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Summary

Insulin resistance and muscle mass loss often coincide in individuals with type 2 dia-

betes. Most patients with type 2 diabetes are overweight, and it is well established

that obesity and derangements in lipid metabolism play an important role in the

development of insulin resistance in these individuals. Specifically, increased adipose

tissue mass and dysfunctional adipose tissue lead to systemic lipid overflow and to

low‐grade inflammation via altered secretion of adipokines and cytokines. Further-

more, an increased flux of fatty acids from the adipose tissue may contribute to

increased fat storage in the liver and in skeletal muscle, resulting in an altered secre-

tion of hepatokines, mitochondrial dysfunction, and impaired insulin signalling in skel-

etal muscle. Recent studies suggest that obesity and lipid derangements in adipose

tissue can also lead to the development of muscle atrophy, which would make insulin

resistance and muscle atrophy two sides of the same coin. Unfortunately, the exact

relationship between lipid accumulation, type 2 diabetes, and muscle atrophy remains

largely unexplored. The aim of this review is to discuss the relationship between type

2 diabetes and muscle loss and to discuss some of the joint pathways through which

lipid accumulation in organs may affect peripheral insulin sensitivity and muscle mass.
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1 | INTRODUCTION

The global prevalence of diabetes is rising rapidly. The number of

adults with diabetes in the world increased from 108 million in 1980

to 422 million in 2014,1 and by 2045, this number is expected to

increase to 693 million.2 Type 2 diabetes (T2D) is the most common

form of this disease and accounts for 85% to 95% of the cases.
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Muscle insulin resistance is one of the key features of T2D. In

recent years, however, it has been increasingly recognized that there

is also a deterioration in muscle mass and muscle strength in patients

with T2D,3,4 and this is independent of the length of disease, meta-

bolic control, vitamin D status, and the presence of microvascular

complications and pain.5 In healthy individuals, muscle mass decreases

at an annual rate of 1% to 2% after the age of 50.6 This means that an

average male person of 80 kg with 35 kg of muscle mass would lose

350 to 700 g a year, which is the equivalent of 7 to 14 kg over

20 years. Individuals with T2D have an accelerated ageing process,

which places them at greater risk for developing frailty at an earlier

age. We, as well as others, have shown that the problem of muscle

loss is most striking in individuals with T2D who are older; it is esti-

mated that 30% to 50% of patients withT2D older than 65 suffer from

moderate to severe muscle loss, which is fourfold to fivefold higher

than the general population older than 65.4,7,8 Indeed, one of our pre-

vious studies showed that leg lean mass and appendicular skeletal

muscle mass were 3% lower in patients withT2D compared with con-

trol subjects.4 Muscle loss in patients with T2D is often not without

consequences and can result in poor physical performance and

decreased quality of life. A study performed in greater than 6000 par-

ticipants showed that diabetes was associated with a two to three

times increased odds of disability related to lower‐extremity mobility,

general physical activities, activities of daily living, instrumental activ-

ities of daily living, and leisure and social activities.9 Patients enter a

vicious cycle in which increased incidence of falls and hospitalization

lead to more muscle loss, a further deterioration in quality of life, and

premature death (Figure 1).10-12 Given the steep rise in the number of

patients with T2D, the number of people that are affected by muscle

loss is expected to increase dramatically in the coming decades.

Studies estimated that approximately 80% of all individuals

with T2D suffer from overweight or obesity.13 This means there is

increased fat storage in subcutaneous and visceral fat depots,14,15 as

well as lipid accumulation in ectopic fat depots, including skeletal
FIGURE 1 Individuals with obesity and older individuals experience an in
affect metabolism in key organs including adipose tissue, liver, and skeleta
resistance and a decrease in muscle mass. Patients often enter a vicious c
lead to more muscle loss, a deterioration in quality of life, and premature de
lipid metabolism. It will ameliorate muscle mass loss and the development o
quality of life
muscle and liver.15-18 It is well established that obesity plays a crucial

role in the development of insulin resistance.19 In the past two

decades, an increasing number of papers also linked obesity to a

reduced muscle mass, and this phenomenon has been named

“sarcopenic obesity (Figure 1).”20 Sarcopenic obesity is now frequently

observed and led to the suggestion that obesity not only causes insulin

resistance but also plays a role in the development of muscle atro-

phy.21 If this is true, this would mean that insulin resistance and mus-

cle atrophy are “two sides of the same coin” and it would explain the

simultaneous occurrence of insulin resistance and muscle atrophy in

many patients with T2D. Notably, the combination of increased adi-

pose tissue mass and muscle atrophy may aggravate cardiometabolic

complications.22,23 In this review, we will discuss the relationship

between T2D and muscle mass loss, and we will discuss some of the

pathways throughwhich obesitymay affect insulin sensitivity andmuscle

mass. To date, data on the link betweenT2D and muscle loss is still in its

infancies, and a significant body of research comes from studies per-

formed in older individuals, who are also characterized by increased adi-

posity or ectopic fat accumulation, insulin resistance, and muscle loss.

