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Abstract
Scalar invariance is an unachievable ideal that in practice can only be approximated; often using
potentially questionable approaches such as partial invariance based on a stepwise selection of parameter
estimates with large modification indices. Study 1 demonstrates an extension of the power and flexibility
of the alignment approach for comparing latent factor means in large-scale studies (30 OECD countries,
8 factors, 44 items, N � 249,840), for which scalar invariance is typically not supported in the traditional
confirmatory factor analysis approach to measurement invariance (CFA-MI). Importantly, we introduce
an alignment-within-CFA (AwC) approach, transforming alignment from a largely exploratory tool into
a confirmatory tool, and enabling analyses that previously have not been possible with alignment (testing
the invariance of uniquenesses and factor variances/covariances; multiple-group MIMIC models; con-
trasts on latent means) and structural equation models more generally. Specifically, it also allowed a
comparison of gender differences in a 30-country MIMIC AwC (i.e., a SEM with gender as a covariate)
and a 60-group AwC CFA (i.e., 30 countries � 2 genders) analysis. Study 2, a simulation study following
up issues raised in Study 1, showed that latent means were more accurately estimated with alignment than
with the scalar CFA-MI, and particularly with partial invariance scalar models based on the heavily
criticized stepwise selection strategy. In summary, alignment augmented by AwC provides applied
researchers from diverse disciplines considerable flexibility to address substantively important issues
when the traditional CFA-MI scalar model does not fit the data.

Translational Abstract
Determining whether people in certain countries score differently in measurements of interest (e.g.,
values, attitudes, opinions, or behaviors) can assist in testing theories, comparing countries, and
advancing our psychological, sociological, and cross-cultural knowledge. Meaningful comparisons of
means or relationships between constructs within and across nations require equivalent measurements of
these constructs. However, tests of measurement equality or invariance usually fail when many groups
are considered. Asparouhov and Muthén (2014) presented a new method for multiple-group confirmatory
factor analysis (CFA), referred to as the alignment method. A strength of the method is the ability to
estimate group-specific factor means and variances without requiring exact measurement invariance.
Study 1 introduces an extension of the alignment method that can flexibly be applied in a large range of
structural equation models. This is demonstrated by comparing latent factor means and relationships
between 8 motivational constructs and covariates (e.g., gender) across 30 countries in a large-scale study
(PISA, N � 249,840), in which the traditional measurement invariance was not achieved. Study 2, a
simulation study, was presented showing that latent means were more accurately estimated with the
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alignment method than with other measurement invariance models (e.g., partial invariance models). In
summary, the alignment method, augmented by its more flexible extension suggested in the present
article, provides applied researchers from diverse disciplines considerable flexibility to address substan-
tively important issues when the traditional measurement model does not fit the data.

Keywords: measurement invariance, alignment method, stepwise selection strategies, modification indi-
ces, MIMIC models
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We begin with the premise that the model of complete scalar
invariance based on the confirmatory factor analysis approach to
measurement invariance (CFA-MI) is an unachievable ideal that in
practice can only be approximated. Furthermore, in relation to
current standards of acceptable fit, even acceptable approximations
to the complete scalar CFA-MI are rare in large-scale studies based
on many factors, items/factors, and groups. Nevertheless, consis-
tently with typical practice, post hoc adjustments to the a priori
scalar CFA-MI model using a traditional stepwise selection strat-
egy based on modification indices will eventually achieve an
apparently acceptable fit for a partial scalar CFA-MI (CFA-MIPart)
model if sufficient adjustments are introduced. However, consis-
tently with severe criticisms of such stepwise procedures in the
statistical literature, and related caveats by Byrne, Shavelson, and
Muthén (1989; also see Reise, Widaman, & Pugh, 1993) when
they first introduced partial invariance, we agree with Asparouhov
and Muthén’s (2014) supposition that the traditional partial invari-
ance approach to invariance is unlikely to lead the simplest, most
interpretable model for large-scale studies, leading them to intro-
duce the CFA-MIAL model.

Based on a large real data demonstration, followed by a
simulation study, we extend the usefulness of a new, evolving
statistical procedure: multiple group factor analysis alignment
(Asparouhov & Muthén, 2014; Muthén & Asparouhov, 2013)—
hereafter referred to as the CFA-MIAL model. For multiple
group data, particularly when the number of groups is large,
alignment can be used to compare latent factor means even
when there is not support for complete scalar invariance. How-
ever, the starting point for alignment is still the typical set of
CFA-MI tests of the multigroup invariance of factor loadings,
intercepts, and latent means (e.g., Marsh, Muthén, et al., 2009;
Meredith, 1993; Millsap, 2011; Vandenberg & Lance, 2000;
Widaman & Reise, 1997). Indeed, if there is good support for
complete scalar invariance, there is no need to pursue align-
ment. However, in large-scale studies, scalar CFA-MI models
are almost always rejected. In applied research, it is typical to
not even test for violations of the underlying invariance as-
sumptions, to simply ignore them, or to explore a potentially
large number of alternative, partial invariance models, in which
some invariance restrictions are relaxed.

Particularly in large-scale studies, the stepwise selection pro-
cess of relaxing invariance constraints one parameter at a time
is highly cumbersome, idiosyncratic, and likely to capitalize on
chance, so that the final solution is not replicable. The align-
ment (CFA-MIAL) model is an easily applied, viable alternative
to traditional CFA-MIPart models; it is “based on the configural
model and essentially automates and greatly simplifies mea-
surement invariance analysis. The method also provides a de-

tailed account of parameter invariance for every model param-
eter in every group” (Asparouhov & Muthén, 2014, p. 1).
Despite the great promise of CFA-MIAL to address practical
problems associated with multiple group tests of invariance,
there are important limitations in the currently available version
of the CFA-MIAL model that substantially limit its usefulness in
applied research and leave a number of unanswered questions
about its appropriateness under different situations. Thus, align-
ment can only be used to test a limited number of CFA models,
and cannot incorporate cross-loadings, covariates, or tests of
structural equation models (SEMs) more generally. For these
reasons it was initially seen primarily as an exploratory tool
useful in preliminary analyses.

In the present investigation we introduce what we refer to as
alignment-within-CFA (AwC), which transforms the CFA-MIAL

model from an exploratory tool into a confirmatory tool, allows
researchers to pursue nearly all issues that can be addressed with
traditional CFA and SEM models, and greatly enhances the use-
fulness of the CFA-MIAL model for applied research. The AwC
solution is equivalent to the CFA-MIAL model solution in that it
has the same degrees of freedom, same goodness of fit, and same
parameter estimates as the CFA-MIAL model. Indeed, the AwC
model in its basic form is the same as the alignment model, but
reconfigured as a more general CFA model. In this respect, support
or lack of support for the alignment model applies to the basic
AwC model as well.

With AwC, applied researchers have more flexibility in terms
of constraining or further modifying the basic AwC model (as
it is a true CFA model) than they would with the CFA-MIAL

model upon which it is based (also see Appendices 1 and 2 in
the online supplemental materials). More generally, with the
AwC extension of CFA-MIAL, it is possible to test SEMs that
are more general than CFA measurement models, which are the
focus of the CFA-MIAL model. Thus, AwC provides a useful
complement to the CFA-MIAL model, overcoming what were
thought to be inherent limitations of its usefulness. Here we
outline traditional CFA approaches to testing measurement
invariance, describe the CFA-MIAL model, introduce the AwC
extension of the CFA-MIAL model, and briefly review the
inherent limitations of the traditional stepwise approach to
scalar CFA-MIPart models. In Study 1 we then provide an
application of the AwC to substantively important issues in
testing the measurement invariance of the Programme for In-
ternational Student Assessment (PISA) motivation and engage-
ment constructs over 30 OECD countries (Nagengast & Marsh,
2013). Finally, in Study 2 we present a simulation study to
address questions about alignment raised by Study 1: in partic-
ular, a comparison of alignment and CFA-MIPart models in

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

525ALIGNMENT-WITHIN-CFA (AWC)

http://dx.doi.org/10.1037/met0000113.supp
http://dx.doi.org/10.1037/met0000113.supp
http://dx.doi.org/10.1037/met0000113.supp


relation to bias in the estimation of latent means, which is a
primary focus of scale CFA-MI models.

Multiple Group CFAs and Tests of
Measurement Invariance

The Importance of Measurement Invariance

Comparisons of results across multiple groups (e.g., multiple
countries) require strong assumptions about the invariance of the
factor structure across the groups. Unless the underlying factors
really do reflect the same construct, and the measurements them-
selves are operating in the same way (across groups, over age and
time, or across different levels of continuous variables), mean
differences and other comparisons might be invalid. If the under-
lying factors are fundamentally different, then there is no basis for
interpreting observed differences (the “apples and oranges” prob-
lem). Important issues for applied researchers are the implications
of the inevitable failures of these tests of invariance—in relation to
the development of measurement instruments and the interpreta-
tion of results based on even well-established measures. However,
these issues are frequently ignored in applied research. For exam-
ple, in cross-national studies of motivational differences such as
those considered here, interpretations of mean differences—or
even relations among different constructs—presuppose that the
factors are the same across countries. However, in their review of
48 cross-cultural research studies published in the Journal of
Personality and Social Psychology between 1985 and 2005, Chen
(2008; also see Nagengast & Marsh, 2013) reported that less than
17% tested measurement invariance, even though many of the
published findings suggested violations of measurement invari-
ance.

General Multigroup CFA Model

In its most general form, the CFA-MI model for p indicators, m
latent variables, and g groups is defined by the following equations
(Sörbom, 1974; also see Nagengast & Marsh, 2013):

x(g) � �x
(g) � �x

(g)�(g) � ε(g) (1)

E��(g)� � v(g) (2)

Var��(g)� � �(g) (3)

Var�ε(g)� � �ε
(g) (4)

In the CFA-MI model, the p-dimensional group-specific re-
sponse vectors x(g) that are typically of high-dimensionality (indi-
cators of the latent factors) for each of g groups are explained by
an underlying set of latent variables �(g) of lower dimensionality:
an m-dimensional vector. The p x m-dimensional factor loading
matrix �x

(g) specifies the relations of the latent variables and the
indicators. The p-dimensional vector �x

(g) contains the group-
specific intercepts, one for each indicator, and the p-dimensional
vector �(g) contains the residuals with a p x p-dimensional
variance-covariance matrix �ε

(g) that is typically assumed to be a
diagonal matrix, implying that residuals associated with different
indicators are uncorrelated. The m-dimensional mean vector of the
latent variables is given by v(g), the m x m-dimensional variance-
covariance matrix of relations among the multiple latent factors by

�(g). Both the latent variables �(g) and the residuals �(g) are
assumed to be normally distributed. The superscripts (g) indicate
that the corresponding vectors and matrices can vary across the
multiple groups. The model implies group-specific p x p-dimensional
variance-covariance matrices �xx

(g) and p-dimensional mean vectors
	x

(g) for the observed variables

�x
(g) � �x

(g) � �x
(g)v(g), (5)

�xx
(g) � �x

(g)�(g)�x
(g) � �ε

(g). (6)

Thus, individual responses (yipg) are defined as:

yipg � vpg � �pg�ig � εipg (7)

where p � 1, . . . , P and P is the number of observed indicator
variables, g � 1 . . . , G and G is the number of groups, i � 1 . . .
, Ng where Ng is the number of independent observations in group
g, and �ig is a latent variable. The discrepancy between the model
implied and the observed mean vectors and covariance matrices
constitutes the basis for global tests of model fit.

Traditional Multigroup CFA Tests of
Measurement Invariance

Typically, CFA-MI tests (see Marsh, Muthén, et al., 2009;
Meredith, 1993; Vandenberg & Lance, 2000; Widaman & Reise,
1997) begin with a configural invariance model in which the factor
loading matrices �y

(g) are restricted to have the same pattern of
fixed and freed elements across the groups. In this model, none of
the estimated parameters are constrained to be invariant over
groups (except for those constrained to fixed values—typically 0
or 1—used to identify the factor structure in each group). If this
model does not fit the data, there are fundamental differences in
the dimensionality of assessed constructs across the multiple
groups, and cross-country comparisons on common scales are
fraught with difficulty (see Marsh & Grayson’s, 1994 discussion of
a hierarchy of invariances and of what interpretations might be
justified without at least partial configural invariance). The con-
figural invariance model also serves as a reference model against
which to compare the fit of more restrictive invariance models that
impose further constraints, setting parameters to be invariant
across the multiple groups.

