direction.

6.2.2 Recognizing the Anchor Value of I&C

The I&C of a log placement and its underlying context should
be taken as the starting point and also the anchor of all logging
practices. Without a clear answer to the why to log question, it
is hard to design and implement an appropriate log place-
ment, and all the downstream activities around logging prac-
tices would become unrooted trees. Moreover, as mentioned
in [Li 20a], without a clear understanding of developers’ log-
ging I&Cs, automated approaches to logging improvement
may not be convincing to developers. In fact, several studies
have already raised the importance of logging intention [Anu
19], [Jia 18] to support log placement. However, a systematic
approach to extracting, defining, and representing multiple
logging I&Cs, especially the real I&Cs from relevant

stakeholders, is still yet to be developed. One good example is
the pervasive DevOps approach in which staff in charge of
operations are encouraged to contribute to the development
of requirements from their perspectives [28]. In the same
spirit, consumers of the information contained in logs by
means of log analysis should also play a part in defining I&Cs
for generating appropriate logs.

With the I&Cs clearly defined, the next question is how to
implement them through log placement. Compared to cur-
rent logging practices in which developers usually consider
log placement during coding [Cinq 09], [Pecc 15], [Shan 14],
we advocate a shift-left strategy for key logging decisions. As
suggested in [Shan 14], logging should be thoroughly
designed first rather than just deferred to the implementation
stage. However, although several approaches have been pro-
posed (cf. Fig. 8) to implement I&Cs in log placement, the
next-step research needs to explore how to effectively reflect
multiple I&Cs in log placement and address I&Cs in multiple
artifacts at different development stages in a timelymanner.

7 THREATS TO VALIDITY

This paper attempts to provide a systematic and comprehen-
sive overview of the state-of-the-art logging practices in SE,
which is based on our review of 56 primary studies. In this
section, we discuss potential threats to the validity of this
study, the approaches by which we strived to mitigate them,
and other aspects that need to be taken into consideration in
order to generalize the results of this study. The threats to
validity are organized into four categories (i.e., the Construct,
Conclusion, Internal and External) as proposed in [29].

7.1 Construct Validity

Construct validity is concerned with the issues that to what
extent the object of study truly represents theory behind the
study [29]. In this study, the main treats related to this valid-
ity are the suitability of research questions and the schema
for data extraction.

The suitability of research questions determines whether
the research objective can be addressed. To minimize the
threat derived from this factor, all the research questions
are designed based on the consensus through team discus-
sion. Meanwhile, using an iterative way, some trials have
been conducted for justification towards data extraction,
evidence answering research questions as well as research
questions addressing research objective. To this end, the
threats related to research questions could be minimized.

The rationality of research scope determines whether the
selected studies are able to provide appropriate information
to answer the research questions. We excluded the studies
focusing on log analysis in this systematic mapping study.
However, since useful information may also be extracted
from studies on log analysis to support logging practices (as
elaborated in Section 6.2.1, we acknowledge the importance
of the information needs derived from log analysis), the
research scope in our study may inevitably leave out some
relevant studies. Nevertheless, as we have found that the
work reporting the impact of log analysis on logging practi-
ces is generally scarce and further the setting of the research
scope is based on our previous experience [5] and drawing

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 919

on similar research [Yuan 12b], [He 18], [Kabi 16b], the
threat could be minimized.

The data extraction schema determines the quality of the
evidence we may obtain to answer research questions. To
mitigate this threat, we have applied a standard classifica-
tion [10] and finalized the schema through several optimiza-
tion iterations.

7.2 Conclusion Validity

Conclusion validity is a measure of the reasonable degree to
which a research conclusion could be trusted. For the sake
of reaching reasonable conclusions, we adopted a manual
coding approach described in Section 2.7 to assist data syn-
thesis. Nevertheless, this method inherently carries with
validity threats.

The categorization results guide the whole aggregation
and synthesis process and draw the major conclusions. To
mitigate the threat, each the primary studywas peer reviewed
by at least two researchers and each findingwas derived from
open discussion. Once a disagreement emerges, a consensus
has to be reached before further work. In this way, the threat
derived from categorization can be controlled.

