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Appendix 9.1.  

Preliminary Confirmatory Factor Analyses 

To obtain factor scores reflecting students’ global levels of Physical Strength and Cardiovascular 

Fitness, we estimated a longitudinal confirmatory factor analytic (CFA) model (see chapter 5). In this 

model, two factors were estimated at each of the seven specific time points (for a total of 7 x 2 = 14 

factors). These two factors reflected Physical Strength (using the results from the Sit-Ups, Broad 

Jumps, and Pull-Ups tests as the three factor indicators) and Cardiovascular Fitness (using the results 

from the Shuttle-Run, and Run-walk tests as factor indicators). This model was estimated as a 

multiple-group model separately in both gender groups. All models were specified as congeneric, with 

each item allowed to load on a single factor, and all factors freely allowed to correlate within time-

points as well as across time-points. In these models, a priori correlated uniquenesses between 

matching indicators of the factors utilized at the different time-points should be included in 

longitudinal models to avoid converging on biased and inflated stability estimates (Jöreskog, 1979; 

Marsh, 2007). This inclusion reflects the fact that indicators’ unique variance is known to emerge, in 

part, from shared sources of influences over time.  

 

Tests of measurement invariance across combinations of groups and time points were then 

performed in sequence (Meredith,1993; Millsap, 2011; also see Chapter 6): (i) configural invariance 

(same measurement model), (ii) weak invariance (invariance of the factor loadings); (iii) strong 

invariance (invariance of the factor loadings and items’ intercepts); (iv) strict invariance (invariance of 

the factor loadings, items’ intercepts, and items’ uniquenesses), (v) invariance of the variances and 

within-time covariances between the constructs, (vi) latent means invariance. However, relying on 

two indicators per construct (for the Cardiovascular Fitness factor) creates locally unidentified factors 

even though the model remains identified with more than two factors (Bollen, 1989). Thus, after the 

estimation of the model of configural invariance, a second model was estimated in which each factor 

was fully identified by using essentially tau-equivalent constraints (ETECs). Using ETECs involves 

placing equality constraints on both loadings to help locate the construct at the true centroid of the 

indicators (Little, Lindenberger, & Nesselroade, 1999). This procedure may results in a decrease in the 

fit of the models, which should not overly concern researchers if it is not dramatic (Little et al., 1999). 

 

The fit results (see discussion presented in Chapter 5 and 6 for the interpretation of model fit; also 

see Chen, 2007; Cheung, & Rensvold, 2002; Hu & Bentler, 1999; Marsh, Hau, & Grayson, 2005) for 

these models are reported in the Table presented on the next page.  

 

These results confirm the adequacy of both a priori longitudinal measurement models (with and 

without ETECs) with indices indicating excellent fit (RMSEA= .020 to .022; CFI = .990 to .992; TLI 

= .984 to .987). Across the full sequence of tests of measurement invariance, where invariance 

constraints were imposed across time periods, gender groups, and all time X gender combinations, 

observed changed in fit indices remained minimal and well under typical interpretation guidelines 

(e.g. Chen, 2007; Cheung & Rensvold, 2002: ΔRMSEA ≤ .015; ΔCFI and ΔTLI ≤ .010), supporting 

the complete measurement invariance of this model across time periods and gender. It is from this 

completely invariant model that factor scores were saved.  
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Fit Results from the Longitudinal Measurement Invariance Models  