The second CFA-MI model is usually the metric invariance
model (Vandenberg & Lance, 2000, or the weak measurement
invariance model, Meredith, 1993). In this model, the factor load-
ing matrices are set to be invariant across the multiple groups (i.e.,
�y

(g) � �y). When metric invariance holds, the indicators are
related to the latent variables in the same way in all groups.
Differences in the latent variables get translated into differences in
the indicators in a similar way across the groups. Metric invariance
is the precondition for meaningful comparisons of the variance-
covariance matrices of the latent variables �(g) across the groups,
as they are defined by similar measurement models (Marsh, Hau,
Artelt, Baumert, & Peschar, 2006; Meredith, 1993; Widaman &
Reise, 1997).

After establishing metric invariance, there is no universal agree-
ment on what restrictions to test next (Nagengast & Marsh, 2013).
Marsh, Muthén, et al. (2009) presented a 13-model taxonomy of
measurement invariance that systematically incorporates many
combinations of invariance tests. The configural invariance model
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and the metric invariance model are included as the first two
models in this taxonomy. All further models are built on the metric
invariance model, and further restrict parameters to be invariant
across multiple groups. However, for the present purposes, and in
many other applications, the main focus is on the scalar invariance
model (Vandenberg & Lance, 2000; also referred to as strong
measurement invariance; Meredith, 1993), which is usually in-
cluded in tests of measurement invariance. In this model, the item
intercepts are set to be invariant across the multiple groups (i.e.,
�x

(g) � �x). Scalar invariance is a precondition for comparing latent
factor means across the multiple groups (Marsh, Muthén, et al.,
2009; Meredith, 1993; Widaman & Reise, 1997). If this restriction
holds, there are no systematic differences in the average item
responses between groups that are not due to differences in the
mean level of latent variables. Although this is not always a focus
of measurement invariance studies, further tests might include
uniquenesses, factor variances, factor covariances, path coeffi-
cients, latent means, or various combinations of these different sets
of parameters (e.g., Marsh, Muthén, et al., 2009).

Criticisms of the Traditional Approach to Partial
Scalar CFA-MI Solutions

All statistical models are false. An overarching premise of
the present investigation is the now widely accepted truism all that
statistical models—including CFA and SEMs—only reflect ap-
proximations to reality that are always wrong (e.g., MacCallum,
2003; Marsh, Lüdtke, et al., 2013; McDonald, 2010; but also see
Box, 1979; Thurstone, 1930; Tukey, 1961). As emphasized by
MacCallum (2003, p. 114) in his presidential address:

Regardless of their form or function, or the area in which they are
used, it is safe to say that these models all have one thing in common:
They are all wrong. Simply put, our models are implausible if taken
as exact or literal representations of real world phenomena.

From this perspective, it is essential for applied researchers to
evaluate how model misspecification influences their interpreta-
tions and conclusions. As applied here, the complete scalar
CFA-MI model, based on the assumption that a large number of
parameters have exactly the same values in a large number of
groups, is highly implausible if based on real data. Indeed, in the
same way that from a philosophical perspective all statistical
models are wrong, even the assumption that any two parameters
are exactly the same is always wrong, and will be shown to be false
from a statistical perspective when based on a sufficiently large N.
From this statistical perspective the critical question becomes
whether the approximation provided by the complete scalar
CFA-MI is acceptable and, if not, whether an appropriate approx-
imation to this model can be found.

Large-scale application of CFA-MI models. Classic demon-
strations of support for complete scalar CFA-MI models typically
are based on small-scale studies in which the numbers of factors,
groups, and indicators are all small (e.g., Byrne, Shavelson, &
Muthén, 1989; Reise, Widaman, & Pugh, 1993). In contrast, in
large-scale studies like the cross-national PISA research with
many groups, factors, items/factor and participants like the Nagen-
gast and Marsh (2013) study, which was the starting point of the
present investigation, an acceptable fit of the complete scalar
CFA-MI model is rarely achieved (e.g., Davidov, Meuleman,

Cieciuch, Schmidt, & Billiet, 2014; He & Kubacka, 2015; Rut-
kowski & Svetina, 2014; Zercher, Schmidt, Cieciuch, & Davidov,
2015).

Thus, Rutkowski and Svetina (2014) contended that most stud-
ies in support of measurement invariance were based on a few
groups and relatively small sample sizes, and that there were
relatively few published studies that even tested scalar invariance
in large-scale applications with typical numbers of groups and
sample sizes in cross-national surveys such as the Trends in Inter-
national Mathematics Study (TIMSS), PISA, the Teaching and Learn-
ing International Survey (TALIS), and in many surveys not focused
on education outcomes—such as those administered by the World
Health Organization and UNICEF. Rutkowski (semnet@listserv.ua
.edu, 6 June, 2016) also chaired an expert group for the 2013 TALIS
survey that conducted multiple group analyses on dozens of scales
across some 32 countries, but found scalar invariance untenable in
nearly all cases (also see He & Kubacka, 2015).

Similarly, in apparently the largest published study of scalar
CFA-MI ever conducted, Zercher et al. (2015) evaluated the in-
variance of responses to a total of 90 groups (15 countries in each
of six waves of the European Social Survey (ESS; N � 173,071)
for a single three-item scale designed to measure universalism.
Demonstrating that the scalar CFA-MI model was unacceptable
for analyses across the 15 countries in each wave considered
separately, as well as for the analysis of 90 groups across the six
waves, they then deleted groups that were not at least partially
invariant, eliminating all but 37 of 90 groups. Had they considered
the multiple factors from instruments from which this scale was
selected, or included more than just three items, support for even
partial invariance would probably have been much worse. Noting
the limitations of the scalar CFA-MI approach in large-scale
studies, they recommended further research using recent develop-
ments in invariance testing, including the alignment approach
considered here.

Problems with stepwise approaches to partial invariance.
Byrne, Shavelson, and Muthén (1989) introduced and popularized
the CFA-MIPart model, particularly in relation to testing differ-
ences in latent means. Based on a small-scale application (two
groups, 11 indicators designed to measure four factors), they relied
heavily on modification indices supplemented by substantive
knowledge and intuition to make post hoc corrections to achieve a
scalar CFA-MIPart model. Emphasizing that post hoc adjustments
are problematic, rendering probability values meaningless, they
lamented that applied researchers “must await the research efforts
of statisticians in resolving this important psychometric obstacle”
(p. 465). As an interim remedy they recommended cross-
validation, but noted that “the relaxation of many parameters is
likely to yield an unsuccessful cross-validation” (p. 465) and
stressed the need for the use of sound judgment. However, more
than a quarter of a century after this seminal work, the common
practice is to produce scalar CFA-MIPart models based substan-
tially on forward stepwise application of modification indices
(Schmitt & Kuljanin, 2008), with some post hoc justification for
the reasonableness of adjustments that had not been hypothesized
a priori. Thus, Asparouhov and Muthén (2014) proposed align-
ment as a potentially more useful alternative to the potentially
dubious scalar CFA-MIPart model.

It is worthwhile briefly reviewing well-known problems with
the application of forward stepwise selection procedures to achieve
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an acceptable fitting model. Although these issues are more widely
recognized in relation to stepwise multiple regression, a similar
logic applies to the use of modification indices to achieve an
acceptable fit in scalar CFA-MIPart models. The starting point is a
complete scalar invariance model that does not provide an accept-
able fit to the data, and that typically is predicated on acceptable fit
of the corresponding configural model. In traditional CFA-MIPart

models the applied researcher selects the estimated parameter with
the largest modification index and frees this parameter. This pro-
cess is repeated until an acceptable fit is achieved and the freeing
of additional parameters does not substantially improve the fit. In
large-scale studies with many groups, factors, and measured vari-
ables it is entirely possible that acceptable fit in relation to current
standards of goodness of fit will require hundreds or even thou-
sands of adjustments.

In scathing attacks on stepwise strategies, statistician Frank
Harrell (2001), along with many others (e.g., Davison, 2003; Judd
& McClelland, 1989; MacCallum, Roznowski, & Necowitz, 1992)
underlined the weaknesses of stepwise strategies, particularly for-
ward stepwise strategies, as used in the typical CFA-MIPart model.
Harrell (2001, p. 56) emphasizes that:

Stepwise variable selection has been a very popular technique for
many years, but if this procedure had just been proposed as a statis-
tical method, it would most likely be rejected because it violates every
principle of statistical estimation and hypothesis testing.

Davison (2003, p. 400) notes that “These three procedures
[forward selection, backward elimination, and stepwise regression]
have been shown to fit complicated models to completely random
data, and although widely used they have no theoretical basis”.
Similarly, Judd and McClelland (1989, p. 204) note that “An
unfocused search through many possible models (sometimes re-
ferred to as a ‘fishing expedition’) increases the likelihood of
capitalizing on chance and finding a model which represents only
a spurious relationship.”

More specifically, the typical forward stepwise selection proce-
dure based on modification indices to achieve partial scalar
CFA-MI in large-scale studies is dubious in that goodness of fit
and related indices are positively biased. For the selected param-
eters that are freed, modification indices (and extent of noninvari-
ance) are positively biased. In contrast, for unselected parameters
for which noninvariance is assumed to be zero, modification
indices are negatively biased. Furthermore, because there is ex-
treme multicollinearity in the modification indices, variable selec-
tion becomes arbitrary. CFA-MIPart models identified by stepwise
methods have an inflated risk of capitalizing on chance features of
the data, such that the final scalar CFA-MIPart that is the end result
of this stepwise process is not optimal when cross-validated with
new data, but the final model is rarely tested in this way. Indeed,
the iterative stepwise selection process will sometimes find a local
minimum and get stuck in a suboptimal region of model space, so
that potentially better models are not even considered. Even among
alternative stepwise procedures, the forward approach is generally
not the preferred method, in that it results in suppression effects,
such that adjustments are only significant after an earlier adjust-
ment has been made. Thus, in their review of model modifications
in CFAs, MacCallum, Roznowski, and Necowitz (1992) demon-
strated that stepwise procedures produced inconsistent and erratic

cross-validation, bringing them to “a position of considerable
skepticism with regard to the validity of the model modification
process as it is often used in practice” (p. 502).

There are, of course, some issues that are idiosyncratic to the
application of stepwise procedures for partial scalar invariance. In
particular, predicated on the finding of a well-fitting configural
model, adjustments are made primarily (or exclusively) in relation
to factor loadings and intercepts, in order to achieve an acceptable
goodness of fit for the scalar CFA-MI model compared to the
corresponding configural model. However, goodness of fit pro-
vides a dubious basis for evaluating the model, as freeing enough
parameters ultimately will achieve a fit that approaches that of the
configural model, which has already been shown to provide an
acceptable fit. Also, as emphasized earlier, the main purpose of the
scalar invariant model (partial or complete) is to provide a justi-
fication for the evaluation of latent means and related statistical
models, but there is no guarantee that the stepwise selection
process, based on freeing factor loadings and intercepts to achieve
an acceptable goodness of fit, will facilitate this objective of
providing unbiased means.

Alignment Method to Test Measurement Invariance

In the typical test of scalar invariance, the intercepts vpg and
loading parameters 
pg are held equal across groups; the factor
mean and variance in one group are fixed to 0 and 1, respectively.
As already emphasized, this fully invariant scalar model will
frequently not provide an acceptable fit to the data, particularly
when the numbers of items, latent factors, and groups are large, as
is the case in the PISA 2006 data considered here. In contrast, the
CFA-MIAL model (Asparouhov & Muthén, 2014) does not assume
measurement invariance, but seeks an optimal measurement in-
variance pattern based on a simplicity function that is similar to the
rotation criteria used with exploratory factor analysis. With this
approach it is possible to estimate all of the parameters (vpg, �pg,
�g, �g), while holding noninvariance to a minimum.

The alignment approach begins with a traditional CFA-MI anal-
ysis and is predicated on the assumption that the fit of the config-
ural model is acceptable and substantially better than the scalar
model. Following these initial analyses, the first step of the
CFA-MIAL model is a configural model (M0) in which all factor
means and variances are constrained across all groups to be 0 and
1, respectively, but all factor loadings and intercepts are freely
estimated. The final alignment model (CFA-MIAL) has the same fit
as M0. Asparouhov and Muthén (2014) describe the relation
between M0 and CFA-MIAL as parallel to unrotated and rotated
EFA models in which the rotated model simplifies the interpreta-
tion without compromising model fit. This is accomplished by
minimizing a total loss/simplicity function that accumulates mea-
surement noninvariance across G groups with respect to �g and �g,

based on the component loss function, which has been used in EFA
(see, e.g., Jennrich, 2006). In this way, a nonidentified model
where factor means and factor variances are added to the config-
ural model is made identified, by adding a simplicity requirement.
This loss function is minimized when there are a few large non-
invariant measurement parameters and many approximately in-
variant measurement parameters, rather than many medium-sized
noninvariant measurement parameters. This is akin to EFA rota-
tion functions, which aim for either large or small loadings, but not

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

528 MARSH ET AL.



midsized loadings (see Asparouhov & Muthén, 2014 for more
details).