7.3 Internal Validity

Internal validity is the extent to which a study establishes a
trustworthy cause-and-effect relationship between a treat-
ment and an outcome. To make sure that this SMS is repeat-
able, the search string, search engines, inclusion/exclusion
criteria and data extraction schema were cautiously
designed, carefully tuned and explicitly presented. In our
study, the main threats to the internal validity arise from
the limitation of the search string and search engines, as
well as personal bias in applying inclusion/exclusion crite-
ria and performing data extraction.

The limitation of the search string and search engines
may lead to an incomplete set of primary studies. Different
authors may use different terms to refer to a similar concept.
In order to mitigate the risk of incomplete retrieval of the
relevant studies, a formal search process has been designed
and followed, combining manual search, automated search
and snowballing, in an iterative manner. To control threats
due to search engines, we have included digital libraries
that are believed to be suitable depending on the existing
protocols [17]. Therefore, we consider our retrieval to be
nearly complete, and if any primary studies were missed,
that percentage would be negligible.

The personal biasmay lead to subjective decisions occurred
during paper selection and data extraction. In order to control
the impacts, in the paper selection anddata extraction process,
an iterative strategy has been applied in the selection process
inwhich the data extractionwas performed collaboratively by
multiple reviewers with cross-checking. Therefore, the threats
derived frompersonal bias can bemitigated.

7.4 External Validity

External validity is concerned with to what extent the SMS
results can be generalized. One possible threat is related to
the degree to which the primary studies are representative
for the review topic.

Representativeness of the included primary studies is
critical in any SMS study. In order to mitigate this external
threats, the search process presented in Section 2.5 was
defined after several pilot searches and validated with open
discussion with all the researchers in this work. We argue
that the relevant primary studies in our final pool contain
sufficient information to represent the research topic dis-
cussed in this paper.

8 RELATED EMPIRICAL STUDIES

Logging practices have attracted increasing attention
recently. Therefore, some empirical research on logging
practices has been conducted from various perspectives.

For instance, Yuan et al. investigated logging practices
using four pieces of large open source software, quantifying
the pervasiveness and the benefit of logging [Yuan 12b]. They
identified several particular aspects in logging choices where
developers spend most efforts in getting them right, as well
asmany opportunities for tools to improve the logging practi-
ces. A large-scale replication study on similar topics was
reported in [Chen 17b] later to confirm these findings.

In [Rong 18], Rong et al. focused on the quality of logging
practices in 28 popular open source projects on GitHub. The
researchers mined evidence from these projects, which
implied major issues in the logging practices in these 28
projects (e.g., very low and divergent density of log state-
ments, arbitrary location to put log statements), easily lead-
ing to questionable implementation of the logging
purpose—to capture the intended information of system
behaviors. Similarly, the empirical study conducted by
OverOps [4] also indicated these issues in logging practices.
Besides, the researchers also found a large portion of log
statements tended to contain insufficient variables to record
as much information as intended, indicating the low quality
of logging practices in the industry. Chen et al. characterized
six anti-patterns in log statements by carefully studying the
development history of three open source software systems
from different application domains [Chen 17a].

Besides these empirical studies, there are also a handful
of secondary studies attempting to portray the research and
adoption status of logging practices with a primary focus
on current logging practices, common challenges and pro-
posed solutions (cf. Table 11), which are elaborated below.

� As a pilot of this work, we have carried out a review
on logging practices [5] in 2017. However, due to
page limits, we did not discuss evidence and rele-
vant implication in detail.

� Sambasivan et al. carried out a survey on the tracing
infrastructures for distributed systems and distilled
the design space of workflow-centric tracing and
described key design choices [6]. However, this
study focuses on the building of logging infrastruc-
ture, which according to the discussion in Section 2.2
falls outside the scope of this SMS.

� Cândido et al. also conducted an SMS on log-based
software monitoring [7]. However, the topic of
‘logging practice’ is only one out of four research
focuses in this study, as a result, very limited insights
into logging practices are provided by this study.