 ² df CFI TLI RMSEA 90% CI 

Configural Invariance  2183.316* 728 0.992 0.987 0.020 0.019-0.021 

Essent. Tau Equivalence 2544.312* 742 0.990 0.984 0.022 0.021-0.023 

Weak Invariance (Time) 3163.920* 766 0.987 0.980 0.025 0.024-0.026 

Weak Invariance (Gender) 2952.654* 756 0.988 0.981 0.024 0.023-0.025 

Weak Invariance (Total) 3192.947* 768 0.987 0.979 0.025 0.024-0.026 

Strong Invariance (Time) 3214.120* 816 0.987 0.981 0.024 0.023-0.025 

Strong Invariance (Gender) 3197.946* 789 0.987 0.980 0.025 0.024-0.026 

Strong Invariance (Total) 3215.380* 819 0.987 0.981 0.024 0.023-0.025 

Strict Invariance (Time) 3684.103* 879 0.985 0.979 0.025 0.024-0.026 

Strict Invariance (Gender) 3694.321* 854 0.984 0.978 0.026 0.025-0.027 

Strict Invariance (Total) 3915.491* 884 0.983 0.978 0.026 0.025-0.027 

Var.-Covar. Invariance (Time) 4149.397* 920 0.982 0.977 0.027 0.026-0.027 

Var.-Covar. Invariance (Gender) 4036.416* 905 0.983 0.977 0.026 0.026-0.027 

Var.-Covar. Invariance (Total) 4217.417* 923 0.982 0.977 0.027 0.026-0.028 

Latent Means Invariance(Time) 4241.355* 935 0.982 0.977 0.027 0.026-0.027 

Latent Means Invariance(Gender) 4218.890* 925 0.982 0.977 0.027 0.026-0.028 

Latent Means Invariance (Total) 4242.439* 937 0.982 0.977 0.027 0.026-0.027 

Note. *p < .01; χ²: Chi-square; df: Degrees of freedom; CFI: Comparative fit index; TLI: Tucker-

Lewis index; RMSEA: Root mean square error of approximation; 90% CI: 90% confidence interval of 

the RMSEA.  
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Appendix 9.2.  

How to ensure that the final solution is well replicated? 

 The best way to ensure that the final solution is well-replicated and represents a true 

maximum likelihood rather than a local solution is to increase the number of starts values. This is 

done in the ANALYSIS section of the Mplus input code. For instance:  
ANALYSIS: 

TYPE = MIXTURE COMPLEX; 

ESTIMATOR = MLR; 

process = 3; 

STARTS = 5000 200; 

STITERATIONS = 100; 

This section of input request the estimation of a mixture model (TYPE = MIXTURE) 

including a correction for the nesting of students within schools (TYPE = COMPLEX) and using the 

robust maximum likelihood estimator (ESTIMATOR = MLR). The function PROCESS = 3 requires 

that the model be estimated using 3 of the available processors to speed up the estimation (this 

number can be increased or decreased depending on the availability of processors). The function 

STARTS = 5000 200 requests 5000 sets of random start values, and that the best 200 of these starts be 

kept for final stage optimization. The function STITERATIONS = 100 requests that all random starts 

be allowed a total of 100 iterations.  

Once the model is estimated, Mplus will provide (as part of the output) the loglikelihood 

values associated with all of the random starts retained for the final stage optimization. It will also 

indicate how many of the start value runs did not converge. This section of the output will appear like 

the following:  
RANDOM STARTS RESULTS RANKED FROM THE BEST TO THE WORST LOGLIKELIHOOD VALUES 

 

3323 perturbed starting value run(s) did not converge. 

Final stage loglikelihood values at local maxima, seeds, and initial stage start numbers: 

 

-32960.162  27690  2347 

-32960.162  821740  4428 

-32960.162  541128  4674 

-32960.162  256363  2826 

-32960.162  488581  688 

-32960.162  476338  1418 

-32960.162  579138  706 

-32960.162  367683  4650 

-32960.162  621055  4450 

-32960.162  512820  1071 

-32960.162  403892  2676 

-32960.162  699337  4168 

-32960.162  406734  2605 

-32960.162  807339  4334 

-32960.162  988537  1980 

-32960.162  392717  4834 

-32965.925  402699  604 

-32965.925  960438  116 

-32965.925  493718  2394 

-32965.925  606094   2866 

-32965.925  124661  2172 

-32965.925  109524  4400 

-32965.925  80226  3041 

-32965.925  56630  2793 

… 
 In this example, the best loglikelihood value was replicated 16 times (the number of times the 

