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Abstract

To identify neuroimaging biomarkers of alcohol dependence (AD) from structural

magnetic resonance imaging, it may be useful to develop classification models that

are explicitly generalizable to unseen sites and populations. This problem was

explored in a mega-analysis of previously published datasets from 2,034 AD and

comparison participants spanning 27 sites curated by the ENIGMA Addiction Work-

ing Group. Data were grouped into a training set used for internal validation including

1,652 participants (692 AD, 24 sites), and a test set used for external validation with

382 participants (146 AD, 3 sites). An exploratory data analysis was first conducted,

followed by an evolutionary search based feature selection to site generalizable and

high performing subsets of brain measurements. Exploratory data analysis revealed

that inclusion of case- and control-only sites led to the inadvertent learning of site-

effects. Cross validation methods that do not properly account for site can drastically

overestimate results. Evolutionary-based feature selection leveraging leave-one-site-

out cross-validation, to combat unintentional learning, identified cortical thickness in

the left superior frontal gyrus and right lateral orbitofrontal cortex, cortical surface

area in the right transverse temporal gyrus, and left putamen volume as final features.

Ridge regression restricted to these features yielded a test-set area under the

receiver operating characteristic curve of 0.768. These findings evaluate strategies

for handling multi-site data with varied underlying class distributions and identify

potential biomarkers for individuals with current AD.

K E YWORD S

addiction, alcohol dependence, genetic algorithm, machine learning, multi-site, prediction,

structural MRI

1 | INTRODUCTION

While the evidence associating alcohol dependence (AD) with struc-

tural brain differences is strong (Ewing, Sakhardande, &

Blakemore, 2014; Fein et al., 2002; Yang et al., 2016), there is consid-

erable merit in establishing robust and generalizable neuroimaging-

based AD biomarkers (Mackey et al., 2019; Yip, Kiluk, &

Scheinost, 2020). These biomarkers would have objective utility for

diagnosis and may ultimately help in identifying youth at risk for AD

and for tracking recovery and treatment efficacy in abstinence, includ-

ing relapse potential. While these types of clinical applications have

not yet been realized with neuroimaging, current diagnostic practices

are far from perfect: The inter-observer reliability of AD, as diagnosed

by the DSM-IV, was calculated with Cohen's kappa as 0.66 (0.54,

0.77, n = 171; Pierucci-Lagha et al., 2007). More immediately, neuro-

biological markers of AD can give clues to potential etiological

mechanisms.

Here, we apply a supervised learning approach, in which a func-

tion is trained to map brain structural measures to AD diagnosis, and

then evaluated on unseen data. Prior approaches to developing

machine learning classifiers for AD include a similar binary machine

learning classification approach discriminating between AD and sub-

stance naive controls (Guggenmos et al., 2018). Their analysis made

use of 296 participants, case and control, and reported a leave-one-

out cross-validated (CV) balanced accuracy of 74%. A further example

of recent work includes that by Adeli et al. on distinguishing AD from

controls (among other phenotypes), on a larger sample of 421, yielding

a balanced accuracy across 10-fold CV of 70.1% (Adeli, 2019). In both

examples, volumetric brain measures were extracted and used to train

and evaluate proposed machine learning (ML) algorithms. The present

study differs from prior work in both its sample size (n = 2,034) and

complex case to control distribution across a large number of sites.

Mackey et al. (2019) developed a support vector machine (SVM) clas-

sifier that obtained an average area under the receiver characteristic
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operator curve (AUC) of 0.76 on a subset of the training data pres-

ented within this work. Our present study expands on this previous

work by exploring new classification methods and additional samples

with a focus on how to optimize cross-validation consistent with gen-

eralization to new unseen sites. It is worth noting that the results from

this previous work are not intended to be directly compared with the

current work as the previous data were residualized (against pertinent

factors including site) and only results from a split-half analysis were

computed (wherein each fold, by design, included participants from

each site).

