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Summary

The Buckley-James (BJ) estimator is known to be consistent and efficient for a linear
regression model with censored data. However, its application in practice is handicapped
by the lack of a reliable numerical algorithm for finding the solution. For a given data set,
the iterative approach may yield multiple solutions or no solution at all. To alleviate this
problem, we modify the induced smoothing approach originally proposed by Brown & Wang
(2005, Biometrika). The resulting estimating functions become smooth, thus eliminating
the tendency of the iterative procedure to oscillate between different parameter values. In
addition to facilitating point estimation the smoothing approach enables easy evaluation
of the projection matrix, thus providing a means of calculating standard errors. Extensive
simulation studies were carried out to evaluate the performance of different estimators. In
general, smoothing greatly alleviates numerical issues that arise in the estimation process.
In particular, the one-step smoothing estimator eliminates non-convergence problems and
performs similarly to full iteration until convergence. The proposed estimation procedure is
illustrated using a dataset from a multiple-myeloma study.

Key words: censored data; covariance estimates; induced smoothing; rank regression; standard
errors.

1. Introduction

The accelerated failure time model, as an alternative to the proportional hazards model of

Cox (1972), has attracted considerable attention in recent years because its linear formulation

makes it the model of choice for biomedical and environmental studies. Recent important

contributions to the literature on the accelerated failure time model include work by Li &

Yin (2009) and Fu & Wang (2011). A distinguishing feature of survival data is that they are
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2 BUCKLEY-JAMES ESTIMATOR

often subject to censoring, which introduces extra complexity in modeling and estimation.

The statistical literature on this topic is abundant.

We now describe the basic structure of accelerated failure time models. Assume that Ti

(1 ≤ i ≤ n) is the failure time for subject i and that xi is the corresponding covariate vector

of dimension p. Under the usual accelerated failure time model

yi = log(Ti) = α+ x⊤
i β + ǫi,

where β is a p× 1 vector of regression coefficients, and ǫi is the error term with mean 0.

Usually Ti is subject to censoring at Ci, a random variable independent of Ti. We assume that,

conditional on {xi}, {Ci} and {ǫi} are independent. Note that the conditional distribution of

{ǫi} may depend on {xi}. We will regard the covariates {xi} as realizations of a multivariate

random variable.

The observed data may be written as the triplet (T ∗
i , δi, xi), where T ∗

i = min(Ti, Ci),

and δi is the value of an indicator function, I(Ti ≤ Ci). Write y∗i = log(T ∗
i ) and ci =

log(Ci). Then ei(β) = y∗i − x⊤
i β defines an error term.

In order to carry out the least-squares estimation, one will need to impute the censored

observations in calculating the residuals. Buckley & James (1979) proposed a semiparametric

iterative algorithm that alternates between imputation of censored failure times and least-

squares estimation. However, the Buckley-James (BJ) estimator is a root of a discontinuous

estimating function which may have multiple roots (Jin, Lin, Wei et al. 2006). Jin et al.

used a linear approximation to obtain the solution of the BJ estimating equations and a

new resampling approach to calculate the standard errors of the resulting estimates. Their

approach using a linear approximation is elegant, but it does not completely solve the non-

convergence problem due to the lack of smoothness in the Kaplan-Meier (KM) estimator used

in the iteration. We will provide more details in the next section.
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YOU-GAN WANG, YUDONG ZHAO AND LIYA FU 3

For convenience, when there is no confusion, we will suppress the dependence of ei

on β. Recent research has been focusing on two main issues in respect of estimating β: (i)

obtaining unique estimates of β, which includes addressing the issues of convergence and

choice of initial values, and (ii) estimation of the covariance matrix of β̂.

In this paper we will follow the methodology proposed by Brown & Wang (2005), who

developed an induced smoothing approach for easy calculation of standard errors. Johnson &

Strawderman (2009) and Wang & Fu (2011) further investigated this approach for analysis

of clustered failure time data. Both asymptotic and simulation results demonstrate that these

smoothed estimates perform well. However, this smoothing idea is not directly applicable to

the BJ estimator. Our aim is to apply a generalised approach of induced smoothing so that the

Kaplan-Meier function becomes smooth, which leads to smooth projection matrices in the

iterative approach and thus alleviates the problem that the iterations may oscillate.

The induced smoothing approach results in smooth estimating functions for which the

derivatives (i.e., the projection matrix) and solutions can be easily evaluated numerically.

Another advantage is that the standard errors can be obtained simultaneously because they

are updated in the course of the iteration, consequently reducing the computational burden

relative to the resampling approach.

We briefly introduce the BJ estimator in Section 2, and apply the modified induced

smoothing procedure in Section 3. We compare the performance of various estimators of

β in Section 4 via extensive simulation studies, and provide a brief illustration using the

myeloma study in Section 5.

2. The Buckley-James Estimator

Suppose that F (t) is the cumulative distribution function of ǫi. Buckley & James

(1979) proposed the imputation of the censored observations by means of the equation
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4 BUCKLEY-JAMES ESTIMATOR

ŷi = δiyi + (1− δi)ŷiC , where

ŷiC = x⊤
i β +

∫∞

ei
udF (u)

1− F (ei)
.

Since F (u) is unknown, Buckley & James (1979) suggested replacing it by its Kaplan-Meier

estimator which is given by

F̂β(t) = 1−
∏

i:ei<t

{

1− δi
∑n

j=1 I(ej ≥ ei)

}

.

