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Abstract 

This study used variable- and pattern-centered approaches to better capture the impact of 

adolescents’ joint developmental trajectories of subjective task values (STVs) in three domains 

(Finnish, math and science, and social subject) from grades 9 to 11 on science, technology, 

engineering, and mathematics (STEM) aspirations at four years postsecondary school and STEM 

participation at six years postsecondary school (N = 849 Finnish youth; 52.1% female; 99% 

native Finnish). Results showed that while adolescents’ average STVs in different domains 

remained stable, three differential joint STV trajectories emerged across domains. Individual 

changes of STVs in one domain shaped STVs in other domains to form unique relative STV 

hierarchies within subgroups that impacted long-term STEM aspirations and participation. 

Gender differences in STV trajectory profile distributions partially explained the overall 

underrepresentation of women in STEM fields. This study is among the first to incorporate 

multiple domains and explore how STVs fluctuate over time in both homogeneous and 

heterogeneous fashions. These findings underscore the importance of examining heterogeneity in 

motivational trajectories across domains.  

 

Keywords: Expectancy-value theory, task values, gender gap, STEM, career choice 
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Many talented and capable students are opting out of the science, technology, 

engineering, and mathematics (STEM) pipeline and women remain overall underrepresented in 

STEM fields (Miller, Eagly, & Linn, 2015; Stoet & Geary, 2018). These two issues represent an 

international phenomenon that has sparked considerable concern from policy makers and STEM 

professionals. Since elevated academic motivation in math and science during high school has 

been positively linked to persistent learning, better knowledge acquisition, and higher aspirations 

in STEM domains (e.g., Guo, Marsh, Parker, Morin, & Yeung, 2015; Guo, Marsh, Parker, 

Morin, & Dicke, 2017; Guo, Parker, Marsh, & Morin, 2015), researchers have sought to 

understand how achievement motivation during adolescence contributes to a sustained trajectory 

of STEM participation (Wang & Degol, 2013). Although studies have consistently demonstrated 

a uniform decline in students’ academic motivation in math and science throughout adolescence 

(Wigfield, Tonks, & Klauda, 2016), more recent studies have shown that students are likely to 

develop differential trajectories in these areas (e.g., Musu-Gillette, Wigfield, Harrin, & Eccles, 

2015; Wang, Chow, Degol, & Eccles, 2017). For example, some students may experience 

declines in math and science motivation, whereas others experience a stable or increasing 

motivational trajectory during adolescence. These divergent trajectories have been differentially 

associated with academic performance, course selections, and career aspirations (e.g., Wang et 

al., 2017).  

More importantly, the development of motivation in one subject domain seems to 

influence one’s valuing of activities in other academic domains (Wang & Degol, 2016). For 

instance, by evaluating one’s academic strengths and weaknesses across different domains, a 

student can distinguish subjects in which they excel, which likely prompts an in-depth 

exploration of interests related to that academic domain. Simultaneously, this student would 
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lower their interests in subject domains in which they hold a relatively low expectancy for 

success. The student’s joint motivational trajectories across domains would form a relative 

intraindividual (i.e., cross-domain) hierarchy of motivation. Because choices of college major 

and career trajectory occur while adolescents are constructing this hierarchy, individual 

differences in the development of a relative motivation hierarchy are critical to understanding 

why youth select one career path over another.  

Despite the call for examining relative motivation hierarchies across multiple academic 

domains, extant studies have yet to incorporate multiple subject domains, investigate individual 

differences in joint developmental changes, and link these variables to long-term educational and 

career pathways. Moreover, scant attention has been given to the difference between assuming 

heterogeneity based on a single study sample and identifying and recognizing between-subgroup 

heterogeneity, a distinction central to the study of individual and gender differences in career 

development. The use of both variable- and pattern-centered approaches may provide a more 

holistic picture of different motivational trajectories’ impact on STEM career development while 

also helping to identify areas where interventions could be fruitful for increasing STEM 

participation, particularly for women.  

In this study, we use an expectancy-value theoretical framework (EVT, Eccles, 2009) to 

investigate subjective task values (STVs) attached to various subject domains. First, we examine 

the average joint trajectories of STVs in three domains (i.e., Finnish, math/science, and social 

subjects) for all individuals from grades 9 to 11 using a variable-centered approach. Next, we 

shift to a between-subgroup heterogeneous perspective (i.e., pattern-centered approach) in which 

we hope to identify multiple trajectory groups with distinct joint developmental patterns of STVs 

across domains. We then link these trajectory patterns to STEM aspirations at four years 
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postsecondary school and STEM participation at six years postsecondary school and explore 

gendered motivational trajectories and how they contribute to gender differences in STEM fields. 

Finally, we discuss the divergent predictive patterns between variable- and pattern-centered 

approaches. It should be noted that although self-concept (i.e., expectancies) trajectory also play 

an imperative role in differentiating individual’s educational and occupational pathways, adding 

self-concept in multiple domains will be beyond our current statistical approaches and greatly 

increase the complexity of this study. Thus, we only focus on STVs in three domains in the 

present study due to complexity of our current statistical approaches. 

Development of Subjective Task Values based on Expectancy-Value Framework 

Eccles’ EVT (2009), a major theoretical framework for studying achievement motivation, 

has been widely used when investigating both individual and gender differences in education and 

career trajectories (see Wang & Degol, 2013, 2016 for reviews). EVT posits that achievement-

related choices (e.g., career selection) are linked to intellectual competencies and an array of 

psychological and socio-cultural factors. Subjective task values (STVs) are one of the major 

psychological components of EVT. STVs consist of intrinsic value (i.e., the personal enjoyment 

or liking of a task), utility value (i.e., the perceived usefulness of the task as related to fulfilling 

personal goals), attainment value (i.e., the perceived relevance of a task to one’s sense of self, 

identity, and core personal values), and cost (i.e., the perceived negative aspects of making a 

specific choice). In addition, The relative STVs associated with subject domains have been 

found to influence education- and career-related choice behaviors more so than course grades 

(Eccles, 2009). Indeed, the process of career selection is inherently comparative: All options are 

assumed to be associated with costs, as one choice often eliminates other options (Eccles, 2009). 

For example, let us consider a student’s decision to major in physics at college. Student is likely 
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to select this major only if they place higher value on physics than they do on other majors. Thus, 

the student’s relative STVs influence their educational and occupational decision-making . 

Extant research using latent growth modelling (LGM) has indicated that students’ STVs 

decline in each subject domain following elementary school and although specific trends vary 

somewhat across studies, these STVs become relatively stable during late adolescence (e.g., 

Dotterer, McHale, & Crouter, 2009; Fredricks & Eccles, 2002; Gottfried, Marcoulides, Gottfried, 

Oliver, & Guerin, 2007; Petersen & Hyde, 2017; Watt, 2004). Specifically, researchers in the 

U.S. found that on average, adolescents’ STVs for verbal domains (e.g., language and reading) 

remained unchanged and those for math and science slightly declined (Fredricks & Eccles, 2002; 

Gottfried et al., 2007; Jacobs, Lanza, Osgood, Eccles, & Wigfield, 2002; Petersen & Hyde, 

2017). Watt (2004) looked at changes in an Australian sample and found that STVs in English 

and math declined to a very small extent during the high school transition. Furthermore, Dotterer 

et al. (2009) showed that American students’ interest in reading, writing, math, language arts, 

and science declined over time although the decline decelerated during late adolescence. 

There are two major explanations for the average declining STV trajectories across 

domains. Some have attributed these declines primarily to aspects of cognitive development. 

Children in the early elementary years tend to be quite optimistic about their abilities in different 

domains and have unrealistic expectations of how interesting these subjects are (Wigfield et al., 

2016). As their cognitive skills develop and school environments change, academic performance 

and social comparison begin to shape the students’ STVs (Wang et al., 2017). In an achievement-

oriented environment, students are likely to evaluate their abilities through social comparisons. 

In other words, they liken their self-perceived performance in a subject domain to that of their 

peers. Such comparisons undermine a student’s self-perception of ability in that domain, 
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particularly if the student is experiencing academic difficulties (Archambault, Eccles, & Vida, 

2010). To protect their self-esteem and self-worth, students may begin to devalue activities and 

subjects in which they flounder by concluding that those subjects are not interesting or that they 

do not fit their personal goals and identities (Fredricks & Eccles, 2002).  

Others attributed declining motivational trajectories to the mismatch between an 

adolescent’s developmental needs and their school environment (Eccles et al., 1993). Students 

expect to have more autonomy and independence in learning during adolescence; however, 

opportunities to meet adolescents’ needs in a school environment are limited because of the 

isolative structure of many high schools and the demands on teachers to manage large student 

loads, often resulting in the use of controlling classroom strategies and normative grading 

(Eccles et al., 1993). This mismatch contributes to many students’ declining motivation between 

elementary and secondary school.  

Development of Academic STVs During High School Transition Using Pattern-Centered 

Approaches 

While a tremendous body of research has used variable-centered approaches to focus on 

average trends of motivational change, the general decline pattern characterizes most, but not all, 

students (Archambault et al., 2010, Musu-Gillette et al., 2015; Wang et al., 2017). Recently, 

researchers have employed pattern-centered approaches (i.e., growth mixture modelling, GMM) 

to demonstrate that students evidence divergent motivational trajectories, especially during the 

high school years (e.g., Archambault et al., 2010, Musu-Gillette et al., 2015; Wang et al., 2017). 

