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Abstract. In magnetic resonance imaging (MRI), the image contrast is
the result of the subtle interaction between the physicochemical prop-
erties of the imaged living tissue and the parameters used for image
acquisition. By varying parameters such as the echo time (TE) and the
inversion time (TI), it is possible to collect images that capture different
expressions of this sophisticated interaction. Sensitization to diffusion -
summarized by the b-value - constitutes yet another explorable “dimen-
sion” to modify the image contrast which reflects the degree of dispersion
of water in various directions within the tissue microstructure. The full
exploration of this multidimensional acquisition parameter space offers
the promise of a more comprehensive description of the living tissue but
at the expense of lengthy MRI acquisitions, often unfeasible in clinical
practice. The harnessing of multidimensional information passes through
the use of intelligent sampling strategies for reducing the amount of im-
ages to acquire, and the design of methods for exploiting the redundancy
in such information. This chapter reports the results of the MUDI chal-
lenge, comparing different strategies for predicting the acquired densely
sampled multidimensional data from sub-sampled versions of it.

Keywords: MUDI · diffusion · relaxation · Quantitative Imaging

1 The multi-contrast nature of MRI images

The abundance of acquisition parameters available in magnetic resonance imag-
ing (MRI), and the focus on the b-value (b) and gradient directions (dir) when
performing a typical diffusion acquisition – for example a pulsed gradient spin-
echo experiment [1] – may lead one to consider parameters such as the echo
time (TE) and the inversion time (TI) merely as indispensable yet irrelevant
for the outcome of the acquisition. On the contrary, the choice of TE and TI is
delicate as it attains to what component of the living tissue’s physicochemical
environment one would like to be the most dominant in the measured signal.
Indeed, when the complexity of the tissue is summarized at the scale of an MRI
voxel, the contributions from the different physicochemical environments add
up in a distribution of longitudinal and transverse relaxation times T1 and T2.
Indicating with φ(TI, TE|T1, T2) the functional form of the contribution to the
overall measured signal intensity, S(TI, TE), then

S(TI, TE) ∝
∫ ∞
0

∫ ∞
0

P (T1, T2)φ(TI, TE|T1, T2)dT1 dT2 (1)

where P (T1, T2) is the joint distribution of the T1 and T2 expressed within the
voxel. From the equation it appears clear that the nature of the functional form
φ determines the contribution of a specific (T1, T2) population in the overall mea-
sured signal S(TI, TE). For instance, focusing only on the dependency between
TE and T2 for the sake of simplification, in first approximation

φ(TI, TE|T1, T2) ∝ exp(−TE/T2) (2)



MUDI Challenge 3

which indicates that for a specific echo time TE a population having higher T2
will have more contribution to the overall signal compared to an equivalently
abundant population having a lower T2 value being effectively less represented.
This relaxation-weighted relative contribution is at the origin of an observabil-
ity challenge in MRI: for instance, in order to acquire a signal that contains
the contribution of water trapped within myelin sheaths in the nervous system,
characterized by a short T2 [2], it would be necessary to use a short echo time,
according to eq. 2, which can pose technical challenges. Beyond observability,
which attains to the technical issue of collecting data using the required values
of the acquisition parameters for observing a particular population, the need for
representing all the observable populations leads to a sampling problem. A vi-
able strategy consists in collecting data with many different combinations of
acquisition parameters, where a large coverage and dense sampling of the multi-
dimensional parameter space is desirable. Following the example above, a naive
implementation of such strategy would lead to a combinatorial explosion of all
the possible feasible pairs (TI, TE) according to a convenient discretization of
the corresponding bi-dimensional parameter space. However, as the number of
dimensions increases a similar strategy is no longer a reasonable option for prac-
tical purposes related to the lengthening of the time required for acquiring the
MRI data, and to the increasing capacity required for its storage. Additional
dimensions come, for instance, from the use of diffusion sensitization in the ac-
quisition – summarized here by the b-value and the gradient directions [1, 7] –
leading to a parameter space defined by the space of (TI, TE, b, dir).

