
IMAGE CAPTURE FOR CONCRETE PROGRAMMING
Building Schemata for Problem Solving

Vladimir Estivill-Castro and Brendan Bartlett
Griffith University, Brisbane, Australia

Keywords: Information technologies supporting learning, Software tools.

Abstract: Problem solving in IT consists of expressing an algorithm for abstract models of computation. This has proven
to be hard, but it can be taught, specially when students are exposed to concrete and visual illustrations of
artefact behaviour. IT graduates require problem-solving skills, but it is difficult to teach such problem-solving
skills in the context of huge bodies of technological concepts, large programming languages and the need for
system-focused courses required for accreditation. We propose to design and develop concrete programming
activities that will enable to articulate problem solving across many subjects. The goal is also to place concepts
in the context of concrete problems, and to progress from concrete settings (where programming is achieved
by building structures) to visual settings (where programming is achieved by re-arranging icons in a GUI), and
later to textual programming in imperative APIs likeMaSH. We capture the participants constructions with a
camera and this is a program that produces behavior. The approach delivers the potential to take students to
investigate research questions.

1 INTRODUCTION

Students graduating from Information and Communi-
cation Technology degrees should be able to perform
problem solving by expressing the solution algorith-
mically. The ability to solve problems with a degree
of creativity is highlighted as an essential characteris-
tic for both novice undergraduate engineers and qual-
ified IT professionals in benchmarks published by the
OECD (Houghton, 2004). Problem solving is cru-
cial to the professional success of graduates of the
School of Information and Communication Technol-
ogy at Griffith University, Australia. It is usually man-
ifested by the ability to program a computer so that,
from any set of input values that constitute a valid in-
stance of the problem, the computer finds out the solu-
tion to such instance. In fact, such abilities are consid-
ered relevant even from high-school. Under the label
of “Working ways” high-school students in Queens-
land are expected to

• plan activities and investigations to explore con-
cepts,

• plan strategies to solve mathematical questions,
problems and issues,

• evaluate thinking and reasoning,

• perform thinking and working and reasoning that
can be applied to solve problems in real-life and
abstract investigations.

Problem solving for IT graduates means not only
solving problems (Dewar, 2006), but also express-
ing a method, an algorithm, in the language that de-
fines the operation of an automaton (Dale and Weems,
2002). This means not only figuring out the answer to
a problem, but also describing the step-by-step pro-
cess that a machine (with no intelligence or common
sense) would be performing to obtain the answer. In
this scenario, there is much creativity, analysis and de-
sign skills in developing solutions, since there is usu-
ally a large body of acceptable solutions.

Algorithmic problem-solving thinking is at the
foundation of rational thinking in our civilization.
Greek thinkers where particularly interested in con-
structive methods as illustrated by Euclid’s elements.
We argue here that such approach can be regarded as
concrete programming. It offered a few basic oper-
ations (usually to draw a circle with a compass and
to draw a straight line with a ruler). Propositions
and their proofs were algorithms and proofs of cor-
rectness for such algorithms (Toussaint, 1993a; Tous-
saint, 1993b). The model of computation had a phys-
ical analogue and it was possible to experiment with

56
Estivill-Castro V. and Bartlett B. (2011).
IMAGE CAPTURE FOR CONCRETE PROGRAMMING - Building Schemata for Problem Solving.
In Proceedings of the 3rd International Conference on Computer Supported Education, pages 56-68
DOI: 10.5220/0003314100560068
Copyright c SciTePress

a compass and a ruler on an instance of the problem.
We suggest that this approach should be used to

introduce students to programming. Our approach
is in contrast to the tradition to link closely the in-
struction on problem solving to instruction in syntax
and semantics of programming languages (Schneider,
1982; Koffman, 1988; Etter and Ingber, 1999; Sav-
itch, 2009). We question and seek an earlier con-
nection between problem solving and computer pro-
gramming. We propose to move gradually from con-
crete personal experiences to symbolic textual (ab-
stract) programming. We propose that the technology
is already there for capturing (in images and video)
the concrete constructions by the students, and that
such constructions should represent behaviour.

We aim for student involvement in action and aim
for better outcomes of first year IT students. The
prompt for this improvement will be a program of
staged activities through which students build their
skills and agency in problem solving at both a meta-
level and for specific skills they will need in the
first year course-work. We describe one develop-
mental activity with an emphasis on concrete oper-
ations moving through to an informed and abstracted
familiarity. We aim to strengthen students’ building
schemata by associating their action with appropriate
language for its labelling and discussion.

Problem-solving skills are more important than
learning several programming languages, because the
technologies to program computers vary constantly
- computers are faster and with more memory, but
they remain fundamentally state-transition machines.
Thus, learning a particular programming language is
ephemeral; describing solutions to problems algorith-
mically is and will continue to be an endurable skill.
However, learning the problem-solving skills neces-
sary for programming has proven to be hard, and so
has teaching them (Adams and Turner, 2008). It re-
quires significant conceptual and abstract thinking,
regularly associated with the skills for solving mathe-
matical problems (Polya, 1957). However, for IT stu-
dents, there are additional challenges.

First Challenge: the generation of an algorithm
that works for all instances of the problem. Is-
sues are complicated because is impossible to per-
ceive with our senses what goes on on a computer
(let alone through entities like the Internet and the
Word Wide Web). A large literature on teach-
ing problem solving and a discussion on analyt-
ical skills in physics, mathematics and engineer-
ing is presented by James E. Stice at University
of Texas1 mostly deriving from the pioneering

1wwwcsi.unian.it/educa/problemsolving/sticeps.html

work of Donald R. Woods (Woods et al., 1975).
Other literature and its references cover many as-
pects of teaching problem solving (Adams et al.,
2007; Prince and Hoyt, 2002). For IT, teaching
and learning problem solving has the added com-
plexity of explaining and coding the solution in a
programming language.