Therefore, when information in patients with T2D is missing, observa-

tions made in older individuals will be reported. To conclude, this review

will also briefly discuss strategies as a way to counteract insulin resis-

tance and muscle mass loss.
2 | MUSCLE LOSS IN INDIVIDUALS WITH
T2D: CAUSE OR CONSEQUENCE?

T2D and muscle atrophy develop hand in hand, and it has previously

been speculated that muscle loss might be a cause as well as a

consequence of T2D. Studies suggesting a causal role for muscle loss

in the development of metabolic disturbances are relatively scarce

though,24,25 and to our knowledge, there is only one study that evalu-

ated the association between low muscle mass and incidence of T2D
crease in lipid deposition in visceral and ectopic fat depots. This may
l muscle, which may result in the development of muscle insulin
ycle in which decreased activity levels and increased incidence of falls
ath. Exercise (E) is an effective strategy to reduce obesity and improve
f insulin resistance, and it will reduce the incidence of falls and improve
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in a longitudinal manner.24 Specifically, Son et al followed 6895 partic-

ipants from Asian descent for a period of approximately 9 years and

observed an inverse association between muscle mass index and the

development of T2D. Main covariates included age, sex, urban or rural

residence, family history of diabetes, hypertension, smoking status,

education level, monthly income, physical activity, alcohol consump-

tion, and diet. Also, additional adjustments for body fat mass, waist

circumference, and body mass index (BMI) did not modify the relation-

ship.24 The assumption that muscle loss may play a causal role in the

development of T2D is partly based on the fact that skeletal muscle

is a major determinant of total energy expenditure.26 Skeletal muscle

accounts for approximately 80% of the variance in resting metabolic

rate, whereas resting metabolic rate represents approximately 60%

of total energy expenditure. Thus, if muscle mass decreases with

age, total energy expenditure decreases accordingly, possibly leading

to obesity, abdominal fat accumulation, and metabolic disturbances if

energy intake is not properly reduced.27 However, it is important to

keep in mind that T2D is a complex and multifactorial disease and it

would be an oversimplification to reduce such a complex system of

closely interrelated mechanisms to simple cause‐effect relationships.

T2D is the resultant of insulin resistance, in combination with impaired

beta‐cell function and decreased glucose effectiveness.28,29 Therefore,

disturbances on the level of skeletal muscle only are unlikely sufficient

for T2D to manifest, and derangements on the level of multiple organs

are required. In agreement with this, a study found that in a model of

severe muscle wasting, mice did not exhibit differences in metabolism

compared to wild‐type mouse.30 Furthermore, it was shown that acti-

vation of nuclear factor kappa B (NF‐κB) throughmuscle‐specific trans-

genic expression of activated inhibitor of kappa B (IκB) kinase beta

caused profound muscle wasting that resembles clinical cachexia, but

insulin sensitivity, glucose tolerance, and glucose uptake in the exten-

sor digitorum longus were not different between mice.30 Also, a recent

study in humans found that the prevalence of the metabolic syndrome

was higher in individuals with low muscle mass, but this relationship

was lost after controlling for fat mass.31 Thus, overall, there seems to

be limited evidence that low muscle mass alone leads to the develop-

ment of T2D. Nonetheless, of considerable interest are two studies

investigating the interplay between high fat and low muscle mass on

cardiometabolic risk factors. The major finding of these studies was

that participants with both high percent body fat and low skeletal mus-

cle mass index had higher HbA1c compared with those with high

percent body fat or low skeletal muscle mass index alone.22,25 Further-

more, low muscle mass attenuated the exercise response on changes in

visceral adipose tissue, insulin resistance, and triglyceride concentra-

tion in individuals that were affected by obesity, but not in individuals

that were lean.22 How exactly low muscle mass can act synergistically

with increased adiposity to worsen metabolic control is an intriguing

question and should be the topic of further investigation.