In a longitudinal study, Archambault et al. (2010) tracked the development of literacy STVs 

across grades 1 through 12. While seven trajectory groups were identified in which children all 

showed motivational decreases with different rates, three groups experienced some recovery 
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during the high school years. Similarly, later inclining trajectory groups were identified in two 

other recent studies focusing on math and science STVs (see Musu-Gillette et al., 2015, Wang et 

al., 2017). In one of these studies, the later inclining trajectory group reported a decrease in 

science STVs across seventh to ninth grade, which was then followed by an increase during high 

school transition (Wang et al., 2017).  

 A developmental perspective may explain why multiple population subgroups with 

distinct trajectories emerge while also offering a theoretical rationale for the importance of 

tracking joint motivational trajectories across domains during the high school transition. From 

developmental science, we know that educational and occupational aspirations began to 

crystallize during high school (Eccles et al., 1993), resulting in students placing higher value on 

subject domains closely related to their chosen academic and/or occupational path. For example, 

a math-related career plan may promote one’s perceived math utility (see Lauermann, Tsai, & 

Eccles, 2017).  

In addition, heterogeneous trajectories, including various increasing STV trajectories in 

different subgroups, may result from changes in cognitive ability and the school environment. 

On the one hand, the educational curriculum becomes more specialized and challenging in high 

school, making it difficult for students to succeed at all subject domains given the increasing 

demands on their time, energy, and effort. Starting in high school, students also have more 

freedom to choose the courses as well as the difficulty level of these courses and such autonomy 

may buffer against students’ declining motivation in a particular domain (Wigfield et al., 2016; 

Wang et al., 2017). On the other hand, course selection depends upon relative (i.e., not absolute) 

STVs across different domains, which is closely related to domain comparisons within individual 

(Wang & Degol, 2016).  
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These within-individual domain comparisons are addressed through dimensional 

comparison theory (DCT). According to DCT, students evaluate their strengths and weaknesses 

by comparing their performances in one subject domain against their performance in other 

subject domains through contrasting and assimilating processes (Möller & Marsh, 2013). 

Contrasting dimensional comparison processes predict that high aptitude in one domain leads to 

lower ability self-concept in other domains, whereas assimilating dimensional comparison 

processes characterized by high aptitude in one domain leads to higher self-concept in other 

domains. Students engage in contrasting or assimilating dimensional comparisons based on their 

beliefs as to whether their abilities in different domains are negatively or positively correlated 

(Möller & Marsh, 2013). One of the critical assumptions of DCT is that perceived subject 

similarity corresponds to the verbal-math continuum of academic domains (Marsh, Byrne, & 

Shavelson, 1988). Assimilation effects occur between subjects close to each other on the 

continuum (e.g., native and foreign language), whereas contrast effects are found to occur 

between subjects far from each other (e.g., language and math) (Guo et al., 2017; Marsh et al., 

2015). 

More recently, DCT has been used to connect dimensional comparison processes to 

broader affective and motivational consequences (Möller et al., 2015). For example, dimensional 

comparison processes were found to promote students’ STVs in domains in which they excel and 

undermine STVs in domains that they perceive as dissimilar (Guo et al., 2017; Schurtz, Pfost, 

Nagengast, & Artelt, 2014). In other words, dimensional comparisons are self-differentiation 

processes that help students develop a relative hierarchy of STVs across domains. These 

dimensional comparison processes become an asset to students as they move through changing 

academic settings and educational demands. In particular, when students start chossing their high 
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school courses, the influence of dimensional comparison processes on students’ STVs becomes 

even more dominant because it helps students to distinguish domains for which they could 

develop interests and preferences. Subsequently, motivation in different domains may act 

differently over time within different groups. 

Why Both Variable- and Pattern-Centered Approaches Are Needed to Study STV 

Trajectories? 

Methodologically, both LCM (i.e., variable-centered approaches) and GMM (i.e., pattern-

centered approaches) assume that change over time is heterogenous within a population: “each 

individual is accorded his or her own personal trajectory” (Bauer, 2007, p. 776); however, these 

approaches have different assumptions as to how this heterogeneity is distributed. LCM assumes 

that the sample is drawn from a single population, in which the average and variance (i.e., 

heterogeneity) of students’ initial level of STVs (intercept) and its relationship with time (slope) 

are estimated. A large variance in intercepts and slopes indicates heterogonous changes across 

the sample. When multiple subject domains are included (in multivariate LCM), relationships 

between intercepts and slopes across subject domains are also estimated. For example, where a 

student starts in one subject might relate to where he/she starts in another subject.  

Although many studies (e.g., Jacobs et al., 2002; Petersen & Hyde, 2017; Gottfried et al., 

2007) have documented the average developmental change in motivation, two major research 

gaps need to be filled. First, relatively few researchers have examined how STV trajectories are 

associated with later educational and career-related choices. Gottfried, Marcoulides, Gottfried, 

and Oliver (2013) presented one of the few studies addressing this line of inquiry by linking the 

average trajectory in math intrinsic motivation to course accomplishment in later high school 

years. They revealed that a high initial level of math intrinsic motivation at age 9, but not the 
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trajectory slope contributed to greater involvement and persistence in advanced math courses. 

Second, most motivational research has only examined one domain at a time (Jacobs et al., 2002; 

Petersen & Hyde, 2017; Watt, 2004). Thus, by using a LCM, we can explore how a 

developmental trajectory in one domain is associated with trajectories in other domains as well 

as how trajectories in different domains interact to shape long-term educational and career 

choices. 

On the other hand, GMM assumes that the sample is drawn from multiple population 

subgroups, characterized by qualitatively distinct patterns of change over time. GMM is an 

exploratory analysis that serve as an extension of the multiple-group growth model where the 

grouping variable is latent or unobserved (Grimm, Ram, & Estabrook, 2017). Thus, the 

interpretation of the parameters in unobserved groups only provides circumstantial evidence of 

unseen groups (Grimm et al., 2017). Indeed, Bauer and Curran (2003) found that a GMM with 

multiple classes was almost universally favored, when longitudinal growth data is non-normal, 

even if the data is from a single population (considered typical of social science data). Other 

issues, such as incomplete sampling of a single population, measurement distortion, or nonlinear 

associations could also manifest as mixture of normal distributions, producing artificial groups in 

GMM (Bauer, 2007; Muthén, 2003). As such, GMM should be used when theory predicts the 

presence of a latent taxonomy consisting of qualitatively distinct groups. 

According to EVT, a relative intraindividual (i.e., within-person, cross-domain) hierarchy 

of STVs matters more than between-person differences in the selection of a career pathway 

because of the numerous options from which to select a college major and career (Eccles, 2009). 

Theoretically, people in a subgroup that prioritizes math/science STVs over other domains are 

more likely to enter STEM fields , yet, little is known about how joint motivational trajectories 
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across domains form a relative hierarchy of STVs during adolescence. For example, is there a 

subgroup that attaches increasing STVs to math while devaluing language to form relative high 

math/science STVs in high school? To fill this gap in existing research, we employ GMM to 

look into joint motivational changes of STVs by incorporating three subject domains: 

math/science, Finnish, and social subjects. In the Finnish educational curriculum, social subjects 

mainly include history and civics, thus representing a more content-based domain as compared to 

math and verbal domains (see below for a detailed description about the educational context in 

Finland). The inclusion of these three domains represents a broad spectrum of the verbal-math 

continuum (Marsh et al., 1988; see Appendix 1 for hypothesized continuum), hence allowing for 

the exploration of how STVs contrast and interact with each other across domains to shape a 

relative hierarchy. 

Gendered Trajectories and Pathways to STEM Careers 

Previous EVT research has demonstrated that males are likely to perceive math and 

science as more important, useful, and enjoyable than females, whereas females are likely to 

have higher STVs for language and social subjects throughout elementary and secondary school 

(e.g., Jacobs et al., 2002; Petersen & Hyde, 2017; Watt, 2004; Wigfield et al., 2016). These 

studies have documented that gender gaps in math STVs appear to be relatively stable or even 

slightly smaller during high school. Importantly, these gender differences have been useful when 

explaining women’s underrepresentation in STEM fields (e.g., Guo, Eccles, Sortheix, & 

Salmela-Aro, 2018; Wang & Degol, 2016). For example, Chow et al. (2012) found that eleventh 

grade males were more likely than females to fall into a group that values math and science more 

than other subject areas, hence partially explaining gender disparities in the desire for STEM 

careers. By capturing gendered joint trajectories of STVs across multiple domains and examining 
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their contributions to gender differences in STEM participation during post-high school 

transition, we hope to achieve a deeper understanding of how motivational-developmental 

processes characterized by different groups of students shape gendered pathways to STEM 

careers.  

The Present Study 

Drawing on EVT (Eccles, 2009), the present study modeled the joint trajectories of 

students’ STVs in different subject domains during high school transition (i.e., grades 9 through 

11) and examined how these trajectories were related to gender, STEM aspirations, and the 

engagement in STEM careers four to six years after post-high school transition. Importantly, this 

study is among the first to explore how STVs in multiple subject domains fluctuate over time, 

thereby enabling us to construct a more nuanced portrait of the developmental course of 

adolescents’ STVs across the middle and high school years. In this study, we pursued four 

objectives. First, we examined the average, joint developmental trajectory of STVs in different 

subject domains (i.e., Finnish, math/science, and social subjects) using multivariate LCM. 

Second, we studied joint trajectories of STVs across domains by exploring whether different 

groups of students followed distinct trajectories of STVs using GMM. Third, we linked these 

trajectory patterns to STEM aspirations and participation, and finally, we explored gendered 

motivational trajectories leading to STEM fields. We organized our hypotheses based on both 

variable- and pattern-centered approaches (see Table 1).  

