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A B S T R A C T   

Accurate air quality index (AQI) forecasting makes a difference to public health, local economic development, 
and ecological environment. As a typical geographical datum, the spatial autocorrelation (SAC) of the AQI is 
often ignored, which may violate the assumptions of some models, such as machine learning which requires 
variables to be independent and identically distributed. Considering the strong SAC of the AQI, this study pro-
poses a novel statistical learning framework integrating SAC variables, feature selection, and support vector 
regression (SVR) for AQI prediction in which correlation analysis and time series analysis are used to extract the 
spatial-temporal features. In addition, the historical AQI series of the target site is adjusted by using trigono-
metric regression to eliminate the non-stationarity. To further improve prediction accuracy, a feature selection 
method combining reinforcement learning with a heuristic algorithm is adopted. To demonstrate the effective-
ness of our proposed framework, we select the AQI data of 34 cities from the Yangtze River Delta, which is one of 
the most polluted areas in eastern China, and focus on the three largest cities, Nanjing, Hangzhou, and Shanghai. 
We compared the proposed framework with several baselines, and the experiment illustrates that the forecasting 
accuracy of the proposed framework is significantly better than the baselines at all selected key sites that can 
provide accurate predictions for air quality.   

1. Introduction 

Air pollution frequently occurs in the Yangtze River Delta in China 
(Hao et al., 2018). Studies have shown that air pollution has a negative 
impact on residents’ physical and mental health (Glencross et al., 2020; 
Jans et al., 2018), social ecological environment (Xi et al., 2020), and 
national economic development (Li and Peng, 2016). To scientifically 
issue warnings about air quality, China adopted the air quality index 
(AQI) as a new air quality evaluation standard in March 2012. The AQI is 
a dimensionless index that comprehensively reflects the concentrations 
of PM2.5, PM10, CO, NO2, SO2, and O3. With foreknowledge of air 
quality standards (GB3095-2012), the government can plan emission 
reduction actions and transport network scheduling in advance, while 
residents can intuitively understand the air quality of the day and take 
corresponding preventive measures. Therefore, accurate prediction of 

the AQI is of great significance both at the social and the individual 
levels. 

1.1. Literature review 

In AQI forecasting fields, deterministic methods, traditional statis-
tical methods, and machine learning are three common methods (Liu 
et al., 2020). Deterministic methods do not involve random processes 
and statistical theories that are based on the theory of aerodynamics, 
atmospheric physics, and atmospheric chemistry, which adopt mathe-
matical methods to build models (Zannetti, 2013). The most represen-
tative models are the Community Multi-scale Air Quality model (Yang 
et al., 2019; Pino-Cortés et al., 2022), Weather Research and Forecasting 
model (Tan et al., 2017; Sati and Mohan, 2021), and Nested Air Quality 
Prediction Modeling System (Kong et al., 2021). Nevertheless, 
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deterministic methods involve many fields of knowledge that require the 
comprehensive abilities of model users (Ma et al., 2019). Moreover, the 
model needs to assume that the discharge process of air pollution is 
stable and continuous, which is not consistent with the real situation 
(Stern et al., 2008). In fact, the discharge of pollution has a strong 
randomness. Given these limitations, some scholars have started to use 
statistical methods to deal with air quality prediction. 

Compared with deterministic methods, statistical methods are more 
convenient to use because they are driven by data (Delavar et al., 2019; 
Callens et al., 2021). Among the traditional statistical methods, multiple 
linear regression (MLR) and time series analysis are widely used in the 
field of air quality prediction. For example, Stadlober et al. (2008) used 
MLR to predict the next day PM10 concentration of the western Alpe- 
Adria-Region, which supported the government in making decisions 
on traffic control. Gocheva-Ilieva et al. (2014) used autoregressive in-
tegrated moving average model for short-term prediction of air pollutant 
concentration in Bulgaria, which has low complexity but performs well. 
Koo et al. (2020) determined that the fuzzy time series models per-
formed well in the accuracy of forecasting results and computing time 
when predicting the air pollution index of Kuala Lumpur. However, it is 
worth noting that most statistical methods assume that the relationship 
between independent and dependent variables is linear. This is incon-
sistent with the non-linearity of air quality data. Therefore, the predic-
tive performance of these methods is limited. 

Because of the high nonlinearity of air quality data, it is hard to build 
a predicting model (Brunelli et al., 2008). Machine learning has become 
popular in recent years because of its powerful ability to deal with 
complex nonlinear problems. Studies show that support vector machine 
(SVM) (Ma and Cheng, 2017; Li et al., 2017), long short-term memory 
(LSTM) (Wang and Song, 2018; Qunli and Lin, 2019), and neural 
network (Maleki et al., 2019; Qiao et al., 2020) perform well in pre-
dicting air quality. Alimissis et al. (2018) found that compared with 
MLR, artificial neural network has higher prediction accuracy under the 
condition of limited air quality network density. Li et al. (2020) pro-
posed a new dynamic ensemble forecasting system based on machine 
learning to forecast the AQI, which generates accurate air quality fore-
casting. As for the choice of machine learning algorithms, many scholars 
prefer SVM to predict air quality because of its flexibility and scalability. 
Ketu and Mishra (2021) proposed an SVM classification algorithm based 
on extensible kernels to analyze air pollution events in India. Liu et al. 
(2019) used SVM for PM2.5 class prediction, proving that SVM obtained 
more convincing results than other deep learning methods. In particular, 
Drucker et al. (1996) proposed the support vector regression (SVR) 
model, which is a variant of SVM that is suitable for dealing with 
regression problems more effectively. Robert Kurniawan et al. (2022) set 
up an SVR with Harris Hawks optimization model to monitor changes of 
the ozone concentrations, and their experiment shows that SVR attains 
high accuracy and stable performance. Considering the excellent per-
formance of SVR in dealing with nonlinear regression problems, this 
paper uses it as a forecasting model. 