The design of an efficient sampling/sub-sampling strategy entails the adop-
tion of two complementary approaches. The first one consists in developing ac-
celerated MRI acquisition methods to reduce the overall acquisition time for a
fixed sampling. These methods exploit acceleration opportunities on the engi-
neering and physics side. They include a plurality of approaches like k-space
sub-sampling, multi-band/multi-slice acquisition, parallel imaging, and others.
An example of particular relevance for the parameter space (TI, TE, b, dir) are
techniques combining the different contrasts in the same acquisition - thus ef-
fectively reducing the waiting time inserted into the sequence to achieve spe-
cific contrasts. One method among these is ZEBRA [3], which leverages ideas
such as slice-shuffling [4] and multi-echo read-outs and adds diffusion-preparation
changes on a slice level in order to efficiently acquire information related to the
interplay of the diffusion process and the T1 and T ∗2 relaxation. Here, the usage of
multiple gradient-echos leads to T ∗2 weighting (the observed transverse relaxation
time affected by the presence of magnetic field inhomogeneities). The second ap-
proach consists of designing a sampling strategy that allows the shortening of
the acquisition time by reducing the required number of samples. Typically, a
sampling strategy is associated with a corresponding reconstruction method that
is capable of exploiting the information from the acquired samples. As different
sampling and reconstruction designs have different performance it is important
to rank them. This chapter reports the description of the MUltidimensional DIf-
fusion (MUDI) challenge, organized within the MICCAI 2019 conference, with
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Fig. 1. The organization of the data. The lines report the variation of the parameters
(with arbitrary scale units) as a function of the volume number.

the purpose of evaluating the sampling and reconstruction designs on acquired
in vivo data.

2 The challenge

In order to evaluate the performance of a particular design, comprising of sam-
pling and reconstruction, it would be necessary to know a priori the underlying
information of interest. This is however impossible in the case of acquired ex-
perimental data. This would indeed require knowing the biophysical properties
of interest – the T1, T2, and the diffusion properties of each population – which
would only be known through the use of the very reconstruction techniques to
be ranked. Therefore, a viable paradigm for quantifying the performance of the
various methods consists in assessing the power that each tested design has in
predicting unseen data samples for which an actual ground truth is available.
Indeed, if a design is capable of predicting missing signal samples from a subset
of acquired ones then it fulfills a necessary condition for performing an efficient
sampling and reconstruction. Following this criterion, designs can be ranked
based on the capability of retrieving missing samples from a specified number of
available ones.

2.1 Data

Five datasets were acquired from healthy human volunteers (3 f, 2 m, age=19-46
years), after informed consent was obtained (REC 12/LO/1247), on a clinical
3T Philips Achieva scanner (Best, Netherlands) with a 32-channel adult head
coil. Each dataset includes 1344 volumes (Fig. 1) distributed over four b-shells,
b ∈ {500, 1000, 2000, 3000}s/mm2, with 106 uniformly spread directions [5], three
echo times TE ∈ {80, 105, 130}ms , and 28 inversion times TI ∈ [20, 7322]ms.
Single-shot PGSE EPI with the modifications proposed in ZEBRA [3] sequence
was employed. Other parameters include TR=7.5s, resolution=2.5mm isotropic,
FOV=220x230x140mm, SENSE=1.9, halfscan=0.7, multiband factor 2, total ac-
quisition time 52min (including preparation time).
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Data was reconstructed and denoised in the complex domain [6]. Ad hoc
affine volume registration was performed: collinear magnitude diffusion-weighted
images (DWIs) acquired with different pairs (TI,TE) were first co-registered to-
gether using the highest TI and lowest TE volume as reference; the 106 reference
volumes were then registered together based on a mutual information metric us-
ing Dipy [8], and the registrations were then propagated across the corresponding
collinear DWIs. Data was collected with reversed phase-encode blips to allow for
susceptibility-induced distortion correction using FSL [9, 10].

