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Abstract

Accurate power load forecasting plays an integral role in power systems. To achieve high prediction

accuracy, models need to extract effective features from raw data, and the training of models needs

a large amount of data. However, data sharing will require the disclosure of the private data of the

participants. To address this issue, we combined variational mode decomposition (VMD), the federated k-

means clustering algorithm (FK), and SecureBoost into a single algorithm, called VMD-FK-SecureBoost.

First, we used VMD to decompose the original data into several sub-sequences. This enabled us to extract

the implied features to separately predict each sub-sequence to improve the prediction accuracy. Second,

we use FK to recombine the sub-sequences into several clusters with common characteristics. Finally, with

SecureBoost, we use clustering results to realize federated learning with privacy protection. We calculated

the prediction values by accumulating the prediction results of the sub-sequences. The results for the

examples in the US and Australia showed that the prediction performance of VMD-FK-SecureBoost was

better than those of XGBoost and SecureBoost. Particularly, the MAPEs of one-step-ahead forecasting

in the Texas and Newcastle CBD from our proposed method are 0.209% and 2.127% respectively, which

are the lowest of all the algorithms.

Keywords: Federated learning, Decomposition-ensemble method, Clustering, Load forecasting

1. Introduction

Accurate short-term load forecasting (STLF) is crucial to the security, stable operation, and economic

dispatch of a power system [1]. However, power load data are complex due to the uncertain behavior

of consumers [2]. Extracting features from complex data to achieve the required STLF accuracy is a

challenge. In addition, as the data privacy of society improves the privacy and security of data should be

considered in training models [3]. Thus, how to realize STLF through effective feature extraction with

privacy protection has become a crucial research topic.
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1.1. Literature review

Recently, many researchers have designed different STLF [4, 5, 6] due to the immense practicality of

STLF in smart grids. STLF methods can be generally divided into two categories: statistical methods

[7, 8, 9] and machine learning (ML) methods [10, 11]. Among the statistical methods, Qin et al. [7]

proposed a new hybrid model that combines the auto-regressive integrated moving average model and

feedforward neural networks. Aly [12] proposed a hybrid optimized model that improves the accuracy

when the load data are intermittent, non-linear, and fluctuating. Statistical methods are simple, but they

highly require the support of a stable time series. Thus, it is difficult to maintain effective prediction

performance for complex power load data with only statistical methods.

For complex data, researchers combine ML methods with decomposition methods to perform fore-

casting. Yang et al. [13] proposed an effective dimensionality reduction approach with variational mode

decomposition (VMD) and a variational autoencoder (VAE) for complex power load data. Yang et al.

[14] designed an iterative decompose–cluster–feedback algorithm for load forecasting. Empirical mode

decomposition (EMD) is used to decompose the load sequence into subsequences with various amplitude–

frequency characteristics, which avoids direct calculation of the load sequence. Yue et al. [15] proposed a

mode decomposition–recombination method in which ensemble empirical mode decomposition (EEMD)

is utilized and the accuracy of load forecasting is improved. Nguyen et al. [16] proposed a novel self-

boosted mechanism for limited data accessibility, in which the original time series is decomposed into

multiple time series as additional features. These methods show that combining ML methods with de-

composition algorithms can yield more accurate results. Among the different decomposition algorithms,

VMD can effectively avoid mode aliasing and shows good decomposition performance on non-stationary

and non-linear signals.

On other aspect, traditional ML modeling tends to transmit and store power load data in a data

center or a centralized system [17]. There are two main kinds of centralized frameworks. One framework

trains the ML model separately for each set of historical load data from different departments. The

other framework is aggregated load forecasting, which aggregates all data to train an ML model [18].

However, data transmission and centralized methods cause serious network congestion. Moreover, with

the establishment of the General Data Protection Regulation (GDPR), the centralized methods are re-

quired to comply with the data regulations [19]. Therefore, centralized STLF has become more expensive

computationally and even more impracticable [3]. These issues can be addressed by edge computing and

decentralized learning methods, which make central data storage and processing unnecessary [20].

Federated learning (FL) was proposed as a decentralized ML method [21]. This method achieved a

global model for sharing updated weights instead of training data using edge devices. These weights are

securely processed by the central server, and then, returned to the edge devices [22]. FL performs better

than the centralized methods, in terms of scalability and private data security [23]. Fekri et al. [17] trained

the model without sharing local data through smart meters and FL strategies. In addition, the model that
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adopted federated averaging achieved better prediction performance than a single centralized ML model.