Second Challenge:the abstraction of the descrip-
tion; namely, the language in which the solution is
expressed is an abstraction of the changes of state
that occur in abstractly described objects. The
complications of programming computers have
resulted in the software crisis. Producing software
is extremely difficult, and usually does not meet
user expectations, it is faulty and needs upgrades.
The price of more powerful hardware drops while
inferior software remains costly. New software
developing tools are more sophisticated and pow-
erful. But such advances require more concepts,
from structured programming, to object-oriented
and recently to agent programming, for example.
Moreover, with each of these advancements, the
teaching of problem solving competes with the
need to train the IT-students in sophisticated en-
vironments as well as the need to introduce them
to a large body of concepts. As a result, some
students perceive fundamental concepts as unre-
lated and even irrelevant. However, the relevant
knowledge and common thread is indeed problem
solving and techniques to obtain algorithms.

2 THE STRATEGY

Our first element is to develop learning activities per-
formed by students in teams. These activities must
be performed outside computer labs and must pro-
duce concrete constructions. Participants collaborate
in teams, around their constructions and not in the dif-
ficult setting of sharing one monitor or a keyboard.
We remove the arrangement of participants facing in
one direction, to participants in collaborative arrange-
ments surrounding a construction that is captured and
interpreted by digital media. Then the software in
computer vision and image analysis is used to convert
the construction into meaningful behaviour in an au-
tomaton. Activities2 relate to knowledge introduced
in at least 6 but possibly all 8 first-year courses of
the Bachelor of IT. While such knowledge is not a
prerequisite, the activities introduce it, reinforce it, or
illustrate it by providing additional context. The ac-
tivities integrate concepts so students can establish re-

2Activities are independent, but thematically linked.

IMAGE CAPTURE FOR CONCRETE PROGRAMMING - Building Schemata for Problem Solving

57

GLOBAL STEPS:

1. UNDERSTAND THE PROBLEM
2. DEVISE A PLAN
3. CARRY OUT THE PLAN
4. LOOK BACK AND REFLECT

1. Examine the solution obtained.
2. Can you check the result? Can you check

the argument?
3. Can you derive the solution differently?

Can you see it at a glance?
4. Can you use the result, or the method, for

some other problem?

Figure 1: Basic/classical approach to problem solving.

lationships between courses. For example, activities
on graph algorithms will incorporate concepts like ac-
cumulators, counters and absolute addressing from
1007ICT Introduction to Computer Systems and Net-
works but also notions like graphs from 1002ICT Dis-
crete Structures 1. Activities whose foundations are
state-automata, logic gates and Turing machines will
be linking with 1004ICT Foundations of Comput-
ing and Communication and 1007ICT again. Com-
plexity of software development and problem solv-
ing will take from 1410ICT Introduction to Infor-
mation Systems and 1420ICT Systems Analysis and
Design. Problem solving for programming is taken
from 1001ICT Programming 1 and 1005ICT Pro-
gramming 2. Activities will also be monitored across
vertical paths of the program.

The second element of the strategy is that activ-
ities can be extra curricular and students participate
in them by invitation and voluntary. Activities can be
presented within the framework of a competition (in
a similar fashion to theScience an Engineering Chal-
lenge) with interesting prizes (for added motivation).
Activities can also be adopted by course conveners.
For example, some of the activities may become re-
quired assessment in some of the courses mentioned
earlier; however, this would be if adopted by lecturers
or conveners of some of the courses.

Educational theories likeConstructive Align-
ment (Biggs, 1999) suggest students should be
aware that the learning outcomes are problem-
solving skills and we will follow this sugges-
tion. Therefore, the next element of the strat-
egy is a guide onTeaching Problem Solving
based on the theory from technical fields like
engineering and mathematics (Wickelgren, 1995;
Houghton, 2004) (and the Higher education Academy
Engineering Subject Center on Problem Solv-
ing [www.engsc.ac.uk/er/theory/problemsolving.asp]

Figure 2: The basic operations.

and its corresponding supporting educational theo-
ries (Houghton, 2004)) but adapted to information
technology and problem solving for algorithm devel-
opment. We will useConstructive Alignment(Biggs,
1999) in order to ensure our assessment methods and
our learning activities achieve the intended learning
outcomes; namely improved problem-solving skills.
Our intention is to evaluate under the following def-
inition “Problem solving is the process of obtaining
a satisfactory solution to a novel problem, or at least
a problem which the problem solver has not seen be-
fore” (Woods et al., 1975). We may extend this to
problem solving for software development and sys-
tems architecture.

A fundamental difficulty in teaching ICT at Grif-
fith University is the limited ability of a substan-
tial percentage of the student cohort to think in
abstract terms (we explained before the low OP
scores achieved by students enrolling in the pro-
grams (Estivill-Castro, 2010)). This restricts the stu-
dent’s ability to solve problems, as well as their ability
to recognize the potential of applying already known
knowledge in unfamiliar new situations (which, if de-
scribed in abstract terms, proves to be the same or
similar to an already known problem). The planned
teaching / learning methodology we apply has some
distinct characteristics:

• In the activities, students are presented with con-
crete problems and participate in solving them.
But the activities engage students with different
levels of abstract thinking ability to successfully
participate.