2.2 Tasks

Three fully-sampled datasets (1344 samples) were given to participants as train-
ing data, such that they could use them to propose a sub-sampling strategy
based on 500 samples/volumes. In a second phase, participants were asked to
provide the indexes of the desired 500 volumes, where each volume had a dif-
ferent set (TI,TE,b,dir). Then, only those selected 500 volumes for two unseen
test subjects were provided to each participant. Finally, participants were asked
to submit their prediction of the remaining 1344 − 500 volumes. Additionally,
participants were asked to select X = 250, 100, and 50 volumes as subsets of the
previously chosen 500 volumes subset, and again predict the 1344−X remaining
samples.

2.3 Evaluation

The capability of retrieving missing samples from each specified subset of avail-
able samples – of the test subjects – was ranked using the mean squared error
(MSE) between the predicted volumes and the corresponding acquired ones that
were unknown to the participant. A comparative analysis of the MSE on the
whole brain (WB), white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF) masks was also performed in order to characterize the behavior of
the various designs. Tissue segmentation was performed using SPM12 [11] on
the T1-weighted image. The output included three probabilistic segmentation
maps – WM, GM, and CSF – each subsequently down-sampled to match the
resolution of the MUDI data. Only voxels with a probability over 0.9 were in-
cluded. Although a ranking for each tissue type could be performed, the overall
ranking accounts the MSE results over the whole brain.

3 Proposed methods

This report evaluates five submissions from different groups. Fig. 2 reports charts
illustrating the characteristics of the submitted sub-sampling strategies with
respect to those of the fully-sampled datasets. A description follows.

1. S1. The best subset of 500 samples was identified using an autoencoder
neural network having a ‘concrete selector layer’ as first layer [12, 13]. A
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Fig. 2. The sub-sampling strategies adopted in the five different submissions for the
different number of samples used to make predictions. Each radar chart (except the last
one on the right) reports four polygons each corresponding to the 500 (polygon with
largest area), 250, 100, and 50 (polygon with smallest area) samples cases. Polygons
are overlapped using transparency, therefore the most opaque region represents the
intersection between the four cases. The charts report the mean TI, b, and TE, and
the number of different directions ”n dir”, and of TIs ”n TI” used in the sub-sampling.
The dashed, black line pentagon ”gt” (ground truth) reports the values of the fully-
sampled dataset.

temperature associated to such layer was minimized during training [14]
for 800 epochs; a linear decoder was employed to reconstruct the features
(samples) from the selected ones; the procedure was used recursively for the
other tasks i.e. selecting 250, 100, and 50 samples from the subset of 500
while every time predicting all 1344 features. After the selection process,
five networks were trained to predict the full set of 1344 features based on
leave-one-out cross-validation over the five training subjects. Each network
had two hidden layers of 800 and 1000 nodes respectively, and Leaky ReLu
as activation function, using a MSE loss. The average prediction from these
networks was used for the test subjects.

2. S2. This is a multilayer, feedforward, fully-connected deep neural network
that analyzes MRI data on a voxel-by-voxel basis. Two separate and se-
quential sub-networks, a selector and a predictor, work together to find the
optimal subset of 500 samples and predict the remaining ones; as for S1,
the 250, 100, and 50 samples tasks are managed recursively and samples ex-
tracted from the previously selected 500-measurement set. During training
[14], the loss function was the MSE between the predicted and ground truth
signals. 20% of the training data’s voxels were used for validation, with the
remaining 80% used for the actual learning via backpropagation.

3. S3. The submission is based on a representation of the diffusion and relax-
ation signal. For the relaxation part a single compartment was considered,
i.e. a single pair (T1, T2). Diffusion was represented through an analytical
distribution of diffusivities leading to the inclusion of a Kurtosis term [15].
T1, T2, proton density, inversion efficiency, diffusivity, and Kurtosis were esti-
mated with a non-linear method. The prediction was based on extrapolating
the relevant signal from the estimated parameters, the signal along different
gradient directions being predicted with interpolation. Samples were selected
by maximizing the number of included TIs while eventually penalizing the
number of directions considered.
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4. S4. This submission is based on a signal representation similarly to S3. In
this case, however, the diffusion part has been represented using DTI [7].
In this case, the inversion efficiency was set to 2. The samples selection was
based on the results of S2.