Denote the mean of x1, . . . ,xn by x̄. After the censored observations have been imputed, β

may be estimated via the usual least-squares approach by minimising the objective function

n−1
n
∑

i=1

(ŷi − α− x⊤
i β)

2,

The corresponding ‘score’ functions for β (after profiling out α) are

U(β) = n−1
n
∑

i=1

(xi − x̄)(ŷi − x⊤
i β). (1)

The function U(β) is nonlinear in β because ŷi depends on β via F (ei). The estimator can

be obtained by an iterative algorithm based on the equation

β̂ = g(β̂) = X−1
n
∑

i=1

(xi − x̄)ŷi,

in which X is the square matrix
∑n

i=1{(xi − x̄)(xi − x̄)⊤}, and ŷi is evaluated at the

previous β̂ values. However, there are two major problems here: convergence and the choice

of initial values for β̂. There is no guarantee that this iteration converges, and the iteration

may lapse into a state in which it oscillates between two or more values. Furthermore, it is not

clear how the initial values will affect the final estimate, especially when the algorithm does

not converge and one may have to choose a “final” estimate from the oscillating values. This

iterative approach and the non-smooth nature of the problem make statistical inference on

β̂ difficult. Estimation of the covariance matrix is also problematical. We aim to modify the

estimating functions and their derivatives (the latter being known as the projection matrix) so
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YOU-GAN WANG, YUDONG ZHAO AND LIYA FU 5

that they become smooth in β which facilitates calculating the standard errors. The estimates

of β will also become easier to obtain after smoothing.

3. The Modified Buckley-James Estimator with Smoothing

Suppose that
√
n(β̂ − β) is asymptotically normal, N(0,Γ). We can then express β̂ as,

β̂ = β + (Γ/n)1/2Z, where the random vector Z ∼ N(0, Ip) and Ip is the identity matrix

of dimension p. This perturbation of β̂ results in a smoothed version of the function U(β)

given by (1). The smoothed version is equal to Ū(β) = EZ(U(β + hΓ1/2Z)), where the

expectation is over Z and h = 1/
√
n. The idea of induced smoothing is to obtain β̂ by

solving Ū(β) = 0 for a given Γ. It can be seen that Ū(β)− U(β) is in general close to 0 for

any fixed Γ, so the smoothed version provides almost the same numerical solution. Brown &

Wang (2005) proposed that the asymptotic covariance of β̂ be used for Γ so their approach

is referred to as naturally induced smoothing. The identity matrix Ip is found to work well

as an initial value of the matrix of Γ (Wang & Fu, 2011). Unlike the situation in resampling

approaches, we do not rely on the randomness of Ū to obtain the var(β̂). So a fixed Γ such

as Ip will not lead to an incorrect covariance for β̂, because both the projection matrix and

V (covariance matrix of U or Ū ) are asymptotically unchanged and can be estimated via the

smoothed functions.

In this paper, we aim to obtain analytical results by modifying the induced smoothing

approach that produces asymptotically equivalent estimators. Note that the predicted value,

ŷi = δiyi + (1− δi)ŷiC , where ŷiC is a rather complicated and unsmooth function of β. We

suggest replacing ŷiC with a modified version that is smooth and computationally convenient:

ỹiC = x⊤
i β +

ξ̃i

S̃(ei)

where ξ̃i =
∫∞

ei
udF̃β(u) (a smooth estimator), and F̃ (·) is a smoothed estimator of F (·).
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6 BUCKLEY-JAMES ESTIMATOR

To obtain a smoothed estimate of F (e) or S(e) = 1− F (e), first consider β = β̂ +

hΓ1/2Z, where the random vector Z ∼ N(0, Ip), with Ip being the identity matrix of

dimension p. This motivates us to consider a smoothed estimate of S(e) in β starting from

the Nelson-Aalen estimator for the cumulative hazard function for any e = y − x⊤β,

Λ(e) =
n
∑

j=1

δj1{ej < e}
n−∑n

k=1 1{ek < ej}

where 1{E} is the “indicator” of the event E, equal to 1 if E occurs and to 0 otherwise. By

applying induced smoothing to the β used in forming the residuals, we obtain the following

smoothed Nelson-Aalen estimator,

Λ̃(e) =
n
∑

j=1

δjEZ(1{yj − y − (xj − x)⊤β̂ + h(xj − x)⊤Γ1/2Z < 0})
n−∑n

k=1 EZ(1{yk − yj − (xk − xj)⊤β̂ + h(xk − xj)⊤Γ
1/2Z < 0})

=
n
∑

j=1

δjEZ(1{h(xj − x)⊤Γ1/2Z < e− ej})
n−∑n

k=1 EZ(1{h(xk − xj)⊤Γ
1/2Z < ej − ek})

=

n
∑

j=1

δjΦ((e− ej)/
√

d·jΓd
⊤
·jh

2)

n−∑n
k=1 Φ(rjk)

, (2)

in which d·j = (x− xj)
⊤, rjk = (ej − ek)/

√
ujk, ujk = djkΓd

⊤
jkh

2, and djk = (xj −

xk)
⊤. Here, x is the covariate vector corresponding to e, and Φ(·) is the cumulative

distribution function of the N(0, 1) distribution. Assuming that h → 0 as n → ∞ and that for

any given e there exists an η such that infw∈[e−η,e+η] h
∑n

k=1 1{ek ≥ w} P→ ∞ as n → ∞,

we can show the pointwise consistency of Λ̃(e) with respect to Λ(e). Subsequently we can

form the induced-smooth survival function S̃(e) = exp{−Λ̃(e)}.