value of -32960.162 appears in the first column), which is fully satisfactory. Although no clear-cut 

rule exists, we suggest that solutions should be replicated at least 5 times. Failing to do so, additional 

tests should be conducted while increasing the number of start values and/or iterations or using user-

defined starts values (for instance, using the starts values from the best fitting solution provided when 

requesting SVALUES in the output section of the syntax and using these starts values in the model 
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while keeping the random starts function active). The second column of the output section pasted 

above provides the model seed associated with each specific random start solution. Using the seed 

provides an easy way to replicate the final solution (or any other solution) while drastically decreasing 

computational time. To do so, the following ANALYSIS section can be used (here to replicate the 

best solution from the example above).  
ANALYSIS: 

TYPE = MIXTURE COMPLEX; 

ESTIMATOR = MLR; 

process = 3; 

STARTS = 0; 

OPTSEED = 27690;  

STITERATIONS = 100; 

As noted, we suggest that users systematically request SVALUES as part of the output. Here is a 

standard setup for requesting specific sections of output:  
OUTPUT: 

STDYX SAMPSTAT CINTERVAL SVALUES RESIDUAL TECH1 TECH7 TECH11 TECH14; 

Each of these terms are defined in the Mplus manual. When SVALUES are requested, the exact 

values associated with the final model will be provided in the output as ready-to-use input command. 

For instance, here is a set up for the MODEL section of a 2-profile LPA model (see later sections of 

these supplements for more details):  
MODEL: 

  %OVERALL% 

  %c#1% 

  [ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run]; 

  ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ; 

  %c#2% 

  [ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run]; 

  ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ; 

When SVALUES are requested, the output will include the following section, which can be cut-and-

pasted and used as a replacement of the MODEL section represented above in conjunction with the 

STARTS function set to 0 (STARTS = 0) to exactly replicate the final solution. This fucntiin is 

particularly useful when one wants to include covariates in a model yet ensure that the final 

unconditional LPA solution remains unchanged.  
MODEL COMMAND WITH FINAL ESTIMATES USED AS STARTING VALUES 

     %OVERALL% 

     [ c#1*0.23559 ]; 

     %C#1% 

     [ zp5sit*0.42857 ]; 

     [ zp5flex*0.55041 ]; 

     [ zp5snr*0.28010 ]; 

     [ zp5shut*-0.47364 ]; 

     [ zp5sbj*0.50862 ]; 

     [ zp5run*-0.49124 ]; 

     zp5sit*0.71721; 

     zp5flex*0.87515; 

     zp5snr*1.04028; 

     zp5shut*0.64504; 

     zp5sbj*0.70734; 

     zp5run*0.62410; 

     %C#2% 

     [ zp5sit*-0.54352 ]; 

     [ zp5flex*-0.69033 ]; 

     [ zp5snr*-0.35497 ]; 

     [ zp5shut*0.60033 ]; 

     [ zp5sbj*-0.64461 ]; 

     [ zp5run*0.62280 ]; 

     zp5sit*0.82980; 

     zp5flex*0.29957; 

     zp5snr*0.72302; 

     zp5shut*0.80467; 

     zp5sbj*0.62703; 

     zp5run*0.78226; 
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Appendix 9.3.  

Correction for Nesting 

It is possible to control for the non-independence of the observations due to students’ nesting 

within schools using Mplus design-based correction (Asparouhov, 2005). However, when this 

correction is used, the BLRT cannot be computed. Fortunately, ignoring nesting is unlikely to affect 

the class enumeration process of LPA and GMM models, although it does affect standard errors and 

classification accuracy (Chen, Kwok, Luo, & Willson, 2010). Given the possible impact of nesting on 

estimates of regression coefficients which define MRM solutions, failure to control for nesting may 

result in a biased MRM class enumeration. Class enumeration was thus conducted without controlling 

for nesting in LPAs. However, the final LPA solutions, and all MRM solutions, were estimated while 

controlling for nesting. Finally, nesting was not controlled for in LTA and GMM because nesting 

changes over time and mixture models currently only accommodate one type of nesting structure. 