An important consideration for any large multi-site neuroimaging

study, particularly relevant in developing classifiers, is properly han-

dling data from multiple sites (Pearlson, 2009). More generally and

within the broader field of ML, the task of creating “fair” or otherwise

unbiased classifiers has received a great deal of attention (Noriega-

Campero, Bakker, Garcia-Bulle, & Pentland, 2019). We argue that in

order for a classifier or biomarker to have utility, it must explicitly gen-

eralize to new data, possibly from a different scanner or country. Fur-

ther, any information gleaned from a classifier that fails to generalize

to new data is unlikely to represent the actual effect of interest. In our

study, the imbalance between numbers of cases and controls across

different sites is a significant challenge, as unrelated, coincidental

scanner or site effects may easily be exploited by multivariate classi-

fiers, leading to spurious or misleading results. We show that when

datasets include sites containing only cases or only controls this can

be a serious problem.

A related consideration is how one should interpret the neurobio-

logical significance of features that contribute most to a successful

classifier. We propose a multi-objective genetic algorithm (GA) based

feature selection search to both isolate meaningful brain measures

and tackle the complexities of handling differing class distributions

across sites. GA are considered a subset of evolutionary search opti-

mization algorithms. A sizable body of research has been conducted

into the usage of multi-objective genetic algorithms, introducing a

number of effective and general techniques to navigate high dimen-

sional search spaces, including, various optimization and mutation

strategies. (Coello, Lamont, & Veldhuizen, 2007; Deb, Pratap,

Agarwal, & Meyarivan, 2002; Gen & Lin, 2007). Our proposed GA is

designed to select a set of features both useful for predicting AD and

generalizable to new sites. By selecting not just predictable, but

explicitly generalizable and predictable features, we hope to identify

features with true neurobiological relevance. We draw motivation

from a large body of existing work that has successfully applied GAs

to feature selection in varied machine learning contexts (Dong, Li,

Ding, & Sun, 2018; Yang & Honavar, 1998).

This study represents a continuation of work by Mackey

et al. (2019) and the Enhancing Neuro-Imaging Genetics through

Meta-Analysis (ENIGMA) Addiction Working Group (http://

enigmaaddiction.com), in which neuroimaging data were collected and

pooled across multiple laboratories to investigate dependence on mul-

tiple substances. Here, we focus on a more exhaustive exploration of

machine learning to distinguish AD from nondependent individuals,

spanning 27 different sites. Notably, individual sites are highly imbal-

anced, with most sites containing only participants with AD or only

controls (see Figure 1). Due to the unavoidable presence of site-

related scanner and demographic differences, ML classifiers can

appear to distinguish participants with AD, but are actually exploiting

site-related effects. In this context, we evaluate how different cross-

validation (CV) strategies can either reveal or hide this phenomenon,

in addition to how choices around which sites to include

F IGURE 1 The distribution of both training (Sites 1–24) and testing (25–27) datasets is shown, and further broken down by AD to case ratio
per site, as well as split by category (e.g., balanced vs. control-only)
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(e.g., removing control-only sites) can impact estimates of perfor-

mance. We then introduce a GA based feature selection strategy and

show how it can be used to address the unique concerns present in

complex multi-site data with varied underlying class distributions.

Finally, we present classification results for a left-out testing set sou-

rced from three unseen sites, as a measure of classifier

generalizability.

2 | METHODS

2.1 | Dataset

Informed consent was obtained from all participants and data collec-

tion was performed in compliance with the Declaration of Helsinki.

Individuals were excluded if they had a lifetime history of any neuro-

logical disease, a current DSM-IV axis I diagnosis other than depres-

sive and anxiety disorders, or any contraindication for MRI. A variety

of diagnostic instruments were used to assess alcohol dependence

(Mackey et al., 2019). See Supporting Information for more specific

details on the included studies.