Ma et al. [24] designed a federated two-stage learning framework that augments prototypical federated

learning. Furthermore, the federated k-means clustering algorithm (FK) is an FL-based unsupervised

learning method, unlike the FL supervised learning method [25]. FK can cluster data from multiple

participants with privacy protection. Kumar et al. [26] applied FK to a privacy-preserving real-world

case for the first time and found that FK provides a possible solution for user data privacy. Wang et al.

[27] used FK to extract the electricity consumption pattern while protecting the privacy of the data

owners.

Tree boosting is a highly effective and widely used ML method that has shown impressive performance

in many ML tasks. For example, XGBoost [28] is a scalable tree boosting system. SecureBoost is a

novel gradient–tree boosting algorithm based on the FL framework [29]. Ma et al. [30] implemented an

example based on SecureBoost. Liang et al. [31] proposed a vertical federated learning (VFL) model with

Hetero Secure Boost Tree (HSBT) algorithm, which reduced by 50% the cost of a Chinese bank for data

protection. Therefore, SecureBoost can provide effective privacy protection for big data analysis.

1.2. Motivation

According to the literature, STLF with multiple participants has two main challenges. First, effec-

tively extracting features from data sets is challenging. Second, data privacy should be considered when

modeling with data from multiple participants.

Considering these challenges, this paper proposes an integration algorithm based on the FL framework

for STLF. First, VMD is used to extract features from data in a completely non-recursive way, thus

avoiding the error caused by recursive algorithms. Second, FK can group data into several clusters with

common characteristics while protecting data privacy [25]. Thus, FK is used to further extract features

from the decomposed VMD results. Finally, SecureBoost provides a solution for the ML model training

over multiple data sources with privacy [29]. Therefore, SecureBoost is used as the ML module for privacy

protection.

1.3. Contributions

This paper proposes the integration algorithm VMD-FK-SecureBoost based on VMD, FK, and Se-

cureBoost, for STLF. First, VMD decomposes the data set into several sub-sequences. Second, FK

recombines the decomposed sub-sequences to generate new clusters with common characteristics. Fi-

nally, SecureBoost realizes the FL with multiple participants and protects data privacy. The experiment

results showed that the proposed algorithm can extract features effectively and with data security. This

paper makes the following contributions:

(a) This paper proposes an integration algorithm (VMD-FK-SecureBoost) that combines feature ex-

traction and data privacy protection for STLF. VMD-FK-SecureBoost can further extract feature infor-

mation while protecting data privacy.
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(b) This paper uses the secure data interaction method of the FL framework to avoid data leakage.

(c) The effectiveness of VMD-FK-SecureBoost has been verified on two actual power load data sets

(from the US and Australia). The comparison of VMD-FK-SecureBoost with XGBoost, VMD-XGBoost,

SecureBoost, and VMD-SecureBoost showed that VMD-FK-SecureBoost has the best forecasting perfor-

mance.

1.4. Structure of this paper

The remaining part of this paper is organized as follows. Section 2 presents some definitions of terms.

Section 3 details the proposed integration algorithm in detail. Section 4 reports the experiment results

for the integrated algorithm and the results of their verification on power load data from the US and

Australia. Section 5 concludes this paper.

2. Definition of terms

2.1. Variational mode decomposition

Decomposition algorithms can effectively extract potential features from data. VMD is a nonrecursive

decomposition algorithm [32]. By setting the number of mode decompositions according to the actual

situation, VMD can obtain the optimal solution to the variational problem. Therefore, this study uses

VMD to decompose the power load data for effective feature extraction. In this study, VMD constructs

a variational problem through the power load data xt. The step-by-step implementation of the VMD

algorithm is described as follows.

Step 1: VMD constructed a variational problem through the input signal f . In this problem, f was

decomposed into M intrinsic mode functions (IMFs) via Hilbert transform. Therefore, the corresponding

constraint variational expression is:

min
{uj},{ωj}


M∑
j=1

∥∥∥∥∂t {[∇(t) +
i

tπ
] ∗ uj(t)

}
e−iωjt

∥∥∥∥2
2

 ,

s.t.

M∑
j=1

uj = f,

(1)

where j is the number of current IMFs; i is an imaginary number; f is the signal to be decomposed; {uj}

and {ωj} correspond to the jth model component and the centre frequency, respectively; ∇ denotes the

Dirac distribution; ∗ is a convolution operator; and M is the number of IMFs.

Step 2: By introducing the Lagrangian operator λ, the constraint problem was transformed into an

unconstrained problem using the following equation:

L({uj} , {ωj} , λ) = α

M∑
j=1

∥∥∥∥∂t[(∇(t) +
i

tπ
)] ∗ uj(t)e

−iωjt

∥∥∥∥2
2

+ ∥f(t)−
M∑
j=1

uj(t)∥22 + ⟨λ(t), f(t)−
M∑
j=1

uj(t)⟩,

(2)
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where α is the quadratic penalty factor for reducing the Gaussian noise interference.