Following the selection of the CFA-MIAL model, alignment
offers a detailed analysis to determine which parameters are ap-
proximately invariant and which are not. For each measurement
parameter, the largest set of groups is found such that the estimate
for each group is not significantly different from the average
parameter estimate across all groups in the invariant set using a
multiple comparison process, with additional rules to ensure that
the process stabilizes. The relative contribution of each parameter
to the simplicity/loss function provides an indication of the degree
of noninvariance (differential item functioning) associated with
parameter estimates that can be useful in the refinement of items in
future applications.

Asparouhov and Muthén (2014) demonstrated support for the
CFA-MIAL model on the basis of a simulation and also on analysis
of real data. In their simulation study, they varied the sample size
(100 or 1,000 per group), number of groups (2, 3, 15, or 60), and
extent of noninvariance (0%, 10%, 20%). Results showed that
known population parameters were accurately estimated even
when there was substantial noninvariance, particularly when sam-
ple sizes were large. Even in the worst case (substantial nonin-
variance, small Ns, large number of groups), biases tended to be
small. In the real-data example from the European Social Survey
(49,894 subjects in 26 European countries), Asparouhov and
Muthén (2014) tested the cross-country invariance on the basis of
four items designed to measure a single factor in which the CFA
scalar model showed a poor fit to the data. The alignment approach
also showed considerable noninvariance for three of the four items,
but relatively little noninvariance in the fourth item. Although the
authors highlighted some differences between the CFA-MIAL and
traditional scalar models in terms of latent means, the relative
ranking of the 26 countries was very similar in respect of the
traditional scalar CFA-MI and alignment models. In concluding
remarks, Asparouhov and Muthén argued that alignment provides
many advantages over the traditional CFA-MI approach to com-
plete or partial scalar invariance; tests of some of these assertions
are the focus of the present investigation.

Despite the great promise of the CFA-MIAL model to address
practical problems associated with multiple group tests of mea-
surement invariance, there are important limitations in the cur-
rently available version that substantially limit its usefulness in
applied research (Asparouhov & Muthén, 2014; see earlier discus-
sion of AwC) in relation to the full range of tests of measurement
invariance in CFAs and SEMs more generally. On this basis, the
early CFA-MIAL was characterized as primarily an exploratory
tool. Largely overcoming these current limitations, here we intro-
duce the alignment-within-CFA (AwC) approach, which trans-
forms alignment from an exploratory to a confirmatory tool, al-
lowing the researcher to pursue nearly all issues that can be
addressed with traditional CFA and SEM models, and greatly
enhancing its usefulness for applied research.

The AwC approach is based on a similar logic to the exploratory
structural equation model (ESEM) within CFA (EwC), which
similarly transformed the usefulness of ESEM (Asparouhov &
Muthén, 2009; Marsh, Morin, Parker, & Kaur, 2014; Marsh,
Muthén, et al., 2009; Marsh, Nagengast, & Morin, 2013). In AwC
the first step is to test a standard CFA-MAL, as described by
Asparouhov and Muthén (2014). However, the next step is to

reconfigure this model as a standard CFA model, using as starting
values the final CFA-MIAL estimates with appropriate fixed and
free parameter estimates, such that the AwC solution is equivalent
to the CFA-MIAL solution in terms of number of estimated pa-
rameters, goodness of fit, and definition of the factor structure (see
subsequent discussion in Method section and a detailed description
in Appendix 2 of the online supplemental materials). Indeed, the
AwC model in its basic form is the same as the alignment model,
only being reconfigured as a more general CFA model, so that
support for the CFA-MIAL solution necessarily implies support for
the AwC. However, the AwC provides the flexibility to test this
solution within a broader range of CFA and SEMs as demonstrated
in Study 1.

Study 1: An Overview of the Substantive and
Methodological Focus

The data considered here are based on the student background
questionnaire of PISA 2006, which contains eight scales measur-
ing a variety of motivational and engagement constructs in science
(e.g., academic self-concept, self-efficacy, and value; see supple-
mental materials, Appendix 1 for further discussion). Here we
apply the CFA-MI and CFA-MIAL models to evaluate the mea-
surement properties of these scales for nationally representative
samples of 15-year-old students from 30 OECD countries (N �
249,840). Using these data, Nagengast and Marsh (2013) applied
traditional CFA-MI models to demonstrate that the a priori scales
showed a well-defined eight factor solution. There was reasonable
support for the invariance of factor loadings across countries
(metric invariance), but not for the invariance of item intercepts
(scalar invariance), making mean comparisons across countries
dubious. Hence, these data provide an ideal application of the
CFA-MIAL model, which is specifically designed for such pur-
poses. In this respect the substantive orientation of this investiga-
tion is to evaluate cross-cultural differences in latent means of
science-related motivational constructs as well as relations be-
tween these motivational factors and important covariates: gender,
science achievement, and socioeconomic status (SES).

In pursuing our methodological aims, we demonstrated the
flexibility of AwC and its applicability to substantively important
issues. We began by comparing the estimated factor means based
on the new CFA-MIAL model and the traditional scalar invariance
model, and then introduced AwC. Based on AwC, we extended
alignment to include tests of the invariance of factor variance-
covariance and item uniqueness. We then integrated the MG-CFA
models and the multiple indicators multiple cause (MIMIC) mod-
els with AwC, to test the invariance of relations between the
motivational constructs and the covariate variables, particularly for
gender. In an alternative approach to the evaluation of gender
differences in factor means, we conducted a 60-group (30 coun-
tries � 2 genders) AwC with a priori contrasts within each coun-
try, comparing these results with those based on the corresponding
30-group MIMIC analysis.

Method

Data. Our data are nationally representative responses by 15-
year-old students from all 30 OECD countries in PISA 2006 (N �
249,840). These raw data are readily available through the OECD-
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PISA web site (https://www.oecd.org/pisa/pisaproducts/) as well
as in the extensive documentation, manuals, and technical reports.
The samples were collected using a complex two-stage sampling
design and were, after using the appropriate survey weights, rep-
resentative of the national population (OECD, 2009). Although
academic achievements in reading, mathematics, and science were
assessed in PISA 2006, only science-related motivation items were
included in the questionnaire (see OECD, 2009). Overall, 44
motivation items were used to measure eight motivational con-
structs on a 4-point Likert scale, with 1 � strongly agree and 4 �
strongly disagree, with two exceptions: science self-efficacy (rang-
ing from do easily to could not do it on a 4-point Likert scale) and
extracurricular activities (ranging from very often to hardly ever
on a 4-point Likert scale). For the present purposes, responses
were reverse-scored, so that higher values represent more favor-
able responses and thus, higher levels of motivation.

Eight motivational constructs. The science self-concept scale
assessed students’ self- perceptions of their ability in science (e.g.,
“I learn science topics quickly”). The science self-efficacy scale
assesses students’ confidence in performing real world science-
related tasks (e.g., “Identify the science question associated with
the disposal of garbage”). The enjoyment of science learning scale
assessed the enjoyment a student gains from performing a science-
related activity (e.g., “I am interested in learning about science”).
The instrumental motivation scale assesses how well science
achievement relates to current and future goals (e.g., “I study
science because I know it is useful for me”). The future-oriented
science motivation scale assessed students’ expectations about
tertiary science studies and working in science-related careers (“I
would like to work in a career involving science”). The scales that
assessed students’ perceptions of general value of science (e.g.,
“Science is valuable to society;” henceforth referred to as “general
value”) and personal values of science (e.g., “Science is very
relevant to me”) were also included. Finally, extracurricular ac-
tivities in science assessed the frequency of students engaging in
out-of-school activities related to science (e.g., “Borrow or buy
books on science topics”). Scale reliabilities for the eight motiva-
tional factors were acceptable (see Table 1).

Covariates. Gender (0 � male, 1 � female), SES (Economic,
Social and Cultural Index [ESCS]; see OECD, 2009) and science
achievement were treated as covariates in MIMIC models. To
prevent biased population estimates, PISA measured science abil-
ities using five plausible values for each subject (with a mean of
500 and a standard deviation of 100). Hence, to be able to correct
the measurement error appropriately, these sets of plausible values
were used to measure students’ achievement (see OECD, 2009).

Statistical analyses. All analyses were conducted with Mplus
(Version 7.11; Muthén & Muthén, 1998–2015). A main focus in
the present investigation is the application of AwC to MIMIC and
MG-CFA models based on the robust maximum likelihood esti-
mator (MLR), with standard errors and tests of fit that are robust
in relation to non-normality and nonindependence of observations.
In addition, we applied corrected standard errors and model fit
statistics to control for the nesting of students within schools, based on
the TYPE � COMPLEX option in Mplus. The HOUWGT weighting
variable was also taken into account in data analysis, in order to
correct the computation of standard errors and tests of statistical
significance (see Nagengast & Marsh, 2013 for more discussion).
For the present purposes we used the FIXED option available in

the Mplus CFA-MIAL model, in which the latent factor mean and
variance of one arbitrarily selected group (in this case the first
group, Australia) were fixed to 0 and 1, respectively (see Appendix
2 in the online supplemental materials for the Annotated Mplus
syntax; also see Asparouhov & Muthén, 2014 for more discus-
sion).

As discussed earlier, if the invariance of item intercepts (or even
factor loadings) is not supported and the scalar model provides a
poor model fit, an alignment analysis can be employed to evaluate
latent mean comparisons. AwC can be applied when there is a need
to conduct additional analysis that cannot be easily implemented
within the alignment framework but that can be estimated with
CFA and SEM models. All parameter estimates from the align-
ment solution should be used as starting values to estimate the
AwC model. For purposes of identification, one item from each
factor is arbitrarily selected (e.g., the first indicator) as a referent
indicator, and the factor loading and intercept of this indicator are
fixed to the estimated values from the alignment solution (using
starting values supplied by the Mplus package). However, it is also
possible to achieve identification using other traditional ap-
proaches (e.g., fixing factor variances). The alignment solution (as
well as the AwC solution, which is equivalent to the alignment
solution), has the same degrees of freedom, the same chi-square
and goodness of fit statistics as the configural MG-CFA model
(see supplemental materials, Appendix 2, for further discussion).

This process of constructing the AwC model from the MAL

solution is demonstrated in Appendix 2 of the online supplemental
materials. The output file for the MAL solution contains the start
values—parameter estimates based on the final MAL solution,
which are then used to construct the AwC syntax. For each latent
factor loading, the first indicator of that factor and the correspond-
ing indicator intercept is fixed, and this process is repeated for each
of the multiple groups. Output from the MAL and AwC demon-
strates that all parameter estimates are the same for the MAL and
AwC solutions (this is shown in Appendix 2 for one country,
United States; this was also the case for all 30 countries).1 How-
ever, because the AwC is merely a CFA model, it is possible to
conduct other CFA and SEM models that cannot be tested with the
CFA-MIAL model.

Missing data. In order to account for the five plausible values
for each achievement score, all data analyses involving achieve-
ment were run separately for each of the five plausible values. For
each of the five data sets, each based on different plausible values,
we used full information maximum likelihood (FIML) estimation
(Enders, 2010) to handle missing data on the remaining items,
given the relatively small amount of missing data (mean coverage
rates across the 44 items being .974). This approach is similar to
using FIML within each of the five data sets and treating achieve-
ment as an auxiliary variable (Enders, 2010). Final parameter
estimates, standard errors, and goodness-of-fit statistics were ob-
tained with the automatic aggregation procedure implemented in

1 We also note that the standard errors for all parameter estimates were
very similar in the MAL and AwC solutions, but not exactly identical. This
is necessarily the case, in that some parameters in the MAL solution are
freely estimated, while they are fixed in the AwC solution (e.g., one factor
loading for each factor; see Appendix 1 in the supplemental materials for
further discussion).
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Mplus for multiple imputation, to properly handle plausible values
(Rubin, 1987).