• Through a series of increasingly difficult exercises
involving guidance (cf. Social Constructivism),
answering ’what if’ (Brown and Walter, 1990;
Brown and Walter, 1970) questions. With inde-

CSEDU 2011 - 3rd International Conference on Computer Supported Education

58

pendent discovery, students construct and reflec-
tively explain a generic solution, which leads to
an implementation / algorithm — this approach
not only ensures to test whether students managed
to constructed their own understanding, but also
develops their abstraction skills.

• Exercises exploring the limits of the solution
(through comparing the problem to other similar
ones and through asking ’what if not’ questions)
will help the learner to develop skills to recognize
concrete situations in which known abstract solu-
tions apply.

The constructive approach and the use of teach-
back (Pask, 1975; Vygotsky, 1978), ensure that the
understanding of the problem and the understand-
ing of the solution become an observable occasion.
Our design of activities (to be performed by teams
of students) is around a series of puzzles for re-
alistic problems. In these problems, the students
will construct a solution, but instead of initially us-
ing a keyboard/computer (and a formal program-
ming language as in traditional text-based program-
ming), they will commence by constructing physi-
cal artefacts. We refer to this as concrete program-
ming although it has similarities with puzzle-based
learning (Michalewicz and Michalewicz, 2008) and
with problem-based learning (Cindy E. Hmelo-Silver
et al., 2007, and references). We demonstrate here
that high-school students can participate in the activ-
ities including some instruction in textual program-
ming.

Our approach is to use concrete physical objects to
build first phase solutions: here, the students will have
playing cards, or other physical components (like
LEGO or Konex) and they will build concrete phys-
ical solutions (but still descriptions of algorithms) to
small instances of the puzzles. The students will be
asked to attempt to obtain algorithms that work in
general. However, these algorithms may fail in some
of the many configurations. These will incorporate
elements of role-play in learning. The second compo-
nent of our approach is to use automated assessment:
we propose to use a digital camera to capture the con-
structions (algorithms) of the students, and develop
image processing software to interpret their physical
programs; then execute them (run them) with all pos-
sible inputs and award them a score relative to the
fraction of inputs in which they are correct. The third
phase of our approach is programming by simulation.

The approach is close to visual programming, but
tackling larger problems than with the physical ma-
nipulation of ‘LEGO-brick’ or ‘playing cards’. How-
ever, we developed complementary educational soft-
ware that emulates the puzzles and the concrete pro-

gramming languages. Participants use simulations of
cards, and tiles, and compose programs in the same
way as in the physical world, but all in a Graphi-
cal User Interface (GUI). For example, RoboLab by
LEGO illustrates visual programming and is used by
teenagers and university students to program Mind-
Storm Robots. The fourth stage is the transition
to textual programs. To this end we will use envi-
ronments oriented for the puzzle in the educational
programming languageMaSH (developed by Dr. A.
Rock). MaSH is an imperative subset of the program-
ming language Java (and by removing many of the
sophistication of Java, first-year students understand
every line of code they use).

Students are provided with guidance and in-
struction for problem solving (Jones, 1998). We
started with classical approaches. An extreme
summary (Polya, 1957, www.math.utah.edu/˜
pa/math/polya) has been provided for high-school
trials, see Fig. 1. Later, more elaborate instruction
on problem solving will be provided. For example,
students may be provided with more details on one
of the step in Fig. 1. In general, much more sophis-
tication on problem solving will be delivered than
can be illustrated here; at each step elaborating on
the techniques for problem solving and in particular,
for algorithm analysis and design (Skiena, 2008). As
alluded to before, activities illustrate a wide range
of useful problem-solving skills: analogy, simpli-
fication, exploration, iteration, divide and conquer,
and recursion. Instruction, illustrations and materials
on methods like divide-and-conquer, reduction, and
analogy will be formally provided.

3 ILLUSTRATION

The activity we use as an example is named “sort-
ing cows” but is based on Sorting Networks (Knuth,
1973, Section 5.3.4) and has similarities with the
Sorting Networks activity popularised by “Com-
puter Science Unplugged” (csunplugged.org/sorting-
networks). In its first stage, the participants are intro-
duced to the basic operations of sorting bridges (also
named gates). The analogy is a series of rails popu-
lated by cows that are connected by the gates. The
gates may swap cows across rails, and the generic
goal is to design and arrangement of the gates that
achieves a certain objective, for example, placing the
largest cow in the first rail. These simple operations
are comparison operations and swap operations. The
Blue (also named large up) operations ensure that the
larger cow is in the lower numbered rail when two
cows (items) meet at it. The green gate (also named

IMAGE CAPTURE FOR CONCRETE PROGRAMMING - Building Schemata for Problem Solving

59

Figure 3: High-schools students constructing sorting networks and experimenting in their own person the effect of their
construction.

larger down) always places the larger cow in the larger
numbered rail. The red gate always swaps the cows.

3.1 First Stage — Concrete & Personal

In the first stage of the activity, the experience is phys-
ical and personal. The participants walk on carpet that
represent the rails and experience themselves the fact
that they must wait at a gate for another participant
in the connected rail, and then perform the required
operation as per color (function) of the gate. They ex-
perience configurations for 3 or 4 participants and try
to discover permutations which fail to reach the ob-
jective. For example, the network does not sort. They
also may be asked to explore some patterns and to
discuss the parameters of the problem. Instruction of
problem solving is given by analysing first what prob-
lems may be feasible and which may be not. Varia-
tions like finding the largest and the smallest without
sorting, or using only one type of gates are discussed
as well as considering that the cost of bridges/gates
may not be always uniform when rails are further
apart. Fig. 3 shows high-school students construct-
ing networks and personally navigating them. The
images correspond to two Griffith University Expe-
rience Days (19th of May and 27th of July 2010), and
3 days (21st, 22nd and 23rd of July 2010) of the Sci-
ence and Engineering Challenge.

