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Fig. S1 Section of volumetric sagittal brain slices along with corresponding x-coordinates 

displaying the differences in the extent of significantly de-activated brain areas during 

meditation relative to rest, when group-level covariates (i.e., dispositional mindfulness, self-

reported alertness during meditation, self-reported effort during meditation) were included vs. 

excluded. Brain areas coloured green were only significant when covariates were excluded. 

Brain areas coloured orange were only significant after inclusion of the covariates. Brain 
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areas whose significance was not influenced by inclusion or exclusion of covariates are shown 

in red. All significant brain areas survived FWE correction for multiple comparisons across 

clusters (as reported in main manuscript). S – superior/dorsal, A – anterior, P – posterior, I – 

inferior/ventral. 

 

 When not controlling for inter-individual variability in overall baseline 

dispositional mindfulness (overall FFMQ scores), self-reported alertness during meditation and 

self-reported effort during meditation, we found that the extent of significant deactivation 

clusters for meditation relative to rest was slightly more diffuse (green and red areas in Fig. 

S1). Particularly, the extent of deactivation was more diffuse in the visual areas, thalamus, 

posterior cingulate cortex (PCC), precuneus and medial prefrontal cortex (mPFC) (which also 

included dorsomedial PFC). Additional deactivation was also found in the anterior cingulate 

cortex (ACC), posterior insula, hippocampal areas, and cerebellum. These regions have been 

implicated previously in mind-wandering distraction and spontaneous thought. Specifically, 

parts of posterior insula may be involved in the somatic experience of mind-wandering, hinted 

by its reported activation during mind-wandering processes (Fox et al., 2015) and reported 

deactivation during focused attention meditation (Hasenkamp et al., 2012; Manna et al., 2010). 

Deactivation of hippocampal areas during meditation relative to rest likely result from 

attenuation of memory recall associated with default-mode processing (Buckner & Carroll, 

2007; Fox et al., 2015; Hasenkamp et al., 2012). Deactivation within parts of ACC during 

meditation relative to rest may be explained by its relevance to goal-directed cognition (e.g., 

thoughts about meditating) (Fox et al., 2015; Hasenkamp et al., 2012), as well as mind-

wandering without meta-awareness (Christoff et al., 2009). Finally, although some studies 

report the involvement of cerebellum in focused attention meditation (Hasenkamp et al., 2012; 

Miyoshi et al., 2019), the role of cerebellum in meditation is yet to be explored. The observed 
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deactivation of cerebellum during meditation relative to rest may potentially underpin 

attenuation of abstract mentalizing and social cognition (Van Overwalle et al., 2014), alongside 

deactivation of Default-mode processing. 

 On the other hand, controlling for these inter-individual variables increased the 

specificity of deactivations, confining them to specific sub areas within the visual cortex, PCC, 

mPFC and thalamus (orange and red areas in Fig. S1; see main text for more details). 

Additionally, the deactivations within posterior insula, ACC, hippocampal areas and 

cerebellum lost statistical significance. In other words, the significance of deactivations in these 

regions was likely influenced by level of variations in overall dispositional mindfulness, 

subjective effort during meditation and subjective arousal during meditation. Previous studies 

have found associations between meditation experience and fMRI activity in posterior insula 

(Farb et al., 2013; Hasenkamp et al., 2012; Manna et al., 2010), para-hippocampus, ACC and 

cerebellar regions (Hasenkamp et al., 2012). Similarly, other brain areas within networks such 

as Default-mode and Executive Control can be influenced by inter-individual variability in 

dispositional mindfulness levels (see Ganesan et al. (2022) for detailed review), as well as level 

of arousal and effort during meditation task among beginners (see Britton et al. (2014) for a 

detailed review). Moreover, meditators with greater mindfulness ability potentially 

demonstrate greater neural efficiency during meditation (Brefczynski-Lewis et al., 2007; 

Escrichs et al., 2019; Hiroyasu & Hiwa, 2017; Manna et al., 2010). Taken together, it is possible 

that inter-individual variations in dispositional mindfulness, arousal and effort may have 

influenced the extent and areas of deactivations observed and consequently, controlling for 

these factors increased the precision of deactivations in our study. However, there is a definitive 

need for these findings to be validated in bigger samples.  
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Fig. S2 Section of volumetric sagittal brain slices along with corresponding x-coordinates 

displaying the differences in the extent of significantly de-activated brain areas during 

meditation relative to rest, when physiological artifact correction was included vs. excluded. 

Brain areas coloured maroon were only significant when physiological correction was 

excluded. Brain areas coloured blue were only significant after inclusion of physiological 

correction. Brain areas whose significance was not affected by physiological correction are 

shown in green. All significant brain areas survived FWE correction for multiple comparisons 

across clusters (as reported in main manuscript). Note that all significant brain areas shown 
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here were obtained after controlling for overall dispositional mindfulness, and self-report 

effort and self-report alertness during meditation. S – superior/dorsal, A – anterior, P – 

posterior, I – inferior/ventral. 

As shown by the maroon and blue areas in Fig. S2, the inclusion vs. exclusion of 

physiological signal control in fMRI analysis impacts the extent of significance among 

deactivated mid-line cortical areas (including PCC, mPFC and precuneus) during meditation 

relative to rest. Physiological artifact correction can influence BOLD fMRI signal, especially 

along the mid-line cortical areas near large blood vessels, such as PCC and precuneus. In 

general, default-mode network areas are likely impacted by task-induced as well as respiration-

induced blood flow changes due to the nearby large vasculatures (Birn et al., 2006). 

Furthermore, these physiological confound effects can be greater when fMRI task conditions 

closely associate with physiological response fluctuations (Birn et al., 2009), like with 

meditation (Ahani et al., 2013; Delmonte, 1984; Ditto et al., 2006; Soni & Muniyandi, 2019). 

Therefore, it is important that future neuroimaging studies investigating meditation report 

fMRI results that have been controlled for physiological confounds. 
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Fig. S3 Visual depiction of the design matrix used in the first-level general linear modelling 

(GLM) analysis of every fMRI run. Time courses (shown in red) of predictors modelling the 

HRF-convolved main conditions of interest (i.e., meditation, rest, cue, response), their 

respective temporal derivatives, head motion artifacts, and physiological artifacts constitute 

the first-level design matrix. The y-axis represents time of fMRI run from start to finish. 
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Fig. S4 Visual depiction of the design matrix used in the first-level general linear modelling 

(GLM) analysis when physiological correction was excluded. Time courses (shown in red) of 

predictors modelling the HRF-convolved main conditions of interest (i.e., meditation, rest, cue, 

response), their respective temporal derivatives, and head motion artifacts constitute this first-

level design matrix when physiological correction was entirely excluded. The y-axis represents 

time of fMRI run from start to finish. 
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Fig. S5 Visual depiction of the design matrix with covariates used in the third-level (group 

level) general linear modelling (GLM) analysis. The first column models the average response 

during meditation relative to rest across the 10 participants. The remaining columns model the 

inter-individual variability in self-reported in-scanner alertness, trait or dispositional 

mindfulness (overall FFMQ score), and self-reported in-scanner effort. The y-axis represents 

participants. Note that a group-level design matrix that excludes the covariates (as detailed in 

Fig. S1) would comprise only the ‘group mean’ column shown here.  
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