Air quality forecasting is a typical spatio-temporal prediction prob-
lem (Ge et al., 2021). According to Tobler’s First Law of Geography, near 
things are more related to each other (Tobler, 1970). However, most of 
the mentioned studies on air quality prediction choose historical 
pollutant concentration and meteorological data as independent vari-
ables; they do not take the spatial data of the neighboring sites into 
consideration. Studies have proven that considering the spatial charac-
teristics of the AQI may optimize the performance of the model. For 
example, Liu and Yang (2021) used spatial correlation analysis to select 
sites that are most correlated with the target site and then set up a spatial 
multi-resolution ensemble AQI predicting model. Phruksahiran (2021) 
proposed a geographically weighted forecasting method that combines 
machine learning algorithms to enhance the accuracy of AQI prediction. 
Given the importance of spatio-temporal characteristics in predicting 
the AQI, it is necessary to introduce them into the predicting model. 

1.2. The motivation 

According to the above literature review, it is meaningful to consider 
spatio-temporal characteristics when predicting the AQI. However, 
there are still some inadequacies in the existing research: (1) In the 
spatio-temporal analysis, researchers only consider the continuous 
temporal subsets of historical data but ignore the influence of cycle 
characteristics and individual lags. (2) Many prediction models incor-
porate a feature-reducing method, but they just use filters or wrappers to 
select features; a combination of these two elements is not considered to 
improve efficiency. (3) In order to achieve high precision, many existing 
studies use deep learning. The models constructed are complex in 
structure and place high requirements on hardware. 

1.3. The contribution 

To fill the gap, this study constructs a novel spatio-temporal model 
for daily AQI forecasting. The main contributions of this study are as 
follows:  

• In this paper, we established a forecasting model for the AQI 
considering spatio-temporal effects, using a spatial correlation 
function and time series analysis to construct spatial auto-correlation 
variables of target sites. The spatial auto-correlation variables can 
effectively model the influence of spatial patterns. For the selection 
of an optimal spatial correlation function, this paper puts forward a 
model evaluation criterion to judge. The proposed model also 
considered the spatial correlation between sites, the lag effect of 
individuals, the relationship between air pollutants, and the cycle 
characteristics.  

• A feature selection method combining reinforcement learning with a 
heuristic algorithm is selected to eliminate unimportant variables in 
the feature set, which can avoid the over-fitting phenomenon of 
prediction models that results from too many variables. In this paper, 
RR, MLR and SVR are selected as basic algorithms to predict the data 
respectively. According to the selected model performance evalua-
tion indices, SVR is determined as the optimal forecasting algorithm 
for its lowest prediction error.  

• Three target sites were selected in the Yangtze River Delta, and the 
actual data of 34 air quality monitoring sites were used to verify the 
correctness of the proposed model. In addition, it was compared with 
several baselines. In this study, three experimental steps were carried 
out to verify that each component of the proposed hybrid model can 
effectively enhance the accuracy of AQI prediction. 

1.4. The structure of the paper 

The rest of this paper is organized as follows: Section 2 introduces the 
basic theories of SVR and QBSO. The spatial autocorrelation and the new 
combined AQI forecasting model are presented in Section 3. Section 4 
shows the study area, model evaluation criterion, and forecasting results 
analysis. Finally, the conclusion is discussed in Section 5. Moreover, the 
nomenclature of the paper is given in Table 1. 

2. The preliminaries 

2.1. Support vector regression 

Support vector regression is an extension of SVM, which is more 
suitable for regression analysis (Drucker et al., 1996). The basic idea of 
SVR is to minimize the error by adjusting the hyper-plane to maximize 
the interval between two decision boundaries (Parbat and Chakraborty, 
2020). The generalized equation for the hyper-plane is represented as 
follows: 

f (x,ω) = ωx+ b, (1) 
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where ω is the normal vector of the hyper-plane and b is the intercept at 
x = 0. ∊ represents the tolerance deviation, which is a manually set 
empirical value. The loss of all the samples falling into the interval band 
is not calculated, that is, only the support vector will affect its function 
model. The support vectors are the points closest to the hyper-plane. The 
coefficients can be estimated by minimizing the risk function R(C), 
which is expressed as follows: 

R
(
C
)
= C

∑N

i=1
L(yi, f (xi,ω) )+

1
2
⃦
⃦ω

⃦
⃦2
. (2) 

The insensitive Laplacian loss function is defined as follows: 

L(r) =

{
|r| − ∊, |r|⩽∊,

0, else,
(3)  

with residuals r = y − f . 
To obtain the solution of the original problem, the Lagrange multi-

plier algorithm can be used. The equation transformed with the multi-
plier is as follows: 

f
(
x, αi, α*

i

)
=

∑N

i=1

(
αi − α*

i

)
(xi⋅x)+ b, (4)  

where N is the number of observations in the training set, and αi,α*
i are 

Lagrange multipliers. The input vector xi is called the support vector, 
which provides its corresponding coefficients 

(
αi − α*

i
)
∕= 0. Support 

vectors represent the entire support vector function because they cover 
most of the information for the training set. 

Nonlinear problems are often difficult to solve. It is necessary to 
define a suitable kernel function to transform nonlinear problems into 
linear problems (Brereton and Lloyd, 2010). The choice of kernel 
function is the key to the success of SVR. The commonly used kernel 
functions are polynomial kernel, linear kernel, Gaussian kernel, and 
sigmoid kernel (Patle and Chouhan, 2013). Among all the available 
kernel functions, the Gaussian kernel function (Radial Basis Function, 

RBF) is the most widely used kernel function, which is well suited to 
dealing with nonlinear problems (Gopi et al., 2020). 