Participants' structural T1 weighted brain MRI scans were first

analyzed using FreeSurfer 5.3 which automatically segments 7 bilateral

subcortical regions of interest (ROIs) and parcellates the cortex into

34 bilateral ROIs according to the Desikan parcellation. In total, we

employ 150 different measurements representing cortical mean thick-

ness (n = 68) and surface area (n = 68) along with subcortical volume

(n = 14; Dale, Fischl, & Sereno, 1999; Desikan et al., 2006).

Quality control of the FreeSurfer output including visual inspec-

tion of the ROI parcellations was performed at each site according to

the ENIGMA protocols for multi-site studies, available at http://

enigma.ini.usc.edu/protocols/imaging-protocols/. In addition, a ran-

dom sample from each site was examined at the University of Ver-

mont to ensure consistent quality control across sites. All individuals

with missing volumetric or surface ROIs were excluded from analyses.

In total, 2,034 participants from 27 different sites met all inclusion

criteria. Further, data were separated into a training set (used in an

exploratory data analysis and to train a final model) composed of

1,652 participants (692 with AD), from 24 sites with the remaining

382 participants (146 with AD) from three sites isolated as a test set

(used as a final left-aside test of generalizability). The testing set rep-

resents a collection of new data submitted to the consortium that was

not included in the most recent working group publication (Mackey

et al., 2019). Table 1 presents basic demographic information on train-

ing and test splits. Within the training set, three sites contained only

cases, 14 sites included only controls, and five sites contained a bal-

anced mix in the number of cases and controls. Figure 1 shows the

distribution by site, broken down by AD versus control. A more

detailed breakdown of the dataset by study and collection site is pro-

vided within the supplemental materials.

2.2 | Exploratory data analysis

In this section, we describe an exploratory analysis investigating dif-

ferent choices of training data, classification algorithms, and cross-

validation strategy. This step serves as an initial validation to ensure

that the classification model of interest is actually learning to distin-

guish AD versus control versus exploiting an unintended effect. Fur-

ther, this step allows us to explore how different choices of classifier

and data affect performance, as the ultimate goal is to build as predic-

tive a classifier as possible. A final framework for training is deter-

mined from this exploration, and its implementation and evaluation

are covered in the following sections.

We explored classifier performance first on a base training

dataset (Figure 1, Sites 1–5), composed of the five sites containing a

balance of both case and control participants. The same experimental

evaluation was then repeated with two augmented versions of the

dataset, first adding in participants from case-only sites (Figure 1, Sites

6–8), and then adding further additional participants from 16 control-

only sites (Figure 1, Sites 9–24). The top row of Figure 2 outlines

these three combinations within the context of our experimental

design.

Three machine learning algorithms suitable for binary classifica-

tion (Figure 2, middle row) were implemented within the python

library Scikit-learn (Pedregosa et al., 2011). Feature normalization was

conducted in all cases with Scikit-learn's StandardScaler. Most simply,

we considered a regularized ridge logistic regression classifier (l2 loss)

with regularization parameter values chosen through an internal

CV. Another variant of regularized logistic regression optimized with

stochastic gradient descent (SGD) was implemented with an elastic

net loss (l1 and l2). A nested random parameter search was con-

ducted, across 100 values, determining the choice of loss function and

regularization values (Zou & Hastie, 2005). Finally, we considered a

SVM with radial basis function (rbf) kernel, which allowed the classi-

fier to learn nonlinear interactions between features (Suykens &

Vandewalle, 1999). Similar to the hyperparameter optimization strat-

egy employed for the SGD logistic regression, a random search over

100 SVM parameter combinations, with differing values for the regu-

larization and kernel coefficients, was employed with nested CV for

parameter selection. Exact parameter distributions and training details

are provided within the supplemental materials.