In contrast to the few studies that suggest a direct role for muscle

loss in relation to the development of T2D, there are more studies that

argue that muscle loss is a consequence of T2D.32-35 A longitudinal

study showed that the decline in muscle mass in subjects with T2D

happens twice as fast compared with those without diabetes, with
the greatest declines in lean mass in persons with undiagnosed diabe-

tes.8 Also, in patients undergoing chronic dialysis who were followed

over the course of a year, the presence of diabetes was the most sig-

nificant independent predictor of muscle loss.35,36 The reason behind

the increased prevalence of muscle loss in individuals with T2D is still

under debate. Some studies found that the decrease in muscle

strength was related to the severity of neuropathy but not to degree

of nephropathy or retinopathy, suggesting that the decrease in muscle

strength may be, at least partly, due to neuropathy.32,37,38 It has also

been suggested that insulin resistance may contribute to the develop-

ment of muscle loss. Insulin plays an important role in the regulation of

muscle protein metabolism by direct activation of the translation

machinery and via vasodilatory actions; thus, it has been hypothesized

that insulin resistance may lead to a decreased anabolic response,

resulting in muscle loss. Several studies would support this hypothesis.

For example, it was shown that chronic intake of sucrose induced

insulin resistance and accelerated muscle loss in old rats.39 In a longi-

tudinal study in 3000 older men without diabetes, it was shown that

lean mass loss over the course of approximately 5 years was more pro-

nounced, while fat mass gain was less pronounced in men that were

insulin resistant as compared with men that were insulin sensitive.34

Treatment with metformin resulted in a significant improvement in

insulin sensitivity in adults with newly diagnosed T2D, and this went

along with an improvement in lean‐to‐fat ratio.40 Women with obesity

showed a blunted protein anabolic response to hyperinsulinaemia.41

And it was also found that lipid‐induced insulin resistance was associ-

ated with an impaired skeletal muscle protein synthetic response to

amino acid ingestion in healthy young men.42 However, whether the

changes in muscle mass are due to changes in insulin sensitivity per

se is difficult to say. Animal research indicated that mice can develop

insulin resistance without subsequently developing muscle atrophy.43

Furthermore, in the studies discussed above,34,39-42 there was a

simultaneous change in adiposity or ectopic lipid accumulation. It is

therefore also possible that the insulin resistance is merely a reflection

of adiposity and that muscle mass changes due to increased lipid

availability.
3 | DETERMINANTS OF MUSCLE MASS

Muscle mass is regulated by the delicate balance between muscle pro-

tein synthesis and muscle protein breakdown. Food—and protein in

particular—is an important stimulator of muscle protein synthesis.

The postprandial muscle protein synthetic response to feeding is reg-

ulated on a number of levels, including dietary protein digestion and

amino acid absorption, splanchnic amino acid retention, postprandial

insulin release, skeletal muscle tissue perfusion, amino acid uptake

by muscle, and intramyocellular signalling.44 Muscle contraction is a

very potent anabolic stimulus that can further increase basal as well

as postprandial muscle protein synthesis rates. Interestingly, the ana-

bolic response to food and exercise is blunted in older individuals.45

This may be due to a delay in amino acid digestion or absorption, or

to a decrease in physical activity levels. Alternatively, it could be
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caused by excess adiposity or circulating lipid levels. It is estimated

that approximately 80% of all individuals with T2D are affected by

overweight or obesity,13 which leads to increased lipid deposition in

visceral14,15 and ectopic fat depots, including skeletal muscle and

liver.15-18 In addition, many patients with T2D have decreased physi-

cal activity levels,46 which contributes to the accumulation of fat.

While ectopic fat accumulation in individuals with T2D is usually

the result of obesity, fat infiltration in organs in older individuals

can happen independent of weight changes.47 Nevertheless, there

are indications in both groups that expansion of adipose tissue, as

well as lipid accumulation in other organs, plays an important role in

the development of muscle atrophy. To test the hypothesis that the

development of anabolic resistance can be caused by excess lipids,

a study was performed in which young healthy volunteers received

a 7‐hour saline or intralipid infusion on two randomized occasions.42

The authors observed that excess lipid availability per se induced

insulin resistance of skeletal muscle glucose metabolism as well as

anabolic resistance of amino acid metabolism, and given the random-

ized crossover design, it could be concluded that this was indepen-

dently of any changes in amino acid handling or physical activity

levels.42 It is therefore likely that an increase in lipid levels in older

people and people with T2D contribute to the development of muscle

atrophy. In the following paragraphs, several possible pathways will

be discussed.
FIGURE 2 Schematic overview of interorgan crosstalk between adipose t
decrease of muscle mass. Increased lipid deposition in visceral and ectopic
lead to a change in the secretion pattern of cytokines, which may lead to m
crosstalk. Lipids and cytokines may also affect mitochondrial function and v
arrows indicate pathways discussed in this review. Broken arrows indicate
3.1 | Expansion of the adipose tissue