920 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

� A most recent survey study conducted by Chen et al.
[2] also reviewed software log instrumentation, a
concept similar to logging practices in our work. The
major differences between Chen’s work and ours are
three-fold. First and foremost, the two studies carry
with different research objectives. While Chen’s
work is focused on identifying the challenges and
the proposed solutions used in log instrumentation,
our focus is on unveiling possible problems and
gaps which further shed light on the potential future
research directions by establishing a comprehensive
understanding of the research status of logging prac-
tices. Second, due to different research objectives,
the two studies have also adopted different research
methods. While both work use thematic analysis and
qualitative methods to identify challenges and solu-
tions, we additionally apply a quantitative method
to depict a research landscape of current logging
practices and more importantly a cross-analysis
method to unveil the gaps between challenges and
solutions. The findings (Findings 1–6) with these
methods extend our understanding of the state-of-
the-art research of logging practices. Last but not
least, although the two studies use a similar dataset
(i.e., selected literature) for final synthesis, our work
identified nine additional high quality studies not
included in Chen’s work, most of which have been
published on premier venues in their respective
fields, e.g., [Li 20a], [Anu 19], [Li 20b], [Luo 18],
[Pecc 12], etc. As a result, our work identified several
critical issues/challenges regarding logging practi-
ces not in Chen’s paper. For example, “Redundant
or useless messages”, reported by 9 primary studies,
were not discussed in Chen’s work, as this issue may
inevitably impact developer’s capability to perform
failure diagnosis or performance analysis, which is
listed in Chen’s work as one major challenge
category.

In summary, existing studies have exposed the chal-
lenges/solutions of logging practices from different per-
spectives, which means the challenges with which
developers are confronted when conducting logging practi-
ces are well known in the community. However, a holistic
understanding of the research state of logging practices is
yet to be established, which is the major motive for our
work. It is worth highlighting the major contributions of our
work as compared to the other secondary studies, which
are: (1) we portray a profound research state landscape of
logging practices in terms of issues, research focuses and
solution approaches using 3W1H categorization scheme
through a systematic mapping study; (2) we pinpoint the gaps
between challenges and solutions and suggest potential
remedies and future research directions to close the loop
through cross-analysis.

9 FINAL REMARKS

Logging is an important task of software development and
in recent years research on logging practices has been
steadily increasing. However, not quite aligned with this
trend, adoption of the proposed approaches and solutions
by the software industry remains low. In this paper, we
have presented the results of an SMS on logging practices
from 56 primary studies in order to paint a landscape of the
state-of-the-art of logging practices for a holistic under-
standing of this research area.

The main observations from this study can be summa-
rized as follows:

First, there is some consensus on the major issues in log-
ging practices. However, even the issues that have received
the most attention are still being discussed and explored
repeatedly, implying that the proposed solutions are yet
workable as expected.

Second, based on the distribution of issues, research
topics, and approaches, the 2-W questions are still the focus
of common concern. However, only addressing the 2-W

TABLE 11
Comparison Against Other Reviews Related to Logging Practices

* PC: Peer-reviewed literature count;
OC: Overlapping peer-reviewed literature count with other reviews;
A: Did the study include issues regarding logging practices? B: Did the study include research topics around logging practices? C: Did the study include pro-
posed approaches for logging practices? D: Did the study quantitatively analyze the research focus on issues, research topics, proposed approaches and the rela-
tionships between them? E: Did the study identify gaps in current research on logging practices? [N/A]: Not applicable;
Issues, research topics, proposed approaches and gap areas are addressed directly through research questions in the study;
Issues, research topics, proposed approaches and gap areas are addressed partially through other research questions in the study (i.e., by addressing a different

research question, partial information is provided).
Quantitative analysis is applied to every aspects of issues, research topics, proposed approaches and gap areas.
Quantitative analysis is applied to some aspects of issues, research topics, proposed approaches and gap areas.