Proper CV is of the utmost importance in machine learning appli-

cations. It is well known that—if improperly cross-validated—classifiers

can overfit onto validation sets, and even with more sophisticated CV

TABLE 1 Sex and age, across the full collected dataset from 27
sites as split further into training and withheld testing set, and by
alcohol use disorder (AD) versus control

Split-AD Participants Male (%) Mean age (SD)

Train-AD 692 423 (61) 33.36 ± 9.96

Train-Control 960 554 (57) 28.54 ± 9.56

Test-AD 146 79 (54) 44.72 ± 10.55

Test-Control 236 99 (42) 42.33 ± 12.31
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techniques can overestimate expected generalization (Santos, Soares,

Abreu, Araujo, & Santos, 2018). Within this work, we employed a ran-

dom 50 repeated three-fold CV stratified on AD status, where an indi-

cation of classifier performance is given by its averaged performance

when trained on one portion of the data and tested on a left-out por-

tion, across different random partitions (Burman, 1989). We also

made use of a leave-site-out (or leave-one-site-out) CV scheme across

the five sites that include both cases and controls (see Figure 1). Per-

formance for this leave-site-out CV is computed as the average score

from each site when that site is left out, this is, the average of 5 scores.

These options are shown in the bottom row in Figure 2. We com-

puted metrics according to both schemes for all considered classifiers

on the training dataset. The area under the Receiver Operating Char-

acteristic curve (AUC) was used as a base performance metric insensi-

tive to class imbalance (DeLong, DeLong, & Clarke-Pearson, 1988).

2.3 | Final analytic pipeline

Based on the intermediate results from the previous Exploratory Data

Analysis, we implemented a GA designed to select sets of features

most useful in training a site generalizable classifier. We operate

under the assumption in this stage that if a classifier can be restricted

to only features relevant to distinguishing AD versus control, and

explicitly not those useful in exploiting site effects, we can create a

more robust and generalizable classifier. Toward this goal, the GA

repeatedly trained and evaluated a regularized logistic regression clas-

sifier on initially random subsets of brain features. The regularized

logistic classifier is chosen here as it is quick to train, and the initial

exploratory analysis revealed little difference in performance between

different classifiers. These feature subsets were then optimized for

high AUC scores as determined by the leave-site-out CV on the five

sites that included both cases and controls. Multi-objective optimiza-

tion was conducted with the aid of a number of successful GA

strategies, and these include: random tournament selection

(Eremeev, 2018), feature set mutations, repeated runs with isolated

populations, a sparsity objective similar in function to “Age-fitness

Pareto optimization” (Schmidt & Lipson, 2011), among others. An

introduction to GA and a complete description of our design decisions

regarding the algorithm are provided in the supplemental material.

The algorithm was run across six different variants of hyper-

parameters, as shown in Figure 3. We explored choices related to size

(number of subsets of features considered in each round) and scope

(how many optimization rounds the search is run for) in addition to

objective functions. The results from each of the six search variants

represent thousands (exact number dependent on hyper-parameters

of that variant) of subsets of features, each with an associated perfor-

mance score. We restricted the output from each search to the top

200—and therefore to high performing—feature subsets. All of these

final feature subsets (1,200 total) were ultimately pooled together and

considered in a feature importance meta-analysis. In determining fea-

ture importance, the following considerations were used: each sub-

set's individual performance (higher performance weighted higher)

and the number of features (subsets with more features were penal-

ized). A final measure of feature importance was calculated as the

average feature importance from each of the six search variants com-

puted separately. Within each search variant, an individual feature's

importance was defined as the sum of a feature set's fitness scores,

further divided by the number of total features in that set, across all

F IGURE 3 A simplified view of the final pipeline, where the full
training dataset is employed in an evolutionary feature search
designed to produce optimal subsets of high performing features.
From this collection of feature subsets a meta analysis for
determining feature importance is conducted and a subset of “best”
features are selected. Next, a logistic regression classifier is trained
and evaluated on the testing dataset, with access to only the “best”
subset of features

F IGURE 2 The different permutations of analyses conducted
internally on the training set, with differing input dataset options (top
row), classifiers (middle row), and computed CV scoring metrics
(bottom row)
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of the top 200 sets in which that feature appeared. Importances per

set were then normalized, such that intuitively a feature present in all

of the top 200 feature sets would have a value of 1, and if present in

none, 0. Each feature's final score represents that feature's averaged

score (between 0 and 1) as derived from each separate search. We

were interested at this stage in identifying a relative ranking of brain

features, as, intuitively, some features should be more helpful in clas-

sifying AD, and features that are useful toward classification are can-

didates to be related to the underlying AD neurobiology.