Step 3: To optimize each modal component and the center frequency, Fourier isometric transform

and the alternate direction method of multipliers (ADMM) were used. After each iteration, uj , ωj , and

λ were optimized alternately with the saddle point of the augmented Lagrangian function. The equation

for the specific optimization process is as follows:

ûn+1
j =

f̂(ω)−
∑

j ̸=k û
n
k (ω) +

λ̂(ω)
2

1 + 2α(ω − ωn
j )

2
, (3)

ω̂n+1
j =

∫∞
0

ω
∣∣ûn

j (ω)
∣∣2 dω∫∞

0

∣∣ûn
j (ω)

∣∣2 dω , (4)

and

λ̂n+1(ω) = λ̂n(ω) + τ(f̂(ω)−
∑
j

ûn+1
j ), (5)

where n is the iteration number; ûn+1
j , ω̂j , and f̂(ω) correspond to the Fourier transform of the mode

un
j , the related center frequency, and the Fourier transform of the actual time series f ; τ is the noise

tolerance.

2.2. Federated k-means clustering algorithm

FK is a clustering method based on the FL framework that can cluster data with privacy protection

[25]. Considering that clustering performs excellently with a large number of data sets [14], in this study,

this method was combined with SecureBoost. The developed algorithm was trained according to the

clusters with the same characteristics to improve its forecasting performance.

First, the k-means clustering algorithm established several cluster centers, µc (c = 1, 2, · · · , C), where

C is the number of clusters. Second the distance between the time series xt (t = 1, 2, · · · , T ) and the

cluster center was calculated using the following L, as follows:

L =

C∑
c=1

ηc∑
j=1

∥∥xc
j − µc

∥∥2 , (6)

where ηc represents the number of clusters, and xc
j is the time series that belongs to the cluster c.

Then, xt (t = 1, 2, · · · , T ) was divided into C clusters. Finally, the cluster centers µ′
c (c = 1, 2, · · · , C)

were iteratively updated with the corresponding time series xj (j = 1, 2, · · · , ηc) to minimize the loss

function L. This process can be formulated as:

µ′
c =

1

ηc

ηc∑
j=1

xj . (7)

Fig. 1 shows the clustering progress of FK. In this clustering method, the arbiter securely aggregates

the distance to the centroid from each participant instead of directly transmitting private data.
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Figure 1: Framework of FK. (For clarity, Client A and Client B were chosen to represent the participants. Actually,

however,there can be more than two participants).

2.3. SecureBoost

SecureBoost is a novel gradient–tree boosting algorithm based on the FL framework [29]. To ensure

the confidentiality of training data, SecureBoost cooperatively learns a sharing gradient-tree boosting

model through multi-party data under privacy constraints.

First, SecureBoost determines inter-database intersections with a privacy-preserving protocol [33].

Second, it trains a shared gradient-tree boosting model with the collaboration of multiple parties, without

violating data privacy. The training progress can be divided into the following steps.

Step 1: The local models of SecureBoost download the current global model from the server.

Step 2: The local models update the current model based on their local data.

Step 3: The updated information is encrypted and sent back to the server.

Step 4: The server updates the global model with the aggregated updates.

These steps are shown in Fig. 2.

Figure 2: Framework of SecureBoost.
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3. The proposed model

This study proposes VMD-FK-SecureBoost, which considers the data privacy of different participants

and extracts more potential characteristics of power load data. This algorithm effectively improves the

prediction accuracy of STLF. The steps of the proposed algorithm are as follows.

Step 1: Series decomposition. VMD extracts features from the power load data Xi (i =

1, 2, 3, · · · , T ), where T is the data size, M is the manually set number of subsequences, and Vj (j =

1, 2, 3, · · · ,M) are decomposed by VMD as described in Sec. 2.1, and M is set manually.

Step 2: Federated clustering. FK recombines the sub-sequences Vj (j = 1, 2, 3, · · · ,M) from

different participants into new clusters Ck (k = 1, 2, 3, · · · , C), where the number of clusters C is an

artificial parameter, as mentioned in Sec. 2.2.

Step 3: Model training. From the clustering results in Step 2, the data sets are divided into

training sets and testing sets. For the target of multi-step-ahead forecasting, these training sets and

testing sets are split into different sample sets and label sets using the rolling window method. The

forecasting results V ′
j (j = 1, 2, 3, · · · ,M) are obtained by using these data sets to train SecureBoost.

Step 4: Prediction results. The final prediction results X ′
i (i = 1, 2, 3, · · · , T ) are calculated

according to the different participants by accumulating the predicted results V ′
j (j = 1, 2, 3, · · · ,M).