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 921

questions without considering other questions may has
clear limitations. Therefore, research to identify and address
the issues relating to the categories of why to log and how well
is the logging should be encouraged in the community.

Last but not least, the many-to-many relationships
between issues, research topics and approaches indicate a
lack of profound understanding of the real issues and how
they should be appropriately tackled.

The value of our SMS is not only limited to showing possi-
ble solutions to the issues/challenges of logging practices,
which are also discussed in several existing secondary studies
to some extent. A more significant contribution of this SMS
lies in that it reveals the current problems and omissions in
the research related to logging practices. If these problems are
not adequately concerned and addressed, the status quo of
research on logging practiceswill likely remain unchanged.

Based on the results of this study, we make the following
recommendations:

� As the starting point of logging practices and the
anchor point of downstream logging practices, log-
ging I&Cs should be given with full attention. The
source (e.g., information needs derived from log
analysis), performance overhead limits (e.g., derived
from regular system requirements) and other contex-
tual factors should be clarified before carrying out
logging practices. For this purpose, research effort is
demanded to explore pragmatic practices, methods
and tools.

� A process perspective and a holistic approach
should be considered to propose more effective solu-
tions to logging practices, which means that the cur-
rent research direction and focus need to be
adjusted. For example, the 2-W questions should not
be investigated and addressed separately and also
without considering other questions. Proposed solu-
tions should not only implement I&Cs but also verify
and validate them by downstream practices. In
short, the practices, methods and tools for planning,
designing, producing, analyzing and consuming
logs should be studied in a systematic manner.

� With DevOps becoming the mainstream method of
software development, operations and mainte-
nance [31], the use of tools to improve the level of
automation becomes an apparent need that has to be
considered, but how to design tools to meet the basic
requirements of the above two points calls for fur-
ther research efforts.

REFERENCES

[1] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” J. Syst. Softw., vol. 123, pp. 176–189, Jan. 2017.

[2] B. Chen and Z. M. J. Jiang, “A survey of software log
instrumentation,” ACM Comput. Surv., vol. 54, no. 4, pp. 1–34, Jul.
2021.

[3] B. W. Kernighan and R. Pike, The Practice of Programming. Read-
ing, MA, USA: Addison-Wesley Professional, 1999.

[4] OverOps, “The complete guide to Java logging in production,” 2017.
[Online]. Available: https://land.overops.com/java-logging-in-
production-ebook/

[5] G. Rong, Q. Zhang, X. Liu, and S. Gu, “A systematic review of log-
ging practice in software engineering,” in Proc. 24th Asia-Pacific
Softw. Eng. Conf., 2017, pp. 534–539.

[6] R. R. Sambasivan, I. Shafer, J. Mace, B. H. Sigelman, R. Fonseca,
and G. R. Ganger, “Principled workflow-centric tracing of distrib-
uted systems,” in Proc. 7th ACM Symp. Cloud Comput., 2016,
pp. 401–414.

[7] J. Cândido, M. Aniche, and A. van Deursen, “Log-based software
monitoring: A systematic mapping study,” PeerJ Comput. Sci.,
vol. 7, 2021, Art. no. e489.

[8] V. R. Basili, “Goal question metric paradigm,” Encyclopedia Softw.
Eng., vol. 1, pp. 528–532, 1994.

[9] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for con-
ducting systematic mapping studies in software engineering: An
update,” Inf. Softw. Technol., vol. 64, pp. 1–18, Aug. 2015.

[10] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in Proc. 12th Int. Conf.
Eval. Assessment Softw. Eng., 2008, pp. 1–10.

[11] B. Kitchenham, “What’s up with software metrics? - A preliminary
mapping study,” J. Syst. Softw., vol. 83, no. 1, pp. 37–51, Jan. 2010.

[12] B. Kitchenham et al., “Systematic literature reviews in software
engineering - A tertiary study,” Inf. Softw. Technol., vol. 52, no. 8,
pp. 792–805, Aug. 2010.

[13] A. A. Yavuz and P. Ning, “BAF: An efficient publicly verifiable
secure audit logging scheme for distributed systems,” in Proc.
Annu. Comput. Secur. Appl. Conf., 2009, pp. 219–228.