Methods 

Participants and Procedure 

Participants. The data set was part of the larger Finnish Educational Transition Studies 

(FinEdu), an ongoing longitudinal study tracking a cohort of ninth grade students from all 
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comprehensive schools (upper level, grades 7 to 9) in a city in central Finland since 2004. We 

first examined the developmental trajectories of students’ STVs from ninth grade to eleventh 

grade. At the first assessment (ninth grade), the sample contained 682 students (Mage = 16.0 

years, SD = .65). In each subsequent year, the study not only tracked the students who had 

participated in previous assessment, but it also included students who had enrolled in FinEdu 

classrooms after the initial assessment, resulting in sample size of 734 (tenth grade, Mage = 17.1, 

SD = .68) and 625 (eleventh grade, Mage = 18.1 years, SD = .63). Due to this sampling design, a 

portion of the sample had missing data for at least one of the measurement waves. Across the 

three waves, 54% participated in all three measurement waves, and 31% and 15% took part in 

the two or one of the assessments, respectively. In total, 849 participants were included in our 

analysis of motivational trajectories (from ninth grade to eleventh grade). We then linked the 

individuals’ motivational trajectories to post-high school variables in 2011 (Wave 4, four years 

post-high school, N = 577, Mage = 23.0 years, SD = .61) and 2013 (Wave 5, six years post-high 

school, N = 535, Mage = 25.4 years, SD = .60). Not surprisingly, the sample attrition was 

relatively large for post-high school variables, as they were collected 6-9 years after Wave 1 

(32% for STEM career aspirations and 37% for actual studying or working in STEM fields).  

Procedure. This study used self-report questionnaire data collected from the participants. 

The questionnaires were administered to the students in their high school classrooms under the 

supervision of a teacher. Post-high school questionnaires and instructions were sent to 

participants’ homes. Females comprised 52.1% of the sample (N = 849). Nearly all participants 

(99%) reported Finnish as their first language, and this pattern aligned well with the ethnic 

composition of the population in Central Finland. 

Educational Context 
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High school transition is a critical stage for Finnish adolescents. In the Finnish 

educational system, students transition from comprehensive school to high school in 10th grade 

(i.e., 15 or 16 years old), which also happens to be their first main school transition. Upon 

transitioning to high school, Finnish students choose to pursue an academic or vocational track. 

As this study aimed to examine motivational development across academic domains and 

subsequent educational and occupational choices in STEM fields, we focused on the students in 

the academic track. Furthermore, the Finnish educational system implements course-by-course 

tracking within schools, but it does not use academic tracking between schools in high school. 

Students are relatively free to choose difficulty levels or numbers of classes in many subjects, 

thus triggering dimensional comparison processes and developing relative STVs. As part of their 

preparation for University study, Finnish students on the academic track strive to be successful 

and choose more challenging schoolwork; therefore, the Finnish high school environment is 

oriented toward social comparison and competition among peers (Salmela-Aro & Tynkkynen, 

2012). Interestingly, Finnish students completing the academic track have a higher-than-average 

age at the time of their graduation from university, with the age of university completion ranging 

between 25 and 28 (Sortheix et al., 2015). The main reason for this late graduation age is the 

competitive university entry system in Finland. Many young people take multiple gap-years to 

pass university entrance examinations so that they can get into their desired majors (Sortheix et 

al., 2015). These key characteristics of the Finnish educational system emphasize the importance 

of tracking individual and gender differences in motivational development during high school 

transition. By focusing on high school transition, we were able to leverage efforts to support the 

development of STEM-related knowledge and task values. 

Measures 



JOINT TASK VALUES TRAJECTORIES 16 

Subjective task values (STVs). STVs for the three school subject domains, including (a) 

Finnish, (b) math and science, and (c) social subjects1 were measured by the STV scale (Eccles 

et al., 1983). The scale included three items that asked the participant to assess the interest, 

importance, and usefulness of each subject domain via the question: “How 

interesting/important/useful do you think each of the following subjects is?” All items were 

coded on a seven-point Likert scale, with one indicating “not at all” and seven indicating “very 

much”. The domain-specific latent STV constructs demonstrated satisfactory reliability across 

time (Cronbach’s ⍺ = .81-.85; also see Chow et al., 2012). 

STEM aspirations and participation. Participants’ STEM occupational aspirations 

were measured at Wave 4 (i.e., four years after post-high school transition) based on the 

responses to the question: “What is your field of the desired occupation?” Because of the long 

post-high school transition, only 21.8% of participants had entered the workforce at Wave 4. 

When analyzing these responses, we operationalized occupations into two categories. Category 1 

encapsulated all non-STEM occupations, including careers in the fine arts, literature, business, 

education (except for math and science teachers), and social subjects (e.g., history, political 

science). Category 2 contained all STEM-related occupations, such as careers in mathematics, 

engineering, computer science, life science, medical science, physical science, and as math or 

science teachers2 (see Wang, Degol, & Ye, 2015). We also used these categories when assessing 

participants’ actual STEM participation (i.e., studying or working in STEM fields) at Wave 5 

                                                
1 To avoid confusion, participants were given specific subject examples (e.g., history, civics) when asked 
about their STVs in social subjects. It should also be noted that the label “social subjects” is commonly 
used in Finland’s education system. 
2 In this study STEM occupations were defined based on the skills and training required. Given that in 
Finland math and science teachers require master’s degrees specializing in math or a specific science 
domain, we categorized this occupation as part of the STEM careers, which is what has been defined in 
the U.S.( e.g., Miller & Kimmel, 2012; Wang et al., 2015). 
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(i.e., seven years post-high school). For those who had not yet entered the work force, “What is 

your field of study at the moment?” was used, while for the 41.0% of participants who had 

entered the workforce by Wave 5, “What is your professional field at the moment?” was 

employed3. 

Covariates 

Grade point average (GPA). In Finland, all students are provided with an overall GPA 

for all the courses they attend in each academic year. GPA was calculated on a scale ranging 

from 4 to 10, with four indicating poor performance and ten indicating excellent performance. 

Participants were asked to report their GPAs from the previous year at each wave. Thus, GPAs 

from grades eight through ten were treated as time-varying covariates in this study.  

Matriculation results in Finnish and math. We also included Finnish and math 

matriculation examination results, obtained from school records, in our analysis. We used these 

examination results in particular due to the high number of participants taking them: All 

candidates took the compulsory Finnish examination, while approximately 80% of participants 

opted to take math as one of their matriculation tests (Sortheix et al., 2015). As we were 

interested in STEM majors and careers, we controlled for the effect of math and Finnish 

achievement in our models.  

Demographic factors. We included gender and family socioeconomic status (SES) of 

the participants as covariates in our analysis. Gender was coded as 0 (females) or 1 (males), 

while family SES was indicated by parents' occupations as reported at grade 9. Each parent's 

occupation was first coded; per the classification of socio-economic groups issued by Statistics 

                                                
3 65% of participants who were still studying in university answered both questions. Among those, 
approximately 80% of them used exactly the same answer for both questions and the rest of them just 
slightly changed wording, indicating the high reliability of combining these two questions in the 
subsequent analysis. 
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Finland (1989). We then further coded the data as 1 (unsalaried position), 2 (blue collar), 3 

(lower white collar), and 4 (upper white collar). If both parents were working, the higher SES of 

either parent was used as the indicator for family SES. 

Data Analysis 

Missing data analysis. We explored potential missing data mechanisms by creating an 

early attrition group (i.e., participants who did not engage in all three measurement waves during 

the high school years) and a late attrition group (i.e., participants who left the study during post-

high school transition). We then conducted a series of t-tests to examine mean differences by 

attrition groups for both demographic variables and variables used in the analyses. We found that 

there were no differences between the early attrition group and the group with full data. 

However, males were more likely to drop out of the study than females during the post-high 

school transition (t = 4.32, df =  648.71, p < .001); and participants with lower GPAs at grade 11 

(SD = .40) were also more likely to drop out of the study during the transition (t = 2.34, df =  

470.99, p < .001). Missing data was not associated with STVs when compared between the early 

and late attrition groups and the group with full data. Full Information Maximum Likelihood 

(FIML) estimation was used to cope with missing data within STEM framework (Enders, 2010). 

Gender and GPA at grade 11 served as auxiliary variables in data analyses (i.e., confirmatory 

factor analysis [CFA], LCM, and GMM).  

Table 2 provides descriptive statistics and intercorrelations for all variables. A 

longitudinal measurement invariance test across the three data-collection waves was conducted 

to verify the factor structure of STVs. We found empirical support for strict measurement 

invariance (i.e., invariant loadings, intercepts, and uniquenesses invariances) on the three 

domain-specific STVs across occasions (see Appendix 2 for the test of longitudinal measurement 
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invariance). To facilitate interpretation of the latent means in LGM and GMM, we 

reparametrized the model using a nonarbitrary method to identify and set the scale of latent 

variables. This method allowed for estimating latent means in a nonarbitrary metric that reflects 

the metric of the indicators measured. As such, results could be interpreted according to the 

original 7-point Likert scale (see Appendix 8 for more details). We then used multiple process 

LCM and GMM to examine developmental trajectories of STVs All models were conducted with 

Mplus 7.13 using the robust maximum likelihood estimator (see Appendix 8 for detailed the 

model-building process and annotated Mplus syntaxes). 

To test the first hypothesis, we examined the joint linear trajectories of the three STVs 

over time using multivariate LCM. Multivariate LCM focuses solely on between-person 

variability in the initial levels (intercepts) and rates of change (slopes) across multiple constructs 

of interest as well as between-person linear relations among these intercepts and slopes. This 

joint developmental model allowed us to simultaneously test the developmental course of the 

three STVs from grades 9 to 11. Subsequently, the three STVs’ change parameters (intercepts 

and slopes) prediction of STEM outcomes was assessed while controlling for gender, SES, and 

matriculation scores.  