The steps of VMD-FK-SecureBoost are shown in Fig. 3. The specific implementation process of the

proposed algorithm is provided in Algorithm 1.

Figure 3: Flowchart of the proposed algorithm.

Remark 1. It is noteworthy that the manual parameters M and C in Step 1 and Step 2 would influence

the feature extraction efficiency. Those parameters are tuned by the empirical method in this paper.

Several state-of-the-art optimization algorithms can improve the further effect of the proposed algorithm,

such as the Bayesian optimization algorithm [34].

4. Case study

This section comprehensively analyzes the STLF results by studying the following questions.

(1) Can the features extracted by VMD be effective for STLF?
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Algorithm 1 VMD-FK-SecureBoost

Input: Power load data Xi (i = 1, 2, 3, · · · , T )

Output: Final prediction value X ′
i (i = 1, 2, 3, · · · , T )

1: Set the value of the expected patterns M .

2: Obtain the decomposed sub-sequences Vj (j = 1, 2, 3, · · · ,M).

3: Set C as the number of clusters Ck (k = 1, 2, 3, · · · , C).

4: Cluster Vj into cluster Ck for each j (j = 1, 2, 3, · · · ,M).

5: Initialize the global model of SecureBoost.

6: for all k = 1, 2, 3, · · · , C do

7: Train and update local models;

8: Send updated weights to the central server; and

9: aggregate the weights and update the global model.

10: end for

11: Output the forecasting results V ′
j (j = 1, 2, 3, · · · ,M).

12: Sum V ′
j to obtain the final prediction value X ′

i (i = 1, 2, 3, · · · , T ).

(2) How was the forecasting performance affected by the FK results?

(3) Can the FL with data privacy protection improve the accuracy of STLF in VMD-FK-SecureBoost?

The two data sets used in this study are from the US (Energy Information Administration: https://ww

w.eia.gov/beta/) and Australia (Australia distribution zone substations: https://www.ausgrid.com.au/).

The entire validation experiment is carried out on Matlab R2020a and PyCharm Community Edition

2022.1 x64 environment with Windows 10 and a 2.30 GHz Intel Core i5-8300H CPU, with 64-bit support

and 16GB RAM.

In this study, a comparative experiment was also designed to further analyze the performance of

VMD-FK-SecureBoost. Four regression evaluation metrics are introduced for quantitative analysis of the

prediction results. The simulation effect and fitting degree of the different models are measured by the

following indicators:

R2 = 1−
T∑

i=1

(Yi − Ŷi)
2/

T∑
i=1

(Yi −
1

T

T∑
i=1

Yi),

MAPE =
1

T

T∑
i=1

|100× (Yi − Ŷi)

Yi
|,

MAE =
1

T

T∑
i=1

|Yi − Ŷi|,

and

RMSE =

√√√√ 1

T

T∑
i=1

(Yi − Ŷi)2,

where T is the data size, and Yi and Ŷi are the ith observed value and the prediction, respectively.
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The experiment results of the two examples are analyzed from three aspects: the advantages of the

FL framework-based models over the centralized method in forecasting accuracy, the effectiveness of

the decomposition algorithm for feature extraction, and the forecasting performance of the clustering

algorithm in VMD-FK-SecureBoost.

4.1. Example 1: The data set of the power load in the US

Example 1 considered four US regions (Southeast, Tennessee, Texas, and Central) for STLF. The

data were recorded every hour. Each region had 8, 760 data points (from 00:00 on January 1, 2021 to

23:00 on December 31, 2021). This data set was divided into the training set (80%) and the testing set

(20%). There were 7, 008 data points (from 00:00 on January 1, 2021 to 23:00 on October 19, 2021) in

the training set, and 1, 752 data points (from 00:00 on October 20, 2021 to 23:00 on December 31, 2021)

in the testing set. Tables 1–3 show the error indicators for Example 1. Fig. 4 shows the curves for the

one-, three-, and five-step-ahead forecasting, respectively. The experimental analysis of Example 1 was

carried out as follows.

Table 1: One-step-ahead forecasting results of VMD-FK-SecureBoost and the contrast models in four US regions.