Goodness of fit. A number of traditional indices that are
relatively independent of sample size were utilized to assess model
fit (Hu & Bentler, 1999; Marsh, Balla, & McDonald, 1988; Marsh,
Hau, & Wen, 2004): the comparative fit index (CFI), the root-
mean-square error of approximation (RMSEA), and the Tucker-
Lewis Index (TLI). Values greater than .95 and .90 for CFI and
TLI typically indicate excellent and acceptable levels of fit to the
data. RMSEA values of less than .06 and .08 are considered to
reflect good and acceptable levels of fit to the data. However, these
cutoff values constitute only rough guidelines, rather than golden
rules (Marsh, Hau, & Wen, 2004). Typically it is more useful to
compare the relative fit of different models in a nested taxonomy
of measurement invariance models than to compare the relative fit
of single models (Marsh, Muthén, et al., 2009). Cheung and
Rensvold (2002) and Chen (2007) have suggested that if the
decrease in CFI is not more than .01, and the RMSEA increases by
less than .015 for the more parsimonious model, then invariance
assumptions are tenable. Again, all these proposals should be
considered as rough guidelines only, or rules of thumb.

Results

Factor structure: Preliminary CFA. In preliminary analyses,
we evaluated the factor structure and relations with covariates on the
basis of the total group. The total group CFA model provided a good
fit to the data (CFI � .963, TLI � .960, RMSEA � .012, see Model
TG1CFA, Table 2) and the factor loadings of the eight scales range
from .564 to .869 (see Table 1). We then added the three covariates
(gender, SES, and achievement) to the total group CFA model
(TG2CFA), which also provided a good fit to the data (CFI � .955,
TLI � .950, RMSEA � .013).

The correlations among the eight factors and three covariates
(Table 3; see Appendix 4 in the supplementary materials for a
more detailed summary) are of substantive interest, and serve as an
advance organizer for subsequent analyses. Not surprisingly, all 28
correlations among the eight motivational constructs were positive
(M r � .547, .370 to .785), and all were statistically significant,
due in part to the large sample size. Boys had somewhat higher

scores than girls (r � .024 to .094) for these science constructs.
Science achievement was significantly positively correlated with
all the motivational constructs (r � .081 to .372) except for
extracurricular activities (r � .012, ns), while correlations with
SES (r � �.030 to .114) were smaller.

Traditional CFA test of measurement invariance of factor
structure over countries. Next we conducted a series of in-
creasingly stringent tests of measurement invariance across the 30
countries. The configural invariance model (MG1 in Table 2) fitted
the data well (CFI � .952, TLI � .948, RMSEA � .027) and
served as a baseline model that was later used for comparison
purposes with more restrictive invariance models. We then tested
metric invariance (Model MG2, Table 2) by constraining the factor
loadings to be invariant across the 30 countries. This more parsi-
monious model resulted in a small decrease in fit indices compared
with the configural model (	CFI � .006, 	TLI � .005,
	RMSEA � .001). In support of metric invariance, these differ-
ences were less than the recommended cutoff values typically used
to argue for the less-parsimonious model.

In Model MG3, we tested the scalar invariance model in which
the 44 item intercepts, as well as the factor loadings, were con-
strained to be invariant across countries. The fit of the scalar model
might be seen as minimally acceptable (e.g., CFI � .906, TLI �
.906; RMSEA � .058) by some standards, but compared to the
metric invariance model (MG2), the decrease in fit indices
(	CFI � .040, 	TLI � .037, 	RMSEA � .020) was substantially
greater than the recommended cutoff values for MG3. These
results demonstrate a lack of support for scalar invariance.

When scalar invariance is rejected, alternative tests of partial in-
variance based on modification indices are suggested (Byrne et al.,
1989). However, there are many large modification indices based on
the MG3—thousands of which are statistically significant; for inter-
cepts alone, 201 in the range of 100 to 200, 159 in the range of 200
to 500, and 59 in the range of 500 to 2,928. Hence, the process of
freeing parameter estimates one at a time until an acceptable fit is
obtained would be very laborious. More importantly, as noted earlier,
the stepwise approach to partial invariance has been severely criti-
cized on the grounds of being biased, capitalizing on chance, and not
resulting in an optimal model (e.g., Davison, 2003; Harrell, 2001;

Table 1
Information on the Eight Motivational Constructs in This Study

Motivational constructs
Number
of items

Median
reliability

� over
countries

Median factor
loadings (total

sample)

Parameter invariance
status (percentage of
invariant parameters

based on the alignment
method)a

Difference of alignment and scalar model
standardized to Cohen’s db (Mean[SD])b

Loadings Intercepts Loadings Intercepts Mean

Enjoyment 5 .92 .844 82.7% 49.3% .004 (.037) .003 (.069) �.002 (.017)
Instrumental motivation 5 .92 .833 77.3% 61.3% �.001 (.039) .027 (.046) �.020 (.011)
Future-oriented motivation 4 .92 .887 62.5% 55.8% .045 (.069) �.089 (.078) .057 (.036)
Self-efficacy 8 .83 .630 85.4% 47.9% .003 (.038) .020 (.087) �.017 (.017)
Self-concept 6 .92 .843 58.9% 58.9% �.003 (.043) .029 (.058) �.026 (.010)
General value 5 .75 .615 90.0% 50.7% �.005 (.029) �.010 (.101) .001 (.020)
Personal value 5 .80 .715 72.7% 52.7% .007 (.039) .006 (.080) �.002 (.021)
Extracurricular 6 .78 .642 81.1% 62.2% .013 (.057) �.190 (.115) .140 (.050)

a Total number of approximate measurement invariance groups across indicators divided by total number of groups across indicators. b Cohen’s d is
computed by the differences of unstandardized loadings/intercepts between alignment and scalar models, divided by pooled standard deviation.
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Judd & McClelland, 1989; MacCallum, Roznowski, & Necowitz,
1992) leading Asparouhov & Muthén (2014) to suggest that this
approach is unlikely to result in the most useful model (see earlier
discussion on stepwise strategies). In summary, these results suggest
a lack of support for the scalar measurement model; such support is
prerequisite for comparing the means of the latent motivational con-
structs across 30 countries (similar conclusions are reached in Nagen-
gast & Marsh, 2013).

The MG-CFA model with the alignment method. In pur-
suit of the comparison of latent means, we applied the
CFA-MIAL model to evaluate a MG-CFA model of the eight
motivational constructs. Although alignment attempts to mini-
mize the amount of noninvariance, it does not compromise
the model fit. Thus, the MG-CFA with alignment (MG4AL) has
the same fit as the configural model (MG1), indicating that the
alignment model fits the data well. More importantly, alignment

Table 2
Model Fit Statistics for Multiple-Group and MIMIC Models Based on 30 Countries

Models Description 
2 df Params CFI TLI RMSEA

Total group (TG) models

TG1CFA Total group CFA 32752 874 160 .963 .960 .012
TG2CFA Total group CFA with covariates 40598 982 193 .955 .950 .013
TG2SEM Total group MIMIC 40598 982 193 .955 .950 .013

Multiple-group (MG) models (30 groups)

MG1 Configural 183577 26220 4800 .952 .948 .027
MG2 IN � FL 205325 27264 3756 .946 .943 .041
MG3 IN � FL, INT 334112 28308 2712 .906 .906 .036
MG4AL Alignment 183577 26220 4800 .952 .948 .027
MG4AwC Alignment with AwC 183577 26220 4800 .952 .948 .027
MG5AwC Align, IN � Uniq 279428 27496 3524 .923 .920 .033
MG6AwC Align, IN � FV 190730 26452 4568 .950 .946 .027
MG7AwC Align, IN � FV, CV 199820 27264 3756 .947 .945 .028
MG8AwC Align, IN � FV, CV, Uniq 295985 28539 2481 .918 .919 .034

Multiple-group MIMIC (gender, SES, & ACH as covariates)

MG-MIMIC1 Configural 225544 29460 5790 .942 .937 .028
MG-MIMIC2 IN � FL 247807 30504 4746 .936 .932 .029
MG-MIMIC3 IN � FL, INT 378195 31548 3702 .898 .895 .036
MG-MIMIC4AwC Alignment 225544 29460 5790 .942 .937 .028

Multiple-group (MG) models (60 groups: 30 countries � 2 gender)

MCG1 Configural 337910 52440 9600 .950 .946 .036
MCG2 IN � FL 380127 54564 7476 .943 .941 .038
MCG3 IN � FL, INT 626837 56688 5352 .901 .901 .049
MCG4AwC Alignment 337910 52440 9600 .950 .946 .036

Note. AwC alignment-within-CFA approach (AwC); CFI � comparative fit index; TLI � Tucker–Lewis Index; Params � number of free parameters;
ACH � Science achievement; RMSEA � root mean squared error of approximation; CFA � confirmatory factor analysis; For multiple group invariance
models; IN � the sets of parameters constrained to be invariant across the multiple groups: FL � factor loadings; INT � item intercepts; FV � factor
variance; CV � factor variance–covariances.

Table 3
Latent Correlations Among the Eight Motivational Constructs and the Three Covariates, Based on the Total Group CFA

1 2 3 4 5 6 7 8 9 10

Enjoyment (1) —
Instrumental motivation (2) .590 —
Future-oriented motivation (3) .661 .713 —
Self-efficacy (4) .486 .370 .375 —
Self-concept (5) .611 .572 .558 .551 —
General value (6) .518 .437 .386 .491 .399 —
Personal value (7) .705 .674 .666 .522 .560 .785 —
Extracurricular activities (8) .639 .464 .569 .452 .497 .411 .592 —
Gender (9) .068 .024 .074 .060 .136 .056 .053 .094 —
SES (10) .025 .019 (�.011) .241 .083 .114 .058 �.030 (.004) —
Science achievement (11) .198 .081 .095 .372 .153 .262 .149 (.012) (.012) .449

Note. The correlation matrix is based on Model MG6AwC. All correlation coefficients are statistically significant (p � .001), except for those in
parentheses. CFA � confirmatory factor analysis; SES � socioeconomic status.
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allows us to compare mean differences of latent factors, and
greatly simplifies measurement invariance analyses.

A potentially important contribution of the CFA-MIAL model is to
provide a detailed account of parameter invariance for every model
parameter in every group. For example, inspection of Table 1 shows
that, on average, there is more noninvariance associated with item
intercepts than there is with factor loadings. This is of course
consistent with the CFA-MI results, which showed that there was
reasonable support for the invariance of factor loadings, but not
item intercepts. However, even within the set of items designed to
measure the same construct there were substantial differences. For
example, in the general value factor the item intercepts of the item
“Advances in science usually improve people’s living conditions”
were invariant across 22 of 30 groups, whereas the intercept was
only invariant across 10 groups for the item “Science is valuable to
society.” Such information is especially useful for developing or
revising a scale for future research (see Table 4 for more details
about the invariance status of item loadings and intercepts involv-
ing self-concept and general value).

Although it is useful, diagnostic information about the extent of
violation of invariance based on the CFA-MIAL model is based on
tests of statistical significance that are highly influenced by sample
size. However, such values can easily be transformed into stan-
dardized differences in the metric of Cohen’s d that provide a
potentially more meaningful summary of practical significance.
For example, we present the difference between the alignment and
scalar models for each of the eight factors (see Table 1)—the mean
and standard deviation across items within each scale and the 30
countries. Although the mean differences are consistently small,
the standard deviations these of differences are larger in size,
particularly for the intercepts, which previous results have shown
to be more noninvariant. Similarly, we show differences between
the alignment and scalar model in relation to Cohen’s d for
individual items in the self-concept and general value scales (see
Table 2). Alternatively, these values can be represented as box
plots, which provide a more heuristic representation of the distri-

bution of differences in relation to Cohen’s d values (see the
boxplots in Appendix 6, supplemental materials). Although tradi-
tional modification indices and expected change parameters are
not included in the alignment output at this time, these values can
be easily obtained from the equivalent AwC model (see Appendix
7, supplemental materials).

Latent means comparisons: Alignment versus scalar
methods. In an attempt to look more closely at latent mean
differences based on the CFA-MIAL model and the traditional
scalar invariance method, we focus on two motivational con-
structs: self-concept and general value of science. Graphs of the
latent means (see Figure 1) for self-concept based on the alignment
model (MG4AL) and the scalar invariance model (MG2) demon-
strate that latent mean differences are highly similar (i.e., factor
means are close to the diagonal). Both methods show that Mexico
(MEX) has the highest level of self-concept and Japan (JPN) the
lowest level. For general value, the similarity in the pattern of
means for the two approaches is somewhat lower than for self-
concept. For example, the scalar method indicates that Iceland
(ISL) has a substantially different mean from Greece (GRC),
whereas the CFA-MIAL model indicates essentially no difference
between these two countries. In contrast, for general value the
CFA-MIAL model indicates a substantial mean difference between
Norway (NOR) and Austria (AUT), whereas the factor means of
these two countries are similar for the scalar method. In summary,
the pattern of factor means based on the CFA-MIAL model was
more closely related to those based on scalar invariance for self-
concept than for general value. This is also consistent with our
findings that the self-concept scale fitted the data better than the
general value scale, when the two constructs were considered
separately.