[14] D. Kim, E. Hwang, and S. Rho, “Multi-camera-based security log
management scheme for smart surveillance,” Secur. Commun.
Netw., vol. 7, no. 10, pp. 1517–1527, 2014.

[15] B. A. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Keele
Univ., Keele, U.K. and Durham Univ., Durham, U.K. Joint Report,
Tech. Rep. EBSE 2007–001, pp. 1–57, Jul. 2007.

[16] B. A. Kitchenham, “Procedures for performing systematic reviews,”
Keele Univ., Keele, U.K., Tech. Rep. TR/SE-0401, vol. 33, pp. 1–26,
Aug. 2004.

[17] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies
in software engineering,” Inf. Softw. Technol., vol. 53, no. 6,
pp. 625–637, Jun. 2011.

[18] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Res. Psychol., vol. 3, no. 2, pp. 77–101, 2006.

[19] J. Salda~na, The Coding Manual for Qualitative Researchers. Newbury
Park, CA, USA: Sage, 2021.

[20] Alibaba, “Alibaba Java coding guidelines,” 2017. [Online]. Avail-
able: https://alibaba.github.io/Alibaba-Java-Coding-Guidelines/

[21] J. Skowronski, “30 best practices for logging at scale,” Jan. 2017.
[Online]. Available: https://www.loggly.com/blog/30-best-
practices-logging-scale/

[22] L. Tal, “9 logging best practices based on hands-on experience,”
Jan. 2017. [Online]. Available: https://www.loomsystems.com/
blog/single-post/2017/01/26/9-logging-best-practices-based-on-
hands-on-experience

[23] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang,
“Chukwa: A large-scale monitoring system,” in Proc. Int. Conf.
Control Appl., 2008, pp. 1–5.

[24] G. F. Creţu-Ciocârlie, M. Budiu, and M. Goldszmidt, “Hunting for
problems with Artemis,” in Proc. 1st USENIX Conf. Anal. Syst.
Logs, 2008, pp. 2–2.

[25] H. Mi, H. Wang, Y. Zhou, M. R.-T. Lyu, and H. Cai, “Toward fine-
grained, unsupervised, scalable performance diagnosis for pro-
duction cloud computing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 6, pp. 1245–1255, Jun. 2013.

[26] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and P. Hawkins,
“An overview of the Saturn project,” in Proc. 7th ACM SIGPLAN-
SIGSOFTWorkshop Prog. Anal. Softw. Tools Eng., 2007, pp. 43–48.

[27] W. W. Royce, “Managing the development of large software sys-
tems: Concepts and techniques,” in Proc. 9th Int. Conf. Softw. Eng.,
1987, pp. 328–338.

[28] C. A. Cois, J. Yankel, and A. Connell, “Modern DevOps: Optimiz-
ing software development through effective system interactions,”
in Proc. IEEE Int. Prof. Commun. Conf., 2014, pp. 1–7.

[29] C. Wohlin, P. Runeson, M. H€ost, M. C. Ohlsson, B. Regnell, and
A. Wessl�en, Experimentation in Software Engineering. Berlin,
Germany: Springer, Jun. 2012.

[30] J. Cândido, M. Aniche, and A. van Deursen, “Contemporary soft-
ware monitoring: A systematic literature review,” 2019, arXiv:
1912.05878.

[31] Puppet, “The 2021 state of DevOps report,” 2021. [Online]. Available:
https://puppet.com/resources/report/2021-state-of-devops-
report/

922 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 2, FEBRUARY 2023

https://land.overops.com/java-logging-in-production-ebook/
https://land.overops.com/java-logging-in-production-ebook/
https://alibaba.github.io/Alibaba-Java-Coding-Guidelines/
https://www.loggly.com/blog/30-best-practices-logging-scale/
https://www.loggly.com/blog/30-best-practices-logging-scale/
https://www.loomsystems.com/blog/single-post/2017/01/26/9-logging-best-practices-based-on-hands-on-experience
https://www.loomsystems.com/blog/single-post/2017/01/26/9-logging-best-practices-based-on-hands-on-experience
https://www.loomsystems.com/blog/single-post/2017/01/26/9-logging-best-practices-based-on-hands-on-experience
https://puppet.com/resources/report/2021-state-of-devops-report/
https://puppet.com/resources/report/2021-state-of-devops-report/

[32] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan,
“Detecting large-scale system problems by mining console logs,”
in Proc. ACM SIGOPS 22nd Symp. Oper. Syst. Princ., 2009, pp. 117–
132.