This is what we describe as a concrete experi-
ence that is based on Piagetism and will be moved
to a more informed and abstract familiarity. The idea
is to strengthen the students’ semantic schemata (or
their building processes) by associating their experi-
ence and their action with appropriate language. We

expect that such language will include words like sort-
ing, comparison, swap, cost, algorithm, permutation,
and the like. It also will have more possibilities for
abstractions like the notion of sorting network itself.

Moreover, some inquiry questions that put in prac-
tice mathematical problem solving can also be inves-
tigated at this stage (participants should be able to ar-
gue that in order to sort or to find the largest cow, all
rails must connect with at least one gate).

3.2 Second Stage — Concrete
Constructions

In the second stage of the activity, the participants still
work away from computers and continue using con-
crete objects. In this case, they build with cloth and
corresponding strings artefacts that represent the net-
works. They lay the rails and the bridges and exper-
iment, evaluate and interact their concrete construc-
tions. Fig. 4 shows the types of networks that can be
physically built with a white blanket as background,
black stripes as rails, and also cloth strings as gates.

We emphasize that the experience remains con-
crete. The participants are using tangible rails and
gates. However, they are able to build larger networks
and discuss larger instances. The intention is to initi-
ate the exploration of patterns that may scale to larger
solutions. These networks will cause behaviour. We
achieve this by capturing them with a camera and exe-
cuting them in a simulator. The participants construct
concrete artefacts that encode behaviour. This is what
we name concrete programming.

The realization that this network is a represen-
tation of computation (that is, an encoding of be-

CSEDU 2011 - 3rd International Conference on Computer Supported Education

60

Figure 4: A sorting network constructed of cloth and capturing the network into the virtual environment.

Figure 5: Teams of students working on constructing solutions for selection and sorting problems on networks.

haviour) is achieved by our supporting tools. These
networks are captured by a camera (as simple as a
mobile phone camera) and fed trough an image recog-
nition software. This image recognition software re-
cuperates the network and can represent it in a graph-
ical user interface that is also coupled with a simu-
lator. The participants can see the effects of the net-
work in any permutation they wish to test it, or on a
sample test set or even more in all permutations (as
long as the network has less that 9 rails). A partici-
pants network can be evaluated against many objec-
tives. The user can chose the objective (like finding
the median). They also get feedback on the cost of the
network in parameters like gates used, or time used.
With this, participants are converting their construc-
tions to a graphical simulation in the computer and
observing the effect on their tests.

3.3 Third Stage — Virtual
Constructions

Once this step is completed, the participants can move
completely to the graphical user interface and config-
ure far larger networks that would be possible phys-
ically, and explore far more patterns. For this, our
earlier software tool allows to interactively add and
manipulate all the elements previously experimented

physically. Here, participants still manipulate gates,
and rails, but on a virtual environment provided by
the GUI-enabled tools.

This is the third stage: the experience remains
concrete. However, such experience is no longer
physical, but is now an immersion into a virtual world.
All the actions of the sorting network, and the rails,
and the cows belong now in the environment of the
simulator and the graphical user interface. The tool
provides feedback. It can be tested on specific in-
stances, or on all permutations of 9 or less items. It
can sample a large number of permutations for larger
instances and also provide feedback on different cri-
teria and cost functions. For example gates that join
adjacent rails may be less costly than those that join
rails far apart.

Participants can address even larger instance;
however, large networks become impossible to build
for a particular objective unless one identifies a pat-
tern. The identification of these patterns introduces
notions like subproblem. A clear example of this pat-
tern is a common solution to finding the smallest cow
and placing it at the bottom rail (see Fig. 6) This pat-
tern enables analysing if the number of blue gates
used is optimal for any number of rails. More inter-
estingly, it enables to discuss other aspects of the pat-
tern. If all the gates are replaced by red gates, then the

IMAGE CAPTURE FOR CONCRETE PROGRAMMING - Building Schemata for Problem Solving

61

Figure 6: Placing the smallest cow in the bottom rail.

pattern corresponds to a cyclic shift, where each cow
moves to the next rail up, except of course the cow on
the first rail. The one on the top rail “wraps-up” and
appears in the bottom rail.

For example, from repeatedly finding the largest
cow with a diagonal pattern, it is possible to scale the
pattern down fromn rails to n− 1 rails. The pattern
can also be seen as scaling up the basic operator from
2 to 3 rails. However, this pattern can be repeated to
create a sorting network by using it repeatedly from
sizen, thenn−1 and so on down to 2.

At this stage is also possible to introduce more
language. We illustrate the fact that finding the largest
item can be used repeatedly for sorting. Moreover,
one can discuss many of the sorting networks in the
literature and discuss algorithmic strategies. In par-
ticular, is possible to introduce algorithmic problem-
solving terminology like recursion and divide and
conquer without the presentation syntax and seman-
tics of a textual programming language.

We argue that even more important technical con-
cepts can be built. This is what we mean by given
the students schemata with strong understanding and
meaningful semantics. It is possible to illustrate and
argue about the correctness and optimality of the con-
structions. One can even motivate and introduce the
mathematical notion of proof by induction and con-
nect it (Wand, 1980) to the algorithmic strategies.