Tests of the invariance of the latent factor variance–
covariance matrix. Subsequently, we tested invariance constraints
on various combinations of uniquenesses, factor variances, and factor
covariances, using the AwC extension of the CFA-MIAL model.
Although there is no a priori rationale for the ordering of these

Table 4
Parameter Invariance Status of Factor Loadings and Intercepts Across Groups for Self-Concept and General Value Scales

Items Descriptions

Measurement invariance
status across countries1

Difference of alignment and
scalar model standardized to

Cohen’s d2 (Mean[SD])

Loadings Intercepts Loadings Intercepts

Self-concept

ST37Q01 Learning advanced science topics would be easy for me 19 10 �.029 (.060) .003 (.106)
ST37Q02 I can usually give good answers to test questions on science topics 6 10 .013 (.060) .036 (.052)
ST37Q03 I learn science topics quickly 30 24 .011 (.015) .043 (.029)
ST37Q04 Science topics are easy for me 16 19 �.015 (.022) .020 (.039)
ST37Q05 When I am being taught science I can understand the concepts very well 9 18 .005 (.033) .039 (.052)
ST37Q06 I can easily understand new ideas in science 26 25 �.003 (.030) .033 (.027)

General value

ST18Q01 Advances in science usually improve people’s living conditions 26 22 �.008 (.027) �.02 (.068)
ST18Q02 Science is important for helping us to understand the natural world 25 21 .013 (.033) �.00 (.107)
ST18Q04 Advances in science usually help improve the economy 28 12 .001 (.018) �.00 (.111)
ST18Q06 Science is valuable to society 28 10 �.001 (.024) �.00 (.074)
ST18Q09 Advances in science usually bring social benefit 29 11 �.030 (.025) �.01 (.136)

1 Number of approximate measurement invariance groups for each indicator divided by total number of groups (e.g., 30). 2 Cohen’s d is computed by the
differences of unstandardized loadings/intercepts between alignment and scalar models, divided by pooled standard deviation.
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models, they are all nested under the alignment model (MG4AL in
Table 2). In this respect, the results are informative about the nature of
invariance, but also demonstrate the usefulness of AwC.

Inspection of the fit indices suggests that constraining factor
variances and covariances to be equal across the 30 OECD coun-
tries is reasonable (e.g., MG4 vs. MG7AwC in Table 2; 	CFI �
.005, 	TLI � .003, 	RMSEA � .001), whereas constraints asso-
ciated with the invariance of uniquenesses are not acceptable (e.g.,
MG4 vs. MG5AwC in Table 2; 	CFI � .029, 	TLI � .028,
	RMSEA � .006; also see MG8AwC, which constrains unique-
nesses as well as factor variance and covariances). Relations
among the eight factors are essentially the same as those observed
with the total group model (i.e., TG2CFA; see Table 2 and Ap-
pendix 3 in the supplemental materials) and so are not considered
further. The lack of support for uniqueness invariance suggests that
comparison of the manifest means of the constructs across coun-
tries is inappropriate. Although the implications of these results are
not critical for the evaluation of latent means, as in the present
investigation, they do dictate caution in the evaluation of manifest
means, which is a focus of many PISA studies.

Relations to achievement, gender, and SES: Integration of
multiple-group and MIMIC approaches. Here we used a
multiple-group MIMIC (MG-MIMIC) model to evaluate country-
to-country variation in how the three covariates (achievement,
gender, and SES) are related to each of the motivational constructs.
More specifically, the eight motivational constructs were regressed
on each of the three covariates, and we evaluated differences
across the 30 OECD countries. However, to make the presentation
manageable, we focus on the effects of the MIMIC variables on
self-concept and general value, but note that the same approach
was used for each of the eight motivation factors (also see Table
2). Again, we note that this SEM analysis is one that could not be

evaluated with the standard alignment model, but is possible with
the AwC extension introduced here.

The configural MIMIC with no invariance constraints provided a
reasonable fit to the data (MG-MIMIC1 in Table 2; CFI � .942,
TLI � .937, RMSEA � .028). Constraining factor loadings to be
invariant over the 30 groups led to a small decrease in fit indices
(MG-MIMIC1 vs. MG-MIMIC2 in Table 2; 	CFI � .006, 	TLI �
.005, RMSEA � .001). However, the fit of the scalar model with the
invariance of item intercepts (CFI � .898, TLI � .895, RMSEA �
.036) was unsatisfactory, compared with model MG-MIMIC2, in that
the decrement in fit was substantial (	CFI � .038, 	TLI � .037).
Hence, these results based on MIMIC models largely parallel those
based on the corresponding models without MIMIC variables, in
which the scalar invariance model did not fit the data. In models
without MIMIC variables, this problem was circumvented by the use
of the CFA-MIAL model. However, covariates and SEMs more gen-
erally cannot be accommodated by the CFA-MIAL model; this limi-
tation is overcome by the AwC extension of the CFA-MIAL model.

As discussed earlier, the AwC solution is equivalent to the
configural MG-CFA model in that it has the same degree of
freedom, goodness of fit, and measurement parameter estimates.
The MG-MIMIC model with AwC (MG-MIMIC4AwC)2 and the
configural MG-MIMIC1 model provide a reasonable fit to the data
(i.e., CFI � .942, TLI � .937, RMSEA � .028).

2 In the AwC extension of the MIMIC model, the parameter estimates
from the alignment solution based on 30 groups were used as starting
values. For model identification, the first loading and intercept for each
factor was fixed to its estimated values from the alignment solution, and
latent factor variance (residual variance) and means were freely estimated
in each group (see Appendices for more detail).
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Figure 1. Factor means of self-concept and general value of science for 30 groups: alignment method and
scalar model.
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The pattern of path coefficients across countries is graphed in
Figure 2. On average, achievement and SES positively predict
self-concept and general value; achievement had stronger predic-
tive effects than did SES. The pattern of path coefficients involv-
ing achievement varied substantially over countries for general
value (.189 to .472, median � .285) and, in particular, self-concept
(.033 to .496, median � .236), whereas the pattern involving SES
was smaller and more consistent for both constructs (self-concept:
.000 to .169, median � .051; general value: �.007 to .147,
median � .086). Thus, students with high science ability and from
higher SES backgrounds were more likely to have high self-
concept and general value of science.

Alternative approaches to gender differences: AwC exten-
sions of the alignment method. The MIMIC model provides a
parsimonious summary of the effects of covariates and the moti-
vation factors, but is based on scalar invariance assumptions that
the factor loadings and intercepts of the PISA factors are invariant
over gender. Although the assumption of invariant intercepts is
testable in the MIMIC model, the assumption of invariant factor
loadings is not. Here, the fit of MIMIC models does not differ
substantially from that of the corresponding models without

MIMIC variables. However, particularly if this were not the case,
it would be useful to fit less parsimonious but potentially more
appropriate models in which MIMIC variables are represented as
multiple group variables. We build on an early example (Little,
1997) of juxtaposing MIMIC and multiple-group approaches to
evaluate gender differences, in four countries. We illustrate how
this approach can be adapted and extended to alignment and AwC
models (also see Marsh, Nagengast, & Morin, 2013, who extended
this approach and adapted it to ESEM).

Here, we are particularly interested in how the patterns of
gender differences in the motivational constructs vary across coun-
tries. Because we already know that the scalar invariance model
does not fit the data, we evaluated gender differences with two
alternative approaches, both based on the CFA-MIAL model using
AwC—again focusing on self-concept and general value to make
the presentation more manageable (but also see the pattern of
gender differences for all eight motivation factors for the total
sample in Table 2). The first approach is an extension of the
traditional MIMIC model, to evaluate the consistency of gender
differences across the 30 countries. In the second approach we
transformed the 30-group analysis into a 60-group analysis in
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Figure 2. The effects of science achievement and SES on general value and self-concept based on 30 groups
MIMIC model with alignment. Note: Circles indicate statistical significant (p � .001), whereas triangle indicates
coefficients are not significant at the .001 level of confidence. The bar indicates �1 standard error.
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which responses by boys and girls within each country were used
to form separate groups.

MIMIC model gender differences: AwC extensions of the
CFA-MIAL model. Because the scalar invariance model does not
fit the data, we instead evaluate gender differences based on the
MG-MIMIC model with AwC (MG-MIMIC4AwC; see Appendix 2
for syntax in an annotated example). Gender differences (and
confidence intervals) in each of the 30 countries are graphed in
Figure 3 for self-concept and general value. Controlling for SES
and achievement, boys tend to have higher self-concepts across all
30 countries ( � .010 to .243, median � .135). Although boys are
also favored in general value, the differences are smaller (�.085 to
.157, median � .041), and in some countries the differences favor
girls. Consistent with these observations, the result of the WALD
test applied to gender difference shows highly significant country-
to-country variability in the size of gender differences in self-
concept (Wald 
2(29) � 494.630, p � .001) and, to a lesser extent,
general value (Wald 
2(29) � 225.015, p � .001).

60-group CFA model of gender differences. AwC extensions
of alignment. In an alternative approach to testing gender differ-
ences, we began with 60 (30 countries � 2 genders) groups rather
than 30. This approach is less parsimonious than the MIMIC
approach but more flexible in terms of testing the scalar invariance
assumption over gender, which is not easily tested with the MG-
MIMIC model. The configural 60-Group CFA model with the

eight motivational constructs (MCG1 in Table 2) provided a good
fit to the data (CFI � .950, TLI � .946, RMSEA � .036). As in
earlier analyses there was only a small decrease in fit indices for
the metric model in which factor loadings were constrained to be
equal over the 60 country-gender groups (MCG2 in Table 2;
	CFI � .007, 	TLI � .005, 	RMSEA � .002). However, again
the scalar invariance of intercepts (MCG3) was not supported in
relation to the substantial decreases in fit indices compared with
Model MCG2 (	CFI � .049, 	TLI � .045, 	RMSEA � .013),
leading us to pursue the 60 country-gender groups CFA model
with alignment and AwC.

It should be noted that the MG-CFA approach used here relies
heavily on the flexibility of the “model constraint” command in
Mplus to calculate gender differences, with the delta method being
utilized to estimate the standard errors. The AwC alignment model
(MCG4AwC) has the same degrees of freedom, same chi-square
and model fit as the configural CFA model (MCG1). For the
purposes of this investigation, a graphical depiction of the patterns
of gender differences in self-concept and general value is pre-
sented in Figure 3. There is clear evidence that gender differences
in self-concept and general value vary substantially by countries,
Wald 
2(29) � 264.292, p � .001, Wald 
2(29) � 194.702, p �
.001, respectively.

Furthermore, to explore the sizes of latent mean differences in
motivational constructs across countries and gender, we decom-
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Figure 3. Patterns of gender differences: general value and self-concept based on two different models. Note: Large
circles indicate statistically significant coefficients (p � .001), whereas small circles (�)indicate coefficients are not
significant at p � .001. The bars indicates �1 standard error.
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posed variance estimates into contrast tests of differences associ-
ated with the 30 countries, the two gender groups, and their
interactions; and estimated variance components for each of these
differences (sums of squares and variance components in Table 5)
using the “model constraint” command in Mplus. Thus, we used
these constraints to obtain analysis of variance-like estimates of
the statistical significance and proportion of variance in latent
mean differences explained by the 30 countries, the two gender
groups, and the 30 Country � Gender interactions (see Marsh et
al., 2013 for a related approach). Comparison of the variance
components shows that first-order gender differences (.040 and
.006 for self-concept and general value, respectively) are much
smaller than those associated with either the gender-by-country
interactions (.135 and .116) or, and in particular, the first-order
effects of country (2.404 and 1.366). However, due to the large
sample sizes, all these effects are highly significant.

Of particular interest to the application of the CFA-MIAL model
and the AwC, we compared the pattern of gender differences based
on 60 group alignment models with those based on the 30-group
MIMIC model (see Figure 4). Inspection of the caterpillar plots for
the two approaches demonstrates that they are highly similar,
particularly for self-concept, but to a lesser extent also for general
value.