As referenced in Figure 3, we selected a “best” subset of features

with which to train and evaluate a final regularized logistic regression

classifier on the withheld testing set. We determined the “best” subset

of features to be those which obtained a final feature importance

score above a user-defined threshold. Ideally, this threshold would be

determined analytically on an additional independent validation sam-

ple, but with limited access to data from case–control balanced sites

we employed only internal CV. Posthoc analyses were conducted with

differing thresholds, providing an estimate as to how important this

step may prove in future analyses.

3 | RESULTS

3.1 | Exploratory data analysis

The complete exploratory training set results are shown in Table 2.

The base dataset composed of only the five balanced sites across clas-

sifiers obtained an AUC of 0.723 to 0.724 under three-fold CV versus

0.623–0.663 under leave-site-out CV. Regularized logistic regression

on the base dataset with the addition of extra case-only subjects

yielded an AUC of 0.907 ± 0.022 (standard deviation across folds)

under random three-fold CV versus 0.560 ± 0.189 under leave-site-

out and with added controls an AUC of 0.917 ± 0.010 with random

three-fold CV and 0.636 ± 0.169 with leave-site-out. The choice of

classifier produced only minor differences in performance (±.02),

regardless of the CV method. The full dataset (including additional

control participants and case-only participants) yielded a small boost

to random three-fold CV scores (.003–.023), and a more noticeable

gain to leave-site-out CV scores (.053–.091). The CV strategy

(Random vs. Leave-site-out) produced the largest discrepancy in

scores when either case-only or both case-only and control-only par-

ticipants were included (.267–.347) with the former yielding inflated

results.

3.2 | Feature importance

The top 15 features as determined by average weighted feature

importance, from all six searches (i.e., base training dataset only and

base plus control-only datasets, by three machine-learning algorithms;

see Figure 2), are presented in Figure 4. Four features emerged with

an importance score greater than 0.8 (where an importance score of

1 represents a feature present in every top feature set and 0 in none),

followed by a slightly sharper decline and, not shown, a continuing

decline. Also shown are the cortical surface area and thickness fea-

tures as projected onto the fsaverage cortical surface space. The left

putamen (0.816) and left pallidum (0.210) volumes were the only sub-

cortical features with feature importance scores over 0.05 (not

shown).

3.3 | Testing set evaluation

Further internal nested validation on the training set selected a

threshold of 0.8 weighted feature importance and above, which corre-

sponds to the top four features only (Figure 4). The final model,

trained on only this “best” subset of four features, achieved an AUC

of 0.768 on the testing set. The ROC curve for this classifier on the

testing set is shown in Figure 5. We further conducted a number of

posthoc analyses on the testing dataset. To confirm the predictive

TABLE 2 The results for each of the three considered classifiers with just the base dataset, the base dataset with added case-only sites and
lastly the full dataset with control-only sites (see Figure 1 for information on which sites are balanced vs. control or case-only) across both cross
validation (CV) strategies, as highlighted in Figure 2

Dataset Classifier Random three-fold CV AUC (± STD) Leave-site-out CV (5 sites) AUC (± STD)