Region Model R2 MAPE MAE RMSE

XGBoost 0.910 2.545 639.202 867.060

VMD-XGBoost 0.950 1.936 466.386 643.912

Southeast SecureBoost 0.954 1.742 442.068 620.042

VMD-SecureBoost 0.975 1.549 366.912 459.515

VMD-FK-SecureBoost 0.974 1.408 334.741 461.240

XGBoost 0.914 2.688 472.991 671.903

VMD-XGBoost 0.943 2.097 377.815 547.848

Tennessee SecureBoost 0.946 1.926 344.302 532.484

VMD-SecureBoost 0.968 1.706 303.248 407.735

VMD-FK-SecureBoost 0.977 1.359 240.390 348.112

XGBoost 0.863 3.503 1336.478 1741.291

VMD-XGBoost 0.941 2.242 892.465 1144.090

Texas SecureBoost 0.924 2.961 1150.597 1298.418

VMD-SecureBoost 0.967 1.945 752.177 860.296

VMD-FK-SecureBoost 0.997 0.209 83.788 104.145

XGBoost 0.907 1.872 530.278 696.572

VMD-XGBoost 0.963 1.213 336.092 438.163

Central SecureBoost 0.925 1.594 457.647 626.357

VMD-SecureBoost 0.972 1.101 316.628 385.619

VMD-FK-SecureBoost 0.980 0.898 249.048 322.609

NOTE. The power load data of the US were from 00:00 on October 20, 2021 to 23:00 on December 31, 2021.

4.1.1. Comparative experiment between XGBoost, VMD-XGBoost, SecureBoost, and VMD-SecureBoost

This subsection describes the design of a comparative experiment in the decentralized and centralized

frameworks to verify the improvement of VMD-FK-SecureBoost. The number of the mode decompositions
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Table 2: Three-step-ahead forecasting results of VMD-FK-SecureBoost and the contrast models in four US regions.

Region Model R2 MAPE MAE RMSE

XGBoost 0.772 4.102 1028.050 1376.608

VMD-XGBoost 0.911 2.598 630.430 861.878

Southeast SecureBoost 0.816 3.646 920.043 1236.686

VMD-SecureBoost 0.965 1.787 425.825 536.319

VMD-FK-SecureBoost 0.969 1.543 368.752 505.936

XGBoost 0.753 4.512 796.770 1141.531

VMD-XGBoost 0.900 2.783 499.527 726.780

Tennessee SecureBoost 0.790 4.158 737.146 1052.222

VMD-SecureBoost 0.957 2.012 357.951 475.330

VMD-FK-SecureBoost 0.974 1.473 256.792 373.187

XGBoost 0.776 4.434 1742.970 2224.887

VMD-XGBoost 0.936 2.261 931.869 1193.317

Texas SecureBoost 0.847 3.824 1487.240 1837.927

VMD-SecureBoost 0.966 1.825 709.786 864.017

VMD-FK-SecureBoost 0.970 1.608 662.004 819.366

XGBoost 0.743 3.124 890.539 1159.265

VMD-XGBoost 0.936 1.626 450.360 578.306

Central SecureBoost 0.755 2.889 833.292 1133.404

VMD-SecureBoost 0.971 1.067 305.552 386.687

VMD-FK-SecureBoost 0.975 1.018 281.688 360.609

NOTE. The power load data of the US were from 00:00 on October 20, 2021 to 23:00 on December 31, 2021.

of VMD was determined using the empirical method. The experiment results in Tables 1–3 show that the

models that used VMD had a better prediction effect than the other models without the decomposition

algorithm. Compared with XGBoost and SecureBoost, VMD-XGBoost and VMD-SecureBoost showed

improved fitting effects. For example, the MAPEs of VMD-XGBoost and VMD-SecureBoost were 1.936

and 1.549, respectively, lower than those of XGBoost and SecureBoost, which were 2.545 and 1.742,

respectively, in the Southeast. These show that VMD can extract potential feature information from

data and effectively improve prediction accuracy.

SecureBoost produces a more accurate forecasting result than XGBoost because SecureBoost can

train a global model using the data from multiple participants. Compared with the other contrast

models in Table 1, VMD-SecureBoost (R2: 0.975, MAPE: 1.549, MAE: 366.912, and RMSE: 459.515)

had a better fitting degree to the actual electric load demand than VMD-XGBoost (R2: 0.950, MAPE:

1.936, MAE: 466.386, and RMSE: 643.912) in the one-step-ahead forecasting results for the Southeast

region. Therefore, VMD-SecureBoost showed better forecasting performance than VMD-XGBoost.

4.1.2. Comparative experiment between VMD-SecureBoost and VMD-FK-SecureBoost

To verify the forecasting performance improvement of FK in VMD-FK-SecureBoost, a contrast model

was designed in this experiment. In Fig. 4(b), the one-step-ahead forecasting curve of VMD-FK-
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Table 3: Five-step-ahead forecasting results of VMD-FK-SecureBoost and the contrast models in four US regions.