5. S5. This is a signal representation approach based on modeling the mo-
ments of the joint relaxation and diffusion probability distribution [16]. The
500 samples were selected to include 20 volumes with b = 0 and different
values of TI and TE, plus 480 volumes along 30 gradient directions with
b ∈ {1000, 3000}s/mm2. The directional signal for a given set (TI,TE,b)
was represented using the spherical ridgelet functions [17]. No submissions
to the 250, 100, and 50 samples cases were provided.

4 Preliminary results

Fig. 3 reports the MSE maps obtained by calculating the MSE values voxel-by-
voxel for the four prediction cases and for all the submissions. The contrast of
the images is therefore informative of the local performance of each proposed
design, where a bright color indicates a larger error. It is therefore possible from
these images to deduce that the submissions have different regional performance
trends. Submissions 2 and 3, for instance, visually perform better in GM than in
WM, whereas the opposite is true for submission 4. Submission 5 instead, reveals
a substantially uniform performance across these two tissue types. A structured
MSE map is visible also for submission 1 although less noticeable.

The differences across the different participant groups are attributed to both
the proposed sub-sampling strategy and the reconstruction method. Regarding
to the sub-sampling, all groups favored exploiting the redundancy in the diffusion
gradient directions as illustrated in Fig. 2. Indeed, in the progressive reduction
of the available samples illustrated by the reduced area of the radar charts (from
more to less transparent due to the overlap), the “n dir” entry corresponds to
that displaying the largest decrease compared to the original sampling (dashed
black line). In submissions 2 to 4 the signal is sub-sampled such that the mean
TI in the dataset is kept substantially unaltered compared to the original sam-
pling (this is marginally true for submission 1). However, submissions 1, 2, and 4
reduced of about one third the total number of unique TIs in the sub-sampling -
perhaps exploiting the redundancy of such a parameter space - whereas submis-
sion 3 included almost all available TIs. To compensate for this, in submission
3 the mean b-value was much lower and slightly fewer gradient directions were
selected. All these submissions kept the mean TE unaltered compared to the
original sampling. Submission 5, on the other hand, reduced the mean TE in
the sampling as well as the number of directions. This was likely a requirement
due to the fitting procedure and signal representation they employed.

MSE values increased with the reduced number of samples used for the pre-
diction, with submissions 1, 2, and 3 having overall the best three rankings. This
is illustrated in the images of Fig. 5 and better quantified in summary results
reported in the bar plots of Fig. 4. These results are calculated for the two test
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Fig. 3. Voxel-wise MSE values for testsbj0002.
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Fig. 4. Mean MSE per region of interest: white matter (WM), gray matter (GM),
cerebrospinal fluid (CSF), and for the whole brain (WB). Rows report results for the
500, 250, 100, and 50 samples cases.
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Fig. 5. Progression of the MSE as the number of samples available for prediction
decreases. Lines report the trend of the average MSE in the corresponding region
(WM, GM, CSF, WB). Shadowed areas are proportional to the standard deviation.

subjects and for the various regions of interest. From these, it is possible to ob-
serve that submissions 3 and 4 suffered more the extreme reduction of available
samples from 250 to 100 compared to submissions 1 and 2 (submission 5 was
only applied to the 500 samples case). Indeed, the submissions based on machine
learning report a superior stability and an overall lower MSE in all the regions
and sub-sampling configurations. All methods revealed a performance loss, with
different degrees, in CSF and cerebellar regions. A summary of the results is
reported in Table 1.