2.2. Feature selection: Q-learning based bee swarm optimization 

Before performing machine learning tasks, feature selection is usu-
ally used to eliminate irrelevant variables. Sadeg et al. (2019) proposed 
a hybrid meta-heuristic algorithm, which combines a reinforcement 
learning algorithm (Q-Learning) with a bee swarm optimization meta- 
heuristic algorithm (BSO) for feature selection, making the algorithm 
more efficient and adaptive. Q-learning (Kumar et al., 2020) is an al-
gorithm that makes decisions through rewards and punishments and 
does not need to specify the process of task completion. The target bee 
only needs to perform actions according to its own state, and then obtain 
feedback rewards or punishments from the environment. In fact, in the 
BSO algorithm (Djenouri et al., 2018; Djenouri et al., 2019), when a bee 
is distributed a solution, it will execute a classical local search first, then 
evaluate all solutions around it and finally return the best one. If the 
local search executed by the bees is replaced by Q-Learning, each bee is 
regarded as an agent gathering useful information during the search and 
benefiting from the experience of other bees. In this way, bees only need 
to search the path with high reward or low punishment so that the ef-
ficiency of the original algorithm greatly improves. This algorithm uses 
K-Nearest Neighbor (KNN) as the basic classifier. The classification ac-
curacy returned by KNN is calculated as follows: 

Acc =
True positive + True negative

Total number of sample
, (5)  

with the value of reward rt: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt←Acc(ct+1) if Acc(ct) < Acc(ct+1),

rt←Acc(ct+1) − Acc(ct) if Acc(ct) > Acc(ct+1),

rt←
1
2
∗ Acc(ct+1) if num(ct) > num(ct+1),

rt← −
1
2
∗ Acc(ct+1) if num(ct) < num(ct+1),

(6)  

where At = {at1 , at2 ,…, atn} is the set of possible actions of the current 
condition ct ; ct+1 is the next condition after selecting an action from 
At; Acc(ct) is the classification accuracy using the feature subset obtained 
from ct ; and num(ct) is the size of the feature subset obtained from ct. 

3. The proposed method 

3.1. Spatial auto-correlation 

Spatial auto-correlation (SAC) refers to the degree to which an object 
is similar in time and space to other nearby objects (Legendre, 1993). 
“Spatial” represents the spatial effect between sites, and “autocorrela-
tion” describes the impact of individual lag. In practical scenarios, the 
most common type is positive spatial auto-correlation, where a property 
in a neighboring region has a similar changing tendency (Griffith, 2011). 
SAC is often measured to avoid violating certain fundamental statistical 
assumptions of certain statistical methods (Lichstein et al., 2002). For 
example, machine learning requiring variables to be independent and 
identically distributed. Violating assumptions will affect the perfor-
mance of the model. 

The degree to which sampling sites are correlated is influenced by 
the two-dimensional Euclidean distance between the two sites (Behrens 
et al., 2018). Thus, SAC can be thought of as a two-dimensional gener-
alization of temporal auto-correlation in which the correlation (ρ) be-
tween two sites is inversely proportional to the Euclidean distance 
between the sites. To construct the SAC variables of the AQI, the 
Euclidean distance and Pearson correlation coefficient (Benesty et al., 
2009) between each two sites need to be calculated first. The calculation 

Table 1 
The nomenclature.  

Symbol Definition Symbol Definition  

ω Normal vector of the 
hyper-plane in SVR. 

ρi,j Pearson correlation 
coefficient between two 
sites.  

b Intercept at x = 0 in SVR. Di,j Euclidean distance 
between two sites.  

C Penalty parameter in SVR. yi(t) Historical AQI series of 
the i-th site.  

∊ Tolerance deviation in 
SVR. 

yi(t) Mean value of historical 
AQI series of the i-th site.  

N Number of observations in 
training set. 

θ Spatial correlation 
weights.  

M Number of samples in the 
testing set. 

Uj Residual sequence of time 
series of the j-th site.  

n Number of selected sites in 
this study. 

Rt Stationary series of AQI.  

αi Lagrange multiplier to get 
the solution of SVR. 

R̂t Prediction using the lag 
features of sites.  

α*
i Lagrange multiplier to get 

the solution of SVR. 
St Seasonality of AQI.  

Acc Classification accuracy 
returned by KNN in QBSO. 

Ty Yearly tendency.  

Ct Condition set of bees in 
QBSO. 

Ts Seasonal tendency.  

At Action set of bees in QBSO. Tm Monthly tendency.  
Mt Reward set of bees in 

QBSO. 
Tw Weekly tendency.  

λ Learning rate in QBSO. p Lag order of the 
stationary series Rt.  

γ Discount parameter in 
QBSO. 

ŷ Prediction series of AQI.   
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formulas are as follows: 

Di,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Lati − Latj

)2
+
(
Loni − Lonj

)2
√

, (7)  

and 

ρi,j =

∑N

t=1
(yi(t) − yi(t))

(
yj
(
t
)
− yj

(
t
))

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

t=1
(yi(t) − yi(t))

2

√

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

t=1

(
yj
(
t
)
− yj

(
t
))2

√ , (8)  

where Di,j and ρi,j denote the distance and correlation coefficient be-
tween sites, respectively; Lati, Loni denote the latitude and longitude of 
the i-th site; N is the number of observations in the training set, yi(t) is 
the historical AQI series in the i-th site, and yi(t) is the mean value of the 
historical AQI series in the i-th site. 

If we want to quantify the spatio-temporal impact between sites, we 
can construct SAC variables by modelling in some form of spatial 
dependence correlation structure. The reasons for SAC are varied, and so 
are the manifestations in which sampling sites can be spatially corre-
lated. The SAC variable of the i-th site can be calculated as follows: 

XSACi =
∑n

j=1
θi,jUj, (9)  

where θ is the weights calculated by the spatial correlation function; n is 
the number of selected sites; and Uj is the residual sequence of the time 
series of the j-th site. There are five commonly used spatial correlation 
functions (Cressie, 2015): 

(1) Exponential: θ = e− ρD; 
(2) Gaussian: θ = e− (ρD)2 ; 
(3) Linear: θ = 1 −

(
1 −

ρ
D
)
I(ρ < D

)
; 

(4) Quadratic: θ = 1
1+(ρD)2

; and 

(5) Spherical: θ = 1 −
(

1 − 1.5 ρ
D + 0.5

( ρ
D
)3
)

I
(
ρ < D

)
. 

Fig. 1 shows the change of spatial correlation with distance when the 

value of ρ is set to 0.5, 0.8, and 1. It can be seen that the variation trend 
of each spatial correlation function is different, so the selection of the 
appropriate spatial correlation function is also the key to improve the 
accuracy of the prediction. 

3.2. Proposed AQI forecasting model 

The general framework of the proposed AQI forecasting model is 
given in Fig. 2, and this section gives a detailed introduction of the 
modeling process. 