3.4 Fourth Stage — Textual
Constructions

From here, the 4-th stage of the activity is the
migration to a textual encoding of this behaviour.
We introduce this using a particular environment of
MaSH (Rock, 2010). MaSH stands for “Making Stuff
Happen” and it is a tool to create textual programming

Rewrites

void main()
Purpose: A program that is organised into methods must have

a main method (a procedure with no arguments). This will be the
first method to execute. **** automatically rewrites this method
to conform to standard Java.

Methods

void createRails(int size)
Purpose: Create a random permutation of size size. There is a

limit of 100 rails.

void redSwap(int i, int j)
Purpose: Always swap the items in the i-th and j-th position.

void blueLargerUp(int i, int j)
Purpose: If i < j place the larger in the i-th position and

the smaller in the j-th position.

void greenLargerDown(int i, int j)
Purpose: If i < j place the larger in the j-th position and

the smaller in the i-th position.

void printOrder()
Purpose: Display the order of items in the network.

Figure 7: The API of the MaSH environment
sortingnetwork.

environments where syntax and semantics are sim-
ple. We have constructed one of those environments
calledsortingnetworkwhose documentation appears
in Fig. 7. This environment is an API that emu-
lates completely the GUI but enables the introduc-
tion of textual programming language concepts. We
start with the level namedstatementsin MaSH and can
produce a direct mapping between the visual repre-
sentation of sorting networks in the GUI andMaSH-
statement program. For example, theMaSH-statement
program in Fig. 8(a) corresponds to a sorting net-
work that has only one gate between two adjacent
rails and always swaps the items. The program can
be the result of exporting a sorting network built in
the virtual environment. It can also be constructed
with a text editor (an imported to the tool for visu-
alization). This enables the introduction of concept
like “identifier”, “separator”, and most of the lexical
instruments experienced in textual programming lan-
guages. Other concepts at the level of statements that
the participants can practice and understand are “se-
quential control”, “comments”, “displaying output”
and “method/function invocation”. The simpleMaSH
program of Fig. 8 is randomised. Each execution gen-
erates the values randomly and its output may be as in
Fig. 8(b) or as in Fig. 8(c).

There are several sub-levels in this stage of the ac-
tivity that correspond to the levels in the design of
MaSH but which can be reinforced with the activity.
The repetition of the comparator each time in the next
rail for all rails results directly into a control structure.
That is, we can introduce the notion of a “for-loop”.
Fig. 9 presents the program where red gates are used
to cyclically shift. This program was sufficient for us

CSEDU 2011 - 3rd International Conference on Computer Supported Education

62

import sortingNetwork;

createRails(2); // create two rails
// with data in random order

printOrder(); // print the data

redSwap(0,1); // Swap values in the rails

printOrder(); // print the data

(a) SimpleMaSH program at level statements.

90, 32,
32, 90,

(b) Sample output 1.

13, 26,
26, 13,

(c) Sample output 2.

Figure 8: SimpleMaSH program and sample output.

import sortingNetwork;

createRails(5); // create five rails
// with data in random order

printOrder(); // print the data

// cyclically shift one position to the left
for (int i=0; i<4; i=i+1)

redSwap(i,i+1);

printOrder(); // print the data

(a) “For-loop’ in aMaSH program at level control structures.

12, 54, 9, 3, 4,
54, 9, 3, 4, 12,

(b) Sample output 1.

78, 3, 18, 63, 13,
3, 18, 63, 13, 78,

(c) Sample output 2.

Figure 9: MaSH program to introduce control structures.

to introduce control structure concepts to high school
students with no programming experience. We could
illustrate and have even meaningful discussion about
the limit used in the for-loop for the index variablei.
That is, the program hasi<4 as the termination con-
dition but the data consists of 5 elements. Significant
discussion is generated then about the actual parame-
ters toredSwap in the body of the control structure.

Another aspect that can now be introduced builds
on the discussion of patterns from the previous con-
crete experience. The pattern we described earlier
where using a solution to place the smallest as a sub-
problem to sorting, enables the introduction of the no-
tions of method (or subroutine). For example, we can
encode the pattern into a subroutine first. This is il-
lustrated by aMaSH program that corresponds to two
invocations of finding the smallest which corresponds
to a network to place the two smallest cows in the
bottom two rails. TheMaSH program corresponding
to Fig. 10 is presented in Fig. 11. This enables the in-
troduction of concepts like formal parameters and the
control-flow generated by this function invocation.
Similarly we can discuss concepts like side-effects al-
though fundamentally all variables are global at this
level and there is no data encapsulation. However, the

Figure 10: A network that extracts first and second by two
applications of the diagonal pattern.

import sortingNetwork;

void select (int place) {
for (int i=0; i<place; i=i+1)

blueLargerUp(i,i+1);
}

void main() {
createRails(5); // create five rails

// with data in random order
printOrder(); // print the data

select(4); // Select with 4 comparisons
select(3);

printOrder(); // print the data
}

Figure 11: MaSH program using subroutines in the Sorting
networks environment.

important aspect is we have a concrete experience to
ground the discussion of the abstract elements of tex-
tual programming languages. It is important to realize
that control structures in theMaSH programming envi-
ronment become generic in terms of the size of the
instance. This is not possible with the concrete sort-
ing networks, which are built for a specific size. This
is another point that the participants should observe.
It also allows expanding the discussion regarding the
generality of a solution in problem solving. The re-
duction of a problem to another problem for which we
already know a solution is a problem-solving strategy
that is ubiquitous in algorithm design. We can visual-
ize the repetition of the selection of a smallest element
in a sorting network, refer to Fig. 12. TheMaSH pro-
gram of Fig. 11 can be generalised to a sorting pro-
gram as per Fig. 13. The activity can now progress
more rapidly into other programming concepts and
in particular,MaSH is designed to introduce behaviour
first and later introduce data, and finally introduce the
plethora of object-oriented concepts.