5 Discussion

Results indicate that submission 1, based on machine learning, shows the highest
prediction accuracy and stability among those submitted, followed by the other
machine learning method submission 2. The challenge was deliberately designed
in order for participants to be free in the choice of the samples such that this
can best couple in synergy with the proposed reconstruction method. Because of
this, however, it is impossible to separate the influence of the sampling strategy
from the reconstruction method used. Nevertheless, it is possible that the pro-
posed modeling-based reconstruction methods, which are primarily designed to
enable more explicit descriptions of the physical phenomenon rather than signal
reconstruction, might be affected by the difficulty of balancing model complexity
and prediction performance. For instance, assuming one relaxation compartment
(submissions 3 and 4) can oversimplify the fit while including more variability
(submission 5) can destabilize it. Submissions 1 and 2, on the other hand, do not
aim at an explicit representation of the physical parameters and for this reason
they can rely on more flexible mathematical relationships to predict the signal.
These reasons might contribute to an advantage of machine learning methods
for tasks such as signal prediction. Moreover, a similar method can learn highly
non-linear relationship between the reconstructions obtained from the different
sub-sampling tasks thus obtaining a higher stability as the number of available
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Table 1. Mean, median, and 85th percentile of the MSE for each submission. For each
sub-sampling case (500, 250, 100, and 50) the first raw corresponds to testsbj0001 and
the second to testsbj0002.

S1 S2 S3 S4 S5
WM 500 0.94, 0.56, 1.26 1.79, 1.45, 2.48 4.10, 2.98, 6.22 4.23, 1.67,3 .85 5.74, 3.54, 7.38

0.81, 0.53, 1.14 1.52, 1.28, 2.02 3.52, 2.83, 5.24 2.27, 1.5, 3.06 4.23, 3.28, 6.12
250 1.12, 0.65, 1.46 3.15, 2.52, 4.72 4.2, 3.05, 6.36 4.46, 2.13, 5.24 -

0.91, 0.61, 1.25 2.59, 2.20, 3.74 3.58, 2.90, 5.33 2.92, 1.92, 4.32 -
100 1.15, 0.71, 1.53 3.44, 2.76, 5.15 4.56, 3.26, 6.88 6.32, 2.47, 5.93 -

1.01, 0.68, 1.40 2.83, 2.39, 4.16 3.83, 3.09, 5.71 3.75, 2.23, 4.87 -
50 1.3, 0.81, 1.74 2.81, 2.33, 4.04 4.55, 3.3, 6.88 6.16, 2.67, 6.41 -

1.12, 0.78, 1.52 2.30, 1.98, 3.08 4.05, 3.3, 5.99 3.48, 2.35, 4.94 -
GM 500 1.22, 0.79, 1.96 1.48, 1.21, 2.49 2.99, 2.38, 4.92 6.86, 2.49, 9.69 6.8, 4.35, 10.44

1.02, 0.64, 1.69 1.26, 0.97, 2.19 2.57, 2.09, 4.42 3.91, 1.91, 5.88 5.13, 3.78, 8.01
250 1.41, 0.92, 2.28 2.26, 1.83, 3.91 3.14, 2.48, 5.12 5.87, 2.91, 10.71 -

1.15, 0.74, 1.90 1.86, 1.50, 3.20 2.66, 2.16, 4.55 3.83, 2.18, 6.61 -
100 1.43, 0.97, 2.29 2.29, 1.83, 3.95 3.46, 2.63, 5.55 8.08, 3.14, 12.96 -

1.22, 0.80, 2.03 1.89, 1.49, 3.36 2.86, 2.28, 4.85 5.34, 2.37, 8.06 -
50 1.58, 1.07, 2.54 2.44, 2.05, 4.07 3.38, 2.67, 5.40 7.23, 3.62, 12.69 -

1.32, 0.87, 2.20 2.08, 1.74, 3.66 3.07, 2.5, 5.10 4.61, 2.63, 7.8 -
CSF 500 2.02, 1.17, 2.98 1.66, 1.28, 2.59 3.04, 2.38, 5.36 19.57, 7.93, 22.91 14.95, 8.17, 24.07

1.31, 0.64, 1.88 1.00, 0.68, 1.70 1.78, 1.23, 3.31 8.26, 2.97, 10.26 6.82, 3.78, 10.81
250 2.48, 1.46, 3.6 2.38, 1.88, 3.75 3.23, 2.52, 5.75 12.72, 8.4, 21.56 -