3.2.1. Seasonal adjustment 
To eliminate the influence of seasonality on historical data, the AQI 

series of each site needs seasonal adjustment. In this study, we used a 
trigonometric function to extract the complex seasonality in the time 
series. To extract the seasonality comprehensively, we considered the 
yearly, seasonal, monthly, and weekly cycles. The function of the sea-
sonal adjustment is as follows: 

St = b0 + e1sin
2πt
Ty

+ e2cos
2πt
Ty

+ e3sin
2πt
Ts

+ e4cos
2πt
Ts

+

e5sin
2πt
Tm

+ e6cos
2πt
Tm

+ e7sin
2πt
Tw

+ e8cos
2πt
Tw

,

(10)  

where b0 and e are the intercept and coefficients of the equation; Ty,Ts,

Tm,Tw are the yearly, seasonal, monthly, and weekly cycles of the time 
series, respectively; and t is the time to get the observation. Then, the 
stationary series can be obtained as follows: 

Rt = Yt − St, (11)  

where Yt is the original time series. The remaining information is stored 
in the new series Rt, which is the stationary series we need. 

3.2.2. SAC variables 
To extract valid information reasonably, Pearson’s test on the sta-

tionary series Rt is adopted to select monitoring sites that have a positive 
impact on the AQI in the target site. The correlation coefficients estimate 
the degree of spatial correlation of the AQI series between the target site 

Fig. 1. The variation of spatial correlation with distance and the value of ρ. The orange line denotes ρ = 1.0; the green line denotes ρ = 0.8; the blue line denotes ρ =

0.5. 
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and other sites. The closer the coefficient is to 1, the higher the corre-
lation between the two sites. In this study, the sites with correlation 
coefficients above 0.7 are selected as spatially correlated sites. The 
selected sites are expected to express the spatial information of the AQI. 
Their historical data are added as a part of the training set to improve the 
accuracy of the target site’s AQI forecasting. 

As for the temporality of the AQI, previous studies have determined 
that the AQI of the current moment of a site has a certain correlation 
with the past moment (Liu and Chen, 2020). Thus, we based the PACF 
graph to determine the lag order p of the stationary series Rt: 

R̂t = f
(
Rt− 1,Rt− 2,⋯,Rt− p

)
. (12) 

The regression model f is used to produce the best combination of 
different time lag features; R̂t is the prediction using the lag features of 
the sites. The residual sequence of each selected site is calculated via the 
following: 

U = Rt − R̂t. (13) 

With the residuals, the SAC variables of target sites can be calculated 
as Eq. 9. After these preparations are completed, the final feature set 

consists of two parts: the first part is the target site’s own features, 
including the AQI, six pollutant concentrations, the SAC variable, lag, 
and cycle characteristics; the second part is the six pollutant concen-
trations of the spatially correlated sites. 

3.2.3. Feature selection 
A hybrid meta-heuristic feature selection is adopted to search for an 

optimal combination of these features that combines Q-Learning and 
BSO. The algorithm can effectively reduce the dimension of data. The 
action in this algorithm consists of adding or removing a feature from 
the current feature set. Reward m(c, a) is calculated by regarding the 
classification accuracy by KNN as the main standard and the size of the 
feature set as a second standard. To narrow the search space, only the 
actions in At that contain the maximum similarities between the current 
solution and the best global solution are adopted. 

The choice of parameter values has a crucial impact on the dimen-
sionality reduction. Here are some key parameters: γ is a discount 
parameter. If γ is close to 0, the bee tends to choose the current rewards. 
If it is close to 1, the bee tends to consider the future reward. flip is an 
empirical parameter. The value of flip affects the bees’ searching 

Fig. 2. Framework of the proposed AQI forecasting model.  
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efficiency because it measures the distance between the current solution 
and the solution determining the search area. In fact, the smaller the 
value of flip is, the better it is to search for solutions, while the larger the 
value is, the bees are constantly expanding the search area which may 
cause the algorithm to converge to a local optimum. The process of 
QBSO can be seen in Fig. 3. 

3.2.4. The forecasting model 
MLR, RR, and SVR are all good choices when dealing with regression 

problems. In this paper, MLR and RR are used as benchmark models to 
verify the prediction performance of SVR. These models can be used 
independently or as a substitute for a component of the framework. 

Fig. 3. The pseudo code of QBSO.  
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1. Multiple linear regression (MLR) (Valentini et al., 2021): MLR is an 
extension of linear regression, which is commonly used to deal with 
multi-factor time series predicting problems.  

2. Ridge regression (RR) (McDonald, 2009): RR is an improved least 
squares estimation method that introduces the bias of the least 
squares method and part of the information to make the estimation 
of the regression coefficients more consistent with the actual case 
and more reliable. 

Some details of MLR and RR can be found in A and B, respectively. 
The features obtained are put into three forecasting models, 

respectively. Considering the nonlinear relationship between air data, 
RBF is chosen as the kernel function of SVR. For parameters involved in 
RR and SVR, cross-validation is used to make decisions. The three target 
sites are processed in the same way to obtain forecasting results. The 
complete process of prediction is shown in Fig. 4. 

4. Case study 

4.1. Data collection 

The Yangtze River Delta (YRD) is one of the most developed and 
fastest growing economic development regions in China. By the end of 
2020, the YRD had a population of 235 million, covering an area of 
about 358,000 km2, and the resident population was as high as 60%. 
However, this rapid economic development has caused serious air 
pollution. In recent years, urban air quality has deteriorated, and visi-
bility is decreasing because of petrochemical combustion and pollution 
emissions (Ma et al., 2019). Now, the YRD has become one of the most 
polluted areas in eastern China. In this study, Shanghai, Hangzhou, and 
Nanjing are selected as the target sites to verify the effectiveness of the 
proposed model. Fig. 5 shows a brief introduction and the locations of 
these three sites. 

This study selects daily AQI data from 34 air quality monitoring sites 
in the YRD collected from January 1st, 2019 to December 31st, 2020. 
Moreover, the calculation formula for the AQI is given as follows: 

I =
Ihigh − Ilow

Chigh − Clow

(
Cp − Clow

)
+ Ilow, (14)  

where I is the AQI output value, Cp is the pollutant concentration as 
input value, Clow is the concentration limit less than or equal to Cp,Chighis 
the concentration limit greater than or equal to Cp, Ilow corresponds to 
the exponential limit of Clow, and Ihigh corresponds to the exponential 
limit of Chigh. Clow,Chigh, Ihigh and Ilow are all known constants. Based on 
Eq. 14, the value of the AQI is only related to the concentration of 
pollutants, which is not affected by meteorological factors. Therefore, in 
this study, only six major pollutants are added in the training set as 
auxiliary data, including the concentrations of PM2.5, PM10, CO, NO2,

SO2, and O3. The data were obtained from the air quality online moni-
toring and analysis platform (https://www.aqistudy.cn/). 