Besides being a lipid buffering organ, adipose tissue is a major endo-

crine organ and is known to secrete hundreds of adipokines.48

Adipokines are important regulators of metabolism, and expansion of

adipose tissue leads to a change in the secretion of adipokines, which

have been linked to the development of insulin resistance in skeletal

muscle through interorgan crosstalk (Figure 2).49,50 Adipokines that

are well‐known to modulate metabolism and insulin sensitivity include

leptin,51 retinol binding protein 4 (RBP4),52 adiponectin,53 resistin,54

and pigment epithelium‐derived factor (PEDF).55 Macrophages are

also believed to be an important contributor of insulin resistance.56,57

Macrophages account for up to 40% of adipose cell content in indi-

viduals with obesity compared with only 10% in lean humans58 and

secrete pro‐inflammatory cytokines such as interleukin (IL) 6, IL1β,

granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), and

tumour necrosis factor α (TNFα).59 In addition, macrophage infiltration

in adipose tissue leads to adipose tissue dysfunction, thereby contrib-

uting to the altered secretion pattern of adipokines. It is interesting to

note that the secretion pattern of adipokines and cytokines not only

changes with increased adiposity but also varies across fat depots.

Specifically, the secretion products of the mesenteric and omental adi-

pose tissue depots are more strongly associated with metabolic com-

plications of obesity compared with the secretion products of the
issue, liver, and skeletal muscle, leading to muscle insulin resistance and
fat depots include skeletal muscle and liver. Increased lipid levels may
uscle insulin resistance and a decrease in muscle mass via interorgan

ascularization in skeletal muscle, which contributes to the problem. Full
pathways outside the scope of this review
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subcutaneous fat depots.60-62 This is consistent with the fact that

individuals with T2D have increased visceral fat depots14,15 and are

characterized by increased inflammatory profile and increased insulin

resistance. Several studies show that inflammatory cytokines and

adipokines are also related to decreased muscle mass and strength

(Figure 2).63 In humans, high levels of IL‐6 (greater than 5 pg/mL) was

associated with a twofold to threefold greater risk of losing more than

40% of muscle strength.64 Furthermore, individuals that performed low

on a physical activity test were characterized by smaller muscle volume

and lowermuscle strength and had higher levels of interleukin 1β, 6, 10,

12, 13, TNFα, IL‐6, and GM‐CSF compared with individuals that per-

formed well on the physical activity test.65-67 Concentrations of the

anti‐inflammatory adipokine adiponectin were found to be decreased

in individuals with sarcopenia,66 while levels of the pro‐inflammatory

adipokine leptin68 were increased. Although there seems to be a lot

of evidence to suggest that adipokines and cytokines contribute to

lower muscle mass and strength, the studies mentioned here are

cross‐sectional studies, and therefore, it is difficult to differentiate

between cause and consequence. Nevertheless, it has been shown in

diet‐induced obese mice that administration of quercetin reduced

levels of inflammatory cytokines and macrophage accumulation in the

skeletal muscle, along with reduced transcript and protein levels of

the specific atrophic factors, Atrogin‐1 and muscle RING finger 1

(MuRF1), and protected as such against the reduction of muscle mass

and muscle fibre size.69 Furthermore, in 2015, Pellegrinelli et al demon-

strated for the first time that the secretome of human obese adipocytes

directly decreased the expression of contractile proteins in myotubes,

consequently inducing atrophy,70 and this latter study provides evi-

dence for a direct link between the adipose tissue secretome and the

development of muscle loss. In support of this, also, O'Leary et al

recently found that the secretome of human obese subcutaneous adi-

pose tissue impaired the myogenesis of old myoblasts, an effect that

was mediated via resistin‐induced activation of NFκB.71 Interestingly,

the secretome of obese subcutaneous adipose tissue did not impair

myogenesis of young myoblasts,71 suggesting that the effect of obesity

on muscle mass may be particularly harmful in older individuals.
3.2 | Lipid accumulation in the liver

Liver steatosis is clinically defined as a hepatic triglyceride content

that exceeds 5% of the total liver weight72 and is present in many indi-

viduals with obesity and in patients with T2D. Studies showed that

approximately 60% of liver triglyceride content originates from lipoly-

sis in adipose tissue. It is likely that in individuals with obesity,

enlarged adipose tissue depots as well as insulin resistance of the adi-

pose tissue contribute to fat disposition in the liver, thereby providing

a link between obesity, insulin resistance, and liver steatosis. The liver

on its turn also secretes a wide range of lipids, including high levels of

triacylglycerols via the secretion of very‐low‐density lipoproteins.73

These lipids can accumulate in skeletal muscle and contribute to the

development of insulin resistance (see following paragraph). In addi-

tion, lipids secreted by the liver can also play an important role in
the development of atherosclerosis and increase the risk for cardio-

vascular problems and other complications such as nephropathy, reti-

nopathy, and neuropathy. Neuropathy can result in deceased muscle

strength, decreased physical activity, and muscle atrophy. Importantly,

impaired vascular function also hampers glucose and insulin delivery

to the muscle, which leads to a worsening of the hyperglycaemic state

and a further deteriorating health.