[33] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“SherLog: Error diagnosis by connecting clues from run-time
logs,” in Proc. 15th ed. ASPLOS Architect. Support Program. Lang.
Oper. Syst., 2010, pp. 143–154.

[34] W. Shang, “Bridging the divide between software developers and
operators using logs,” in Proc. 34th Int. Conf. Softw. Eng., 2012,
pp. 1583–1586.

[35] T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The bones of the
system: A case study of logging and telemetry at Microsoft,”
in Proc. 38th Int. Conf. Softw. Eng. Companion, 2016, pp. 92–101.

[36] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang,
“Understanding log lines using development knowledge,”
in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2014, pp. 21–30.

[37] M. I. H. Sukmana, K. A. Torkura, F. Cheng, C. Meinel, and
H. Graupner, “Unified logging system for monitoring multiple
cloud storage providers in cloud storage broker,” in Proc. Int.
Conf. Inf. Netw., 2018, pp. 44–49.

[38] A. Pi, W. Chen, W. Zeller, and X. Zhou, “It can understand the
logs, literally,” in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops, 2019, pp. 446–451.

[39] D. Schipper, M. Aniche, and A. van Deursen, “Tracing back log
data to its log statement: From research to practice,” in Proc. IEEE/
ACM 16th Int. Conf. Mining Softw. Repositories, 2019, pp. 545–549.

[40] M. Bartsch and R. Harrison, “An exploratory study of the effect of
aspect-oriented programming on maintainability,” Softw. Qual.
J., vol. 16, no. 1, pp. 23–44, May 2007.

[41] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen,
“ReVirt: Enabling intrusion analysis through virtual-machine log-
ging and replay,” ACM SIGOPS Oper. Syst. Rev., vol. 36, no. SI,
pp. 211–224, 2002.

[42] C. N. Chong, Z. Peng, and P. H. Hartel, “Secure audit logging
with tamper-resistant hardware,” in Proc. IFIP Int. Inf. Secur. Conf.,
2003, pp. 73–84.

[43] P. Massonet, S. Naqvi, C. Ponsard, J. Latanicki, B. Rochwerger,
and M. Villari, “A monitoring and audit logging architecture for
data location compliance in federated cloud infrastructures,” in
Proc. IEEE Int. Symp. Parallel Distrib. Process. Workshops Phd Forum,
2011, pp. 1510–1517.

[44] J. King, J. Stallings, M. Riaz, and L. Williams, “To log, or not to log:
Using heuristics to identify mandatory log events–A controlled
experiment,” Empir. Softw. Eng., vol. 22, no. 5, pp. 2684–2717, Oct.
2017.

[45] G. S. Hartman and L. Bass, “Logging events crossing architectural
boundaries,” in Proc. IFIP Conf. Hum.-Comput. Interact., 2005,
pp. 823–834.

[46] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy, “The unified log-
ging infrastructure for data analytics at Twitter,” Proc. VLDB
Endowment, vol. 5, no. 12, pp. 1771–1780, Aug. 2012.

[47] A. Rabkin, W. Xu, A. Wildani, A. Fox, D. Patterson, and R. Katz,
“A graphical representation for identifier structure in logs,” in
Proc. Workshop Manag. Syst. Via Log Anal. Mach. Learn. Techn.,
2010, pp. 3–3.

[48] W. Shang, M. Nagappan, and A. E. Hassan, “Studying the rela-
tionship between logging characteristics and the code quality of
platform software,” Empir. Softw. Eng., vol. 20, no. 1, pp. 1–27,
Feb. 2015.