 

This correction is implemented by adding “CLUSTER = clustid;” to the “VARIABLE:” section 

of the input (where clustid is the name of the clustering variable present in the dataset, for instance the 

unique identifier of the school the student attends), and “TYPE = COMPLEX;” in the “ANALYSIS” 

section of the input.  

 

References used in this Appendix (but not in the main chapter) 

 

Asparouhov, T. (2005). Sampling weights in latent variable modeling. Structural Equation Modeling, 

12, 411-434. 

Chen, Q., Kwok, O.-M., Luo, W., & Willson, V.L. (2010). The impact of ignoring a level of nesting 

structure in multilevel growth mixture models: A Monte Carlo study. Structural Equation 

Modeling, 17, 570-589. 
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Appendix 9.4. 

Introduction to Latent Profile Analyses and Alternative Specifications  

In preparing this chapter, we have to make some assumptions of basic knowledge on the part 

of the readers. In particular, we have to assume that the reader is reasonably familiar with CFA (see 

Chapter 5), SEM (see chapter 5), and tests of measurement invariance (see Chapter 6) as these provide 

a critical pre-requisite backbone to the understanding of the models presented here which simply rely 

on the addition of categorical latent variables to the global CFA/SEM framework in order to extract 

unobserved subpopulations. However, these unobserved subpopulations are akin to the observed 

subgroups of participants typically considered in multiple groups CFA/SEM models apart from being 

estimated as part of the model rather than a priori specified. In other words, any kind of comparison 

that can be conducted across observed groups of participants, as well as any constraint that can be 

included across observed groups of participants, can likewise be realized across unobserved 

subpopulations. Furthermore, our later illustration of GMM also assumes reasonable familiarity with 

latent curve models (see Chapter 7). Without this a priori knowledge, we would strongly advise 

against the use of mixture modeling.  

 

 

C 

X1 X2 X3 Xi 
 

… 

Model 1: Latent Profile Analysis 

X1 X2 X3 Xi … 

Model 2: Confirmatory Factor Analysis 

F 

Note. Squares represent observed variables; Xs represent the observed indicators of the latent variables, 

ovals represent continuous latent variables; octagons represent categorical latent variables; C represent the 

categorical latent variables (the profiles); F represent the continuous latent variables (the factors), the arrows 

appearing under the indicators represent their uniquenesses.  
 

In its most simple expression, LPA (see Model 1) present a high level of similarities with 

CFA (see Model 2). The key difference between these models is that LPA relies on a categorical latent 

variable (i.e., the profiles) to regroup persons, whereas CFA relies on continuous latent variables (i.e., 

the factors) to regroup variables (Cattel, 1952; Lubke & Muthén, 2005). Thus, “the common factor 

model decomposes the covariances to highlight relationships among the variables, whereas the latent 

profile model decomposes the covariances to highlight relationships among individuals” (Bauer & 

Curran, 2004, p. 6). Choosing between these representations is not easy since a k-profile LPA has 

identical covariance implications than a k-1-factor CFA and thus represents an equivalent model 

(Bauer & Curran, 2004; Steinley & McDonald, 2007). Simulation studies also showed that spurious 

latent classes may emerge when none exist as a way to account for violations of the model 

distributional assumptions (e.g., Bauer, 2007). Although many attempts to provide a solution to this 

issue have been proposed, none is fully satisfactory (Lubke & Neale, 2006, 2008; Muthén, & 

Asparouhov, 2009; Steinley & McDonald, 2007). Indeed, the existence of equivalent statistical 

models providing radically different pictures of the reality is almost universal (Cudeck & Henly, 