To test the second hypothesis, GMM, a pattern-centered approach, was conducted to 

classify the participants into subgroups that evidenced different patterns of the joint trajectories 

of the three STVs over time. GMM is specifically designed to explain developmental 

heterogeneity by separating a general population into latent classes of participants presenting 

qualitatively and quantitatively distinct trajectories of change over time (Muthén, 2001). Given 

the complexity and heavy computation required by GMM, it is often impossible in practice to 

implement a fully latent approach to its estimation (Meyer & Morin, 2016). Therefore, we relied 
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on factor scores saved from preliminary measurement models (Morin & Marsh, 2015). Factor 

scores provide a partial implicit control for measurement errors and preserve the nature of the 

underlying measurement structure better than scale scores. To ensure comparability in the STV 

measures across three waves, factor scores were saved from a model of strict measurement 

invariance. 

Several indicators were used to select the optimal number of profiles (groups): the 

Akaike Information Criterion (AIC), the Consistent AIC (CAIC), the Bayesian information 

criterion (BIC), and the sample-adjusted BIC (saBIC). Lower values on these indicators suggest 

a better-fitting model. To further secure our decision in selecting the best model, we used the 

adjusted likelihood ratio test (LMR-LRT) and the bootstrap likelihood ratio test (BLRT) (Lo, 

Mendell, & Rubin, 2001). Nonsignificant LMR-LRT and BLRT tests indicate that a model with 

k-1 profile model would provide a better fit compared to a k profile model. Finally, we relied on 

the Entropy Index to summarize classification accuracy (Lubke & Muthén, 2007). The entropy 

varies from 0 to 1, with higher values indicating fewer classification errors. While there appears 

to be no definitive criteria for determining optimal numbers of latent classes when estimating 

GMM models, researchers have recommended the use of multiple statistical indices, along with 

conceptual considerations and interpretability of the latent groups (Morin & Marsh, 2015). 

Based on the GMM results, we conducted a series of regressions to explore how STV 

profile memberships predicted STEM outcomes while controlling for gender, SES, and 

matriculation scores. Mixture models in Mplus provide class membership probabilities for each 

individual. Rather than using an ‘all-or-none’ approach of assigning class membership to 

participants based on the highest probability for one of the profiles, we employed each 

individual’s estimated probability of membership for each class as sampling probabilities (i.e., 
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CPROB1-CPROB3 in SAVEDATA of Mplus output) to create 25 imputations of class 

membership (Sahdra et al., 2017, see Appendix 3). Given that FIML was not able to cope with 

missing data on binary outcomes (i.e., STEM aspiration and participations) in Mplus, we instead 

used a multiple imputation approach in which all other variables used in the current study were 

included as covariates. We imputed 25 data points and merged them with another set of 25 

imputed data points for class membership for subsequent analyses. All data analyses were run 

separately, and the results were aggregated appropriately in order to obtain unbiased estimates 

(Rubin, 1987). Thus, our approach accounted for classification uncertainty in the latent class 

membership and allowed for the testing of mediation effects for gender. 

Results  

Variable-centered Approach  

Joint Trajectories of STVs in the three domains. To examine the joint trajectories of STVs 

across the three waves of data, we first specified an unconditional multivariate LCM model that 

simultaneously considered the three subject domains while including gender, SES, and time-

varying GPAs as auxiliary variables. Note that the LCM model was built on the strict 

measurement invariance model. In other words, with strict invariance constraints imposed on the 

first-order measurement model, task value trajectories in the three subject domains were modeled 

as second-order latent factors in the LCM. Compared to the strict measurement invariance model 

(CFA, c2= 670, df = 303, comparative fit index [CFI] = .960, the Tucker–Lewis index [TLI] 

= .954; the root mean square error of approximation [RMSEA] = .038, see Appendix 2), the fit of 

the full LCM model slightly decreased but was still reasonably good (c2= 819, df = 321, CFI 

= .946, TLI = .941; RMSEA = .043). The reason of the decreased model fit may be due to some 

trivial residual covariances between task value items and second-order latent (intercept and slop) 
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factors. However, for the sake of parsimony, we didn’t explore and include those trivial residual 

covariances into the model given that the LCM fit the data relatively well. Mean levels of STVs 

in the three subjects at grade 9 were all significant (see Figure 1 for estimated averaged 

trajectories). As expected (H1a), STVs in math and science decreased over time to a small extent 

(slope = -.07), while STVs in social subjects and Finnish remained relatively stable. The 

conditional multivariate LCM model controlling for gender, SES, and time-varying GPAs 

provide the same model fits (c2= 1039, df = 363, CFI = .940, TLI = . 920, RMSEA = .047) and a 

similar pattern of results as the unconditional model (see Table 3). 

Table 4 lists the variances and correlations among the initial levels (intercepts) and rates 

of change (slopes) in relation to three domain-specific STVs (see Appendix 4 for more details). 

The intercepts of all STVs were positively and significantly correlated with each other. 

Specifically, the intercept of social subjects STVs was more closely related to that of Finnish 

STVs (r = .63) than of math and science STVs (r = .47), indicating that students were more able 

to distinguish STVs between Finnish and math/science at grade 9. Correlations among STVs in 

the three domains were substantially smaller at grade 11. For instance, social subjects STVs were 

not significantly related to math and science STVs (r = .10, see Table 2). These findings imply 

that students were more likely to develop divergent STV trajectories across different domains 

during high school. Similar patterns were found for the three slopes, but correlations were 

considerably weaker. Correlations between the intercepts and slopes across domains were either 

non-significant or carried a slightly negative valence. The significant between-person variability 

(variances) of the slopes across subjects indicated that the individual growth trajectories 

substantially differed in their steepness.  
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Effects of the trajectories on STEM outcomes. Given that simultaneously testing 

effects of latent intercepts and slopes in all three domains on outcomes requires heavy 

computational burden in the LCM framework, we generated factor scores of intercepts and 

slopes and tested how they predicted STEM aspirations and careers using logistic regression. As 

seen in Table 5, all significant effects were found in the intercepts but not the slopes after 

controlling for gender, SES, and matriculation results in Finnish and math. As expected (H1b), 

students who had high initial levels of STVs in math and science but low initial levels in Finnish 

at grade 9 were more likely to aspire to and select STEM careers. Specifically, Odds Ratios (OR) 

indicated that for each one SD increase in math and science STVs, the odds of aspiring to and 

actually entering a STEM (versus non-STEM) field increased by a factor of 1.63 and 1.60, 

respectively.  

Gender effects. As hypothesized (H1c), males had significantly higher levels of STVs in 

math and science than females, while females had higher STVs in Finnish and social subjects 

(see Table 3). Both genders evidenced similar STV trajectories across domains; however, faster 

declining math and science STVs among females resulted in a slightly larger gender gap. 

Hierarchical regression analyses revealed that the direct gender effects on STEM aspirations and 

participation were substantially reduced when initial levels of STVs were included in the model. 

Here, we calculated the magnitude of the relative indirect effects of gender, which can be loosely 

interpreted as the percentage reduction in the regression coefficients of gender between STEP 1 

and STEP 2 (see Table 5, Huang, Sivaganesan, Succop, & Goodman, 2004; Wang et al., 2015). 

Specifically, the initial levels of STVs explained 1−1.20/1.52= 21% of gender differences in 

aspiring to entering STEM versus non-STEM fields and 30% of gender differences in actual 

entry into STEM fields (comparing STEP1 to STEP2, see Table 5). As expected, gender 
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differences in initial levels of STVs at grade 9 partially mediated gender disparities in STEM 

fields. 

Pattern-centered Approach to STV Trajectories 

Class enumeration. Given that unconditional and conditional LCM demonstrated a 

similar pattern of STV trajectories, we opted to use unconditional GMM models4. The values for 

AIC, BIC, CAIC, and SABIC for the one- to six-profile solutions continued to decrease with the 

addition of profiles (see Table 6). While the two to six profile solutions had a significant BLRT, 

LMR-LRT became non-significant after three-profile solutions. Moreover, the three profiles had 

reasonable sample sizes (N = 161–408) and the latent profile probabilities for the most likely 

latent class assignment of the three-type solution were satisfactory (see Table 7), resulting in an 

acceptable entropy value of .786. Ultimately, a three-profile solution showed good model fit and 

separation between the classes. The examination also revealed that adding a fourth profile 

resulted in the division of an existing profile into two distinct profiles differing only 

quantitatively from one another (See Appendix 5 for more details).  

Given that most applications of mixture modelling are exploratory and results might not 

generalize beyond the sample under investigation, we used a newly developed cross-validation 

approach – k-fold cross-validation approach (Grimm et al., 2017) to further confirm the solution 

of model selection and thus enhance the replicability of our findings. Specifically, we conducted 

                                                
4 The focus of this study was to examine gender differences in distributions of the joint STVs trajectory 
profiles and explain how these patterns affect gender imbalance in STEM participation (as opposed to 
exploring whether different groups of students followed distinct trajectories of STVs while controlling for 
gender). Methodologically, adding covariates to the GMM generally hurt class recovery (i.e., participants 
were more accurately classified), except where the latent classes underlying the growth trajectories and 
covariates were strongly associated (Stegmann & Grimm, 2018). In this study, the latent trajectory classes 
(based on three-profile solution) were only weakly associated with GPAs (R2 = 3%-4% by ANOVA) and 
not associated with SES (R2 < .01%). As such, we used the more parsimonious model (i.e., the 
unconditional GMM). 
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5-, 10-, and 100-fold cross-validation for the GMM with one through six classes. For 5-fold 

cross-validation, each model (e.g., three-class GMM) was estimated five times to different 

partitions of the data (80% of the data each time), the results (i.e., parameter estimates as fixed 

values) were applied to the kth partition (20% of the sample), and the -2 log likelihood (-2LL) 

for this model was saved. Similarly, for 10-/100-fold cross-validation, each model was estimated 

10/100 times (90%/99% of the data each time) and the results were applied to the remaining 

10%/1% of the sample (see Grimm et al., 2017 for more details). 