Table 2 lists the statistical indicators of the experimental data and 
Fig. 6 shows the daily AQI at three target sites from 2019–01-01 to 
2019–03-01, both of which show that the three target sites have 
different statistical characteristics. 

4.2. Evaluation criterion 

In this study, the model with the best prediction effect will be 
selected according to three commonly used evaluation indices in pre-
diction problems, including RMSE (Root Mean Square Error), NSE 
(Nash–Sutcliffe efficiency coefficient), and MAPE (Mean Absolute Per-
centage Error). Similarly, the selection of the best SAC variable will be 
judged according to these three indices. The definitions of each index are 
as follows:(1) RMSE: It measures the deviation between the observed 
value and the true value, which is often used to measure the outcomes 
predicted by machine learning models. It is defined as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M

∑M

i=1
(yi − ŷi)

2

√
√
√
√ . (15)  

(2) NSE: If its value is close to 1, the model quality is good and the model 
credibility is high. The closer its value is to 0, the more reliable the 
overall result is, but the simulation error is large. If the value is much less 
than 0, the model is not credible. It is defined as follows: 

Fig. 4. The complete process of prediction.  
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NSE = 1 −

∑M

i=1
(yi − ŷi)

2

∑M

i=1
(yi − yi)

2
. (16)  

(3) MAPE: The smaller the MAPE, the better the model. It is defined as 
follows: 

MAPE =
100%

M

∑M

i=1

⃒
⃒
⃒
⃒
⃒

yi − ŷi

yi

⃒
⃒
⃒
⃒
⃒
. (17) 

In these three formulas, M represents the number of samples in the 
testing set; yi is the actual AQI series, representing the observed value of 

the i-th sample, and yi denotes the total average of the actual values; ŷi is 
the forecasting result, representing the predicted value of the i-th 
sample. 

4.3. The experimental results 

The experiment in this study includes three main objectives: 1) to 
verify the influence of the SAC variable on the model; 2) to prove the 
effect of feature selection by QBSO; and 3) to confirm the influence of 
the SAC variable and QBSO synchronously. To validate these goals, 
some models are adopted in this paper, which are listed in Table 3. We 
classify these models into two categories: benchmark models and 

Fig. 5. Brief introduction to three cities in Yangtze River Delta.  

Table 2 
Statistical indicators of air pollution data in three target sites.    

Type of data 

Target site Statistical indicator AQI PM2.5 PM10 CO NO2 SO2 O3 

Nanjing Minimum 17 5 11 0.3 10 3 8 
Maximum 222 145 365 1.6 103 24 244 
Mean 79.11 35.77 64.09 0.79 38.77 8.46 104.4 
Standard deviation 31.99 22.66 35.69 0.21 16.04 3.43 48.83          

Shanghai Minimum 20 6 7 0.3 6 4 14 
Maximum 206 156 212 0.6 115 16 274 
Mean 69.91 32.95 44.66 0.65 39.07 6.63 95.63 
Standard deviation 29.06 21.13 24.85 0.2 16.58 1.97 40.47          

Hangzhou Minimum 22 6 8 0.3 7 3 4 
Maximum 179 135 209 1.7 89 17 236 
Mean 73.87 33.97 60.79 0.746 39.72 6.29 94.86 
Standard deviation 29.16 19.82 32.19 0.19 15.32 1.83 50.73  
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proposed model. The data of the three target sites contain 731 daily 
observations. We use the cross-validation method to prevent over- 
fitting. The 1st - 585th data are the training set used to train fore-
casting models. The 586th - 731st data are the testing set used to eval-
uate the final forecasting performance. 

4.3.1. The result of the seasonal adjustment 
For air quality data, the common tendency types are yearly, seasonal, 

monthly, and weekly trends. Fig. 7 shows these four trends respectively 
by using the first 30 days of historical AQI data from the three target 
sites. The fifth picture for each city is the stationary series after seasonal 
adjustment. 

4.3.2. The construction of the SAC variable 
The proposed model uses the Pearson correlation coefficient to 

measure the spatial correlation of the AQI between the target site and 
other sites. Sites with a correlation coefficient greater than 0.7 are 
selected as spatially correlated sites. Fig. 8 shows the correlation co-
efficients among some cities in the YRD. Their geographical distribution 
is shown in Fig. 9. Table 4 lists the spatially correlated sites of each 
target site. 

The lag order of each station was determined according to the PACF 

diagram, and the optimal combination of lag features and residual 
sequence were obtained by linear regression. Table 5 shows the lag 
features affecting the targeted sites and their regression coefficients. 

The spatial correlation of each site is different. To find the optimal 
spatial correlation function of the target site, we calculated five SAC 
variables and introduced them into the model respectively. Taking the 
model without any SAC variables as a comparison, for the convenience 
of visualization, Fig. 10 only shows the model results of the exponential 
and spherical SAC variables. The complete results of the three target 
sites are shown in Table 6. As shown in Fig. 10, after adding an SAC 
variable, the models provide lower RMSE and higher NSE. Especially, 
the values of NSE are all close to 1, indicating that the models with an 
SAC variable have better predictive ability. For Nanjing, the introduc-
tion of the linear SAC variables can greatly reduce the RMSE from 
237.296 to 7.981 of MLR. For Hangzhou, when adding the Gaussian SAC 
variable, the MAPE of SVR is reduced from 11.974 to 2.895. These re-
sults indicate that the SAC variables contain more related information 
on the AQI. For Hangzhou and Shanghai, when the forecasting models 
are MLR and RR, the MAPE value is not ideal compared with the model 
without any SAC variables. This is because MLR and RR do not handle 
extreme values well. Table 2 describes that there is a big difference 
between the maximum and minimum of air quality data in each city. 
Moreover, air quality data fluctuate greatly over time, which also leads 
to MLR and RR failing to provide robust predictions. In Fig. 10, we can 
also see that different spatial functions have different effects on the 
model. Nanjing and Shanghai are more suitable for the spherical spatial 
variable, and Hangzhou is suitable for the Gaussian spatial variable. In 
this study, for the selection of the best spatial correlation function of 
each site, the method we adopted is to observe the performance of the 
model when adding a corresponding SAC variable, and determine the 
best one with RMSE, NSE, and MAPE. 