2003; Hershberger, 2006; Muthén, 2003), and prioritizing one over the other typically remains a 

theoretical decision related in part to the theoretical underpinnings of the research question being 

asked (Borsboom et al., 2003). Hence our perspective that relying on variable, versus person, centered 

analyses involves a paradigmatic shift (Morin, Morizot et al., 2011). In the end, the best way to 

support a substantive interpretation of the profiles as reflecting significant subgroups of participants 

(or factors as reflecting meaningful underlying dimensions) requires a process of construct validation 

taking into account the heuristic value of the profiles, their conformity to theoretical expectations, 

their differential associations to meaningful covariates, and their generalizability to new samples 

(Cudeck & Henly, 2003; Marsh et al., 2009; Morin, Morizot et al., 2011; Muthén, 2003). 
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The generic LPA model is expressed as (e.g., Lazafeld & Henry, 1978; Peugh & Fan, 2013):  





K

k

ykky

K

k

ykky
1

22

1

2
)(   

For y observed indicators and k latent profiles, the LPA model decomposes the variance into and 

between-profile (the first term) and within-profile (the second term) components. In this expression, 

the profile-specific means ( yk ) and variances (
2

yk ) of the observed indicators are expressed as a 

function of the density function k  which reflects the proportion of participants in each profile. 

Implicit in this expression and in the previous figures is a conditional independence assumption (that 

is also shared with CFA) that, conditional on the latent profiles, all observed indicators are 

uncorrelated with one another.  

 

 

C 

X1 X2 X3 Xi 
 

… 

Model 3: Latent Profile Analysis 

with Correlated Uniquenesses  

X1 X2 X3 Xi … 

Model 4: Factor Mixture Analysis 

Note. Squares represent observed variables; Xs represent the observed indicators of the latent variables, 

ovals represent continuous latent variables; octagons represent categorical latent variables; C represent the 

categorical latent variables (the profiles); F represent the continuous latent variables (the factors), the arrows 

appearing under the indicators represent their uniquenesses.  

F 

C 

 
 

As it is the case with CFA models, it is possible to relax this assumption through the inclusion 

of correlations among the uniquenesses of the observed indicators (see Model 3). Although some 

simulation studies have shown, under highly specific conditions, that relaxing this assumption may 

help to recover true population parameters in the class enumeration process (e.g., Uebersax, 1999; 

Peugh & Fan, 2013) , we argue that the decision to relax this assumption should be made with 

caution, and based on strong theoretical assumptions of expected relations among the indicators that 

exist over and above the expected profiles (to reflect wording, or informant, effects for example). As 

noted by Marsh et al. (2009, p. 199): “By analogy, in CFA, correlations among indicators are assumed 

to be explained in terms of latent factors. Although it is possible to relax this assumption of 

conditional independence by the inclusion of correlated uniquenesses (correlations among indicators 

not explained by factors), best practice […] is not to do so except in special circumstances that are 

posited a priori”. Importantly, the inclusion of these correlated uniquenesses completely changes the 

meaning of the extracted latent profiles, and thus their ex post facto inclusion in an atheoretical 

manner been labeled as a “disaster” for psychological research (Schweizer, 2012, p.1). In fact, when 

legitimate a priori controls are required in CFA applications, method factors should generally be 

preferred to correlated uniquenesses because they provide a more explicit estimate construct-

irrelevant sources of variance (Schweizer, 2012). Similarly, this type of control is also possible the 

context of LPA conducted within the GSEM frameworks which makes it possible to combine 

continuous and categorical latent variables into the same model. Such a model (see Model 4, also see 

Appendix 9.16) is called a factor mixture model (e.g., Lubke & Muthén, 2005).  
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In the simplest expression of factor mixture models, the continuous latent factor component of 

the model is specified as completely invariant across profiles and simply used to control global 

tendencies that are shared among all observed indicators in order to extract cleaner profiles presenting 

clearer qualitative differences. As discussed extensively by Morin and Marsh (2014), the inclusion 

such a global factors underlying the observed indicators may be particularly useful for applications of 