Figure 2 illustrates the cross-validation results (the Mean and standard error [SE] of the -

2LL). Informed by Grimm et al.’s (2017, see p. 253 for details) suggestions on model selection, 

we started evaluating the one-class model, finding that the two-class model Mean of cross-

validated -2LL was outside of one SE of the one-class model Mean. In addition, the three-class 

model Mean was outside of one SE of the two-class model, indicating that the three-class model 

fit better than the one- and two-class models. The four-class model Mean was within one SE of 

the three-class model, indicating the three-class model should be preferred in terms of 

parsimony. We also worked through cross-validation results beginning with the best fitting 

model (i.e., the six-class model). The five-class model Mean was within one SE of the six-class 

Mean, and the four-class Mean was within one SE of the five-class Mean. These results 

suggested that the fourth-class model fit similarly to the six- and five-class models. Again, the 

four-class model did not perform better than the three-class model in terms of model fit; thus, the 

three-class model was used. 

 It should be noted that means, variances and covariances, and residuals of the latent 

trajectory parameters (intercepts and slopes) across the three domain-specific STVs (i.e., Finnish, 

math and science, social subjects) were freely estimated in all classes, following the strategy of 
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GMM estimation recommended by Diallo, Morin, and Lu (2016). We further compared these 

freely estimated GMMs with those placing constraints either on variances and covariances or on 

variances, covariances and residuals. Results showed the freely estimated GMMs were favored 

in terms of model fit across different class solutions (see Appendix 6 for more details). 

Class descriptions. Three distinct profiles were consistent with our expectations (H2a); 

thus, they were retained as our final solution classes. The most probable proportion of 

individuals within the sample from class 1 was approximately 48% (see Figure 3 for estimated 

average trajectories across classes and Appendix 7 for observed individual trajectories). This 

class represented those students who showed high initial levels of STVs in all three domains 

(intercepts ranged from 5.19 to 5.31, see Table 8) but experienced declining trajectories in all 

three domains over time (slopes: ranged from -.12 to -.04). Therefore, Class 1 was labeled the 

High but Decreasing All Subjects trajectory. The most probable proportion from Class 2 was 

approximately 33%. Students in this class had low levels of STVs in all three domains (intercepts 

ranged from 4.22 to 4.47), an increase in math and science STVs over time (slope = .08) and 

stable trajectories in Finnish and social subjects (i.e., nonsignificant slope). Thus, we labeled 

Class 2 the Low but Increasing Math and Science trajectory. The most probable proportion from 

Class 3 was approximately 19% and this class was the most distinctive. Students in this class 

reported initially high STVs in Finnish and social subjects (intercepts = 5.52 and 5.19, 

respectively), but relatively low STVs in math and science (intercepts = 4.47). Interestingly, the 

developmental trajectories were substantially different across domains: Students’ Finnish STVs 

increased over time (slope = .21), their STVs in math and science declined (slope = -.18), and 

their STVs in social subjects remained stable. We labelled Class 3 the High and Increasing 

Finnish trajectory. 
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Effects of the trajectory profiles on STEM outcomes. Logistic regression was 

conducted to examine how trajectory profile memberships predicted STEM aspirations and 

careers. We report odds ratios (OR), which reflect the change in likelihood of entering STEM 

versus non-STEM fields associated with people being in a target work value profile versus a 

comparison profile. For example, an OR of 3 suggests that individuals with a particular work 

value profile are three times more likely to enter STEM over non-STEM fields than a 

comparison profile. Profile membership significantly predicted STEM outcomes (see Table 9). 

As expected (H2a; see Table 1), students in the Low but Increasing Math and Science trajectory 

were 1.86 times more likely to aspire to STEM careers and 2.59 times more likely to enter 

STEM careers, respectively, as compared to those in the High and Increasing Finnish trajectory 

(see STEP 2 in Table 9). Similarly, students in the Low but Increasing Math and Science 

trajectory were 2.10 and 2.72 times more likely to aspire to and enter STEM careers, 

respectively, as compared to those in the High but Decreasing All Subjects trajectory. Students 

from the High but Decreasing All Subjects and High and Increasing Finnish trajectories were 

associated with a similar likelihood of having STEM aspirations (OR = 1.13) or joining STEM 

fields (OR = 1.16).   

Given that the initial level of STVs had significant effects on differentiating individual 

and gender differences in STEM participations in LCM (see Table 5), we further explored 

whether within-person shape of joint developmental trajectories could predict STEM outcomes 

above-and-beyond the between-person differences in the initial level of STVs. The predictive 

power of trajectory profile memberships were similar after controlling for the effects of each 

individual’s initial STVs levels in the three target subjects at grade 9 (see STEP 3 in Table 9). 



JOINT TASK VALUES TRAJECTORIES 28 

 Gender effects. As hypothesized (H2c), there were gender differences in the trajectory 

profiles. Note that gender distribution in this sample was almost even (males = 52.1%). Table 10 

shows that males were over-represented in the Low but Increasing Math and Science trajectory 

(66%); females were over-represented in the High and Increasing Finnish trajectory (69%); and 

the gender distribution was relatively even for the High but Decreasing All Subjects trajectory 

(males = 51%).  Hierarchical regression analyses revealed that the direct effect of gender on 

STEM outcomes was substantially reduced when including the trajectory profiles distributed 

differently by gender. The proportions of the gender effects on STEM aspirations and 

participation mediated by trajectory profiles were 29% and 36%, respectively (comparing STEP1 

to STEP2 in Table 9). Results also indicated that more proportions of gender differences in 

STEM outcomes were explained while further including initial levels of the STVs at grade 9 in 

the GMM model (STEP3). In summary, gender differences in profile distributions partially 

explained gendered pathways to STEM fields.  

Discussion 

This study integrated variable- and pattern-centered approaches to examine how 

individual and gender differences in joint motivational trajectories across three subject domains 

influenced career development during high school transition. While adolescents’ STVs in 

different domains remained stable (in Finnish and social subjects domains) or slightly declined 

(in math and science domains) on average, we identified three differential trajectory patterns of 

STV change over time, suggesting that trajectories in multiple domains shape each other. 

Additionally, between-person differences in STVs at ninth grade and within-person 

heterogeneous patterns (i.e., trajectory groups) of STVs were substantially associated with post-

high school STEM aspirations and participation. Finally, differential motivational developments 
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of males and females across different subject domains play a vital role in contributing to 

gendered career choices and gender disparities in STEM fields.  

Between-Person Differences in STV Trajectories 

This study extends prior research on motivational trajectories by considering the 

multidimensionality of students’ STVs. The medium sizes of correlations among average initial 

levels of STVs across the three domains indicate that students do indeed distinguish STVs in 

different domains. The correlations between growth rates of the three STVs were positive but 

substantially small, suggesting that motivating students to value a domain may promote 

motivation in learning other domains, while devaluing activities in one domain may have 

negative effects on other domains. However, this finding should not be over-interpreted given 

such small effect sizes (ds = .10 to .16). Furthermore, this study is among the first to investigate 

how initial levels of STVs are related to growth rates across domains. Small negative or non-

significant correlations indicate a slight compensatory effect: Grade 9 students who started with 

lower achievement motivation improved at a slightly faster rate (or diminished at a slightly 

slower rate) than those who started with higher motivation, resulting in a slight narrowing of the 

motivation gap. This finding is consistent with recent studies on academic achievement growth 

(e.g., Davis-Kean & Jager, 2014; Mok, Mclnerney, Zhu, & Or, 2014) but the underlying 

mechanisms behind this compensatory effect remain unknown. One possible explanation is that 

students with poorer initial performance and motivation may be likely to receive more 

instructional attention by teachers in school and by parents at home, particularly in secondary 

schools (Tan & Yates, 2011).  

While STV trends in Finnish, math/science, and social subjects seem to be stable or 

slightly declining over time, significant variances of growth rates indicated notable heterogeneity 
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in individual growth curves. The small correlations among slopes supplement this finding, 

suggesting that students may experience differential patterns of development across different 

domains over time. Accordingly, our findings provide strong support for employing pattern-

centered approaches when trying to understand the within-person motivational dynamics in 

different learning domains. 

Subgroups with Distinct STV Trajectories 

We were able to identify three distinct STV trajectories: High but Decreasing All 

Subjects (48%), Low but Increasing Math and Science (33%), and High but Increasing Finnish 

(19%). In line with our expectations, the High but Decreasing All Subjects trajectory consisted of 

a relatively large number of students who experienced continuous declines in all three subject 

domains. This pattern could be considered the normative developmental course of academic 

motivation for males and females adolescents as explained by social comparison processes and 

incongruence between their developmental needs and the school environment during the school 

transition (Eccles et al., 1993). Specifically, this group experienced a steeper decline in math and 

science STVs than in Finnish and social subjects. Indeed, the math and science contents in high 

school become abstract and require different forms of reasoning, which may make it harder for 

students to see the utility value of and be interested in math and science (Petersen & Hyde, 

2017). To protect the perceptions of their math and science ability, students may justify not 

pursuing advanced math and science courses by perceiving them as less useful and interesting. 