It can be seen that ẽi = ξ̃i/S̃(ei) is smooth in β and S̃(e)− S(e) = op(n
−1/2) (the

proof is given in the Appendix). The final estimator can be obtained via the following iterative

algorithm:

β̂(m+1) = g̃(β̂(m)) = X−1
n
∑

i=1

(xi − x̄)ỹi, (3)

where ỹi = δiyi + (1− δi)ỹiC , and ỹiC is evaluated at β̂(m).
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YOU-GAN WANG, YUDONG ZHAO AND LIYA FU 7

The final solution β̂ satisfies U(β̂) = n−1
∑n

i=1(xi − x̄)(ỹi − x⊤
i β̂) = 0 or

g̃(β̂)− β̂ = 0. Let U0(β0) = n−1
∑n

i=1(xi − x̄)[δiei + (1− δi)E(ǫi|ǫi > ei)]. Because

E(U0(β0)) = 0 and δiei + (1− δi)E(ǫi|ǫi > ei) (i = 1, 2, ..., n) are independent,

√
nU0(β0) asymptotically follows a normal distribution N(0,Σ), where

Σ =
1

n

n
∑

i=1

(xi − x̄)(xi − x̄)⊤s2i ,

and s2i = var{δiei + (1− δi)E(ǫi|ǫi > ei)}. By noting that
√
n||U(β0)− U0(β0)|| = op(1)

and using the Chebyshev inequality, we know the distribution of
√
nU(β0) is also

asymptotically N(0,Σ). Since U(β) is continuous in β, the consistency and asymptotic

normality of β̂ can be easily established by using the Taylor series expansion of U(β̂).

We now consider the estimation of s2i = var{δiei + (1− δi)ẽi}, which is equal to

E(δie
2
i + (1− δi)ẽi

2). This leads to an estimate of s2i equal to

ŝ2i = p0ē
2 + (1− p0)¯̃e

2

where p0 is the proportion of uncensored data, ē2 is the mean of e2i for the uncensored data,

and ¯̃e2 is the mean of ẽ2i for the censored data. Replacing s2i by ŝ2i in Σ gives an estimate of

Σ̂ for Σ.

We now work out var(β̂). Denote the estimating function at the mth step of iteration by

U(β̂(m), β̂(m−1)) = n−1
∑n

i=1(xi − x̄)(ỹi − x⊤
i β̂(m)), where ỹi is evaluated at β̂(m−1).

Since U(β) is smooth in β and β̂(m−1) is consistent (starting from a consistent estimator),

we now have

U(β̂(m), β̂(m−1)) = U(β0)−B(β̂(m) − β0) + (D +B)(β̂(m−1) − β0) + op(n
−1/2),

where U(β0) is the estimating function U(β̂) evaluated at β0, B = n−1X , and D =

E(U ′(β)). This implies that

β̂(m) − β0 = (I +B−1D)(β̂(m−1) − β0) +B−1U(β0) + op(n
−1/2), (4)

c© 0000 Australian Statistical Publishing Association Inc.

Prepared using anzsauth.cls

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



8 BUCKLEY-JAMES ESTIMATOR

which leads to

β̂(m) − β0 = (I +B−1D)m(β̂G − β0) + (I − (I +B−1D)m)D−1U(β0) + op(n
−1/2).

Here, β̂G is a consistent initial estimator such as the Gehan estimator. Since B +D

is non-negative and therefore (I +B−1D)m approaches a zero matrix as m becomes

sufficiently large, the asymptotic covariance matrix of β̂(m) is approximately equal to

Γ/n = D−1cov{U(β0)}{D⊤}−1, and Γ can be estimated by D̂
−1

Σ̂{D̂⊤}−1, where

D̂ = {U ′(β)}|
β̂
= n−1

n
∑

i=1

(xi − x̄)(vi − xi)
⊤.

Here the expression for vi is a bit tedious, but easy enough to calculate:

vi =
∂(1− δi)(ẽi − ei)

∂β
|
β̂
= (1− δi)

{

ẽi
∂Λ̃(ei)

∂β
|
β̂
− S̃−1 ∂ξ̃i

∂β
|
β̂
+ xi

}

,

and

∂Λ̃(ei)

∂β
|
β̂
= −

n
∑

j=1

δj

[

{n−∑n
k=1 Φ(

ejk
h2

)}φ( eijh1

)dijh
−1
1 +Φ(

eij
h1

){∑n
k=1 φ(

ejk
h2

)djkh
−1
2 }
]

{n−∑n
k=1 Φ(

ejk
h2

)}2 .

(5)

The quantities h1 =
√

dijΓd
⊤
ijh

2, h2 =
√

djkΓd
⊤
jkh

2, eij = ei − ej , and ∂ξ̃i/∂β can

be obtained numerically or via some approximation approach.

The smoothed estimates and their covariance matrix estimator obtained by the sandwich

approach are not greatly affected by the choice of h. In fact, the following result holds; the

proof is given in the Appendix.

Proposition. Under regularity conditions, for m ≥ 1, we have β̂(m) = β0 + op(n
−1/2) and

var(β̂(m)) = D−1cov{U(β0)}{D⊤}−1 + op(n
−1).