Region Model R2 MAPE MAE RMSE

XGBoost 0.696 4.764 1189.634 1588.745

VMD-XGBoost 0.889 2.909 708.667 961.614

Southeast SecureBoost 0.731 4.476 1117.290 1493.966

VMD-SecureBoost 0.957 1.962 467.598 594.430

VMD-FK-SecureBoost 0.965 1.673 398.979 542.335

XGBoost 0.672 5.198 911.733 1314.607

VMD-XGBoost 0.867 3.263 589.738 835.508

Tennessee SecureBoost 0.684 5.147 903.142 1290.422

VMD-SecureBoost 0.946 2.332 413.231 531.260

VMD-FK-SecureBoost 0.944 2.465 435.988 544.872

XGBoost 0.740 4.724 1859.436 2400.754

VMD-XGBoost 0.928 2.403 991.066 1265.228

Texas SecureBoost 0.775 4.480 1740.534 2232.450

VMD-SecureBoost 0.965 1.764 693.658 878.624

VMD-FK-SecureBoost 0.951 2.095 866.632 1040.279

XGBoost 0.705 3.393 962.871 1242.046

VMD-XGBoost 0.921 1.823 504.947 644.666

Central SecureBoost 0.698 3.280 940.372 1255.208

VMD-SecureBoost 0.973 1.021 291.365 378.783

VMD-FK-SecureBoost 0.970 1.125 312.361 396.770

NOTE. The power load data of the US were from 00:00 on October 20, 2021 to 23:00 on December 31, 2021.

SecureBoost is closer to the power data curve of the Tennessee region than VMD-SecureBoost. Therefore,

the model that used the clustering algorithm had better prediction results.

The experiment results showed that VMD-FK-SecureBoost had a better prediction effect than the

models without the clustering algorithm. Tables 1–3 show that VMD-FK-SecureBoost had a lower MAPE

than VMD-SecureBoost in the one-, three-, and five-step-ahead prediction. For example, the results of

VMD-FK-SecureBoost (R2: 0.977, MAPE: 1.359, MAE: 240.390, and RMSE: 348.112) all show a more

accurate forecasting performance than the results of VMD-SecureBoost (R2: 0.968, MAPE: 1.706, MAE:

303.248, and RMSE: 407.735) in the one-step-ahead forecasting study in Texas. The results further show

that compared with VMD-SecureBoost, SecureBoost with the decomposition and clustering algorithm

had a better prediction effect.

4.1.3. Comparative experiment between XGBoost, VMD-XGBoost, and VMD-FK-SecureBoost

This sub-section describes the design of a group of comparative experiments to verify the effectiveness

of data privacy protection for STLF. VMD-FK-SecureBoost securely aggregated data from different par-

ticipants and cooperatively trained a global model. As shown in Table 1, the one-step-ahead forecasting

result of VMD-FK-SecureBoost (MAPE: 0.209) is better than those of XGBoost (MAPE: 3.503) and

VMD-XGBoost (MAPE: 2.242) in Texas. As can be seen in Fig. 4(c), VMD-FK-SecureBoost had a
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Figure 4: One-, three- and five-step-ahead forecasting of various hybrid models in four different regions of US (Power load

data in US is from 00:00 on Oct 20, 2021 to 00:00 on Oct 21, 2021).

better fitting effect than XGBoost and VMD-XGBoost. Therefore, VMD-FK-SecureBoost can improve

prediction accuracy while ensuring data privacy.
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4.2. Example 2: The data set of the power load in Australia

In Example 2, as an additional evaluation experiment, the integrated algorithm was applied to differ-

ent distribution zone substations (Berkeley Vale, Camperdown, Newcastle CBD, and North Sydney) in

Australia. Example 2 adopted the load data of the total power consumption of those substations. Those

load data were collected every 15 mins. Each substation had 34, 656 data points (from 00:00 on May 1,

2020 to 24:00 on April 30, 2021). This data set was split into the training set with 27, 724 data points

(from 00:00 on May 1, 2020 to 19:00 on February 12, 2021) and the testing set with 6, 932 data points

(from 19:15 on February 12, 2021 to 24:00 on April 30, 2021). Tables 4–6 show the prediction error indica-

tors from the different distribution zone substations in Example 2. Fig. 5 shows the multiple-step-ahead

forecasting curves. The following sub-sections will analyze the experiment in detail.

Table 4: One-step-ahead forecasting results of VMD-FK-SecureBoost and the contrast models in the four distribution zone

substations in Australia.