More importantly, different declining rates of the three domains formed a relative hierarchy of 

STVs where math and science were rated as the least important, thereby moving students away 

from STEM fields. 
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Consistent with previous research (Archambault et al., 2010; Wang et al., 2017), we 

found two groups where students evidenced STV increases in Finnish or math/science during 

high school transition. This finding could be due to the students’ autonomy to choose different 

levels of coursework and the self-differentiation process. Indeed, these two trajectory groups 

demonstrated how motivational developments in different domains influence each other through 

within-person dimensional comparison processes to evidence opposite patterns of development 

over time. Because of high perceived dissimilarity between verbal and mathematical domains 

(Marsh, 2007), a motivation growth in Finnish leads to a relative decline in math and science and 

vice versa (i.e., a contrasting effect). Motivational changes in social subjects are slightly close to 

those in Finnish across different trajectory groups, given that both domains are likely to be 

perceived as similar (i.e., an assimilating effect).  

Interestingly, students in the Low but Increasing Math and Science trajectory had lower 

math and science STVs at grade 9 than those in the other two trajectory patterns. This finding 

raises the question of why students with lower STVs in math and science at the onset of high 

school experienced STV increases throughout high school (see Table 4). Potential underlying 

motivational mechanisms leading to STV increases may be the relative intra-individual hierarchy 

of STVs across domains and dimensional comparison processes. When compared to other 

domains, students in the Low but Increasing Math and Science trajectory placed the highest 

value on math and science at grade 9. This relative priority pattern of STVs may have helped 

these students select coursework and attribute more time and energy to the classes and activities 

that interested them and fit closely with their personal goals (Guo et al., 2015, 2017). 

Consequently, these students may place more academic STVs on math and science than on other 

subjects (Wigfield et al., 2016). In contrast, students in the High and Increasing Finnish group 
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placed even higher value on Finnish and social subjects than on math and science at grade 9, 

which may have directed them away from math and science classes and activities, subsequently 

decreasing their perceived value of this domain. However, the role that the relative hierarchy of 

STVs plays in motivational development is less salient for the High but Decreasing All Subjects 

group where the three domains were rated similarly. 

Linking STV trajectories to STEM outcomes 

We not only detected between- and within-person patterns of STV trajectories, but we 

also found differential associations with post-high school STEM aspirations and participation. 

Interestingly, the strong effects of the trajectory profile groups remained while controlling for the 

students’ initial levels of STVs. Although between-person differences in STVs (e.g., high math 

and science STV, low Finnish and social subjects STVs) at grade 9 appeared to discriminate 

between individuals who aspire towards and choose occupations in STEM versus non-STEM 

fields, the relative within-person hierarchy of STVs, coupled with differential developmental 

patterns, also played an important role in these choice behaviors. Indeed, students from the High 

but Decreasing All Subjects trajectory consistently held higher math and science STVs over time 

than those from the Low but Increasing Math and Science trajectory, but they still opted out of 

the STEM pipeline. While students from the High but Decreasing All Subject and High but 

Increasing Finnish trajectories had considerably different motivation experiences across 

domains, particularly at grade 11 (Wave 3), the similar relative priority patterns with decreasing 

math and science STVs resulted in students following the same STEM pathways. These findings 

corroborate our previous conclusion that a within-person relatively high math and science STVs 

with an upward trend appears to be the optimal pattern of motivational beliefs to move students 

toward STEM pathways. 
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Gendered Trajectories and STEM Outcomes 

Gender differences in STVs were identified for all subject domains at grade 9: Males 

placed more value on math and science, whereas females had higher STVs for Finnish and social 

subjects. This finding suggests that gender differences in STVs appear to emerge in early school 

years. While Jacobs et al. (2002; also see Watt, 2004) reported that gender differences in math 

STVs remain stable during high school transition, we observed a clear gender divergence in math 

and science STVs, that stemmed from a greater decline in females’ STVs. The gender gap in 

math and science motivation is associated with an intensification of gendered socialization 

pressures by parents, peers, media, and schools (Eccles, 2009). In particular, such intensification 

is more salient for females’ science learning at the onset of puberty, given that science is 

perceived as a more stereotypically masculine domain than math (Fredricks & Eccles, 2002). 

Hence, a larger gender gap was identified since math and science STVs were operationalized as a 

single construct in this study.  

Gender differences in both between- and within-person mechanisms in relation to 

different STVs significantly explained gender disparities in STEM aspirations and participation. 

In particular, our results suggest that gender differences in how individuals prioritize and develop 

STVs across domains may play a more prominent role in directing STEM educational and 

occupational pathways as compared to those in absolute levels of STVs. Females were more 

likely to place relatively low STVs on math and science, experience a downward trend in math 

and science, and experience an upward trend in Finnish STVs than males. Males were more 

likely to experience reverse motivational trajectories, even though some may have even lower 

STVs in math and science compared to females at grade 9. These gendered motivational 

trajectories provide the foundation for gendered educational and career development.  
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Generalizability of the Results to Other Educational Contexts 

As the Finnish high school transition is characterized by the separation of academic and 

vocational tracks, and implementation of course-by-course tracking, it is a useful context for 

examining within-person development trends in motivation. Low but Increasing Math and 

Science as well as the High and Increasing Finnish trajectories indicate that differentiated 

curriculum and course schedules offered by Finnish high schools nurture personal interests in 

specific domains. These findings may be generalizable to other education contexts that have 

similar school curricula, indicating that high school transition in these settings may also serve as 

a turning point for enhancing or undermining STVs in adolescents. However, in countries like 

the U.S, where course-by-course tracking in some subjects (e.g., math) typically begins earlier 

(e.g., in grade 7 or 8), the middle school transition maybe a more important turning point for 

students’ interests and career aspirations. 

A long post-high school transition period is another key feature of the Finnish 

educational system. Although we were able to link motivational trajectories to an individual’s 

STEM participation six years after post-high school transition, many participants were still 

studying in university at that time point, which did not allow us to assess their ultimate career 

fields. However, the delayed exposure to higher education, makes a strong case for testing the 

effect of motivational trajectory on educational and career choices. During the post-high school 

transition, students may have difficulty keeping up their STEM career aspirations because most 

STEM majors require higher marks in matriculation exams and students often need to apply 

multiple times for university STEM programs. Both of these encounters may lead individuals to 

re-initiate their career exploration processes. The strong predictive effect of motivational 

trajectory profiles suggests that relative STVs in high school highly influence long-term career-
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related behavior choices. While providing a satisfactory setting for this study, the special features 

of the Finnish educational system warrant future research to investigate whether our findings can 

be replicated in differing systems. 

Limitations and Further Research 

This study has several limitations, and some caveats must be noted. First, students’ EVT 

motivation scale used in this study limited the significance of our finding. Specifically, we did 

not include academic ability self-concept (i.e., expectancy of success), a variable that has been 

shown to significantly predict STEM participations (Wang & Degol, 2013). It should be noted 

that previous studies (Archambault et al., 2010; Wang et al., 2017) examined the joint 

trajectories of self-concept and STVs in a single domain across time and found that self-concept 

was accompanied with highly similar changes in STVs. Indeed, self-concept and STV beliefs are 

reciprocally related and mutually reinforcing over time: students are more interested in domains 

in which they feel more competent, and they achieve greater competence in domains where they 

have greater interest (Eccles, 2009; Pinxten, Marsh, De Fraine, Van Den Noortgate, & Van 

Damme, 2014). We also did not consider the negative aspect of task value: cost, which has been 

shown to predict academic performance, effort exertion, and engagement above and beyond 

other aspects of task value (e.g., Guo et al., 2016). Dimensional comparison processes have also 

been found to play a salient role in constructing domain-specific perceived cost (Gaspard et al., 

2018) and the impact of such comparison processes on the development of task value would be 

stronger in high school, which subsequently influence career choices (Eccles, 2009). 

Importantly, recent work by Hulleman and his colleagues (e.g., Barron & Hulleman, 2015; 

Kosovich, Hulleman, Barron, & Getty, 2015; Hulleman, Barron, Kosovich, Lazowski, 2016) 

illustrated that inclusion of cost items in the task value scale undermined its factor structure (it is 
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also evident in our current sample) and concluded that cost should be treated as a separate factor 

in EVT research. Thus, in this study the task value scale was measure by intrinsic, attainment, 

and utility value components. However, adding a new construct (i.e., cost, self-concept) in three 

subject domains would introduce a large number of additional estimated parameters and greatly 

increase the complexity of GMM analysis. As such, the GMM models may converge on 

statistically improper solutions, or it may not to converge at all (Meyer & Morin, 2016). 

Additionally, only a single item was used to capture each value facet (intrinsic, attainment, utility 

value) and to form a task value scale. Recent work has showed that it is important to include 

different value facets under each value component (e.g., daily life, school, and job utility, 

Gaspard et al., 2018), particularly when looking at their predictions of achievement-related 

behaviors (Guo et al., 2016). As mentioned earlier, math and science STVs were operationalized 

as a single construct, which substantially limited our ability to detect the motivational 

mechanism channeling people to different STEM sub-disciplines. For example, incorporating 

math physics, chemistry, and biology would allow us to evaluate the nuanced predictive 

contribution of joint motivational trajectories to entering mathematics, physics, engineering, and 

computer sciences versus health, biological, and medical sciences fields (Eccles & Wang, 2016). 