4.3.3. Feature selection by QBSO 
Feature selection can effectively improve the efficiency of the model. 

Thus, QBSO is adopted in our experiment to eliminate irrelevant vari-
ables and avoid over-fitting. In our experiment, we manually tune the 
parameters to find the optimal parameter values for classification ac-
curacy and running time, setting the learning rate λ and the discount 
parameter γ at 0.9 and 0.1, respectively. The value of flip is 5. Table 7 
lists the number of the original features and selected features, respec-
tively, while also containing the accuracy of the optimal solution and 
average time to evaluate a solution. As shown in Table 7, QBSO can 
quickly judge the correctness of a solution. For the three data sets 
selected in this study, QBSO achieved good classification results. To 
verify the effectiveness of QBSO, we compared it with unfiltered data 

Fig. 6. The trends of air quality at three target sites from 2019-01-01 to 2019-03-01.  

Table 3 
All models adopted in the experiment.  

Model Abbreviation Definition 

Benchmark 
Models 

MLR Multiple Linear Regression 
RR Ridge Regression 
SVR Support Vector Regression 
SAC-MLR MLR with one Spatial Auto-correlation 

variable 
SAC-RR RR with one Spatial Auto-correlation 

variable 
SAC-SVR SVR with one Spatial Auto-correlation 

variable 
QBSO-MLR MLR with Q-Learning Based Bee Swarm 

Optimization 
QBSO-RR RR with Q-Learning Based Bee Swarm 

Optimization 
QBSO-SVR SVR with Q-Learning Based Bee Swarm 

Optimization 
SAC-QBSO- 
MLR 

MLR with QBSO adding one SAC variable 

SAC-QBSO-RR RR with QBSO adding one SAC variable  

Proposed Model SAC-QBSO- 
SVR 

SVR with QBSO adding one SAC variable  
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sets. Fig. 11 shows the influence of QBSO on the model directly. Table 8 
gives the specific values of the three evaluation indexes of each model. 
We can see that when QBSO is applied to the data set, SVR has the lowest 
MAPE and RMSE compared with other models in the three sites, and the 
improvement of NSE value is obvious. For Hangzhou and Shanghai, 
QBSO can reduce the MAPE of MLR and RR, but for RMSE, it has no 
significant decrease. About these two cities, QBSO is more suitable to be 
used in combination with SVR, because the nonlinear correlation of the 
data is also considered when QBSO filters variables, while MLR and RR 
cannot handle nonlinear relations well. 

In addition, QBSO has the advantage of ranking the importance of 
individual features. Finding the most influential factor on the target site 
can help the government to make decisions about pollution control. 
Table 7 lists the top three most influential features of the target sites. 

4.3.4. The final forecasting model 
In this section, we proved the effectiveness of introducing SAC var-

iables and QBSO simultaneously into the model. Fig. 12 shows each 
model’s performance, and the complete data are in Table 9. It can be 
seen from Fig. 12 that the proposed SAC-QBSO-SVR framework per-
formed best for all selected target sites. Under the condition of using the 
same data set, although the RMSE and NSE values of MLR and RR are 
also relatively satisfying, their MAPE values are very high, while the 
MAPE values of SVR are relatively low, which indicates that SVR is a 
more suitable forecasting model for this study. As for the framework 
constructed in this study, the selection of SAC variables was determined 
based on the RMSE, NSE, and MAPE of the model, and each site had its 
own optimal spatial calculation function. It is impossible to determine a 
single optimal spatial function for all sites because the spatial relevance 
of each site is affected by different factors. Fig. 13 shows the first 30 
days’ prediction from the test set of each model. The proposed model 
chose the optimal spatial correlation function of each target site, 
respectively. We find that the predicted values of the proposed model 
are closest to the actual values. Overall, the model established in this 
paper has high prediction accuracy and stable performance, without 
large error fluctuations, and it can accurately predict the AQI values of 

the sites. 

4.4. General discussion 

Summarizing the experimental results above, each component of the 
proposed framework, including spatio-temporal analysis, feature selec-
tion, and prediction, are essential to guarantee excellent performance. 
Taking Nanjing city as an example, compared with the original predic-
tion set, the performance of MLR, RR, and SVR improved after any SAC 
variables was added, but the spherical SAC variable was the best one. As 
for the three forecasting models, SVR changed most significantly: its 
RMSE and MAPE decreased by 73.2% and 79.1%, respectively, and NSE 
increased by 59.5%. QBSO was used for dimensionality reduction, and 
the three evaluation indices of SVR were all improved by about 30%. 
The proposed SAC-QBSO-SVR model can optimized RMSE, NSE, and 
MAPE by 77.6%, 59.5%, and 81.4%, respectively, in our test dataset 
compared with other models. The proposed SAC-QBSO-SVR considers 
the spatial autocorrelation of different monitoring sites, which can 
significantly improve air quality prediction. 

Besides monitoring air quality changes, the proposed model can also 
help develop feasible pollution management measures. The addition of 
SAC variable significantly improved the prediction accuracy, which 
confirmed that the air quality in the YRD region had spatial correlation 
characteristics. Therefore, cross-regional cooperation pollution control 
is essential to achieve the desired level of pollution management. We 
suggest imposing air pollutants emission limits on the major regional 
businesses and prohibit the construction or expansion of heavy polluting 
enterprises such as steel, nonferrous metals and chemical industries in 
urban areas and their suburbs. QBSO algorithm can rank the importance 
of features. As can be seen from Table 7, for the AQI of the three sites, the 
main influential pollutants are PM2.5, NO2 and O3, which are primarily 
caused by coal, oil combustion and automobile exhaust emission. Hence, 
we propose to adjust the energy structure, promoting the development 
of clean energy such as solar, wind and hydropower, and advocate the 
efficient use of coal. At the individual level, residents are urged to use 
green public transport as much as possible. These suggestions are not 

Fig. 7. Different tendencies and residual series of historical AQI of the three target sites.  
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Fig. 8. Pearson correlation coefficient between part of cities in the Yangtze River Delta region.  