IMAGE CAPTURE FOR CONCRETE PROGRAMMING - Building Schemata for Problem Solving

63

Figure 12: A sorting network.

3.5 Stage Five — Advanced Topics
and Research

We envisage also a later stages of these activities,
that can lead to artificial intelligence (like to search
for cost optimal networks for specific parameters of
the problem), or even to research challenges, like to
establish the best network for certain cost structures
and sets of operators. The activity also leads itself
to consider concurrency and parallelism and the in-
troduction of programming concepts in this area. In
particular, the tools has been used in ICT2501 Pro-
gramming 3 to illustrate the algorithmic complexity
of selection sort. The tool provides a visual tangi-
ble (concrete) illustration that selection sort requires
O(ns) comparisons, since the sorting network uses
gates in all positions on one half of a grid of width
n and thus, of arean2.

4 THE EXPERIENCE

We have performed these two activities with 14
groups of participants from high-schools as part of the
events mentioned earlier (a total of 56 students organ-
ised in groups and additionally 8 students as individu-
als). These were conducted as trials for the activities.
Each activity was conducted at least once by a person
who was not the designer of the activity, who is not
an academic and not trained as an instructor but who
had witnessed the activity once. There were no major
differences in the execution of the activity and all oth-
ers who were conducted by Estivill-Castro (one day
with assistance of Dr. S. Venema). Our intention was
to evaluate the following aspects.

1. Do the participants acquire technical language
and have a have better semantic understanding for
the concepts of such language?

2. Do the participants acquire and understanding
that problem-solving is a strategic and acquired
skill?

3. Does the concrete experience assist in problem-
solving?

4. Is the organization in teams useful?

4.1 Semantic Understanding of
Language

The first research issue was evaluated by a short in-
terview before the activity and a questionnaire after
the activity. The interview assessed the previous un-
derstanding of some terminology while the question-
naire investigated the understanding of activity related
technical concepts and the use of new terminology.
The results were promising. For example, prior to the
activity, very few of the students could enunciate a
clear definition of the notion ofmedianand even less
clear was any connection with the notion ofmean.
However, by the end of the activity, the notion of
medianwas clearly described by the participants and
they could make the observation themselves that it is
not uniquely defined when there is an even number
of items. Some participants were capable of realizing
that the median is a robust estimator of the central ten-
dency and that enlarging the largest item or reducing
the smaller element does not affect the value of the
median (however, such changes in the data do affect
the mean).

There was a similar visible extension on the under-
standing of terms likealgorithm, problem, instance of
a problem, verification, andcorrectness. Many other
concepts were not formally evaluated by the question-
naires but it was clear the participants gained insight.
For example, they understood that testing all permuta-
tion to verify correctness of a sorting network grows
very rapidly with the number of rails (items). Simi-
larly, some realised that verifying the network is the
most economical (by a criteria like least number of
gates) was even more unfeasible to verify by exhaus-
tive exploration. Other terminology likecyclic shift,
codingandprogramming languagealso showed im-
provements.

In fact, some students were able to make very in-
sightful observations. That is, to enunciate a claim
and then provide and argument for justifying its
validly. This emulated the formulation of a theorem
and its proof although not structured in this way. An
example of this happening is “In a network with only
blue gates, the smallest element never finishes in a rail
above to where it started”. We find interesting that
from this, the team of participants where it emerged
was able to rapidly generalize how to find the largest
item, and/or the smallest, and then discover patterns
and build a sorting network that would solve prob-
lems for all sizes. They were also able to structure ar-

CSEDU 2011 - 3rd International Conference on Computer Supported Education

64

import sortingNetwork;

void select (int place) {
for (int i=0; i<place; i=i+1)

blueLargerUp(i,i+1);
}

void sort (int place) {
for (int i=place; i>0; i=i-1)

select(place);
}

void main() {
createRails(5); // create five rails

// with data in random order
printOrder(); // print the data

sort(4); // Sort

printOrder(); // print the data
}

Figure 13: MaSH program using subroutines for sorting.

guments for the correctness of their approach. More-
over, they could then formulate other claims about the
need for red or green gates in order to place the small-
est element above the rail it starts (in particular, they
could made the observation about the impossibility of
sorting in descending order only with blue gates).

4.2 Strategies for Problem Solving

For this we also had a questionnaire after the activ-
ity asking if the information on problem solving was
useful (information along the lines of Fig. 1 in one
A4 page was distributed to participants). We also had
one control group to whom no instruction on problem
solving was provided neither any material on problem
solving .

In this case the informal observations we per-
formed offered some contradictory observations.
Some participants did not seem to be able to attack
the problems in any way, particularly those that were
not in groups. Some high-school students seemed
preoccupied with there being an answer they should
have previous knowledge for and seem to see the chal-
lenges of the activities as test on their memory. How-
ever, the vast majority engaged in the activity, partic-
ularly as we mentioned, when grouped in teams.

The positive outcomes in this regard were many.
For example, some participants were able to apply ef-
fectively strategies like “start with a smaller problem”
and they used the solution from finding the largest
item to find a network to sort. Several could indeed
examine the solution they obtained and generalize
it. Some were able to reflect on the problem state-
ment and discuss their understanding of the challenge.
They could be systematic and eliminate possibilities
or consider all cases. They could understand what a
counter-example means.