Thus, the further inclusion of multiple domain-specific science self-concept and four facets of 

task values based on multiple-item measurement scales would provide a more comprehensive 

understanding of the developmental trajectories of motivational beliefs and how they shape 

career pathways. 

Second, the current findings are correlational, therefore no causal inferences can be 

made. There is a need for carefully constructed longitudinal panel studies and experimental 

interventions to better understand the causal mechanisms between joint developmental 
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trajectories in STVs and career decision-making process. Third, previous studies have indicated 

that the changes in students’ STVs over time tended to follow a curvilinear trajectory rather than 

a linear pattern (Musu-Gillette et al., 2015; Wang et al., 2017). However, we were unable to test 

if the joint changes across domains occur in a curvilinear fashion given the inclusion of only 

three waves of data for the academic motivation variable. Future research should examine these 

questions via a life-span longitudinal design.  

Fourth, the task value repeated measures in this study were non-normally distributed 

(negative skew), which may produce artificial groups in GMM (Bauer, 2007). Because GMM 

assumes that repeated measures are normally distributed within classes in fact, a variety of non-

normal shapes can be derived from a mixture of normal distributions, even in the absence of true 

population subgroups (Bauer & Curran, 2003). Although cross-validation analysis revealed that 

the three-class solution performed well in this study, there is clearly a need to replicate the 

results using same kind of Finland samples. Future studies can also consider incorporating 

qualitative interviews to better understand Finnish adolescents’ motivational changes across 

different subject domains and the potential mechanisms that may drive those changes. 

Furthermore, participants were drawn from a single Finlandian state, which did not allow 

us to examine and compare the roles of socio-cultural and national differences in family and 

school environment. For example, nations differ in the perception of gendered stereotypes linked 

to STEM and non-STEM occupations (Eccles & Wang, 2016). Thus, the cross-cultural variations 

in socialization and gender-role processes that influence choices of educational and occupational 

pathways indicate that comparative studies in more diverse settings are needed to advance our 

understanding of career choices. 



JOINT TASK VALUES TRAJECTORIES 38 

Another limitation is that this study assessed individual student data only and did not 

include, for example, school records of students’ GPA. Previous empirical findings have 

suggested that there are high correlations between students’ self-reported achievements and their 

actual grade point averages (Holopainen & Savolainen, 2005). However, self-reported grades 

should be used with caution as they might contain some error due to inflated estimates or 

mistaken recall, particularly for low-achieving students (Kuncel, Credé, & Thomas, 

2005).Hence, future research should seek participants’ permission to obtain grades from school 

records instead of relying on students’ self-reported scores.  

Lastly, as course selection lead students to different local class contexts that in turn may 

have shaped their relative strengths of motivation across subject domains, it would be beneficial 

to investigate the association between high school STEM participations and developmental 

trajectories of STV in future research. 

Implications for Practice and Research 

Despite these limitations, the current study has implications for intervention and practice. 

First, while the average trends in STVs across domains were relatively stable from grades 9 to 

11, the substantial heterogeneity in the joint STV trajectories was evident. The distinct 

developmental patterns characterized by divergent individual academic experiences enable us to 

develop more specifically targeted and nuanced strategies to direct students toward STEM 

educational and occupational pathways. For example, our findings suggest continued increases in 

math and science STVs may propel students toward STEM pathways. Interventions designed to 

increase students' perceptions of the relevance of math and science to their lives through teachers 

and parents have been effective in triggering students' interest and promoting academic 

performance in STEM topics (Lazowski & Hulleman, 2016).  
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Second, our findings support dimensional comparison theory (Möller & Marsh, 2013) 

and suggest that boosting STVs in the verbal domain would lead to a corresponding drop in math 

and science STVs (and vice versa). Such contrasting comparison processes are associated with 

gendered educational and occupational pathways. Indeed, a recent intervention study targeting 

math motivation demonstrated that one intervention successfully promoted students’ math STVs 

but simultaneously produced negative side effects on STVs in verbal domains (Gaspard et al., 

2016). One way to resolve this dilemma might be to build connections between school subjects 

in curriculum development. Cross-curriculum connections would help to foster and reinforce 

students’ general motivation in learning across all academic subjects, rather than only in the few 

subjects in which they fell they perform best (see Gaspard et al., 2016). Alternatively, teachers 

and parents should be aware of dimensional comparison processes and help students adjust the 

perceptions of subject (dis)similarity, as the contrast effects seem to depend on students’ beliefs 

about the association between mathematical and verbal abilities. For example, it could be 

beneficial to show students quite explicitly the similarities between different school subjects—

attribution of achievement in every subject to interest, effort, and learning strategies (Helm, 

Mueller-Kalthoff, Nagy, & Möller, 2016).  

 Finally, our findings suggest that the relative hierarchy of STVs across domains at grade 

9 is substantially associated with subsequent motivational development, that constrains one’s 

options in educational and occupational pursuits. Our results underscore the importance of 

optimizing early math and science learning experiences to facilitate and maintain high levels of 

STVs in both domains. Secondary school has been noted as a time when students tend to 

experience cognitive difficulties in learning and develop negative motivational beliefs about 

learning. These facts make the school transition an optimal time for interventions that target 
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students’ achievement motivation. Research on educational interventions suggests that well-

timed, carefully crafted interventions have the potential to change students’ long-term academic 

trajectories by nudging them into more advanced institutional channels (Goyer et al., 2017). For 

example, early preventive interventions focusing on positive school experiences, such as 

increasing exposure to female scientists and challenging stereotypes of science masculinity 

(Wang & Degol, 2016), may be beneficial in promoting females’ motivation and engagement in 

STEM activities. However, we call for research that uses a longitudinal design that focuses on 

the long-term outcomes assicated with such interventions, given that the evidence on the 

effectiveness of existing STEM motivation interventions is still preliminary (Rosenzweig & 

Wigfield, 2016). 

Conclusion 

Our study makes new contributions to the field by incorporating variable- and pattern-

centered approaches in the study of motivational trajectories, their associations with educational 

and occupational STEM pathways, and the critical stage of adolescence when nascent future 

plans begin to firmly materialize. First, results showed that students developed specific interests 

in particular domains during high school transition even though averaged developmental changes 

across domains remained relatively stable. Therefore, studies that focus on average trends in 

student motivation may be masking variability in these developmental processes. Furthermore, 

this study is the first to incorporate multiple academic domains and demonstrate how 

intrapersonal dimensional comparison processes influence different groups of students that 

develop divergent motivation across domains. These domain-specific motivational trajectories 

interact with each other to shape a relative hierarchy of STVs. The relative (not absolute) STVs 

play a critical role in explaining individual and gender difference in STEM pathways; yet, the 
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extant empirical research on gender imbalance at earlier stages in STEM trajectories focuses 

almost exclusively on females’ motivation changes in a single domain (math or science), with 

correspondingly little attention to how changes of STVs across domains differentially impact 

females’ choices. Our study, therefore, calls attention to the importance of examining population 

subgroups in motivation changes and highlights the need for more research that focuses on 

individual and gender differences in the development of the relative motivation hierarchy across 

academic domains during the formative stages of adolescence. Distinct developmental patterns 

and divergent outcomes provide important information for those designing effective trajectory-

specific intervention strategies that target students’ motivation over time. 
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Table 1 
Research Questions, Hypothesis, and Approaches 

Research questions Specific hypothesis Approach 

Q1 H1a: The average, 
joint trajectories of 
the three domain-
specific STVs over 
time.  

• On average, initial levels of students’ STVs across domains (at ninth grade) 
would be moderate given that STVs are likely to follow a general decline during 
elementary and junior high school; average STV trends in the three subject domains 
would be relatively stable (unchanged or slightly declining) during high school 
transition 

Variable-
centered 

H1b: Prediction of 
STEM aspirations and 
participation. 

• Math and science STVs at ninth grade would predict a higher likelihood of 
aspirations and entry into STEM fields, whereas STVs in language and social subjects 
would predict lower STEM aspirations and engagement 

H1c: Gendered 
trajectories. 

• Males would place higher value on math and science than females, whereas 
females would hold higher values for Finnish and social subjects than males. The 
gender gap in STVs across different domains will remain stable or decline and are 
expected to explain gender imbalance in STEM aspirations and participation. 

Q2 H2a: The joint 
trajectories of the 
three domain-specific 
STVs over time. 

• The existence of at least three groups or classes in concordance with prior 
theoretical work: (1) a rise in Finnish STVs would couple with a decline in math and 
science STVs; (2) a trajectory where students report elevated math and science STVs 
over time, coupled with a decline in Finnish STVs; (3) a declining trajectory where 
students report a slight and constant decline in STVs across the three subjects. We left 
it as an open research question as to how social subjects STVs interact with Finnish 
and math/science over time to shape the joint trajectories given the absence of 
empirical evidence.  

Pattern-
centered 

H2b: Prediction of 
STEM aspirations and 
participation 

• Students with a developmental trajectory characterized by increasing math 
and science would be more likely to move towards STEM over non-STEM fields, as 
compared to those in other trajectory groups.  

H2c: Gendered 
trajectories. 