After a single step of the iterative procedure, we have

B(β̂(2) − β0) = (B +D)(β̂(1) − β0) + U(β0) + op(n
−1/2), (6)

which implies that β̂(2) and β̂(1) are consistent provided that the initial β̂(0) is consistent. It

is also apparent that the asymptotic variance of β̂(2) is D−1cov{U(β0)}{D⊤}−1, which is
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YOU-GAN WANG, YUDONG ZHAO AND LIYA FU 9

Γ/n. Thus it may suffice in practice to use just one iteration, producing the one-step smoothed

Buckley-James estimator.

4. Simulation Studies

To examine the finite sample performance of the proposed one-step smoothed Buckley-

James procedure, we now consider the same setup as in Jin, Lin, Wei et al. (2006).

Specifically, the failure times are generated from the AFT model: log T = 2 +X1 +X2 + ǫ,

where X1 follows a Bernoulli distribution with a success probability of 0.5, and X2 is

normally distributed as N(0, 0.52). We investigate five different error distributions for ǫ:

the standard normal; the standard logistic; the type I extreme-value distribution (location

=0 and scale=1); a mixture of normals, 0.9N(0, 1) + 0.1N(0, 9) and a Weibull distribution

with hazard rate 1/(2
√
t) for exp(ǫ), denoted by Weibull(0.5, 1). The censoring mechanism

is the same as in Jin, Lin, Wei et al. (2006). We first generate an error vector e from the

assumed distribution and hence obtain T . Censoring times (C) are generated from a uniform

distribution on (0, c) and the value c is so chosen that Pr(T > C) = p, where p is the desired

censoring proportion.

In addition to the proposed estimator (SBJ1), we also include, for efficiency

comparisons, the profile likelihood estimator (PLE) proposed by Zeng & Lin (2008), the log-

rank estimator (Jin, Lin, Wei et al. 2003), the least squares (LSQ) estimators proposed by Jin,

Lin, Wei et al. (2006), the Gehan estimator, and the smoothed Buckley-James estimator after

convergence (SBJ). The log-rank and least squares estimators are asymptotically efficient

under the extreme-value and normal error distributions, respectively.

The results based on the 1000 simulations for n = 100, 200, and 400 are summarized in

Table 1. The maximum number of iterations was set at 30 for all iterative estimators and the

estimates at convergence or the last iteration were used. The convergence criterion was for
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10 BUCKLEY-JAMES ESTIMATOR

the relative error to be ≤ 0.001 for both of the β1 and β2 estimates. The bandwidth h used

was 1.3σ2n
−1/3 (see Azzalini, 1981 and Giné & Nickl, 2009).

As can be seen from Table 1, the proposed estimators of β1 and β2 are virtually

unbiased. The induced smoothing procedure for estimating variances appears to reflect the

true variations, and the confidence intervals have proper coverage probabilities. We also

evaluated the ratio (denoted by RE) of the mean squared errors of SBJ1 to those of the

estimator of interest. Here the smaller values of RE indicate that SBJ1 is more efficient. The

simulation results in Table 1 showed that the proposed SBJ1 estimator appeare to perform

similarly to the LSQ and SBJ estimators in terms of mean squared errors. This is as expected

because all three are aimed at improving only the computational aspect of the BJ estimator.

As one might expect, the performance of any estimators depends on the underlying

distribution. When the errors are normally distributed, the new estimators (SBJ1 and SBJ)

appear to be more efficient than the Gehan, the Log-rank, and the PLE estimators. Even for

the logistic distribution, SBJ1 and SBJ appear to perform similarly to the Gehan estimator (all

three appear to be more efficient than the Log-rank and PLE estimators). However, when the

errors follow the extreme-value, Weibull, or mixture normal distributions, the SBJ estimator

appear to become less efficient than the Gehan, the Log-rank, and the PLE. In addition,

the Log-rank estimator seems to be most efficient for the extreme value distribution and

the Gehan estimator seems to perform well for the logistic distribution. The smoothed BJ

estimator seemed to perform similarly to the Log-rank estimator for the logistic and mixture

normal errors.

Figure 1 displays comparisons of the proposed 1-step SBJ estimates of β1 with the SBJ

estimates after convergence and with the initial Gehan estimates. The comparisons are based

on 1000 simulated datasets generated with standard normal errors and with a sample size of

100 and a 25% censoring rate. Ninety-nine point nine percent of the 1000 simulated datasets
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YOU-GAN WANG, YUDONG ZHAO AND LIYA FU 11

produced relative differences between the 1-step SBJ estimates and SBJ estimates that were

less than or equal to 1%. On the other hand, the 1-step estimates were considerably different

from the Gehan estimators, with roughly 40% of the relative differences larger than 1%.

Similar phenomena were also observed for β2 estimators.

We also conducted an additional set of simulations to compare the stability of the SBJ

estimator with that of the LSQ estimator proposed in Jin, Lin, Wei et al. (2006) in terms of the

number of simulations for which convergence is not achieved within 30 iterations (for both

SBJ and LSQ estimators). Note that non-convergence typically takes the form of oscillation

between multiple parameter values, and that maximal number of iterations permitted is not a

contributing factor to non-convergence. The simulation results are summarized in Table 2 for

n = 50 and n = 100. Table 2 indicates that when the sample size is relatively small (n ≤ 100)

the original Buckley-James and LSQ estimator may not exist. Table 2 also indicates that non-

convergence rates are greatly reduced by our proposed smoothing method. This is consistent

with the findings of Stare, Heinzl & Harrell (2000), who concluded that it is safe to use the

Buckley-James estimator only when censoring is less than 20%.