Discussion and Implications

Study 1 is apparently the first large-scale application of the
CFA-MIAL model proposed by Asparouhov and Muthén (2014) in
which there were multiple factors as well as large numbers of
items, factors, groups, individuals, and estimated parameters. Par-
ticularly the 60-group analysis used to assess gender differences is
one of the largest published CFA-MI studies. In accomplishing this
goal, we introduced the new AwC approach and demonstrated its
usefulness, substantially enhancing the flexibility of the CFA-MIAL

model in relation to substantively important issues that could not
be evaluated appropriately using traditional MG-CFA methods. Of
particular interest, invariance of item intercepts was not supported,
and the scalar model provided poor model fit on the basis of the
traditional scalar CFA-MI model; this implied the incomparability
of factor means. However, we found that the CFA-MIAL model
provided a much better fitting model that allowed us to compare
means across the 30 countries. We also demonstrated how align-
ment was useful for developing or revising a scale measuring
science motivation, in terms of cross-cultural generalizability.

In demonstrating the substantive usefulness of the CFA-MIAL

model and the AwC extension, we evaluated the consistency over
30 OECD countries of latent means of the motivational constructs,
as well as relations between the motivation constructs and the three
criterion variables (gender, achievement, and SES). The associa-
tions between the motivational constructs and the criterion vari-
ables varied substantially over countries. On average, science
achievement was positively associated with the motivational con-
structs, whereas associations of gender and SES to the motiva-
tional constructs were mostly small. Of particular interest, we
evaluated gender differences in self-concept and general value on
the basis of the 30-group MIMIC model (i.e., gender as a MIMC
variable) and the 60-group AwC model (60 � 30 countries � 2
genders). Both models resulted in highly similar patterns of results,
indicating that boys tended to have high self-concept in science,
whereas the gender difference favoring boys in general value was
relatively small. There was, however, country-to-country variation in
the results, which necessitated the AwC extension of the CFA-MIAL

model. In pursuing the methodological aims of this investigation, we
demonstrated the flexibility of the AwC extension of the CFA-MIAL

model and its applicability to a wide variety of different situations that
are likely to be useful for applied researchers, given that the
CFA-MIAL model as currently operationalized can only be used to
test a limited number of CFA models.

In summary, the results of Study 1 are supportive of alignment,
particularly when extended to include the AwC transformation.
Nevertheless, as alignment is a new statistical approach, “best
practice” will evolve with experience. In particular, there are key
questions arising from the results of Study 1 that we address in
Study 2, which is based on simulated data, to provide a stronger
basis for evaluating alignment in relation to viable alternatives.

Study 2: An Overview of the Substantive and
Methodological Focus

Study 2, a simulation study, allowed us to evaluate the appropri-
ateness of alignment in relation to known population parameters
under a variety of different conditions. Of particular relevance to our
earlier discussion of problems with the stepwise approach in the
traditional partial invariance model, we compare the known parameter
values from the population generating model with estimated values
based on the alignment model and both the complete and the partial
invariance scalar models. In order to enhance comparability, we then
built on the simulation design that Asparouhov and Muthén (2014)
used to introduce alignment, and address several critical issues left
unanswered by Study 1 and the Asparouhov and Muthén demonstra-
tion—particularly in relation to estimates of latent means, which were
the primary focus of Study 1, as they are in studies of scalar invariance
more generally. More specifically we addressed the following issues
that followed from limitations of Study 1, which relied on “real” data
and a limited amount of alignment research to test the following a
priori hypotheses:

1. When scalar invariance does not hold, bias in estimation
of known latent means is consistently smaller for align-
ment than for either the complete or partial scalar ap-
proaches. (We leave as a research question the difference
in bias between the complete and partial scalar CFA-MI

Table 5
Latent Mean Differences in Self-Concept and General Value of
Science Across (30 Countries � 2 Gender) Groups

Self-concept General value

SS VC SS VC

Gender .040 (.002) .05% .006 (.001) .06%
Countries 2.404 (.079) 28.7% 1.366 (.075) 13.1%
Interaction .135 (.017) 1.61% .116 (.017) 1.11%

Note. SS � sums of squares; VC � variance components. Latent mean
differences in self-concept and general value were decomposed to assess
the main effects of differences due to the 30 countries, the two gender
groups, and their interaction.
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solutions, and whether this difference is consistent over
different conditions.)

2. When scalar invariance does hold, bias in estimates will
be small and similar in size for both the scalar invariance
and alignment models.

3. Cross-validation using new data from the same popula-
tion generating model will support the superiority of
alignment in relation to Hypothesis 1.

In addition to these a priori hypotheses, in Study 2 and subse-
quent discussion we address the unresolved question of how to
evaluate the suitability of the alignment and AwC models.

Method

In Study 2 we extended the original Asparouhov and Muthén
(2014) simulation study, providing an overview of the quality of
the alignment estimation in comparison with configural, scalar,
and partial invariance models. An apparently unique feature of our
simulation is that we rejected the typical assumption of CFA-MI
models (and most simulation studies) that some parameter esti-
mates are completely invariant across all groups. Instead, none of
the parameter values in our population generating model were
invariant (i.e., none were exactly the same in the multiple groups),
as would be the case in practice with real data. In this respect, we
explore how well the alignment optimization functioned under the
complete noninvariance condition with different patterns of large
and small noninvariant parameters. As in Study 1, the fixed align-
ment estimation method was used with 500 replications and max-
imum Likelihood in this simulation study.

Data generation. On the basis of the Asparouhov and Muthén
(2014) simulation study, we generated data using a one-factor

model with five indicator variables and 15 groups. In all groups the
residual variances of indicator variables were set to 1. The simu-
lation design factors manipulated in the study included: (a) group
size (N � 100 and 1000); (b) magnitude and percentage of non-
invariance (10% large � 90% small; 20% large � 80% small); (c)
approaches to invariance testing (alignment, configural, complete
scalar, and partial scalar). Using the same method as Asparouhov
and Muthén (2014), we generated three group types, and then
repeated those types to create 15 groups. Each group type had the
same parameter values. For example, the first, fourth, and seventh
groups were simulated in the same manner. For group Type I the
distribution of the factor was � � 0, � � 1; for group Type II, � �
.3, � � 1.5; and for group Type 3, � � 1, � � 1.2: this is
consistent with the group types in Asparouhov and Muthén (2014).
The alignment factor mean and factor variance were fixed to 0 and
1, respectively, in the first group; this matches the metric used to
generate the data (see Asparouhov & Muthén, 2014 for more
details).

Magnitude and percentage of noninvariance. For the pat-
tern of loading and intercept noninvariance, two misfit conditions
(small and large) were simulated. In each group there was one
large noninvariant intercept parameter (e.g., � � .50 or �.50) and
one large noninvariant loading parameter (e.g., � � 1.40, .50, or
.30). The rest of the intercept and loading parameters were set to
reflect a small extent of noninvariance (� � 0 � .05 and � .10 and
� � 1 � .05 and � .1). On the basis of this design (see Table 6),
the ranges of the standard deviation of each loading and intercept
across groups were from .04 to .23 and from .08 to .25 (see Table
6). In order to vary the percentage of large noninvariant parame-
ters, we replaced large noninvariant loading values with small
noninvariant values from each odd-numbered group and replaced
large noninvariant intercept values with small noninvariant values
from each even-numbered group. Also, to provide a test of the
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Figure 4. Patterns of gender differences: general value and self-concept, based on two different models.
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alignment model when there was complete scalar invariance, we
simulated two additional groups with all noninvariant loading and
intercept values (� � 0, � � 1).

Approaches to invariance testing. We compared the align-
ment estimation with configural, scalar, and partial invariance
models across all conditions (number of groups, magnitude and
percentage of noninvariance, and approaches to invariance test-
ing), totaling 12 conditions. This is apparently one of the few
simulation studies to test the traditional stepwise adjustments to
the scalar invariance model, and the first to juxtapose it with
alignment. We suspect that this is due at least in part to the unique
complications of applying this stepwise approach across a large
number of replicates, even when the population generating model
is known. In particular, the final solution for each replication can
differ substantially terms of the number of post hoc adjustments
that are made, as well as which parameter estimates that are
actually freed. In our operationalization of the stepwise approach
to partial invariance, we first compared relative model fits for the
configural and scalar invariance models based on each replication.
At each step of the stepwise procedure within a given replication,
if the 	CFI was greater than .01 (Chen, 2007; Cheung & Rensvold,
2002), an additional parameter, that having the largest modifica-
tion index, was freed. We repeated this procedure until 	CFI 	
.010, at which point we terminated the iterative process and started
again with the next replicate. Note that this procedure was used for
each replication, so that although the CFI for each of the 500
replicates was necessarily similar to the configural model, the
number and choice of invariance constraints that were freed varied
across the different replicates.

Measurement estimate analyses. To explore how well align-
ment estimated the group-specific measurement models, we con-
sidered a variety of measures of accuracy and precision. Our
emphasis was on the latent means that are the focus of the present
investigation, as they are in most scalar invariance studies. How-
ever, across the 500 replicates we also report the mean, SD, and
average mean square error (MSE) of bias (difference between the
estimated and the true value) for factor means, factor variances,
loadings, and intercepts. The MSE captures the bias and variability
of the estimates by summing the square of the bias and the
variance of the estimate. In addition, for every replicate solution in
each condition, we cross-validated the parameter estimates to test

Hypothesis 3. This was accomplished separately for each replicate
by using the fixed values based on the solution for that replicate
applied to a new sample of cases generated from the same popu-
lation generating model (i.e., same sample size and values for large
and small noninvariant parameters).

Results

The goodness of fit measures (see Table 7) merely confirm the
design of the simulation study. The fit of the configural and partial
invariance models were similar and extremely high (e.g., CFIs 

.989) for all conditions (i.e., small vs. large N; 10% vs. 20% large
misfit). The fit of the metric model was marginal (CFIs � .905 to
.942) and the fit of the scalar model was clearly unacceptable
(CFIs � .819 to .876). For both the scalar and metric models, the
fit was noticeably worse when the number of large nonvariant
parameters was larger. Also of note, the number of post hoc
estimates freed in the partial invariance models (i.e., the number of
parameters in the partial solution less the number of parameters in
the scalar solution) varied systematically across replicates within
each condition; on average, the number of adjustments was greater
when the amount of misfit was greater, but also when the sample
size was larger.

Latent mean bias when scalar invariance is violated (Hy-
pothesis 1). The central results of the simulation study (see
Table 8) were designed to test Hypothesis 1. For the present
purposes we focus on bias in the estimation of the latent factor
means (� in the column labeled “average bias” in Table 8), but also
present values for other parameter estimates. Consistent with a
priori predictions, across all conditions average bias in latent
means was systematically smaller for the alignment solutions than
for either the complete or partial scalar solutions. Although bias
was left as a research question, it is important to note that the
average bias was also consistently larger for the partial than for the
complete scalar condition. This pattern of differences (alignment
better than scalar; complete scalar better than partial scalar) is
consistent across all sample sizes and noninvariant conditions.

The pattern of results was somewhat more complicated for the
variation in bias estimates across the different conditions (� in the
column labeled “SD of bias” in Table 8). Again, consistent with
Hypothesis 1, the variation in bias in latent mean estimates for the
alignment solution is consistently smaller than variation for the
complete and partial scalar solutions. However, when the number
of large noninvariant parameters is small (10% vs. 20%), the
variation in bias is greater for the complete scalar than the partial
scalar solutions, whereas when the number of large noninvariant
parameters is large variation in bias estimates is greater for the
partial solutions than the scalar solutions. Not surprisingly, the
variation in bias estimates is systematically smaller when sample
size is larger (1,000 vs. 100).

Average mean square error (MSE in Table 1) integrates average
bias and variation in bias into a single index. Hence, it is not
surprising that the alignment solutions performed systematically
better than either the complete or partial scalar solutions. Consis-
tently with the average bias results, the complete scalar solutions
performed better than did the partial scalar solutions. However,
consistently with the SD of bias results, the difference between
complete and partial scalar conditions was larger when the number
of large noninvariant parameters was small.

Table 6
Noninvariance Pattern Based on 20% Large Noninvariance

Parameter Group 1 Group 2 Group 3
Mean across

15 groups
SD across
15 groups

Y1 loading 1.00 1.05 .95 1.00 .04
Y2 loading 1.00 1.10 .90 1.00 .08
Y3 loading 1.40 .90 1.10 1.13 .21
Y4 loading 1.00 .95 .30 .75 .33
Y5 loading 1.00 .50 1.05 .85 .26
Y1 intercept .00 �.50 �.05 �.18 .23
Y2 intercept .00 .05 .50 .18 .23
Y3 intercept .00 �.10 .10 .00 .08
Y4 intercept .00 .10 �.05 .02 .06
Y5 intercept .50 �.05 .05 .17 .25
Factor mean .00 .30 1.00 .43 .43
Factor variance 1.00 1.50 1.20 1.17 .21

Note. Large noninvariant parameters are shaded and bolded.
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In the final columns in Table 8, we have translated the size of
bias estimation in the latent means into an effect-size metric—
average bias divided by the pooled standard deviation of the latent
mean estimates. However, these values closely mirror those based
on the average bias.