In recent years, there has also been a growing interest regarding

the role of liver‐secreted proteins (ie, hepatokines) in relation to the

development of insulin resistance.74,75 We showed that the protein

secretory profile of hepatocytes is altered with steatosis and that this

altered profile leads to inflammation and insulin resistance in muscle

cells (Figure 2).76 We also identified fetuin B as a liver‐secreted pro-

tein that is increased in individuals with obesity and in patients with

liver steatosis and that impairs glucose uptake in mice.76 Examples

of other liver‐derived endocrine factors that have been linked to insu-

lin resistance and impaired glucose metabolism include fetuin A,77

adropin,78 angiopoietin‐like protein 6,79 and selenoprotein P.80 In

the last few years, liver‐secreted proteins have also been linked to

muscle wasting (Figure 2). For example, individuals with high levels

of α1‐antichymotrypsin were 40% less likely to experience loss of

muscle strength and tended to have a smaller decline in muscle mass

compared with those with low levels of α1‐antichymotrypsin.64 In

addition, Cystatin C and Beta‐2‐macroglob ulin, two liver‐secreted

proteins, were found to be positively associated with the development

of severe muscle loss81-83; fetuin A was identified as a predictor of

sarcopenic left ventricular dysfunction84; and tissue iron levels were

elevated in muscle loss, which went along with an increase in transfer-

rin, another liver‐secreted protein. Interestingly, secretion of Cystatin

C and Beta‐2‐macroglobulin, fetuin A, and transferrin is increased

from a fatty liver,76 suggesting a role for liver steatosis in the develop-

ment of muscle loss. Unfortunately, research regarding the role of

hepatokines is only in its infancies, and future studies are needed to

identify the mechanisms through which certain hepatokines regulate

insulin resistance and muscle loss.
3.3 | Lipid accumulation in skeletal muscle

Intramyocellular lipid droplets (IMCLs) are lipid droplets present in

skeletal muscle tissue. IMCLs are dynamic functional organelles,

involved in lipid metabolism, vesicle trafficking, and cell signalling,

and they are covered and surrounded by lipases and lipid droplet coat-

ing proteins that play an important role in controlling the balance

between IMCL storage, mobilization, and oxidation (for extended

reviews on this topic, please refer to previous works85-89). While IMCL

is important for energy metabolism, lipid overflow from the expanded

adipose tissue and the liver leads to increased fat deposition in skeletal

muscle. In addition, also, resistin has been shown to promote IMCL

storage in primary human myotubes.71 Importantly, increased IMCL

storage results in the accumulation and dysregulation of detrimental

lipid intermediates such as diacylglycerols (DAGs) and ceramides, and

those intermediates lead to insulin resistance through activation of
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protein kinase C (PKC).90-100 High levels of DAG and ceramides have