Fig. 9. Geographical distribution of the selected spatially correlated sites.  
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only applicable to the region discussed in this article, but also to other 
parts of China to combat air pollution. 

5. Conclusions 

This study put forward a novel AQI prediction model based on 
spatio-temporal effect. The model included spatial auto-correlation 
analysis and feature selection. Compared with the traditional statisti-
cal AQI forecasting model, the proposed SAC-QBSO-SVR considered the 
spatial correlation and lag effect of the selected sites concurrently. In 

addition, by using machine learning algorithms, the proposed model has 
lower complexity and satisfying performance. The spatial auto- 
correlation variables were constructed by using the residual sequence 
of the sites and were introduced into the feature set with other features 
of the target site and their strong spatially correlated sites, to achieve 
accurate and stable prediction of the AQI. After the predicted values are 
obtained, based on the air quality standards (GB3095-2012), residents 
can take corresponding preventive measures; the government can also 
prepare for bad weather and issue warnings in advance. In addition, by 
comparing it with several baseline models, it was found that the pro-
posed model has higher prediction accuracy and lower predicting error, 
taking RMSE, NSE, and MAPE as the evaluation criteria. The main re-
sults of this study are as follows: 

• The addition of AQI, PM2.5, PM10, CO, NO2, SO2, and O3 concen-
trations in neighboring stations can contribute to the spatiality of the 
data and significantly improve the prediction accuracy of the model.  

• The construction of spatial SAC variables can reflect the spatial and 
lag effects of AQI concurrently.  

• The model combines a QBSO feature selection algorithm with SVR, 
which can not only effectively reduce the feature dimension, but also 
better deal with the nonlinear relationship between variables to 
obtain higher accuracy. 

In fact, there is also spatial heterogeneity between the AQI and at-
mospheric pollutant concentrations (Yang et al., 2018), that is, the 

Table 4 
The selected spatially correlated sites and their Pearson correlation coefficients between target sites.  

Target sites Spatially corrlated sites 

Nanjing city Zhenjiang Maanshan Yangzhou Changzhou Chuzhou 
ρ 0.896 0.894 0.870 0.859 0.857 

city Taizhou Wuhu Wuxi Hefei  
ρ 0.822 0.822 0.813 0.804         

Hangzhou city Wuxi Ningbo Wuhu Maanshan Jinghua 
ρ 0.748 0.735 0.727 0.713 0.704        

Shanghai city Nantong Wuxi Changzhou Ningbo  
ρ 0.815 0.793 0.739 0.714   

Table 5 
Regression coefficients of lag features, their standard errors and t-value for 
target sites.    

Estimate Std. Error t-value 

Nanjing Intercept − 0.028 1.002 − 0.028 
Lag1 0.525 0.037 14.185 
Lag2 − 0.055 0.037 − 1.491      

Hangzhou Intercept 0.008 0.882 0.009 
Lag1 0.539 0.031 17.276      

Shanghai Intercept − 0.009 − 0.010 0.992 
Lag1 0.578 0.037 15.680 
Lag2 − 0.099 0.037 − 2.680  

Fig. 10. The influence of SAC variables on prediction results. To facilitate visualization, the negative NSE value of Nanjing is set to 0.  
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relationship between the AQI value and atmospheric pollutant 

concentration and other related variables changes with the change of 
spatial distribution. Therefore, future research should properly consider 
spatio-temporal heterogeneity, not just spatial autocorrelation. Due to 
the availability of the data, other factors affecting concentration, such as 
temperature, humidity, wind direction, and human activities, are not 
considered in this paper. In future work, these factors can be considered 
to further improve the performance of the model. In addition, the ex-
periments in this study were based on data from the Yangtze River Delta 
of China in 2019–2020, and the results obtained may only be suitable for 
the study area. In the research of air pollution, the proposed model is not 
only suitable for AQI data, but also for other pollutants concentration, 
such as PM2.5, SO2 and so on. Additionally, the proposed model can be 
employed to other environmental fields of applications, like water 
quality, hydrology, and geology, and potentially achieve great fore-
casting accuracy. 

Table 6 
The influence of SAC variables on prediction results.    

Nanjing Hangzhou Shanghai   

RMSE NSE MAPE RMSE NSE MAPE RMSE NSE MAPE 

Without MLR 237.296 − 80.395 263.542 12.782 0.569 35.686 9.010 0.907 44.903 
SAC RR 21.296 0.345 50.438 13.191 0.147 33.805 10.986 0.861 42.780 
variable SVR 16.323 0.615 19.441 11.974 0.448 12.676 16.839 0.674 16.524             

Exp-MLR 10.435 0.843 44.615 2.629 0.987 34.484 3.346 0.987 47.604  
Gau-MLR 11.613 0.805 45.424 2.568 0.988 34.505 3.363 0.987 47.587  
Qua-MLR 10.240 0.848 44.561 2.925 0.984 34.458 3.683 0.984 47.602  
Spher-MLR 12.068 0.789 45.914 3.590 0.976 34.409 0.956 0.999 47.383  
Lin-MLR 7.981 0.908 43.365 4.090 0.969 34.564 4.070 0.734 47.643  
Exp-RR 4.699 0.968 42.645 2.705 0.986 34.616 3.518 0.986 46.892 

With Gau-RR 4.808 0.967 42.626 2.770 0.986 34.758 3.542 0.986 46.857 
SAC Qua-RR 4.932 0.965 42.607 2.997 0.983 34.585 3.902 0.982 46.808 
variable Spher-RR 3.493 0.982 42.956 3.748 0.974 34.038 0.956 0.999 47.383  

Lin-RR 4.862 0.966 42.822 4.111 0.968 34.272 4.089 0.693 47.137  
Exp-SVR 7.528 0.918 6.510 2.921 0.984 3.022 15.076 0.738 8.153  
Gau-SVR 7.881 0.910 6.756 2.895 0.984 2.935 15.155 0.736 8.086  
Qua-SVR 8.313 0.900 7.085 3.241 0.980 3.391 15.690 0.717 8.665  
Spher-SVR 4.369 0.972 4.056 4.158 0.968 4.242 12.396 0.823 4.428  
Lin-SVR 7.883 0.910 7.080 5.559 0.942 5.218 14.597 0.569 9.026  

Table 7 
The results of QBSO.  