In summary, there is clear support for Hypothesis 1. At least in
terms of the conditions in our simulation, alignment outperformed
both the complete and partial scalar approaches when there was no
support for complete scalar invariance. Although it was not pre-
dicted a priori, the surprisingly poor performance of the partial
scalar solution in relation to the complete scalar solution was
consistent with negative reviews of the stepwise approach used to
make adjustments in the partial scalar model.

Latent mean bias when there is support for scalar invari-
ance (Hypothesis 2). Although this was not a major focus of the
present investigation, it is relevant to evaluate the alignment so-
lution in relation to the complete scalar solution when there was
support for scalar invariance (in Table 8, rows with percentage of
noninvariance � 0%). Importantly, for both the alignment and
complete scalar solutions, there was almost no bias in estimation of
the latent means. Also, the variation in the bias estimates was
nearly the same for the two sets of solutions. Indeed, the mean
square errors (MSEs) that take into account both systematic bias
and variation are also very small and identical (to three decimal
places) for the complete scalar and alignment solutions. Again, the
SDs of the bias in estimates (and MSEs) are smaller when the
sample size is larger.

It is also interesting to compare these SDs of bias with those
based on solutions where scalar invariance does not hold. These
SDs are clearly smaller when there is complete scalar invariance,
but the sizes of these differences vary substantially for complete
scalar and alignment solutions. In particular, variation in alignment
solutions is only modestly smaller, whereas the variation in the

complete scalar solutions is substantially smaller. These results are
also consistent with the a priori hypothesis that even when the
scalar solution is viable, alignment is still appropriate. In summary,
there is clear support for Hypothesis 2. At least in terms of the
conditions in our simulation, nothing is lost by applying alignment,
even when there is support for complete scalar invariance.

Cross-validation support for the results (Hypothesis 3).
Consistent with a priori Hypothesis 3, there is good cross-
validation support for the results in support of Hypothesis 1.
Indeed, the cross-validation indices in relation to bias in the latent
means in Table 9 are nearly identical to those in Table 7. Although
this finding is tangential to the main focus of the present investi-
gation, the reason why the cross-validation indices are so good is
that both the alignment and, in particular, the partial invariance
approaches, were designed to optimize the goodness of fit of
solutions in relation to factor loadings and intercepts, not the latent
means. Hence, the inevitable deterioration due to capitalization on
chance in cross-validation is not large for the bias in estimation of
latent means.

Discussion and Implications

Building on the original Asparouhov and Muthén (2014) simu-
lation study, the results of Study 2 provide important new support
for alignment and thus for AwC, which was the major focus of our
study. While, in support of alignment, Asparouhov and Muthén
presented results based on a few indicative parameter estimates
from just one group, we have provided a more comprehensive
evaluation of results across all parameter estimates and all groups.
More importantly, we expanded the simulation study to include
partial scalar invariance estimates. This is particularly important
because the stepwise strategy continues to be used widely with
partial scalar invariance, even though this has been criticized

Table 7
Model Fit Statistics for Invariance Models

Models N
% Large

noninvariance 
2 df Params CFI TLI RMSEA

Configural 100 10% 77 75 225 .998 .999 .020
Metric 100 10% 298 131 169 .942 .933 .112
Scalar 100 10% 542 187 113 .876 .900 .138
Partial 100 10% 200 170 130 .990 .991 .041
Configural 100 20% 77 75 225 .998 .999 .020
Metric 100 20% 386 131 169 .905 .891 .139
Scalar 100 20% 672 187 113 .819 .855 .161
Partial 100 20% 191 161 139 .989 .990 .043
Configural 1,000 10% 76 75 225 1.000 1.000 .006
Metric 1,000 10% 1770 131 169 .943 .934 .112
Scalar 1,000 10% 3734 187 113 .876 .900 .138
Partial 1,000 10% 425 164 136 .991 .992 .040
Configural 1,000 20% 75 75 225 1.000 1.000 .005
Metric 1,000 20% 2635 131 169 .907 .893 .138
Scalar 1,000 20% 4995 187 113 .821 .856 .160
Partial 1,000 20% 400 155 145 .991 .991 .040
Configural 100 0% 77 75 225 .998 .998 .019
Scalar 100 0% 192 187 113 .996 .998 .017
Configural 1,000 0% 75 75 225 1.000 1.000 .005
Scalar 1,000 0% 187 187 113 1.000 1.000 .004

Note. CFI � comparative fit index; TLI � Tucker–Lewis Index; Params � number of free parameters;
RMSEA � root mean squared error of approximation.
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severely by statisticians and quantitative psychologists alike. In-
deed, even the important caveats offered by Byrne et al. (1989)
when they first introduced the partial invariance strategy, have
tended to be ignored in subsequent research. Critically, consistent
with a priori predictions in relation to latent means, the results of
Study 2 support the a priori hypotheses that alignment outperforms
both the complete and partial scalar approaches when the fit of the

complete scalar model is unacceptable, and performs no worse
than the complete scalar solution even when there is complete
scalar invariance.

Overall Discussion, Limitations, and Directions for
Future Research

Study 1 is apparently the first large-scale application of the
CFA-MIAL model, and one of the largest applications of the
CFA-MI approach, with so many factors, items, and estimated
parameters. Indeed, most CFA-MI demonstrations focus on a
small number of groups (e.g., Byrne et al., 1989; Reise, Widaman,
& Pugh, 1993), while the relatively few studies based on a large
number of groups often consider a single factor based on a rela-
tively small number of items (e.g., Zercher et al., 2015). In Study
1 we could have considered a single factor or each of the eight
factors in isolation. However, the initial focus was to follow up the
Nagengast and Marsh (2013) study, where the focus was on the fit
of the multidimensional factor structure across all eight factors.
Obviously this was only possible through considering all eight
factors within the same models. Indeed, even if there were good
support for the fit of each factor considered separately, there is no
guarantee that a model with all the factors in the same model
would fit. Furthermore, because of the moderate to large correla-
tions among the different factors, not even the estimated factor
loadings and intercepts would have been the same in models of

Table 8
Average Bias, SD of Bias, and MSE for the FIXED Alignment Estimates Using Maximum Likelihood

Models N
% Large

noninvariance

Average bias SD of bias Average MSE ES_within ES_total

� � � � � � � � � � � � � �

Small N and small noninvariance

Align 100 10% �.010 .030 �.007 .011 .164 .329 .133 .142 .027 .109 .018 .020 �.009 (.148) �.008
Scalar 100 10% �.067 �.039 .007 .049 .195 .351 .188 .192 .042 .125 .035 .039 �.060 (.149) �.056
Partial 100 10% .126 .057 �.015 �.107 .179 .363 .133 .149 .048 .135 .018 .034 .114 (.162) .106

Small N and large noninvariance

Align 100 20% �.047 �.114 .047 .006 .170 .308 .148 .167 .031 .108 .024 .028 �.043 (.153) �.040
Scalar 100 20% �.119 �.283 .084 .041 .189 .322 .244 .226 .050 .184 .066 .053 �.107 (.171) �.100
Partial 100 20% .134 �.085 .035 �.145 .219 .358 .162 .214 .066 .136 .027 .067 .121 (.198) .112

Large N and small noninvariance

Align 1,000 10% .039 .008 �.004 �.033 .059 .109 .045 .051 .005 .012 .002 .004 .035 (.054) .033
Scalar 1,000 10% �.077 �.066 .014 .054 .106 .187 .167 .161 .017 .039 .028 .029 �.069 (.096) �.064
Partial 1,000 10% .158 .084 �.025 �.134 .067 .165 .071 .073 .029 .034 .006 .023 .143 (.060) .133

Large N and large noninvariance

Align 1,000 20% .000 �.091 .034 �.033 .072 .136 .063 .083 .005 .027 .005 .008 .000 (.065) .000
Scalar 1,000 20% �.129 �.305 .090 .047 .111 .218 .226 .196 .029 .140 .059 .041 �.117 (.100) �.108
Partial 1,000 20% .225 �.010 .004 �.200 .157 .133 .069 .168 .075 .018 .005 .068 .203 (.142) .189

Small N and no large noninvariance

Aligna 100 0% .016 .024 .007 .020 .156 .249 .134 .148 .027 .063 .018 .024 �.007 (.141) �.007
Scalara 100 0% .008 .031 .009 .001 .165 .250 .086 .111 .027 .063 .007 .012 .005 (.149) .004

Large N and No large noninvariance

Align 1,000 0% .002 .003 .001 .003 .052 .078 .043 .048 .003 .006 .002 .002 �.005 (.047) �.005
Scalar 1,000 0% .001 .004 .001 .000 .052 .078 .028 .035 .003 .006 .001 .001 .000 (.047) .000

Note. Align � Alignment; MSE � mean square error; ES � Effect size.
a in complete invariance models all factor loadings are set as 1, and all intercepts are set as 0.

Table 9
Average Bias, SD of Bias, and MSE for the Alignment Based on
Cross-Validation Data

Models N
Percentage of large

noninvariance
Average

bias
SD of
bias

Average
MSE

Align 100 10% �.010 .167 .028
Scalar 100 10% �.067 .197 .043
Partial 100 10% .126 .179 .048
Align 100 20% �.047 .173 .032
Scalar 100 20% �.119 .192 .051
Partial 100 20% .134 .220 .066
Align 1,000 10% .039 .060 .005
Scalar 1,000 10% �.077 .107 .017
Partial 1,000 10% .158 .066 .029
Align 1,000 20% �.001 .072 .005
Scalar 1,000 20% �.129 .111 .029
Partial 1,000 20% .225 .157 .075

Note. Align � Alignment; MSE � mean square error.
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each factor considered separately. Although models of each factor
considered separately might provide supplemental information,
this information and more is already available through the align-
ment model of all eight factors. In summary, the scale of data in
Study 1 provided a realistically complex demonstration of the
CFA-MIAL model in relation to actual practice.

Introduction of AwC and Parallels With Exploratory
Structural Equation Models (ESEM)

A critical feature of Study 1 was the introduction of the AwC
extension, which transforms alignment into a confirmatory tool
rather than being largely exploratory. The AwC extension greatly
enhances the usefulness and flexibility of alignment to address
substantively important issues in further CFA and SEM analyses
that would not otherwise be possible with alignment. It is also
interesting to explore some of the similarities between the devel-
opment of alignment and ESEM. In both cases, development came
about because of the typically overly restrictive assumptions of the
traditional CFA model; requiring cross-loadings to be zero
(ESEM); the scalar invariance constraints in CFA-MI models
(alignment). In both cases, the apparently inherent limitations of
ESEM and alignment were mostly overcome by the introduction of
EwC and AwC, transforming exploratory tools to confirmatory,
and greatly expanding the range of models that could be consid-
ered. Indeed, because the EwC approach has been widely applied,
some of the novel applications of the EwC extension to ESEM
(Marsh, Morin, et al., 2014) are likely to be valuable to the
application of AwC, as well as to future developments of Mplus to
facilitate these applications.

The juxtaposition of the ESEM and alignment also identifies
potentially serious limitations of alignment as currently speci-
fied, in that it begins with an implicit assumption that the
configural CFA-MI model is able to fit the data. However, as
presently operationalized, the CFA-MIAL model is limited to
independent cluster factor structures in which indicators are not
allowed to cross-load on multiple factors. However, this factor
structure, which underpins most CFA studies, is overly restric-
tive in many applications (Marsh, Lüdtke, et al., 2013), leading
to a growing body of research suggesting that the cross-loadings
in ESEM often provide a more appropriate, better-fitting solu-
tion. The introduction of AwC allows limited scope in testing
and perhaps, relaxing this requirement of no cross-loadings—
but is limited in that substantial cross-loadings would call into
question the alignment structure that is the basis of AwC.
Similarly, although multigroup tests of invariance are possible
with ESEM, they suffer the same limitations with CFA-MI
models as have been highlighted in the present investigation.
We also note that tests of longitudinal measurement invariance
over multiple occasions is not possible with alignment in its
current form, but is possible with ESEM. Recognizing the
potential synergy between the ESEM and alignment, Asp-
arouhov and Muthén (2014) mooted the combination of ESEM
and alignment into a single model as a useful development in
future versions of Mplus. This development would also enable
applied researchers to use both the AwC and the EwC trans-
formations in the same analysis.