LPA when there is a reason to expect that their exist a global construct underlying responses to the 

observed indicators (e.g., global competencies, global commitment) that needs to be controlled in 

order to extract cleaner profiles. Indeed, in the person-centered literature, one common assumption 

(e.g., Bauer, 2007; De Boek, Wilson, & Acton, 2005) is the need to observe clear qualitative 

differences between the profiles to support their meaningfulness. Conversely, the extraction of profiles 

showing only quantitative differences (i.e., with profile simply presenting a higher or lower levels on 

all variables considered), would be better represented by a continuous latent factor. However, there are 

some areas of research where there are reasons to expect both qualitative and quantitative differences 

between profiles due to the expectation that there exist a global underlying dimension to the observed 

indicators. In Morin and Marsh (2014), this global dimension is the global level of competencies of 

University teachers, over and above which the authors wanted to extract specific subgroups of 

teachers presenting differentiated profiles of strength and weaknesses. In these cases, failure to control 

for the global level of competencies may preclude the extraction of clearly defined profiles due to the 

conditional independence assumption of traditional LPA. In the present study, we could likewise have 

argued that there was a global level of physical fitness to be controlled. However, examination of the 

extracted profiles, of the estimated CFA models (see Appendix 9.1.), and even the estimation of 

preliminary factor mixture models (see Morin and Marsh for extensive discussions of these models, 

together with annotated Mplus input syntax) rather showed that these models would have been 

inappropriate in regards to the relative orthogonal nature of the indicators of Flexiblity, Physical 

Strength, and Cardiovascular Fitness. Indeed, when attempts where made to estimate factor mixture 

analyses, the factors loadings on this global factor were negative for the indicators of Physical 

Strength, and Positive for the indicators of Cardiovascular Fitness (or the opposite), providing a hard-

to-interpret control for global levels of physical fitness.  

 

However, factor mixtures are much more flexible than this and provide an integrative 

framework than can be used to investigate the underlying continuous or categorical nature of various 

phenomenon, as well as for the investigation of measurement invariance of psychometric measures 

across unobserved subpopulations. Although a presentation of the full range of possibilities provided 

by factor mixture models is beyond the scope of the present study, we invite the interested readers to 

consult the following references: (a) Lubke and Muthén (2005) for a global introduction to these 

models; (b) Masyn, Henderson, and Greenbaum (2010) for the application of factor mixture models to 

the investigation of the dimensional-categorical nature of psychological constructs; (c) Clark, Muthén, 

Kaprio, D’Onofrio, Viken, and Rose (2013) for a pedagogical illustration of a framework similar to 

the one presented in Masyn et al. (2010); (d) Tay, Newman, and Vermunt (2011) for an illustration of 

the use of mixture models to investigate the possible non-invariance of psychometric measures across 

unobserved subgroups of participants.  
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Appendix 9.5. 

Elbow Plot of the Information Criteria for the LPA, Girls, Grade 5 
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Appendix 9.6.  

Detailed results from the final LPA solution, Grade 5. 

  Profile 1  Profile 2  Profile 3  Profile 4  Profile 5  

Task Sample Mean  CI Mean  CI Mean CI Mean  CI Mean  CI 

Sit Ups Invariant -1.033 -1.143; -0.923 -0.263 -0.352; -0.174 0.589 0.504; 0.674 0.725 0.636; 0.814 -0.161 -0.233; -0.088 

Pull-Ups Invariant -1.087 -1.152; -1.022 -0.458 -0.592; -0.324 0.197 0.118; 0.276 1.566 1.434; 1.699 0.388 0.297; 0.479 

Sit-and-Reach Invariant -0.429 -0.591; -0.267 -0.641 -0.682; -0.601 -0.396 -0.440; -0.351 1.478 1.399; 1.558 1.209 1.140; 1.277 