Base Logistic regression 0.723 ± 0.042 0.644 ± 0.125

Base SGD 0.731 ± 0.034 0.663 ± 0.139

Base SVM 0.724 ± 0.038 0.623 ± 0.096

Base ± case-only Logistic regression 0.907 ± 0.022 0.560 ± 0.189

Base ± case-only SGD 0.896 ± 0.012 0.561 ± 0.183

Base ± case-only SVM 0.912 ± 0.011 0.578 ± 0.111

Full (case ± control) Logistic regression 0.917 ± 0.012 0.636 ± 0.169

Full (case ± control) SGD 0.919 ± 0.009 0.652 ± 0.132

Full (case ± control) SVM 0.915 ± 0.014 0.631 ± 0.139

Note: Standard deviation in area under the receiver characteristic operator curve (AUC) across cross-validated folds is provided, as an estimate of confi-

dence. Random three-fold CV was stratified according to AD status and was repeated 50 times with different random splits.
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F IGURE 4 (a) The top 15 features (threshold chosen for readability), as ranked by average weighted feature importance (where 0 indicates a
feature appeared in none of the GA final models, and 1 represents a feature appeared in all) are shown. (b) The cortical thickness and (c) cortical
average surface area feature importance scores, above an a priori selected threshold of 0.1, are shown as projected onto the fsaverage surface
space

F IGURE 5 The ROC curve for the final logistic regression model on the testing set, as restricted to only the “best” subset of four features

HAHN ET AL. 7



utility of GA feature selection, a regularized logistic regression model

and SVM model with access to all features were both trained on the

full training dataset and evaluated on the testing set. The logistic

regression scored 0.697 AUC and the SVM 0.673 AUC. Similarly, reg-

ularized logistic regression and SVM models were trained on all fea-

tures, but without the inclusion of additional control-only sites, and

scored, respectively 0.647 and 0.609 AUC. The final model was better

than both the logistic regression model with all features and subjects

(p = .0098) and without control subjects (p = 3.5 × 10−5). We then

trained on just the five balanced sites, where logistic regression

scored 0.717 AUC and the SVM 0.700 AUC. We further investigated

the choice of user-defined threshold in selecting the number of top

features by testing the inclusion of the top 2 to 15 features. Some

notable differences can be seen in performance, for example: .782

AUC with top three, .737 AUC with top five and 0.741 AUC with

top 10.

4 | DISCUSSION

We used multi-site neuroimaging data to identify structural brain

features that classify new participants, from new sites, as having an

AD with high accuracy. In doing so, we highlighted the importance of

carefully chosen metrics in accurately estimating ML classifier perfor-

mance in the context of multi-site imbalanced neuroimaging

datasets. We further explored a number of techniques, ranging from

analytical methods to more general approaches, and their merit

toward improving classifier performance and generalizability. Our

proposed GA-derived feature importance measure, in addition to

aiding classification, might help in identifying neurobiologically mean-

ingful effects.

A clear discrepancy arose between random repeated CV

(i.e., participants randomly selected from across sites) and leave-site-

out CV results (Table 2). We suspect that the random repeated CV

overestimates performance due to covert site effects. The classifiers

appeared to memorize some set of attributes, unrelated to AD, within

the case- and control-only sites and therefore were able to accurately

predict AD only if participants from a given site were present in both

training and validation folds. This is exemplified by the change in per-

formance seen when case-only subjects are added, where repeated

three-fold CV goes up �0.18 AUC, but leave-site-out CV drops �0.08

AUC. Performance on leave-site-out CV, in contrast to random

repeated CV, better estimates classifier generalizability to new unseen

sites, especially when the dataset contains data from any case-only or

control-only sites. This is validated by post hoc analyses in which a

logistic regression trained on all features obtained a test set AUC

(0.697) far closer to its training set leave-site-out CV score (0.636

± .119) then its random repeated CV score on the full training set

(0.917). While this observation must be interpreted within the scope

of our presented imbalanced dataset, these results stress the impor-

tance of choosing an appropriate performance metric, and further

highlight the magnitude of error that can be introduced when this

metric is chosen incorrectly.