Substation Model R2 MAPE MAE RMSE

XGBoost 0.628 7.757 1.581 2.101

VMD-XGBoost 0.778 6.457 1.258 1.624

Berkeley Vale SecureBoost 0.718 6.913 1.381 1.829

VMD-SecureBoost 0.905 4.853 0.951 1.062

VMD-FK-SecureBoost 0.964 2.547 0.505 0.656

XGBoost 0.635 5.329 0.824 1.113

VMD-XGBoost 0.760 4.362 0.655 0.902

Camperdown SecureBoost 0.653 5.223 0.800 1.084

VMD-SecureBoost 0.936 2.562 0.383 0.466

VMD-FK-SecureBoost 0.939 2.508 0.375 0.455

XGBoost 0.693 5.747 1.014 1.441

VMD-XGBoost 0.866 4.177 0.702 0.953

Newcastle CBD SecureBoost 0.706 5.763 1.024 1.412

VMD-SecureBoost 0.967 2.252 0.374 0.473

VMD-FK-SecureBoost 0.971 2.127 0.354 0.440

XGBoost 0.784 5.094 1.365 1.869

VMD-XGBoost 0.833 5.005 1.276 1.643

North Sydney SecureBoost 0.872 3.863 1.040 1.440

VMD-SecureBoost 0.893 4.857 1.220 1.318

VMD-FK-SecureBoost 0.960 2.560 0.649 0.808

NOTE. The power load data of Australia were from 19:15 on February 12, 2021 to 24:00 on April 30, 2021.

4.2.1. Comparative experiment between XGBoost, VMD-XGBoost, SecureBoost, and VMD-SecureBoost

The effectiveness of VMD was verified on the data set of four distribution zone substations in Australia.

The empirical method was used in VMD to set the number of mode decompositions. Fig. 5(h) shows

that VMD-SecureBoost had the best fitting performance in the three-step-ahead forecasting of the North

Sydney zone substation power load data. Due to the periodic and regular sub-sequences decomposed by

VMD, VMD-SecureBoost had advantages in prediction.
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Table 5: Three-step-ahead forecasting results of VMD-FK-SecureBoost and the contrast models in the four distribution

zone substations in Australia.

Region Model R2 MAPE MAE RMSE

XGBoost 0.577 8.175 1.679 2.239

VMD-XGBoost 0.659 7.870 1.551 2.010

Berkeley Vale SecureBoost 0.639 7.890 1.578 2.069

VMD-SecureBoost 0.928 3.747 0.742 0.926

VMD-FK-SecureBoost 0.935 3.168 0.666 0.881

XGBoost 0.453 6.533 1.006 1.362

VMD-XGBoost 0.625 5.444 0.829 1.128

Camperdown SecureBoost 0.478 6.411 0.977 1.330

VMD-SecureBoost 0.903 2.845 0.439 0.572

VMD-FK-SecureBoost 0.907 2.809 0.431 0.562

XGBoost 0.447 9.282 1.564 1.935

VMD-XGBoost 0.773 5.537 0.930 1.241

Newcastle CBD SecureBoost 0.607 6.517 1.164 1.631

VMD-SecureBoost 0.943 2.899 0.487 0.624

VMD-FK-SecureBoost 0.948 2.612 0.446 0.595

XGBoost 0.770 5.273 1.414 1.928

VMD-XGBoost 0.822 5.091 1.307 1.698

North Sydney SecureBoost 0.807 4.789 1.287 1.769

VMD-SecureBoost 0.901 4.410 1.109 1.268

VMD-FK-SecureBoost 0.950 2.633 0.689 0.897

NOTE. The power load data of Australia were from 19:15 on February 12, 2021 to 24:00 on April 30, 2021.

As shown in the evaluation metrics in Tables 4–6, VMD-SecureBoost had the highest prediction

accuracy in all four distribution zone substations. For the example of the Newcastle CBD in Table 4, the

MAPE of VMD-SecureBoost (2.252) was lower than those of XGBoost (5.747), VMD-XGBoost (4.177),

and SecureBoost (5.763). These show that VMD can effectively improve the learning efficiency of the

model.

4.2.2. Comparative experiment between VMD-SecureBoost and VMD-FK-SecureBoost

VMD-FK-SecureBoost had a more effective forecasting result than VMD-SecureBoost. Therefore, the

proposed model is further compared with VMD-SecureBoost in this sub-section.

Fig. 5(l) shows that the five-step-ahead forecasting result of VMD-FK-SecureBoost was closer to the

power load data of the North Sydney zone substation than that of VMD-SecureBoost. The results of the

one-step-ahead forecasting study of the Newcastle CBD in Table 4 show that VMD-FK-SecureBoost (R2:

0.971, MAPE: 2.127, MAE: 0.354, and RMSE: 0.440) had a more effective forecasting result than VMD-

SecureBoost (R2: 0.967, MAPE: 2.252, MAE: 0.374, and RMSE: 0.473). This means that FK provided

SecureBoost a better strategy for training, due to which the prediction performance of SecureBoost

improved. FK recombined the subsequences obtained by VMD into clusters with the same characteristics

through unsupervised learning. Therefore, the forecasting performance of SecureBoost was improved by
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Table 6: Five-step-ahead forecasting results of VMD-FK-SecureBoost and the contrast models in the four distribution zone

substations in Australia.