We also found some very genuine ideas. For ex-

ample, we found that two groups actually found a very
interesting and to our knowledge innovative approach
to construct a sorting network. Because the first prob-
lem provided to them in the first phase is to find the
smallest item on 3 rails, teams commonly produced a
diagonal optimal pattern like in Fig. 6. (see bottom
right image on Fig. 3). The next problem was to find
the maximum. For this problem, some teams used
the previous idea but now the diagonal pattern follows
placing the next blue gate on the winner and runs sym-
metrically in the other direction (see Fig. 14(a)). It is
not hard to compose these two patterns to identify the
smallest and the largest items in a network with four
rails (see Fig. 14(b) and Fig. 14(c)). When the stu-
dents attempted to sort on a network of 4 rails they
realised that they only need to ensure the two rails in
the middle work. This produces the sorting network
shown in Fig. 14(d) and visible in the images on the
bottom left of Fig. 3. This network is extremely ef-
ficient for sorting 4 rails, requiring only 3 time steps
(better than the pyramid pattern in Fig. 12). What we
found extremely interesting is that when this approach
is generalised to 8 rails in the constructions with tape,
some of the teams produce the network that reduces
the problem of sortingn rails to sorting then−2 mid-
dle rails and produce a network like in Fig 14(e). Be-
sides a visually appealing pattern, this network has
some interesting properties, it uses only blue gates
besides adjacent rails (no long gates) and it uses the
same number as the corresponding pyramid pattern of
Fig. 12. While it requires more parallel time units, it
does have some degree of parallelism.

Although we have no space here to describe the
Dinosaur activity suffice to say it consists of describ-
ing heuristic algorithms for the NP-Complete prob-
lem VERTEX COVER3. Participants spontaneously
produced randomised heuristics, algorithms based on
local search (selecting all vertices and then removing
unnecessary vertices from the cover plus local pertur-
bations), algorithms based on structure finding (ver-
tices of degree one, or triangles — cycles of length 3)
and greedy algorithms (choosing a vertex of largest
degree). The notion of a competitive algorithm did
not emerge as this seems an advanced concept.

4.3 Usefulness of the Concrete
Experience

We were interested in investigating if the first stage
of the activity (the concrete experience on the partici-
pant) has a positive impact. Thus, we reserved 8 par-

3To cover edges by selecting the minimum number of vertices
in a graph. An edge is covered if at least one of its endpoints is in
the selected cover.

IMAGE CAPTURE FOR CONCRETE PROGRAMMING - Building Schemata for Problem Solving

65

(a) Largest of 4 rails. (b) Optimal X parallel

pattern to find largest and

smallest item in for rails.

(c) SequentialV pattern to find

largest and smallest.

(d) A gate in the middle rails

sorts.

(e) Sorting network from recursive application ofX pattern.

Figure 14: A very symmetrical sorting network by a recursionthat finds simultaneously the largest and the smallest item.

ticipants who were not involved in the first phase an
their involvement commenced with the second phase
where the construction is concrete but not personal.
We used two measures to evaluate the difference be-
tween these 8 participants and the others. First, we
measured the number of times they required further
assistance or clarification by the person conducting
the activity. Second, we measured the time it took
for them to complete activities of the second phase as
well as the time it took them to complete problems
using the virtual rails tool (stage 3).

The second measure was the number of times
there was a request for assistance or clarification from
the activity conductor or the assistant. While the data
may have a significant margin of error in measure-
ment it does reflect that high-school students that par-
ticipated in a physical phase of the activity where each
person had to role-play a cow (or a dinosaur) even-
tually was getting better at facing the new problems
and the new challenges. Those that skip the role-play
phase save the time of this part and thus, complete
the challenges of the concrete part (phase 2) perhaps
sooner or at least not worse than those that did the
role-playing. However, these second group of partici-
pants struggle with the later challenges and activities.
For example, we proposed to find the median element
and place it in a specific position using the virtual tool
on a network of 9 rails, very few of the participants

without the role-playing could complete this activity.
assistant(s). Fig. 15 shows the comparisons in phase
2 challenges (build a network to find the maximum,
find a network to find the minimum, find a network
that sorts) and one challenge from phase 3 (place the
largest on the top rail and the smallest in the second
rail). The data reflects the trend that individual work
is not as effective as during the different activities the
average number of queries remains above 1 per stu-
dent, suggesting is more efficient to group the partic-
ipants in teams as this seems they assist each other.

4.4 Organization in Teams

We measure the same two aspects of participants in
teams and compared against 8 participants that were
not placed in teams. The data reflects that teams
progress better with the later challenges than those
that work in isolation. However, we are not sure that
everyone in the team reaches the same command of
the concepts and ideas.

Team-work proved to be productive and we can
feel confident that the teams progress well. One in-
teresting aspect is that we were able to observe actual
collaboration and participation. It is usually difficult
to see this type of interaction between members of
a team in traditional laboratories for delivering pro-
gramming concepts or problem solving concepts. In

CSEDU 2011 - 3rd International Conference on Computer Supported Education

66

Figure 15: Comparing students in groups, as individuals andgroups without phase 1 in completing a network for 4 types of
progressively more advanced problems.

Figure 16: Teams of students working on constructing difficult instances of vertex cover (cities) and then actual covers
(dinosaurs on vertices guarding edges).

particular, with current labs suited with workstations
fitted for individual use it is very rare to see two stu-
dents collaborating and having meaningful discussion
with the physical limitation of one monitor. We can
see that we were able to produce constructive interac-
tions with all team members as can be seen in the im-
ages of Fig. 5 and Fig. 16. The images reveal several
situation in with a a hand from at least 3 participants,
if not all four in a team, actively engaging with the
concrete construction. This suggests complementing
teaching labs with interactive whiteboards or other
technologies where students could interact in groups
and collaborative edit and modify the current design
or solution. Thus, we see an earlier introduction to
Computer Supported Cooperative Work.