also been suggested to play a role in the development of muscle

loss.16,101-103 In C2C12 and L6 myotubes, treatment with the fatty

acid palmitate induced ceramide accumulation, and this was associ-

ated with increased expression of pro‐atrophic genes such as

atrogin‐1/MAFbx, increased levels of FoxO3, upregulated eIF2α phos-

phorylation, and decreased protein synthesis.16,101,104 Conversely,

blocking ceramide synthesis prevented muscle atrophy, and this went

along with improved mammalian target of rapamycin (mTOR) signal-

ling, suppressed levels of Foxo3, and decreased atrogin‐1/MAFbx

expression.103 Rivas and colleagues found that obese animals had sig-

nificantly higher storage of ceramide and DAG compared with lean,

and there was an attenuated insulin response in components of the

mTOR anabolic signalling pathway.102 Interestingly, conversion of

DAG to phosphatidic acid (PA) activated the mTOR signalling pathway

and resulted in hypertrophy in isolated mouse extensor digitorum

longus muscle.105 In skeletal muscle of older humans, there were no

observable differences in total ceramide content; however, ceramide

species C16:0 was increased with 156% and C20:0‐ceramide was up

with 30%. In addition, there was a negative correlation between

C16:0‐ceramide content with lower leg lean mass and an attenuated

activation of anabolic signalling molecules such as Akt, FOXO1, and

S6K1 after an acute bout of high‐intensity resistance exercise.106

When ageing and obesity in mice occurred in combination, ceramide

accumulation was even more pronounced and negatively affected pro-

tein synthesis rate.16 Thus, there seems to be evidence that lipid inter-

mediates in skeletal muscle such as DAG's and ceramides negatively

affect insulin sensitivity as well as muscle mass. For completeness,

however, it should be mentioned that there are also studies that

report conflicting results regarding the role of lipid intermediates in

relation to insulin resistance as well as muscle loss. For example,

Turpin et al found that apoptosis in skeletal muscle myotubes was

induced by ceramides104 but could not find any signs of apoptosis,

autophagy, or proteolysis in high fat diet fed mice, in ob/ob mice, or

in mice after an intralipid infusion.107 Moreover, a number of studies

dissociated increased DAG levels from the development of insulin

resistance,108-110 suggesting that this relationship is not quite as

straightforward as previously thought. Possible explanations for these

inconsistencies include not taking into account the importance of

compartmentalization of the lipids, ignoring the structures, chain

lengths, and the degree of saturation of the lipids, or bypassing any

information on oxidation rates and fluxes. Either way, more research

will be needed to establish the exact role of IMCL and lipid intermedi-

ates in the development of insulin resistance and muscle loss.
3.4 | Mitochondrial dysfunction

Skeletal muscle mitochondrial dysfunction has previously been linked

to insulin resistance.111,112 Kelley et al observed mitochondrial abnor-

malities with respect to content, size, and morphology in patients with

T2D,113 while Mootha et al showed a lower gene expression of perox-

isome proliferator‐activated receptor gamma coactivator 1‐alpha
(PGC1α), a key transcriptional cofactor in mitochondrial biogenesis,

and a lower gene expression of its target genes encoding key enzymes

in oxidative mitochondrial metabolism.114 Decreased mitochondrial

function has also been reported in first degree relatives of patients

with T2D,111,115,116 suggesting that mitochondrial dysfunction may

actually be causally related to insulin resistance (Figure 2). It is inter-

esting to note that also age‐related muscle loss has also been associ-

ated with mitochondrial dysfunction. Specifically, age‐related muscle

loss has been linked to increased reactive oxygen species (ROS) pro-

duction, increased mitochondrial apoptotic susceptibility, decline in

mitochondrial respiratory chain function,117 reduced transcriptional

drive for mitochondrial biogenesis,118 and morphological changes in

mitochondria119; and also, most,120-124 but not all, studies125,126 state

that the capacity to mobilize and/or oxidize IMCL is substantially

impaired in older individuals. In congruence with this, it has recently

been suggested that accumulation of dysfunctional mitochondria initi-

ate a signalling cascade leading to motor neuron and muscle fibre

death and culminating in muscle loss (Figure 2).127 Not all studies

point in the same direction though, and a number of articles raised

doubts concerning mitochondrial dysfunction as a causal factor in

the development of insulin resistance and muscle atrophy.128-132 A

study reported normal in vivo mitochondrial function in Zucker dia-

betic rats throughout the pathogenesis of T2D130 and comparable

in vivo mitochondrial function was found between subjects with nor-

mal glycaemia, individuals with impaired glucose tolerance, and indi-

viduals with T2D.131 In addition to that, we showed that although

mitochondrial function was decreased in subjects with T2D, it could

be completely restored towards the levels of healthy control subjects

upon an exercise training programme, whereas insulin sensitivity could

only be partially restored.133 We also recently showed that 5 days of

muscle disuse was sufficient to induce substantial loss of both muscle

mass and strength in young and older subjects but did not reduce the

maximal activity of key mitochondrial enzymes.129 It seems fair to

state that mitochondrial dysfunction is present in many individuals

with T2D and may contribute to the development or progression of

insulin sensitivity and muscle atrophy. However, considering the mul-

tifactorial disease that T2D is, mitochondrial dysfunction cannot be

regarded as the main or sole causal factor in general.
4 | STRATEGIES TO COUNTERACT INSULIN
RESISTANCE AND MUSCLE LOSS