In addition to performing model and parameter selection based

on a more accurate internal metric, the addition of control-only partic-

ipants relative to when just case-only subjects are included proved

beneficial to classifier performance (0.053–0.091 gain in leave-site-

out AUC). This effect can be noted within our exploratory data analy-

sis results (Table 2) comparing leave-site-out CV results between the

base dataset plus case-only subjects and the full dataset. When extra

control participants are added performance increased up to 0.09

AUC. Posthoc analysis revealed a similar performance gain on the

testing set from adding control participants; logistic regression plus

0.05 AUC and SVM plus 0.06 AUC. This boost likely reflects a combi-

nation of two circumstances. In the first, the underlying ML algorithm

is aided by both more data points to learn from and a more balanced

case to control distribution, which have both been shown to aid

binary classification performance (Jordan & Mitchell, 2015). The sec-

ond reflects a resistance to the learning of site-related effects which,

as noted above, can lead to the algorithm detrimentally learning

covert site effects. By including data from more sites and scanners, it

is possible the unintentional learning of specific site effects (as a proxy

for AD) is made more difficult. More generally, as neuroimaging data

banks continue to grow, the potential arises for supplementing ana-

lyses with seemingly unrelated external datasets.

Between-site variance, leading ML classifiers to exploit trivial site

differences, is a pernicious, but not wholly unexpected problem. One

source of this variance is likely related to scanning differences, that is,

manufacturer, acquisition parameters, field inhomogeneities and other

well-known differences (Chen et al., 2014; Jovicich et al., 2006;

Martinez-Murcia et al., 2017). Data pooled from studies around the

world also introduce sociodemographic differences between sites.

Importantly, the clinical measure of interest is also often variable (see

Supporting Information for more information on the different diag-

nostic instruments used in our sample) (Yip et al., 2020). Especially

when pooling studies, it is difficult to fully control or correct for all of

these sources of variances, as different studies will use a range of dif-

ferent scanning protocols and collect nonoverlapping phenotypic

measures. Despite a potential host of differences, pooled data from

multiple sites may actually provide a regularizing effect. For example,

if only a single diagnostic instrument were employed a classifier may

obtain strong within-study results, but be unlikely to generalize well

to new studies utilizing alternative instruments.

Our proposed GA-based feature selection, with the inclusion of

leave-site-out criteria, proved to be useful in improving classifier gen-

eralizability. This is highlighted by a 0.071 boost to AUC score in a

model trained on only the top identified four features in contrast to a

model trained with all the available features. We believe the observed

performance boost to be a result of only allowing the classifier to

learn from features previously determined to be useful toward site

generalizable classification. In this way, the final classifier is able to

avoid adverse site effects through a lack of exposure to brain mea-

surements highly linked to specific sites. We note also that our final

proposed classifier compares favorably to the other posthoc compari-

sons conducted. Specifically, we see a 0.095 boost relative to an SVM

trained on the full dataset, a 0.121 and 0.159 boost relative to
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regularized logistic regression and SVM models trained on the base

dataset with added cases (or full dataset minus extra controls), and

lastly a 0.051 and 0.068 gain relative to just the base dataset. Further

posthoc results indicate even higher performance with just the top

three features (+.014 vs. selected top four feature model) and a slight

decrease with the addition of more features. In future work, an addi-

tional validation set might prove useful in selecting between different

final models and thresholds, in addition to careful comparisons

between different feature selection methods.

A persistent issue in typical interpretation from ML models is the

issue of shared variance between different features. The features a

single model selects may very well have suitable surrogate features

within the remaining dataset. In contrast, our feature importance met-

ric is derived from thousands of models, providing the chance for

equivalent features, with shared variance, to achieve similar impor-

tance scores. A natural distinction nevertheless exists between predic-

tive features and those that emerge from univariate testing as

significant. Specifically, the absence of a feature within our final

model, (i.e., the unimportance of a feature by our metric), does not

necessarily imply a lack of association between that feature and

AD. An absence could alternatively indicate that a different feature

better captures some overlapping predictive utility, which is different

conceptually from sharing variance in that in this case one feature is

consistently more useful for prediction. The redundant feature might

not appear as important despite an association with AD when consid-

ered in isolation. On the other hand, a feature with a relatively weak

association could emerge with consistently high feature importance if

it proves uniquely beneficial to prediction. Above and beyond univari-

ate significance, if a given feature does have predictive utility, it

strongly suggests that a real association exists. Our selected top fea-

tures were both identified as consistently useful features within the

training set and experimentally confirmed as site generalizable on the

testing set.