[49] A. Kadav, M. J. Renzelmann, and M. M. Swift, “Tolerating hard-
ware device failures in software,” in Proc. ACM SIGOPS 22nd
Symp. Oper. Syst. Princ., 2009, pp. 59–72.

[50] D. Subhraveti and J. Nieh, “Record and transplay: Partial check-
pointing for replay debugging across heterogeneous systems,” in
Proc. ACM SIGMETRICS Joint Int. Conf. Meas. Model. Comput.
Syst., 2011, pp. 109–120.

[51] K. Veeraraghavan et al., “DoublePlay: Parallelizing sequential log-
ging and replay,” ACM Trans. Comput. Syst., vol. 30, no. 1, 2012,
Art. no. 3.

[52] M. Cinque et al., “Improving FFDA of web servers through a rule-
based logging approach,” in Proc. 1st Int. Workshop Field Failure
Data Anal., 2008, pp. 1–5.

[53] T. Jia, Y. Li, C. Zhang, W. Xia, J. Jiang, and Y. Liu, “Machine
deserves better logging: A log enhancement approach for auto-
matic fault diagnosis,” in Proc. IEEE Int. Symp. Softw. Rel. Eng.
Workshops, 2018, pp. 106–111.

[54] C. Zhang et al., “AutoLog: Facing log redundancy and insufficiency,”
inProc. 2ndAsia-PacificWorkshop Syst., 2011, pp. 1–5.

[55] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“The game of twenty questions: Do you know where to log?”, in
Proc. 16th Workshop Hot Top. Oper. Syst., 2017, pp. 125–131.

[56] F. Baccanico, G. Carrozza, M. Cinque, D. Cotroneo, A. Pecchia,
and A. Savignano, “Event logging in an industrial development
process: Practices and reengineering challenges,” in Proc. IEEE
Int. Symp. Softw. Rel. Eng. Workshops, 2014, pp. 10–13.

[57] B. Chen, “Improving the software logging practices in DevOps,”
in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng., 2019, pp. 194–197.

Shenghui Gu received the BSc degree from Nanj-
ing University, Nanjing, China. He is currently work-
ing toward the PhD degree in the Software Institute,
Nanjing University, Nanjing, China. His research
interests include software engineering, particularly in
AIOps, software log analytics, DevOps, as well as
empirical and evidence-based software engineering.

Guoping Rong received the BSc degree in com-
puter science and technology, the MSc degree in
software theory, and the PhD degree in applied
software engineering, all from Nanjing University,
Nanjing, China. He is currently a faculty member
with the Software Institute, Nanjing University
and the director of the joint laboratory of Nanjing
University and Transwarp on data technology. His
research area includes software process,
DevOps, AIOps, and empirical methodology, etc.

He Zhang is currently a full professor of software
engineering and the director of DevOps+
Research Laboratory, Nanjing University, China,
also a principal scientist with CSIRO, Australia. He
undertakes research in software engineering, in
particular software & systems process, software
architecture, DevOps, software security, block-
chain-oriented software engineering, empirical,
and evidence-based software engineering. He
has published more than 160 peer-reviewed
papers in high quality international conferences

and journals, and won 11 Best/Distinguished Paper awards from several
prestigious international conferences and journals in software engineer-
ing community.

Haifeng Shen is currently an associate professor,
head of Discipline of Information Technology, and
director of the HilstLab, Faculty of Law and Busi-
ness, Australian Catholic University. His research
expertise is interdisciplinary and revolves around
human-centred artificial intelligence and software
technologies, which is uniquely positioned at the
intersection of human computer interaction, soft-
ware engineering, and artificial intelligence with a
unique focus on ‘interaction’ and ‘integration’:
human-AI interaction, human-software interaction,
and integration of AI and software.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

GU ETAL.: LOGGING PRACTICES IN SOFTWARE ENGINEERING: A SYSTEMATIC MAPPING STUDY 923

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