As we expected, when the sample size is large (n = 400), non-convergence is no longer

a concern for either LSQ or SBJ. Note also that SBJ1 is based on a one-step iteration whence

it has no convergence issues even for small sample sizes, but nevertheless its performance

is nearly as good as the full iteration estimator (see Table 1). Simulation code in R that was

used to produce Tables 1 and 2 is available from the authors upon request.

5. Myeloma Study

We first apply the method to the data from a study on multiple myeloma (Krall, Uthoff &

Harley 1975). The dataset is available as an example in the documentation for PROC PHREG

in the SAS/STAT 12.1 user guide (pp. 493-494). We investigate two standardized covariates,

LOGBUN and HGB. There are a total of 65 subjects. The Gehan rank estimates of (β1, β2)
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12 BUCKLEY-JAMES ESTIMATOR

are β̂ = (−0.532, 0.292). The PLE estimates are (−0.606, 0.330) when starting from (0, 0).

However, the estimates become (-0.640, 0.337) when starting from the Gehan estimates as

the initial values. The linear approximation method proposed by Jin, Lin, Wei et al. (2006)

produces β̂ = (−0.5197, 0.2813).

We now consider the newly proposed procedure based on the BJ estimator. Using Γ0 =

Ip/n, we obtain convergence after 5 iterations to β̂ = (−0.5176, 0.2632). The intercept is

estimated to be 3.967. When using very different initial values for β1 and β2, explicitly the

least squares estimate and (0, 0), we obtain the same final estimates. This indicates that the

smoothed iteration approach in general is capable of provide unique final estimates and that

the initial values are not critical. Note that the asymptotic variance for β̂1 is the same as that

for β̂2 if X1 and X2 are standardized. The corresponding non-asymptotic standard errors for

β̂ are (0.114, 0.113), which are about 25% smaller than those obtained from the Gehan’s

rank estimation (see Jin, Lin, Wei et al. 2003).

6. Discussion

In this paper, we have introduced a perturbation method for the BJ estimation method for

censored data. The perturbation approach makes the projection matrix smooth and hence the

iterations do not tend to oscillate between different values. Alternating between estimating the

parameters and estimating the asymptotic covariance matrix Γ = nvar(β̂) leads to smoothed

versions of both estimates. Use of the smoothed Kaplan-Meier function makes the iterative

approach stable and induces reliable convergence.

The smoothing procedure is based on solving EZ(U(θ + hΓ1/2Z)) = 0 instead of

U(θ) = 0, where the subscript Z indicates the expectation is taken with respect to the

standard normal variable Z. Zeng & Lin (2008) proposed using resampling methods

for obtaining this expectation using Γ = Ip, which is also used as an initial covariance

matrix in Brown & Wang (2005). In some cases, explicit expressions are not available but
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YOU-GAN WANG, YUDONG ZHAO AND LIYA FU 13

numerical evaluation is always possible through simulating many Z realizations (see Jin,

Shao & Ying 2015). Generally speaking, if U(θ + hΓ1/2Z) takes the form G(H(θ),θ),

we can consider two-step induced smoothing, EZG(H̄(θ),θ + hΓ1/2 Z), where H̄(θ) =

EZ(H(θ + hΓ1/2Z)). Such an approach becomes useful when both expectations have

explicit expressions as is the case in the setting that we consider. Our example using the

myeloma study clearly shows the advantages of smoothing. It would be of interest to see how

it performs in other cases and to investigate how to apply such smoothing procedures more

generally.

Our application of induced smoothing to the BJ estimator solves the “non-smoothness

curse” in survival analysis. The statistical merits of this new estimator are not limited to

the numerical studies presented here. For example, our work has made it possible to further

improve the finite sample performance of the estimator in terms of bias, mean squared error

and the achieved coverage probability of confidence intervals (the latter being related to

estimation of standard errors of the estimators).

Appendices

A1. Proof of S̃(e)− S(e) = op(n
−1/2)

We first show that the denominator n−∑n
k=1 Φ{rjk} converges to the jump process

Y (ej) = #{i : ei ≥ ej}, where rjk = (ej − ek)/
√
ujk, ujk = djkΓd

⊤
jkh

2 and djk =

(xj − xk)
⊤. Denote

√
ujk by hj,k(β̂). We re-write

n−
n
∑

k=1

Φ{rjk} = n

(

1−
∫ ej

−∞

n−1
n
∑

k=1

1
√
ujk

φ

{

t− ek√
ujk

}

dt

)

= n

(

1−
∫ ej

−∞

n
∑

k=1

1

nhj,k(β̂)
φ

{

t− ek

hj,k(β̂)

}

dt

)

.

Note that the smoothing bandwidth function h·,·(β̂) is of the order O(h). Following the

approach used in the proof of Theorem 2 in Terrell & Scott (1992), we can show that the

integrand that appears in the right hand side is a consistent estimator of fe(t), the density

c© 0000 Australian Statistical Publishing Association Inc.

Prepared using anzsauth.cls

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



14 BUCKLEY-JAMES ESTIMATOR

function of e, and thus that the right hand side is a consistent estimator of n{1− F (ej)}.

The point-wise asymptotic equivalence of Y (ej) and n{1− F (ej)} follows by using the

inequality presented in Theorem 1 in Giné & Nickl (2009).

We now demonstrate the point-wise convergence of Λ̃(e). Set Λ̃(s) equal to
∫ s

−∞
α̃(e)de,

where

α̃(e) =
n
∑

j=1

n−1h−1
j,· (β̂)φ((e− ej)/hj,·(β̂))

1− n−1
∑n

k=1 Φ{rjk}
.