Target sites Nanjing Hangzhou Shanghai 

Number of the original 
features 

74 51 47 

Number of the selected 
features 

32 23 22 

Accuracy 0.89 0.86 0.90 
Average time to evaluate a 

solution 
0.043 s 0.037 s 0.042 s 

The top three most 
influenting features 

NO2 of 
Nanjing 

lag1 AQI of 
Hangzhou 

lag1 AQI of 
Shanghai 

O3 of 
Maanshan 

NO2 of Wuxi O3 of Ningbo 

PM2.5 of 
Wuhu 

SO2 of Ningbo PM2.5 of 
Shanghai  

Fig. 11. The impact of QBSO on prediction results. To facilitate visualization, the negative NSE value of Nanjing is set to 0.  
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Table 8 
The influence of QBSO on prediction results.   

Nanjing Hangzhou Shanghai  

RMSE NSE MAPE RMSE NSE MAPE RMSE NSE MAPE  

MLR 237.296 − 80.395 263.542 12.782 0.569 35.686 9.010 0.907 44.903 
Without QBSO RR 21.296 0.345 50.438 13.191 0.147 33.805 10.986 0.861 42.780  

SVR 16.323 0.615 19.441 11.974 0.448 12.676 16.839 0.674 16.524   

MLR 15.244 0.668 42.563 13.176 0.565 32.767 13.649 0.786 41.431 
With QBSO RR 17.372 0.568 42.510 13.517 0.287 32.408 14.510 0.758 41.162  

SVR 11.407 0.814 14.108 7.583 0.509 7.973 8.229 0.922 9.968  

Fig. 12. The influence of SAC variables and QBSO on prediction results. To facilitate visualization, the negative NSE value of Nanjing is set as 0.  

Table 9 
The influence of SAC variable and QBSO on prediction results.    

Nanjing Hangzhou Shanghai  

Model RMSE NSE MAPE RMSE NSE MAPE RMSE NSE MAPE 

Without SAC MLR 237.296 − 80.395 263.542 12.782 0.569 35.686 9.010 0.807 44.903 
variable RR 21.296 0.345 50.438 13.191 0.147 33.805 10.986 0.861 42.780 
and QBSO SVR 16.323 0.615 19.441 11.974 0.448 12.676 16.839 0.674 16.524             

Exp-QBSO-MLR 15.327 0.660 47.245 2.748 0.986 34.56 3.592 0.985 47.595  
Gau-QBSO-MLR 17.48 0.660 48.969 2.712 0.986 34.299 3.611 0.985 47.568  
Qua-QBSO-MLR 15.974 0.631 47.559 3.086 0.982 34.157 3.907 0.982 47.609  
Spher-QBSO-MLR 13.614 0.732 47.480 3.585 0.976 33.959 2.346 0.994 47.320  
Lin-QBSO-MLR 13.85 0.723 45.428 4.312 0.965 34.065 4.450 0.977 47.788  
Exp-QBSO-RR 5.091 0.963 42.686 2.800 0.985 34.151 3.761 0.984 47.085 

With SAC Gau-QBSO-RR 5.223 0.961 42.677 2.741 0.986 34.241 3.801 0.983 47.034 
variable Qua-QBSO-RR 5.371 0.958 42.640 3.143 0.982 34.069 4.111 0.981 47.031 
and Spher-QBSO-RR 3.574 0.982 43.069 3.708 0.974 33.803 2.396 0.993 47.119 
QBSO Lin-QBSO-RR 5.187 0.961 42.795 4.519 0.962 33.866 4.511 0.977 47.269  

Exp-QBSO-SVR 6.627 0.937 5.650 2.905 0.984 3.084 12.849 0.810 7.151  
Gau-QBSO-SVR 6.733 0.934 5.798 2.932 0.984 3.140 12.945 0.807 7.114  
Qua-QBSO-SVR 7.354 0.922 6.116 3.272 0.980 3.490 13.301 0.796 7.634  
Spher-QBSO-SVR 3.642 0.981 3.620 4.098 0.969 4.226 10.233 0.880 5.087  
Lin-QBSO-SVR 6.653 0.936 6.163 5.574 0.942 5.174 12.187 0.829 8.042  
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Appendix A. Multiple linear regression 

Multiple linear regression (MLR) is a kind of linear regression that is mainly used to deal with multi-factor problems. In fact, using the optimal 
combination of multiple independent variables to estimate or forecast the dependent variable is more effective and practical than using a single 
independent variable (Uyanık and Güler, 2013). Therefore, MLR is more commonly used than linear regression, which is used extensively in 
econometrics and time series analysis. The equation of MLR is as follows: 

yi = β0 + β1xi1 + β2xi2 +…+ βpxip +∊, (A.1)  

and the estimation of β can be solved by a matrix operation: 

β̂ =
(
XT X

)− 1XT y =
(∑

xixT
i

)− 1(∑
xiyi

)
(A.2)  

where i = 1,2,⋯,n, n is the number of observations; yi is the dependent variable; xi is the explanatory variable; β0 is the intercept; βp is the slope 
coefficients for each explanatory variable; and ∊ represents the model’s error term. 

Appendix B. Ridge regression 

Ridge regression (RR) is a possible method to solve the imprecision of least square estimation when multiple collinearities exist in the linear 
regression model. Different from the unbiased estimation of linear regression, the advantage of RR lies in its unbiased estimation, which tends to 
shrink some coefficients towards 0. Therefore, it can alleviate the problems of multicollinearity and overfitting (McDonald, 2009). 

Unlike MLR, the estimation of β is calculated as follows: 

β̂ridge =
(
XT X + kIn

)− 1XT Y (B.1)  

where In is the n× nidentity matrix and k > 0. 

Fig. 13. The prediction of models when SAC variables and QBSO are added into model concurrently.  
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