It may be clear that IMCL accumulation is strongly associated with the

severity of insulin resistance; however, this is only true for individuals

that are sedentary or untrained. Trained athletes are also character-

ized by elevated fat content in the muscle, but in contrast to their

sedentary counterparts, they are highly insulin sensitive.134-137

The precise mechanism by which trained persons are protected

from the insulin desensitizing effects of IMCL is still incompletely

understood, but here is substantial evidence that exercise enhances

the regulation of lipid droplet degradation and synthesis and increases

oxidative capacity, resulting in lower levels of detrimental lipid
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intermediates.138,139 Furthermore, exercise leads to improved insulin

sensitivity in adipose tissue, possibly resulting in lower levels of

uncontrolled fatty acid release,140 and thus less fatty acid spillover

to skeletal muscle and liver.141 Considering this, it is no wonder that

exercise is fundamental in the treatment of diabetes.142 Exercise can

delay and reduce the incidence of diabetes in persons at high risk by

58%143 and can improve (or even restore) abnormalities in oxidative

capacity, substrate selection (ie, metabolic flexibility),133 mitochondrial

function and density,133 capillary density, and lipid profile.144 Interest-

ing from a therapeutic point of view is the evidence that exercise is at

least as effective in older participants as it is in younger participants143

and that also patients on long‐standing insulin treatment can benefit

from exercise training.145 For example, in a group of patients with

long‐standingT2D on insulin therapy, 1 year of exercise training raised

in vivo skeletal muscle ATP production capacity by 21%, increased

expression levels of β‐oxidation, Krebs cycle, and oxidative phosphor-

ylation system‐related genes, and tended to increase mitochondrial

density and complex I activity,132 underscoring the importance of

exercise in the treatment of T2D. Also, nutritional intervention

programmes have been shown to be successful in preventing or

delaying the onset insulin resistance. Especially weight reduction has

been shown to lead to improved insulin sensitivity,146-148 suggesting

that nutritional treatment should primarily focus on achieving weight

loss. The underlying mechanism may differ from exercise though;

while exercise training leads to an improved mitochondrial function

but not to a decreased IMCL content, the opposite observation has

been made after weight loss.149 Importantly, exercise and nutritional

interventions are also key in the treatment of muscle loss. Muscle loss

is mainly attributed to a decrease in type 2 muscle fibers size,150-152

and it has been shown that 6 months of strength training can increase

type 2 fibers size up to 24%.150,153 In addition to that, resistance exer-

cise has been shown to prevent muscle atrophy and strength loss in

subjects undergoing step reduction154 and bed rest,155 while their

sedentary counterparts displayed a deterioration in muscle mass and

strength. Also, in very old adults in institutions, exercise has shown

to be effective156,157; a 6‐month exercise training programme

consisting of twice weekly resistance and balance exercises resulted

in a significant increase in grip strength, which may transfer to reduce

disability and muscle loss transition.156 Not only traditional high‐load

strength exercise has been shown to be effective in the treatment of

muscle loss. Low‐load, high‐volume exercise (30% one repetition max-

imum [1RM]) to volitional fatigue,158 low‐load blood flow restricted

exercise, and walking154,159 has also shown to stimulate muscle pro-

tein synthesis rate. Nutrition is often given in combination with exer-

cise to counter muscle loss, and interestingly, it has been shown that

they act synergistically to increase muscle protein synthesis.160 Impor-

tantly though, nutritional interventions should focus on obtaining fat

mass loss as well as on ways to improve protein synthesis and gain

lean mass. There are indications that older individuals and individuals

with obesity have a blunted muscle protein synthesis response upon

protein ingestion,161 and increasing both the quality and the dose of

protein might be an effective strategy to maximally stimulate

muscle protein synthesis.162-164 (For informative reviews regarding
the role of exercise and nutrition in relation muscle loss, see other