For a given e, let α̂(e) =
∑n

j=1 h
−1
j,· (β̂)φ((e− ej)/hj,·(β̂))Y

−1(ej). It can be

shown that |α̃(e)− α̂(e)| P→ 0, since φ is a bounded kernel, under the assumption

infw∈[e−η,e+η] h
∑n

k=1 1{ek ≥ w} P→ ∞ as n → ∞.

Let Λ̂(s) =
∫ s

−∞
α̂(e)de be the Nelson-Aalen estimator of Λ(s) =

∫ s

−∞
α(e)de, where α(e)

is the hazard rate function defined based on residuals. We notice that α̂(e) can be equivalently

written as

α̂(e) =

∫

E

h−1
j,· (β̂)φ((s− ej)/hj,·(β̂))dΛ̂(s).

Following an approach similar to that used in Ramlau-Hansen (1983), we further obtain that

α̂(e)
P→ α(e) as n → ∞ by observing that the counting process arguments are still applicable

here in terms of the residuals even though arbitrarily large negative values may be observed.

This result implies that α̃(e)
P→ α(e) as n → ∞. By the dominated convergence theorem,

it follows that |Ã(e)−A(e)| P→ 0 as n → ∞. The consistency of S̃(e) = exp{−Λ̃(e)}

follows immediately.

c© 0000 Australian Statistical Publishing Association Inc.

Prepared using anzsauth.cls

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



YOU-GAN WANG, YUDONG ZHAO AND LIYA FU 15

A2. Proof of Proposition

Denote the estimating function U(β) at the mth step of iteration by

U(β̂(m), β̂(m−1)) = n−1
n
∑

i=1

(xi − x̄)(ỹi − x⊤
i β̂(m)),

where ỹi is evaluated at β̂(m−1). Since U(β) is smooth in β, if we suppose that β̂(m−1) is

consistent when starting from a consistent estimator initially, we now have

U(β̂(m), β̂(m−1)) = U(β0)−B(β̂(m) − β0) + (D +B)(β̂(m−1) − β0) + op(n
−1/2)

where U(β0) is the estimating function U(β̂) evaluated at β0, B = n−1X , and D =

E(U ′(β))β
0
. Because U(β̂(m), β̂(m−1)) = 0, we obtain

β̂(m) − β0 = (I +B−1D)(β̂(m−1) − β0) +B−1U(β0) + op(n
−1/2).

For a given m ≥ 1, we have

β̂(m) − β0 = (I +B−1D)m(β̂G − β0) + (I − (I +B−1D)m)D−1U(β0) + op(n
−1/2)

Therefore,

√
n(β̂(m) − β0) = (I +B−1D)m

√
n(β̂G − β0) + (I − (I +B−1D)m)D−1√nU(β0) + op(1)

where β̂G is a consistent initial estimator. According to Jin, Lin, Wei et al. (2003),

√
n(β̂G − β0) is asymptotically normal as n → +∞, and when the level of censorship

shrinks to zero, the matrix −D approaches B, B +D is non-negative, and therefore

(I +B−1D)m approaches a zero matrix as m becomes sufficiently large (Jin, Lin, Wei et

al. 2006). Consequenctly
√
n(β̂(m) − β0) = op(1), and the asymptotic covariance matrix of

β̂(m) is approximately equal to Γ/n = D−1cov{U(β0)}{D⊤}−1.
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18 BUCKLEY-JAMES ESTIMATOR

TABLE 1
Summary of simulation studies. SE: standard error of the parameter estimator; SEE: mean of the standard
error estimator; CP: coverage probability of the 95% confidence interval; RE: ratio of the mean squared

errors of SBJ1 to the estimator of interest.

SBJ1 LSQ Gehan Log-rank PLE SBJ
N Censoring Bias SE SEE CP Bias RE Bias RE Bias RE Bias RE Bias RE

Normal error
100 25% β1 -0.002 0.222 0.221 0.942 -0.003 1.005 -0.003 0.957 0.004 0.890 -0.003 0.899 -0.003 1.000

β2 0.001 0.221 0.226 0.950 0.001 1.007 -0.001 0.946 0.009 0.906 -0.003 0.884 0.001 1.000
50% β1 -0.001 0.258 0.267 0.942 -0.002 1.020 -0.002 0.934 -0.006 0.957 -0.006 0.853 -0.002 1.003

β2 -0.011 0.280 0.272 0.925 -0.012 1.025 -0.009 0.920 -0.013 0.975 -0.012 0.823 -0.011 1.006
200 25% β1 -0.005 0.152 0.157 0.956 -0.005 1.003 -0.007 0.945 -0.002 0.881 -0.006 0.932 -0.005 1.000

β2 -0.001 0.158 0.158 0.941 -0.001 1.001 -0.002 0.946 0.002 0.872 -0.002 0.922 -0.001 1.000
50% β1 0.012 0.192 0.187 0.940 0.011 1.014 0.012 0.907 0.010 0.965 0.010 0.943 0.011 1.008

β2 0.006 0.193 0.190 0.935 0.006 1.020 0.007 0.893 0.005 1.000 0.006 0.921 0.006 1.011
400 25% β1 0.005 0.106 0.110 0.962 0.005 1.002 0.006 0.947 0.003 0.898 0.006 0.962 0.005 1.000

β2 0.008 0.116 0.110 0.928 0.008 1.002 0.008 0.963 0.008 0.962 0.006 0.950 0.008 0.999
50% β1 0.005 0.127 0.128 0.954 0.006 1.004 0.005 0.919 0.005 0.966 0.008 0.940 0.006 1.004