• Males would be over-represented in the increasing math and science 
trajectory, whereas females would be over-represented in the increasing Finnish (or 
social subjects) trajectory. 
• These gender differences in trajectory distribution should partially explain 
gender differences in STEM outcomes. 
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Table 2 
Descriptive Statistics and Intercorrelations Among Key Variables 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1. Grade 9: Finnish STV —               
2. Grade 10: Finnish STV .66* —              
3. Grade 11: Finnish STV .52* .82* —             
4. Grade 9: Math/Science STV .38* .22* .26* —            
5. Grade 10: Math/Science STV .18* .29* .23* .62* —           
6. Grade 11: Math/Science STV .05 .04 .18* .58* .72* —          
7. Grade 9: Social studies STV .57* .41* .39* .47* .29* .18* —         
8. Grade 10: Social studies STV .39* .53* .58* .26* .20* .15 .59* —        
9. Grade 11: Social studies STV .34* .47* .54* .11 .09 .10 .51* .69* —       
10. Gender -.29* -.31* -.26* .15* .18* .21* -.15* -.20* -.16* —      
11. Finnish Matriculation .12 .18* .27* -.10 -.12 -.16* .08 .12 .16* -.08 —     
12. Math Matriculation -.08 -.15* -.18* .12 .16* .23* -.02 -.08 -.13 -.01 .23* —    
13. SES .01 .05 .06 .09 .01 -.01 .03 .10 .09 .00 .13 .12 —   
14. STEM aspirations -.20* -.22* -.22* .16* .24* .31* -.18* -.16* -.22* .34* .02 .18* -23* —  
15. STEM participation -.24* -.23* -.29* .13* .22* .27* -.17* -.18* -.21* .39* .02 .17* -.22* .66* — 
M 4.91 4.93 4.93 4.84 4.82 4.71 4.83 4.78 4.79 .52 5.41 5.23 3.22 2.30 2.26 
SD 1.09 1.17 1.04 1.10 1.14 1.09 1.07 1.14 1.12 .50 2.07 2.09 .68 .46 .44 
Skewness -.89 -.77 -.64 -.78 -.66 -.59 -.74 -.55 -.66 - .22 .23 -.31 - - 
Kurtosis .70 .20 .08 0.50 .13 .25 .77 .06 .57 - -.97 -.97 -.86 - - 
Range 1.07- 

6.65 
1.09- 
6.68 

1.19- 
6.59 

1.15- 
6.44 

1.06- 
6.50 

1.09- 
6.55 

1.21- 
6.80 

.99- 
6.70 

1.20- 
6.73 - 0-6 0-6 1-4 - - 
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Table 3 
Estimated Initial Levels and Rates of Change Based on Latent Curve Model 
 Unconditional 

Multivariate LCM 
 Conditional Multivariate LCM 

Task value Intercept Slope  Intercept Slope Covariate 
(Gender) 
effect on 
intercept 

Covariate 
(SES) 
effect on 
intercept 

Covariate 
(Gender) 
effect on 
slope 

Covariate 
(SES) 
effect on 
slope 

Time-varying Covariate 
(GPA) effects on task value 
(range) 

Finnish 4.92*** -.00  5.11*** -.04 -.55*** -.04 -.05 .06* from .21 to .23*** 
Math and science 4.86*** -.07*  4.73*** -.11*   .26**  .01 .10* -.04 from .17 to 25*** 
Social subjects 4.82*** -.03  4.99*** -.02 -.32*** -.02 0.03 .06 from .17 to .29*** 

Note. *** < .001; ** < .01, * < .05. 
Table 4 
Correlations and Variances between Estimated Levels and Rates of Change of Task Value across Subject Domains Based on the 
Unconditional LCM 
 Intercepts  Slopes 
 a b c  a b c 
Intercepts  

  
 

   

(a) Finnish  -       
(b) Math and science .50*** -      
(c) Social subjects .63*** .47*** -     
Slopes        
(a) Finnish  -.18** -.17*** -.15**  -   
(b) Math and science -.20*** -.08 -.20***  .13* -  
(c) Social subjects -.19*** -.19*** -.12  .20*** .18*** - 
Variances .68*** .61*** .68***  .32*** .34** .28** 

Note. *** < .001; ** < .01, * < .05.
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Table 5 

The Levels and Rates of Change Predicting STEM Outcomes Based on the Unconditional LCM 
Model 

 STEM aspirations [β (OR)]  STEM participation [β (OR)] 

 STEP1 STEP2  STEP1 STEP2 

Gender 1.52***(4.57) 1.20**(3.00)  1.97***(7.17) 1.38***(3.25) 

Finnish Matriculation .03(1.03) .00(1.00)  .03(1.03) .02(1.02) 

Math Matriculation .41*(1.51) .31*(1.36)  .54*(1.72) .35*(1.42) 

SES .15(1.16) .07(.17)  .18(1.20) .08(.18) 

Intercepts      

  Finnish  -.38*(.68) 
 

 -.41*(.66) 

  Math and Science  .49*(1.63) 
 

 .47**(1.60) 

  Social subjects  -.30(.65) 
 

 -.31*(.60) 

Slopes      

  Finnish  -.23(.59) 
 

 -.22(1.25) 

  Math and Science  .12(1.13) 
 

 .24(1.27) 

  Social subjects  .18(1.19) 
 

 .05(1.06) 

Pseudo R2 .09 .14  .19 .25 

Note. *** < .001; ** < .01, * < .05. 

Table 6 

Fit Indices from GMM Models 
Model #fp LL AIC CAIC BIC ABIC pLMR pBLRT Entropy 
1-Class 36 -9204.90 18481.80 18688.59 18652.59 18538.26  NA NA 

2-Class 64 -8453.87 17035.73 17403.35 17339.35 17136.11 < .001 < .001 .651 

3-Class 92 -8118.20 16420.41 16948.86 16856.86 16564.70 .002 < .001 .786 

4-Class 120 -7884.45 16008.91 16698.20 16578.20 16197.11 .118 < .001 .771 

5-Class 148 -7712.10 15720.20 16570.32 16422.32 15952.32 .388 < .001 .765 

6-Class 176 -7555.51 15463.01 16473.96 16297.96 15739.04 .334 < .001 .732 

 

Table 7. 

Average Posterior Probabilities (Row) for Most Likely Latent Profile Membership (Column) 

 

High but Decreasing All 

Subjects trajectory 

Low but Increasing Math 

and Science trajectory 

High and Increasing 

Finnish trajectory 

1 0.89 0.06 0.05 

2 0.07 0.91 0.02 

3 0.06 0.04 0.90 
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Table 8 

Mean and Variance of Intercepts and Slopes across Different Profiles Based on the 
Unconditional GMM Model 
 P1(48%) 

(High but Decreasing All 
Subjects) 

P2(33%) 

(Low but Increasing 
Math and Science) 

P3(19%) 

(High but 
Increasing Finnish) 

Intercept 

(Mean/Variance) 

   

Finnish 5.31***/.40*** 4.22***/.57*** 5.52***/.21*** 

Math and science 5.22***/.27*** 4.47***/.53*** 4.84***/.40*** 

Social subjects 5.19***/.36*** 4.28***/.55*** 5.19***/.26*** 

Linear slope 

(Mean/Variance) 

   

Finnish -.04*/.05* -.04/.15** .21***/.06* 

Math and science -.12***/.06* .10*/.20** -.18**/.20** 

Social subjects -.05*/.07* -.02/.26** .03/.20** 

Note. *** < .001; ** < .01, * < .05. 
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Table 9 
Task Value Profile Memberships Predicting STEM Outcomes 

 STEM aspirations [β (OR)]  STEM participation [β (OR)] 
 STEP1 STEP2 STEP3  STEP1 STEP2 STEP3 
Gender 1.50***(4.48) 1.06***(2.89) .90**(2.46)  1.97***(7.17) 1.27***(3.56) .95***(2.59) 
Finnish Matriculation .06(1.06) .04(1.04) .02(1.02)  .03(1.03) .05(1.05) .01(1.07) 
Math Matriculation .39*(1.48) .33*(1.39) .36*(1.43)  .54*(1.72) 36*(1.43) .35*(1.42) 
SES .17(1.19) .13(1.14) .09(1.09)  .18(1.20) .17(1.19) .13(1.14) 
Trajectory profiles        
P2(Low but Increasing Math and Science) vs.  
    P1(High but Decreasing All Subjects) 

 .74**(2.10) .71**(2.03)   1.00***(2.72) .94***(2.56) 

P3(High but Increasing Finnish) vs.  
    P1(High but Decreasing All Subjects) 

 .12(1.13) .15(1.16)   .05(1.05) .06(1.06) 

P2(Low but Increasing Math and Science) vs.  
    P3(High but Increasing Finnish) 

 .62**(1.86) .56**(1.75)   .95***(2.59) .88***(2.41) 

Initial levels (intercepts) of STVs        
  Finnish   -.41*(.66)    -.38*(.68) 
  Math and science    .31*(1.36)    .35**(1.42) 
  Social subjects   -.03(.97)    -.16(.85) 
Pseudo R2 .09 .19 .24  .19 .27 .32 

Note. *** < .001; ** < .01, * < .05. 
 
Table 10 
Gender Distribution Across the Three Task Value Trajectories  

P1  
(High but Decreasing  
All Subjects) 
N = 408 

P2  
(Low but Increasing  
Math and Science) 
N = 280 

P3 
(High but 
 Increasing Finnish) 
N = 161 

Mean test between profiles 

Gender distribution     
Females 200 (49%) 96 (34%) 111 (69%) 47.67*** 
Males 208 (51%) 185 (66%) 49 (21%)  

Note. *** < .001. 
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Figure 1. Estimated average trajectories based on the unconditional multivariate LCM (from 9th 
grade to 11th grade)
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Figure 2. Mean of -2 log likelihood with plus or minus one standard error for the (A) 5-, (B) 10-, and (C) 100-fold cross-validation against the 
number of classes. 
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Figure 3. Estimated average trajectories across classes based on the GMM model (from grades 9 to 11).  
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