1.52, 0.80, 2.17 1.48, 1.04, 2.62 1.86, 1.28, 3.46 6.13, 3.19, 10.93 -
100 2.33, 1.42, 3.46 2.24, 1.77, 3.62 3.82, 2.84, 6.93 26.33, 13.57, 55.04 -

1.52, 0.81, 2.21 1.42, 0.90, 2.54 2.22, 1.49, 4.1 11.23, 4.65, 19.94 -
50 2.62, 1.63, 3.88 2.69, 2.05, 4.29 2.99, 2.44, 4.92 18.04, 10.34, 26.41 -

1.58, 0.87, 2.33 1.67, 1.18, 2.9 2.07, 1.56, 3.71 8.34, 4.19, 13.39 -
WB 500 1.15, 0.69, 1.81 1.54, 1.23, 2.40 3.15, 2.37, 5.14 8.07, 2.26, 10.94 7.53, 4.03, 11.06

0.89, 0.55, 1.44 1.24, 0.97, 1.96 2.58, 2.04, 4.37 4.05, 1.72, 5.81 4.88, 3.38, 7.43
250 1.39, 0.82, 2.17 2.44, 1.92, 4.01 3.28, 2.47, 5.36 6.48, 2.75, 11.75 -

1.02, 0.64, 1.64 1.94, 1.54, 3.24 2.66, 2.1, 4.48 3.88, 2.09, 6.62 -
100 1.37, 0.85, 2.15 2.52, 1.94, 4.17 3.66, 2.65, 6.00 10.82, 3.15, 17.76 -

1.09, 0.70, 1.74 2.01, 1.53, 3.49 2.91, 2.26, 4.86 5.86, 2.43, 9.03 -
50 1.55, 0.96, 2.44 2.47, 2.02, 3.92 3.45, 2.61, 5.48 8.73, 3.43, 14.01 -

1.18, 0.78, 1.88 1.98, 1.65, 3.19 3.04, 2.43, 5.00 4.89, 2.57, 7.91 -
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samples for the prediction decreases: the proposed architectures in submissions 1
and 2 were flexible enough to interpret the 250, 100, and 50 samples predictions
recursively. Among the modeling-based reconstruction methods, submissions 3
and 4 perform similarly when considering the whole brain. However, while sub-
mission 3 – modeling the diffusion kurtosis – seems more suitable for gray matter,
submission 4 – based on DTI – outperforms it in white matter. Submission 5,
although being the most comprehensive from a point of view of modeling as it
describes the distribution of the parameters space (TI, TE, b, dir) within each
voxel, has the highest MSE. This, however, could be mainly related to the chosen
sub-sampling strategy which stands apart from the others.

Interestingly, the regional dependency of the performance of each submission
suggests that some brain regions are more difficult to predict than others. While
this might seem obvious, less intuitive is to grasp the reason behind such a re-
gional trend. The cause of such regional performance differences is most likely
connected with the reconstruction method, i.e. to the chosen type of model-
ing, although different brain regions might also require different sampling. With
this regard, however, it is surprising to note similar regional trends also with
submissions 1 and 2 as they do not involve an explicit modeling of the voxel’
signal. Nevertheless, these regional performance differences underline the need
for better descriptions of the MRI signal.

6 Conclusion

The MUDI challenge aimed at prompting the community to propose methods
for exploiting the richness of information of multidimensional MRI acquisitions
while at the same time suggesting sub-sampling strategies to allow for future
clinical use. In this challenge, the sub-sampling and prediction tasks proposed
were decoupled from the physical considerations connected to the MRI acqui-
sition; indeed, every sample was considered to have the same weight in terms
of acquisition time. Nevertheless, the results clearly point towards the direction
to explore for future studies where the goal is to achieve MUDI data analysis
within clinically feasible times. The machine learning methods indeed seem to
provide greater prediction power and stability to sub-sampling compared to the
signal representations. Perhaps the future will see the synergy between these two
worlds where the former methods will provide the data redundancy necessary
for using the latter methods as powerful and physically-informed tools for data
analysis.
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