β2 -0.003 0.131 0.129 0.944 -0.003 1.010 -0.004 0.935 -0.001 1.002 -0.003 0.978 -0.003 1.003
Logistic error

100 25% β1 0.003 0.408 0.398 0.948 0.003 0.999 0.001 1.044 0.005 0.908 -0.001 0.952 0.003 0.997
β2 -0.021 0.412 0.403 0.945 -0.021 1.005 -0.014 1.032 -0.020 0.904 -0.021 0.906 -0.021 0.998

50% β1 0.016 0.457 0.469 0.954 0.017 1.000 0.014 0.980 0.013 0.944 0.015 0.804 0.016 0.991
β2 0.010 0.480 0.477 0.938 0.010 1.008 0.006 1.010 0.003 0.985 0.006 0.816 0.011 0.990

200 25% β1 0.001 0.277 0.281 0.949 0.001 1.002 -0.0005 1.046 0.008 0.927 -0.0004 0.956 0.001 0.997
β2 0.008 0.280 0.282 0.951 0.008 0.998 0.006 1.050 0.003 0.920 0.007 0.943 0.008 0.997

50% β1 0.002 0.315 0.332 0.959 0.001 0.995 0.002 1.007 -0.006 0.965 0.005 0.914 0.003 0.992
β2 0.009 0.342 0.335 0.932 0.009 1.001 0.009 0.994 0.013 0.932 0.013 0.908 0.009 0.994

400 25% β1 0.001 0.202 0.197 0.948 0.002 0.993 -0.001 1.118 0.001 0.875 -0.003 1.024 0.001 0.997
β2 -0.005 0.197 0.197 0.958 -0.005 0.999 -0.005 1.062 -0.003 0.927 -0.004 1.012 -0.005 0.998

50% β1 -0.005 0.225 0.228 0.944 -0.005 0.995 -0.004 0.977 -0.001 0.919 -0.003 0.894 -0.005 0.995
β2 -0.003 0.234 0.229 0.940 -0.003 0.998 -0.006 1.004 0.003 1.006 -0.006 0.959 -0.003 0.995

Extreme value error
100 25% β1 0.010 0.287 0.293 0.944 0.011 1.007 0.007 1.168 0.001 1.596 0.009 1.072 0.010 0.993

β2 0.023 0.302 0.302 0.931 0.022 1.005 0.020 1.205 0.011 1.635 0.017 1.090 0.023 0.991
50% β1 0.001 0.350 0.343 0.930 0.002 1.017 0.001 1.109 0.004 1.650 0.0004 0.881 0.001 0.976

β2 -0.012 0.336 0.347 0.952 -0.011 1.016 -0.016 1.101 -0.011 1.591 -0.015 0.937 -0.011 0.974
200 25% β1 0.006 0.204 0.202 0.937 0.005 1.004 0.004 1.165 0.005 1.722 0.010 1.265 0.006 0.994

β2 -0.006 0.197 0.203 0.952 -0.006 1.004 -0.004 1.177 -0.003 1.617 -0.001 1.210 -0.006 0.992
50% β1 0.009 0.231 0.240 0.957 0.009 1.001 0.010 1.129 0.009 1.728 0.012 1.251 0.009 0.971

β2 -0.007 0.235 0.241 0.943 -0.007 1.011 -0.010 1.088 -0.007 1.703 -0.010 1.154 -0.007 0.979
400 25% β1 -0.006 0.146 0.142 0.952 -0.006 1.000 -0.006 1.138 -0.008 1.654 -0.006 1.270 -0.006 0.995

β2 0.004 0.144 0.143 0.962 0.004 0.998 0.009 1.211 0.006 1.808 0.009 1.450 0.004 0.993
50% β1 0.003 0.174 0.167 0.944 0.003 0.991 0.002 1.097 -0.002 1.727 0.001 1.361 0.003 0.979

β2 -0.001 0.164 0.168 0.964 -0.001 1.002 -0.001 1.042 -0.002 1.690 -0.001 1.363 -0.001 0.985
Mixture Normal error

100 25% β1 -0.012 0.299 0.289 0.943 -0.012 0.984 -0.016 1.301 -0.017 1.040 -0.017 1.223 -0.012 0.993
β2 -0.0003 0.295 0.289 0.949 0.0003 0.987 0.002 1.305 0.004 1.070 0.0006 1.249 -0.0003 0.992

50% β1 -0.002 0.323 0.335 0.945 -0.002 0.970 0.002 1.130 0.002 1.032 0.002 0.959 -0.002 0.974
β2 -0.002 0.333 0.338 0.949 -0.001 0.988 -0.005 1.121 -0.003 1.047 -0.007 0.998 -0.002 0.972

200 25% β1 -0.003 0.203 0.204 0.953 -0.002 0.995 -0.004 1.250 -0.008 1.021 -0.005 1.190 -0.003 0.995
β2 0.007 0.202 0.207 0.959 0.007 0.988 0.008 1.265 0.005 1.035 0.011 1.184 0.008 0.994

50% β1 -0.0003 0.228 0.237 0.960 -0.001 0.965 0.003 1.086 -0.005 0.977 0.003 1.019 0.0003 0.982
β2 -0.004 0.234 0.240 0.957 -0.004 0.983 -0.009 1.121 -0.005 1.046 -0.008 1.104 -0.004 0.979