Region Model R2 MAPE MAE RMSE

XGBoost 0.578 8.204 1.683 2.238

VMD-XGBoost 0.648 7.997 1.579 2.044

Berkeley Vale SecureBoost 0.644 7.832 1.567 2.053

VMD-SecureBoost 0.923 3.736 0.740 0.954

VMD-FK-SecureBoost 0.919 3.531 0.733 0.979

XGBoost 0.397 6.870 1.056 1.430

VMD-XGBoost 0.596 5.681 0.866 1.171

Camperdown SecureBoost 0.464 6.579 1.000 1.349

VMD-SecureBoost 0.862 3.427 0.525 0.682

VMD-FK-SecureBoost 0.878 3.201 0.493 0.644

XGBoost 0.455 9.164 1.547 1.921

VMD-XGBoost 0.764 5.592 0.942 1.263

Newcastle CBD SecureBoost 0.610 6.577 1.171 1.625

VMD-SecureBoost 0.929 2.979 0.511 0.695

VMD-FK-SecureBoost 0.932 2.812 0.492 0.681

XGBoost 0.622 7.796 2.008 2.474

VMD-XGBoost 0.814 5.176 1.333 1.734

North Sydney SecureBoost 0.848 5.499 1.383 1.567

VMD-SecureBoost 0.799 4.983 1.335 1.804

VMD-FK-SecureBoost 0.937 2.889 0.765 1.011

NOTE. The power load data of Australia were from 19:15 on February 12, 2021 to 24:00 on April 30, 2021.

these clustering results.

In conclusion, VMD-FK-SecureBoost realized STLF with data privacy protection on the four distri-

bution zone substations in Australia without centralized data storage. Furthermore, compared with other

contrast models, VMD-FK-SecureBoost achieved the best prediction results on these data sets.

4.2.3. Comparative experiment between XGBoost, VMD-XGBoost and VMD-FK-SecureBoost

In this sub-section the degrees of effectiveness of the centralized and decentralized models for data

privacy protection in STLF are compared. VMD-FK-SecureBoost securely aggregated data from the four

distribution zone substations in Australia to train the same global model cooperatively.

As shown in Tables 4, 5, and 6, the MAPEs for one-, three-, and five-step-ahead forecasting of VMD-

FK-SecureBoost (2.127, 2.612, and 2.812, respectively) are all lower than those of XGBoost (5.747, 9.282,

and 9.164, respectively) and VMD-XGBoost (4.177, 5.537, and 5.592, respectively) in the Newcastle CBD.

As can be seen in Fig. 5(c), 5(g), and 5(k), VMD-FK-SecureBoost has the closest curves to the actual

data compared to XGBoost and VMD-XGBoost in the one-, three-, and five-step-ahead forecasting for

the Newcastle CBD. Therefore, VMD-FK-SecureBoost achieved the best prediction result with privacy

protection.
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Figure 5: One-, three- and five-step-ahead forecasting of various hybrid models in four different distribution zone substations

from Australia (Power load data of Australia is from 19:15 on Feb 12, 2021 to 23:15 on Feb 12, 2021).

5. Conclusion

This paper proposed the use of VMD-FK-SecureBoost for STLF with data privacy protection. VMD

was used to decompose the original data into several sub-sequences. We verified that unlike the models

that do not consider decomposition, VMD can improve the accuracy of the forecasting results. FK was
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designed to recombine the aforementioned sub-sequences into new clusters. Compared with the models

without a clustering algorithm, VMD-FK-SecureBoost provided the best forecasting accuracy. Finally,

the SecureBoost component provided a safe and reliable data interaction platform for several participants

and realized the security collaboration of the data sets from different participants. To demonstrate the

effectiveness of the proposed algorithm, we tested its forecasting performance in two data sets of actual

power load and achieved impressive predictions with small error indicators.

Nevertheless, as FL aims to train the global model by using the parameters and updates of local

models, the communication bottleneck has become a key challenge. We will conduct further research

to ease the communication restrictions of FL, referring to [24]. In addition, accurate modeling of power

is an important challenge for energy control. In the future, we will refer to the novel hybrid modeling

method proposed by [4] which combines both recurrent neural networks(RNNs) and Ornstein-Uhlenbeck

process, and extend FL to a stochastic optimal control problem to achieve energy control.
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