5 CONCLUSIONS

This paper present initial approaches to teach prob-
lem solving for programming as the construction of
physical artefacts (and not textual items). While vi-
sual programming enables concrete manipulation of
objects, the environment is still virtual. We propose
to commence with the personal and physical experi-

ence as a preliminary step and use technology to cap-
ture images and video of such constructs in order to
produce a behaviour in a system.

ACKNOWLEDGEMENTS

This work would not have been possible without the
programming talent and skill of Nathan Lovell PhD,
and the financial support of a Teaching and Learning
Grant from Griffith University.

REFERENCES

Adams, J., Kaczmarczyk, S., Picton, P., and Demian, P.
(2007). Improving problem solving and encouraging
creativity in engineering undergraduates. InInterna-
tional Conference on Engineering Education ICEE-
07, Coimbra, Portugal.

Adams, J. and Turner, S. (2008). Problem solving and cre-
ativity for undergraduate engineers: process or prod-
uct? Innovation, Good Practice and Research in En-
gineering Education, page 61.

Biggs, J. (1999).Teaching for Quality Learning at Univer-
sity. Shire and Open University Press, UK.

IMAGE CAPTURE FOR CONCRETE PROGRAMMING - Building Schemata for Problem Solving

67

Brown, S. and Walter, M. I. (1970). What if not? an elabora-
tion and second illustration.Mathematical Teaching,
51:9–17.

Brown, S. and Walter, M. I. (1990).The art of problem
posing. Lawrence Earlbaum, Hillsdale, NJ, second
edition.

Cindy E. Hmelo-Silver, C., Duncan, R. G., and Chinn, C. A.
(2007). Scaffolding and achievement in problem-
based and inquiry learning: A response to Kirschner,
Sweller, and Clark (2006).Educational Psychologist,
4(2):99–107.

Dale, N. and Weems, C. (2002).Programming and Problem
Solving with C++. Jones and Bartlett Publishers, Inc.,
USA, 3rd edition.

Dewar, J. M. (2006). Increasing maths majors’ success and
confidence through problem solving and writing. In
Rosamond, F. and Copes, L., editors,The Influences
of Steven I, Brown, pages 117–121, Bloomington, In-
diana. Educational Transformations, AuthorHouse.

Estivill-Castro, V. (2010). Concrete programing for prob-
lem solving skills. In Gómez Chova, L., Martı́ Be-
languer, D., and Candel Torres, I., editors,Interna-
tional Conference on Education and New Learning
Technologies (EDULEARN 2010), pages 4189–4197,
Barcelona, Spain. International Association of Tech-
nology, Education and Development (IATED). CD-
ROM file 454.pdf, ISBN: 978-84-613-9386-2.

Etter, D. M. and Ingber, J. (1999).Engineering Problem
Solving with C. Prentice-Hall, Inc., Englewood Cliffs,
NJ.

Houghton, W. (2004).Learning and Teaching Theory for
Engineering Academics. Engineering Subject Centre.

Jones, M. (1998).The Thinker’s Toolkit: 14 Powerful Tech-
niques for Problem Solving. Three Rivers Press, USA.

Knuth, D. (1973). The Art of Computer Programming,
Vol.3: Sorting and Searching. Addison-Wesley Pub-
lishing Co., Reading, MA.

Koffman, E. (1988).Problem Solving and Structured Pro-
gramming in Modula-2. Addison-Wesley Publishing
Co., Reading, MA.

Michalewicz, Z. and Michalewicz, M. (2008).Puzzle-
Based Learning — An Introduction to Critical Think-
ing, Mathematics, and Problem Solving. Hybrid Pub-
lishers Pty Ltd, Victoria, Australia.

Pask, G. (1975).Conversation, cognition and learning. El-
sevier, New York.

Polya, G. (1957).How to Solve It: A New Aspect of Math-
ematical Method. Princeton University Press, second
edition.

Prince, M. and Hoyt, B. (2002). Helping students make the
transition from novice to expert problem-solvers. In
32 Annual Frontiers in education (FIE-02), volume 3,
pages F2A7–11, Los Alamitos, CA, USA. IEEE Com-
puter Society.

Rock, A. (2010). Creating MaSH programming environ-
ments. School of ICT, Griffith University.

Savitch, W. (2009).Problem Solving with C++. Addison-
Wesley Publishing Co., Reading, MA, 7th edition.

Schneider, M. (1982).An introduction to programming and
Problem Solving with Pascal. Addison-Wesley Pub-
lishing Co., Reading, MA, 4th edition.

Skiena, S. S. (2008). The Algorithm Design Manual.
Springer-Verlag, London, second edition.

Toussaint, G. (1993a). A new look at Euclid’s sec-
ond proposition. The Mathematical Intelligencer,
15(3):12–23.

Toussaint, G. (1993b). Un nuevo vistazo a la segunda
proposicion de Euclides.Mathesis, 9:265–294.

Vygotsky, L. S. (1978).Mind and society: The development
of higher psychological processes. Harvard University
Press, Cambridge, MA.

Wand, M. (1980).Induction, Recursion and Programming.
Elsevier Science Inc., New York, NY, USA.

Wickelgren, W. (1995).How to Solve Mathematical Prob-
lems. Dover, New York.

Woods, D., Wright, J., Hoffman, T., Swartman, R., and
Doig, I. (1975). Teaching problem-solving skills.En-
gineering Education, 66(3):238–243.

CSEDU 2011 - 3rd International Conference on Computer Supported Education

68