400 25% β1 0.010 0.142 0.143 0.948 0.010 0.993 0.005 1.264 0.007 1.061 0.005 1.238 0.010 0.996
β2 0.015 0.144 0.143 0.942 0.014 0.993 0.014 1.251 0.014 1.041 0.015 1.213 0.015 0.996

50% β1 -0.006 0.156 0.163 0.956 -0.006 0.975 -0.006 1.130 -0.005 1.059 -0.006 1.157 -0.006 0.980
β2 0.008 0.163 0.162 0.950 0.008 0.977 0.005 1.143 0.012 1.030 0.007 1.080 0.008 0.981

Log-Weibull error
100 25% β1 0.011 0.601 0.588 0.936 0.010 1.005 0.008 1.187 -0.007 1.698 0.008 1.132 0.011 0.992

β2 -0.011 0.585 0.621 0.942 -0.011 1.011 -0.008 1.170 0.002 1.515 0.003 1.088 -0.011 0.991
50% β1 -0.030 0.677 0.700 0.949 -0.030 1.010 -0.032 1.139 -0.021 1.765 -0.039 0.986 -0.029 0.968

β2 0.017 0.701 0.710 0.947 0.016 1.016 0.014 1.124 -0.016 1.761 -0.002 0.999 0.017 0.970
200 25% β1 0.006 0.392 0.403 0.961 0.006 1.001 0.006 1.142 -0.006 1.648 0.002 1.214 0.006 0.994

β2 0.012 0.395 0.407 0.958 0.012 1.003 0.012 1.141 0.003 1.615 0.012 1.216 0.012 0.994
50% β1 0.006 0.488 0.476 0.945 0.005 0.997 0.004 1.137 -0.001 1.797 -0.001 1.286 0.006 0.973

β2 0.006 0.467 0.485 0.943 0.005 0.999 0.002 1.109 -0.007 1.693 -0.005 1.217 0.006 0.972
400 25% β1 -0.019 0.291 0.284 0.950 -0.019 1.002 -0.021 1.201 -0.016 1.810 -0.014 1.499 -0.019 0.994

β2 -0.006 0.278 0.284 0.952 -0.006 1.000 -0.008 1.229 -0.007 1.744 -0.009 1.454 -0.006 0.993
50% β1 -0.010 0.335 0.332 0.956 -0.010 0.993 -0.004 1.107 0.004 1.827 0.006 1.418 -0.010 0.977

β2 -0.023 0.330 0.333 0.954 -0.024 0.998 -0.021 1.079 -0.010 1.864 -0.009 1.503 -0.024 0.981
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TABLE 2
Counts of instances of non-convergence within 30 iterations over 1000 simulations. RE: ratio of the mean

squared error of SBJ to that of LSQ; # of NC: counts of non-convergence

LSQ SBJ
N Censoring Bias SE # of NC Bias RE # of NC

Normal error

50 25% β1 0.008 0.329 144 0.009 1.006 0
β2 0.010 0.325 0.010 1.011

50% β1 -0.006 0.378 255 -0.006 1.017 2
β2 0.015 0.390 0.014 1.036

100 25% β1 -0.001 0.218 25 -0.001 1.005 0
β2 0.006 0.230 0.007 1.002

50% β1 0.017 0.265 57 0.016 1.027 0
β2 -0.008 0.260 -0.008 1.014

Logistic error

50 25% β1 0.001 0.578 204 0.010 1.014 1
β2 0.003 0.597 -0.007 1.013

50% β1 0.014 0.644 386 0.010 1.023 2
β2 -0.009 0.687 -0.007 1.029

100 25% β1 0.009 0.396 80 0.008 1.005 1
β2 -0.006 0.410 -0.006 1.003

50% β1 -0.015 0.465 193 -0.014 1.009 1
β2 0.009 0.459 0.008 1.011

Extreme value error

50 25% β1 0.013 0.423 135 0.013 1.032 1
β2 -0.026 0.419 -0.026 1.042

50% β1 -0.006 0.473 261 0.930 1.075 0
β2 0.002 0.523 -0.004 1.068

100 25% β1 -0.004 0.285 18 -0.005 1.021 0
β2 0.003 0.297 0.003 1.020

50% β1 -0.003 0.338 43 -0.004 1.045 0
β2 -0.003 0.347 -0.003 1.049

Mixture Normal error

50 25% β1 -0.013 0.420 185 -0.013 1.005 1
β2 0.014 0.413 0.015 0.999

50% β1 0.012 0.323 328 0.011 1.024 2
β2 0.019 0.333 0.020 1.033

100 25% β1 0.001 0.283 72 -0.001 1.000 1
β2 0.015 0.304 0.015 0.992

50% β1 -0.013 0.339 126 -0.012 0.994 1
β2 -0.009 0.343 -0.008 1.007

Log-Weibull error

50 25% β1 0.015 0.850 180 0.016 1.034 2
β2 0.038 0.826 0.035 1.034

50% β1 -0.013 1.018 322 -0.014 1.071 2
β2 0.016 1.000 0.015 1.078

100 25% β1 0.013 0.565 89 0.013 1.018 0
β2 -0.006 0.578 -0.006 1.016

50% β1 -0.011 0.680 162 -0.012 1.045 0
β2 -0.013 0.675 -0.012 1.043
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20 BUCKLEY-JAMES ESTIMATOR

Figure Caption

Figure 1: Simulation results assuming normal errors and a 25% censoring rate. (a)

Smoothed Buckley-James estimates versus one-step smoothed Buckley-James estimates; (b)

Gehan estimates versus one-step smoothed Buckley-James estimates
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