Comparison of Alignment and Partial Invariance
Approximations to Scalar Invariance

An obvious limitation of Study 1 is that it left unanswered the
question of how alignment would compare with the traditional
stepwise approach used to achieve partial invariance. This could
not be easily addressed with real data in which the true population
parameters are unknown. Thus, we undertook a simulation study
(Study 2) to evaluate the extent of bias in estimation of latent
means based on alignment, compared with complete and partial
invariance models under a variety of different conditions. In rela-
tion to the degree of noninvariance associated with our design in
Study 2, the fit of the configural model was obviously better than
that typically found in practice. However, even for the condition
where the number of large noninvariant parameters is small, the fit
of the metric and scalar models is somewhat poorer than that
observed in Study 1, suggesting that the extent of noninvariance in
the simulated data is greater than that in Study 1.

The Study 2 results are unambiguous, in that alignment consis-
tently outperformed partial invariance in particular, as well as the
complete scalar invariance models. Of course, as is always the case
with simulation studies, the generalizability of these conclusions is
limited by the design of the study (see discussion of limitations
below). However, our simulation study should have been ideally
suited to the partial invariance strategy, in that there were only a
few large noninvariant parameter estimates, in combination with
many small ones. Nevertheless, given the scathing reviews of
stepwise procedures generally (see earlier discussion of problems
with stepwise approaches), perhaps it is not surprising that step-
wise approaches perform so poorly. From this perspective, it is
somewhat surprising that applied SEM/CFA researchers have per-
severed so long with a procedure that is so dubious. Indeed, such
issues were recognized by Byrne et al. (1989) when they first
introduced the partial invariance more than 25 years ago, and the
failure to resolve these long-standing issues was a primary moti-
vation for Asparouhov and Muthén (2014) introducing alignment
as a viable alternative to partial invariance. The results of the
present investigation, the first empirical test of this implicit as-
sumption, provide clear support for alignment and further call into
question the traditional partial invariance approach.

We also note that the partial invariance model does not have to
be driven purely by a stepwise empirical approach, even though
this is the typical approach (Schmitt & Kuljanin, 2008). Indeed,
defenses of the procedure, starting with the original Byrne et al.
(1989) demonstration, note the need to evaluate the selection of
parameters to be freed in relation to theory and substantive knowl-
edge. However, this tends to be done in a strictly post hoc manner
to justify the results of the stepwise empirical selection process
(Schmitt & Kuljanin, 2008). A more appropriate use of theory and
substantive knowledge might be to develop truly a priori models
that could then be empirically tested in relation to goodness of fit
and evaluation of parameter estimates (MacCallum et al., 1992).

Here we have pitted the alignment and partial invariance ap-
proaches against each other, treating them as antithetical. How-
ever, this perspective might be too simplistic, and we speculate
that a synergistic combination of both approaches could be advan-
tageous. Modification indices are the critical feature of the typical
partial invariance model. Although modification indices and ex-
pected change parameters are not currently available with the
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alignment model, they are readily available for the equivalent
AwC model. However, indices based on the final AwC model are
fundamentally different from the modification indices used in the
partial invariance model, particularly in relation to identifying
parameters that cause the most stress to scalar invariance. Thus,
the modification indices that these are based on in the final and
“best” AwC model can, and should, be added as a single step
rather than one at a time in the potentially many steps of the
forward stepwise approach. In this sense, the adjustments identi-
fied by the AwC model are more like the “all possible combina-
tions” approach to stepwise selection, which has important advan-
tages over (in particular) the forward stepwise strategy typically
used, and also backward elimination and bidirectional elimination
(a combination of forward and backward approaches). Thus, a
potential synergy between alignment and partial invariance models
could be to use the modification indices based on the AwC model
to identify parameters to be freed in the partial invariance model.

How to Evaluate the Appropriateness of the
Alignment and AwC Models

Limitations in the AwC model. For demonstrations based on
new statistical procedures, typically there are potentially important
limitations and a need for further research. Particularly in relation to
the limitations identified by Asparouhov and Muthén (2014), the
introduction of the AwC extension of the CFA-MIAL model is an
important development, greatly expanding the range of models that
can be considered with alignment, as illustrated in Study 1. There are,
nevertheless, limits to the generalizability of results based on the AwC
transformation of the original alignment solution to new models. In
particular, there is an implicit assumption that the alignment factor
structure continues to be appropriate when it is incorporated into new
models that take advantage of the flexibility of AwC. However, we
suggest that there is a hierarchy of models in relation to how reason-
able this assumption is likely to be. At the top of the hierarchy, this
assumption is entirely reasonable for the basic AwC model, which
does not introduce new constraints or additional variables, as it is
merely an equivalent transformation of the alignment model. The
assumption is likely to be more reasonable when the new models are
nested under the original model (e.g., more constraints are added) than
when new variables are added. When new variables are added,
the assumption is likely to be more reasonable when new variables are
merely correlated with the alignment factors, or alignment factors
are used to predict new variables, than in MIMIC models that impose
additional invariance assumptions. For example, if the fit of the
MIMIC alignment model in Study 1 had been much worse than that
in the basic alignment model (or, equivalently, the configural model),
then the results would have to be interpreted with caution. However,
this concern is not specific to the alignment model, but also applies to
MIMIC models in conjunction with the scalar CFA-MI models and
single-group models. Indeed, under these circumstances it might be
more appropriate to forgo the MIMIC model altogether and resort to
an appropriate multiple group model. In Study 1 we demonstrated
how this was possible in relation to gender differences, comparing
models with gender added to the AwC model as a MIMIC variable,
and gender treated as a multiple group variable (i.e., creating separate
male and female groups for each country).

Focus on latent means. Our focus was primarily on estimation
of latent means, rather than on factor loadings, intercepts, and factor

variance/covariance estimates. This focus is justified, in that the main
purpose of tests of scalar invariance is to provide a justification for the
evaluation of latent means. This also has some interesting implica-
tions in relation to the results. In particular, the stepwise strategy in the
partial invariance model is designed to maximize goodness of fit in
relation to adjustments to the factor loadings and intercepts in the
complete scalar model, rather than latent means. From this perspec-
tive, it is not surprising that the results based on latent means cross-
validated so well, in that the adjustments did not capitalize on chance
in relation to latent means. Nevertheless, in other applications of
alignment it might be important to evaluate the extent of bias in the
estimation of other parameter estimates.

How large is a large noninvariant parameter? An ongoing,
unresolved issue with alignment is how to evaluate the appropriate-
ness of the solution when true population parameters are unknown. In
particular, because the fit of the alignment model is necessarily the
same as the configural model, its appropriateness cannot be evaluated
by goodness of fit. We note, however, that this limitation also exists
with the partial invariance model, in which a sufficient number of
invariance constraints are freed so that its fit does not differ substan-
tially from that of the configural model. Hence, the partial invariance
model cannot be evaluated in relation to goodness of fit. On the basis
of preliminary results, Asparouhov and Muthén (2014) suggested that
alignment studies should be interpreted cautiously if more than 20%
of the parameter estimates are noninvariant. However, this suggestion
is, perhaps, overly simplistic. As shown here, alignment works well
even when all of the parameters are noninvariant, as long as the
deviations are small. Asparouhov and Muthén implicitly recognized
this in that they focused on deviations that were statistically signifi-
cant, and used a conservative criterion of p � .001. Nevertheless,
because this criterion is highly sample-size dependent, guidelines
based upon it are unlikely to be generalizable. Hence, what is needed
is a more absolute index of what constitutes “large” that is relatively
independent of sample size and practically useful.

The alignment solution routinely provides additional insights into
the quality of alignment solutions in terms of the largest deviations in
relation to individual indicators and groups. Although this information
is clearly useful from a diagnostic perspective, it is based largely on
tests of statistical significance that are highly dependent on sample
size and thus, idiosyncratic to a particular data set. However, as
illustrated here, these tests are easily supplemented with measures of
practical significance by transforming the differences into a standard-
ized effect size metric (Cohen’s d) that is more comparable in relation
to external comparisons with different studies, as well as internal
comparisons within the same study. We also note that presenting
these Cohen’s d statistics in terms of box plots provides a useful
summary of the distribution of values across different groups and
items, particularly because the CFA-MIAL loss function is minimized
when there are a few large noninvariant parameters and many ap-
proximately invariant parameters. Because our study is apparently the
first application of standardized effect sizes (ESs) to evaluate the
results from the alignment model, it is premature to provide guidelines
about what constitutes large, medium, and small ESs, but such intu-
itions should evolve with further application.

We also note that output from the alignment program currently
does not include modification indices (which are highly influenced by
sample size) or related measures of expected parameter change (raw
and standardized), which provide a more practical, “absolute” index
(that is sample size independent) of how much a fixed or constrained
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parameter would change if freed. However, with the basic AwC
model these additional indices are readily available and likely to be
useful in evaluating the extent of noninvariance for different param-
eter estimates. Whittaker’s (2012) simulation study suggested that
expected change parameters were somewhat better at identifying
misspecified parameter estimates, but recommended using them in
combination with modification indices. However, the potential value
of the expected change indices is to provide a generalizable index of
what constitutes a “large” misspecification—Whittaker suggested
standardized values greater than .2.

Following Whittaker’s suggestion, we evaluated the estimated pa-
rameters with the largest modification indices for the PISA data, along
with standardized and unstandardized indices of expected change (see
Appendix 7, supplemental materials). Although it is probably prema-
ture to propose cutoff values for alignment and AwC models that are
based on Whittaker’s results, which emerged in a different context, it
is interesting to note that less than 3% of the parameter estimates
had completely standardized, expected parameter change values
(STDYC_EPC in Appendix 7) greater than .2 in absolute value—far
lower than the 20% cutoff suggested by Asparouhov and Muthén
(2014). Consistently with suggestions by Whittaker, inspection of
Appendix 7 indicates that modification and expected parameter
change indices provide different perspectives, so that some combina-
tion of both might also provide a useful starting point for identifying
parameters to free in partial invariance models that do not rely on
apparently dubious, forward stepwise selection.

Alternative Approaches to Measurement Invariance

Recently there has been considerable development of alternative
approaches to the evaluation of latent means in large-scale studies
when there is a lack of support for scalar invariance. A number of
studies have used multilevel modeling, treating the multiple groups as
Level 2 and the cases nested within each group as Level 1 (see Jak,
Oort, & Dolan, 2013). However, implicit in the multilevel approach is
the assumption that the groups are a random sample from a well-
defined population in which the focus is on the population from which
the groups have been sampled; group-specific values are assumed to
represent random variation from this population value. In contrast, the
MG-CFA approach treats groups as fixed effects, with inferences that
focus on specific groups. Consistently with this distinction, alignment
provides considerable information about the source of noninvariance
that is generally not available with the multilevel approach. Muthén
and Asparouhov (2013) also demonstrated that the multilevel ap-
proach is better suited to situations in which there is a very large
number of indicators (e.g., items on an achievement test, as opposed
to the relatively few items used to measure psychological constructs
on most surveys). In addition to the multilevel approach, there are
important developments in other evolving approaches, including
Bayesian structural equation modeling (e.g., Zercher et al., 2015), and
multilevel mixture modeling (Muthén & Muthén, 2011–2015). Also,
perhaps, partial invariance models that do not rely on stepwise strat-
egies will prove critical to the development of measurement invari-
ance models.

In summary, alignment augmented by AwC provides applied re-
searchers with considerable flexibility to address substantively impor-
tant issues when the traditional CFA scalar model does not fit the data.
Both our review of the literature condemning stepwise selection
strategies, and our empirical results, suggest that alignment is more

appropriate than the typical practice of stepwise partial invariance.
The introduction of AwC transforms alignment from being largely
exploratory into a confirmatory tool, and substantially increases the
range of situations in which it can be used. Although alignment and
AwC provide a wealth of information to evaluate the quality of the
alignment solution, an unresolved issue is how to evaluate whether the
alignment solution is trustworthy in relation to evaluating latent
means from multiple groups. This is, perhaps, not surprising, because
essentially the same problem was identified by Byrne et al. (1989)
when they first introduced partial invariant models and the problem
has not been resolved in the subsequent 25 years, in terms of evalu-
ating partial invariant models.

We offer some tentative solutions to this issue as directions for
further applied and simulation research. Despite their limitations we
are confident that, given that these are new statistical tools, “best
practice” will evolve with experience. Other potentially important
directions for further research include synergistic combinations of the
advantages of alignment with other approaches, such as ESEM (par-
ticularly in relation to cross-loadings, but also longitudinal invari-
ance), partial invariance models (based on adjustments identified by
alignment and AwC, rather than stepwise strategies), multilevel mod-
eling, mixture models, and Bayesian structural equation models.
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