The top four features as identified by our metric of feature impor-

tance were the average cortical thickness of the left superior frontal

gyrus and right lateral orbitofrontal cortex (OFC), the left putamen

volume and the average surface area of the right transverse temporal

gyrus. Specifically, cortical thinning, volume and surface area reduc-

tion across these regions prompt the trained model toward an AD

prediction. Thinning, within the left superior frontal gyrus and right

lateral OFC, agrees broadly with the literature which has consistently

shown frontal lobe regions to be most vulnerable to alcohol conse-

quences (Oscar-Berman & Marinkovi�c, 2007). Prefrontal cortical thin-

ning and reduced volume in the left putamen seem to further indicate

specific involvement of the mesocorticolimbic system. This dopami-

nergic brain pathway has been consistently linked with alcohol depen-

dence and addiction in general (Ewing et al., 2014; Filbey et al., 2008).

Likewise, a recent voxel-based meta-analysis showed a significant

association between lifetime alcohol consumption and decreased vol-

ume in left putamen and left middle frontal gyrus (Yang et al., 2016).

Comparing the four selected regions in the present study with

those determined to be significant by univariate testing on an over-

lapping dataset from Mackey et al., 2019, we find three regions in

common (the exception being right transverse temporal gyrus surface,

as surface area was not considered in that analysis). Further, left supe-

rior frontal and putamen appeared as two of the top 20 features in

both folds of an SVM classifier trained and tested on split halves in

the Mackey paper (right lateral orbital frontal only appeared in one

fold). Of the existing alcohol classifiers mentioned in the introduction

by Guggenmos et al. (2018) and Adeli, Zahr, Pfefferbaum, Sullivan,

and Pohl (2019), only Adeli reported overlapping AD-associated

regions with our top four: lateral orbitofrontal thickness and superior

frontal volume.

In interpreting the performance of a classifier linking brain mea-

surements to an external phenotype of interest, we also need to con-

sider how reliably the phenotype can be measured. The exact

relationship between interobserver variability of a phenotype or spe-

cific diagnosis and ease of predictability or upper bound of predictabil-

ity is unknown, but it seems plausible that they would be related. This

proves pertinent in any case where the presented ground truth labels,

those used to generate performance metrics, are noisy. We believe

further study quantifying these relationships will be an important next

step toward interpreting the results of neuroimaging-based classifica-

tion, as even if a classifier capable of perfectly predicting between

case and control existed, it would be bound by our current diagnostic

standard. A potential route toward establishing a robust understand-

ing of brain changes associated with AD might involve some combina-

tion of standard diagnostic practices with objective measures or

indices gleaned from brain-based classifiers. Relating classifiers

directly with specific treatment outcomes (potential index for recov-

ery), or within a longitudinal screening context (potential index for

risk) represent further exciting and useful applications.

We have drawn attention to the impact on model generalizability

of case distribution by site within large multi-site neuroimaging stud-

ies. In particular, we have shown that CV methods that do not prop-

erly account for site can drastically overestimate results, and

presented a leave-site-out CV scheme as a better framework to esti-

mate model generalization. We further presented an evolutionary-

based feature selection method aimed at extracting usable informa-

tion from case- and control-only sites, and showed how this method

can produce more interpretable, generalizable and high-performing

AD classifiers. Finally, a measure of feature importance was used to

determine relevant predictive features, and we discussed their poten-

tial contribution to our understanding of AD neurobiology.
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