works165-167). It must be noted though that exercise as well as weight

loss can improve insulin sensitivity in patients with T2D without

increasing muscle mass.139,168 This is not necessarily surprising as it

is compatible with the multifactorial character of the disease. Apart

from ectopic lipid disposition, insulin sensitivity is also determined by

other parameters such as vascularization and oxidative capacity, and

these parameters can improve without absolute changes in muscle

mass. On a similar note, also, changes in muscle strength do not nec-

essarily go hand in hand with changes in muscle mass; longitudinal

studies previously showed that the decline in strength in patients with

T2D is much more rapid than the concomitant loss of muscle mass.169

In fact, changes in lean mass can only explain a small part (5%) of the

variability in strength decline, underscoring the importance of muscle

quality and the central neural and neuromuscular components deter-

mining muscle strength and function.169,170

Apart from exercise and nutrition, also, pharmacological interven-

tions are applied to treat patients with T2D. The use of metformin is

widespread among patients with T2D. Metformin ameliorates

hyperglycaemia via suppression of hepatic glucose production and

via improvements in peripheral glucose uptake, and although the exact

mode of action is not entirely clear, metformin is known for its weight‐

loss properties.171 Some mechanistic studies also demonstrated a pos-

itive effect on lipid accumulation in the liver. However, other studies

show that the effect on the liver was no longer present after correc-

tion for weight loss or that it could be attributed to the use of

suprapharmacological dosages of metformin.172 Also, multiple meta‐

analysis studies suggested that metformin has no effect on histological

responses in the liver.171,173,174 Nevertheless, due to its safe use and

its weight‐losing and insulin‐sensitizing properties, the use of metfor-

min remains the first‐line agent to treat insulin resistance in patients

withT2D. Another well‐known class of medication that improves insu-

lin sensitivity in individuals with T2D are the peroxisome proliferator‐

activated receptors gamma (PPARγ) agonists thiazolidinediones

(TZDs).175,176 Interestingly enough, TZD use leads to an increase in

extramyocellular lipid content and sometimes even weight gain.177,178

On the other hand, TZDs ameliorate ectopic fat storage and improve

lipid storage and metabolism in adipocytes,177 and this finding sup-

ports the notion that it is not the total amount of fat mass that is

important, but rather where and how the fat is stored. Unfortunately,

not all patients respond to TZDs, and its clinical use is also limited due

to adverse events,176 and therefore, other pharmacological therapies

should be explored. In the past few years, a lot of research has been

directed towards identifying new molecular mechanisms to target for

the treatment of nonalcoholic fatty liver disease (NAFLD). Potential

drug targets include microRNAs, incretin analogues/antagonists,

liver‐specific thyromimetics, AMP‐activated protein kinase activators,

farnesoid X receptor (FXR) and pregane X receptor (PXR) agonists,

fibroblasts growth factor 19 (FGF‐19) and fibroblasts growth factor

21 (FGF‐21) analogues, and antilipemic agents.179 There is evidence

that some of these drugs improve liver steatosis and fibrosis, and ame-

liorate lipid metabolism and insulin sensitivity in cellular and animal

models. However, (long‐term) efficiency has not yet been proven in
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humans, and some drugs come with severe side effects.179-181 There-

fore, more basic research and more randomized controlled trials of

adequate size and duration are needed in the search for novel treat-

ments. Also, pharmacological targets to treat muscle loss are sparse.

In 2014, a review summarized the impact of different therapeutic

interventions in relation to body composition changes in men and

females that were older and affected by obesity. The authors con-

cluded that weight loss based on diet combined with exercise—and

not drugs—represents the best strategy to treat phenotypic aspects

of sarcopenic obesity.182 A very recent study investigated systematic

reviews and meta‐analyses. The study included vitamin D, combined

oestrogen‐progesterone, dehydroepiandrosterone, growth hormone,

growth hormone‐releasing hormone, combined testosterone‐growth

hormone, insulin‐like growth factor‐1, pioglitazone, testosterone, and

angiotensin‐converting enzyme inhibitors. While the authors found

that testosterone and vitamin D mildly increased muscle mass in older

males and females respectively, this was only the case in individuals

with low starting values.183 Up to now, there is insufficient evidence

to recommend pharmacological interventions for the treatment of

muscle loss, and more research is needed in this field.183
5 | CONCLUSION

Many patientswithT2D are characterized by peripheral insulin resistance

and muscle atrophy. Derangements in lipid storage have been identified

as a hallmark of the development and progression of insulin resistance,

and an increasing amount of evidence suggest that it also plays an impor-

tant role in the development of muscle atrophy. The exact mechanisms

have not been established yet, but there is evidence that it may be via

the accumulation of harmful lipid intermediates in skeletal muscle,

decreased mitochondrial function, lipid accumulation in other organs, or

a combination of those. Unfortunately, research is often hampered by

the fact that many patients with T2D have decreased physical activity

levels compared with the rest of the population. In many studies, it is

therefore difficult to distinguish whether insulin resistance and muscle

loss are caused by the mechanisms mentioned in this review and/or by

a decrease in exercise per se. Furthermore, since insulin signalling plays

a permissive role in skeletal muscle amino acids delivery andmetabolism,

it is possible that insulin resistance may aggravate skeletal muscle ana-

bolic resistance. Future research will be needed to investigate the under-

lying mechanisms of muscle atrophy. This is important not only in the

setting of T2D but also in other conditions of lipid‐induced insulin resis-

tance, including ageing, disuse, and critical illness. With regard to drug

therapy, there are currently no well‐established guideline recommenda-

tions to reduce lipid accumulation in the liver or other organs. Results

of basic research over the past decade have been encouraging, and a

number of new molecular mechanisms have been explored. However,

most drugs pose long‐term safety issues, and so the biggest challenge lies

in the translation into the clinical setting. Up till now, nutritional and exer-

cise interventions are key in the treatment of T2D andmuscle loss, and if

possible, both should be applied to achieve optimal results.
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