Shuttle Run Invariant 1.358 1.216; 1.500 0.263 0.158; 0.368 -0.747 -0.850; -0.643 -0.827 -0.925; -0.729 0.247 0.173; 0.321 

Broad Jump Invariant -1.352 -1.451; -1.252 -0.347 -0.403; -0.291 0.727 0.652; 0.801 0.982 0.880; 1.085 -0.155 -0.229; -0.081 

Run-Walk Invariant 1.296 1.197; 1.395 0.276 0.196; 0.356 -0.676 -0.754; -0.598 -0.854 -0.941; -0.768 0.170 0.084; 0.256 

  Variance CI Variance CI Variance CI Variance CI Variance CI 

Sit Ups Boys 0.932 0.790; 1.074 0.591 0.526; 0.656 0.684 0.604; 0.765 0.548 0.458; 0.638 0.697 0.608; 0.786 

 Girls 1.038 0.835; 1.242 0.780 0.697; 0.863 0.566 0.471; 0.661 0.784 0.583; 0.985 0.788 0.681; 0.895 

Pull-Ups Boys 0.147 0.111; 0.183 0.364 0.275; 0.452 0.429 0.387; 0.472 0.374 0.150; 0.599 1.040 0.946; 1.133 

 Girls 0.095 0.053; 0.138 0.392 0.288; 0.496 0.493 0.404; 0.581 0.729 0.504; 0.955 1.144 1.030; 1.258 

Sit-and-Reach Boys 0.796 0.569; 1.023 0.217 0.191; 0.243 0.220 0.173; 0.268 0.267 0.220; 0.313 0.279 0.214; 0.343 

 Girls 0.867 0.621; 1.113 0.210 0.185; 0.235 0.241 0.186; 0.295 0.292 0.180; 0.404 0.315 0.239; 0.391 

Shuttle Run Boys 1.091 0.840; 1.342 0.351 0.306; 0.396 0.432 0.367; 0.497 0.602 0.385; 0.819 0.438 0.367; 0.510 

 Girls 1.142 0.867; 1.418 0.498 0.450; 0.546 0.511 0.408; 0.614 0.536 0.382; 0.690 0.581 0.469; 0.694 

Broad Jump Boys 0.741 0.531; 0.952 0.248 0.215; 0.282 0.588 0.487; 0.688 0.734 0.618; 0.851 0.414 0.318; 0.510 

 Girls 0.837 0.634; 1.039 0.426 0.360; 0.491 0.603 0.529; 0.677 0.635 0.499; 0.771 0.500 0.429; 0.570 

Run-Walk Boys 0.684 0.571; 0.796 0.579 0.527; 0.631 0.468 0.394; 0.543 0.366 0.303; 0.429 0.553 0.481; 0.625 

 Girls 1.019 0.771; 1.266 0.604 0.535; 0.673 0.575 0.506; 0.644 0.627 0.524; 0.730 0.685 0.598; 0.773 
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Appendix 9.7.  

Relations Between the Covariates and the Final LPA Solution, Grade 5 

 

Results from the Multinomial Logistic Regressions for the Effects of Grade 4 BMI on Grade 5 Profile Membership.  

 Latent profile 1 Vs 5 Latent profile 2 Vs 5 Latent profile 3 Vs 5 Latent profile 4 Vs 5 

 Coef. (SE) OR Coef. (SE) OR Coef. (SE) OR Coef. (SE) OR 

Boys BMI 1.050 (0.083)** 2.859 -0.048 (0.080) 0.953 -0.976 (0.099)** 0.377 -1.017 (0.114)** 0.362 

Girls BMI 0.784 (0.104)** 2.191 -0.143 (0.084) 0.867 -0.623 (0.085)** 0.536 -0.690 (0.094)** 0.502 

Note. SE: standard error of the coefficient; OR: Odds Ratio 

 

 

Associations between Grade 5 Profile Membership and Grade 6 BMI.  

 Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 Differences between profiles 

Boys BMI 1.305 0.022 -0.507 -0.526 0.014 1 > 2 = 5 > 3 = 4 

Girls BMI 1.479 -0.140 -0.312 -0.382 -0.024 1 > 5 > 2 > 3 = 4 

Differences between gender Boys = Girls Boys > Girls Girls > Boys Girls > Boys Boys = Girls  
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Appendix 9.8.  

Results from the LPA and LTA conducted on Grade 5 and Secondary 3 students 

 
Model LL #fp Scaling AIC CAIC BIC ABIC Entropy aLMR BLRT 

Grade 5, LPA     
1 Profile -78146.296 12 1.1335 156316.592 156414.126 156402.126 156363.992 Na Na Na 
2 Profile -73094.833 25 1.3632 146239.666 146442.862 146417.862 146338.416 0.734 ≤ 0.001 ≤ 0.001 
3 Profile -71298.729 38 1.3605 142673.457 142982.315 142944.315 142823.557  0.807 ≤ 0.001 ≤ 0.001 
4 Profile -69955.505 51 1.4129 140013.010 140427.530 140376.530 140214.460 0.793 ≤ 0.001 ≤ 0.001 
5 Profile -69090.118 64 1.3934 138308.236 138828.417 138764.417 138561.036 0.805 ≤ 0.001 ≤ 0.001 
6 Profile -68699.516 77 1.4508 137553.031 138178.874 138101.874 137857.180 0.780 ≤ 0.001 ≤ 0.001 
7 Profile -68442.256 90 1.5283 137064.512 137796.016 137706.016 137420.011 0.770 0.231 ≤ 0.001 
8 Profile -68038.887 103 1.4230 136283.775 137120.941 137017.941 136690.624 0.784 0.150 0.242 

Secondary 3, LPA    
1 Profile -81050.863 12 1.4186 162125.726 162223.698 162211.698 162173.564 Na Na Na 
2 Profile -75724.615 25 1.5858 151499.230 151703.337 151678.337 151598.891 0.737 ≤ 0.001 ≤ 0.001 
3 Profile -73246.384 38 1.3397 146568.768 146879.012 146841.012 146720.254 0.755 ≤ 0.001 ≤ 0.001 
4 Profile -72306.752 51 1.3755 144715.504 145131.883 145080.883 144918.813 0.803 ≤ 0.001 ≤ 0.001 
5 Profile -71416.890 64 1.3419 142961.779 143484.294 143420.294 143216.912 0.781 ≤ 0.001 ≤ 0.001 
6 Profile -70703.644 77 1.3247 141561.289 142189.939 142112.939 141868.245 0.799 ≤ 0.001 ≤ 0.001 
7 Profile -70080.612 90 1.3543 140341.224 141076.011 140986.011 140700.005 0.779 ≤ 0.001 ≤ 0.001 
8 Profile -69747.363 103 1.3779 139700.727 140541.649 140438.649 140111.331 0.770 ≤ 0.001 ≤ 0.001 

Model LL #fp Scaling AIC CAIC BIC ABIC Entropy LRT df 

Final 5-Profile LTA Including Correction for Nesting       

Grade 5 -69090.118 64 4.1890 138308.236 138828.417 138764.417 138561.036 0.805   

Secondary 3 -71416.890 64 4.3991 142961.779 143484.294 143420.294 143216.912 0.781   

Configural -135012.420 144 2.8517 270312.840 271487.637 271343.637 270886.027 0.802   

Structural (M) -136277.277 114 2.7581 272782.554 273712.601 273598.601 273236.327 0.769 788.717* 30 

Note. *: p ≤ .01; LL: Model LogLikelihood; #fp: Number of free parameters; Scaling = scaling factor associated with MLR loglikelihood estimates; AIC: Akaïke Information 

Criteria; CAIC: Constant AIC; BIC: Bayesian Information Criteria; ABIC: Sample-Size adjusted BIC; aLMR: Adjusted Lo-Mendell-Rubin likelihood ratio test; BLRT: 

Bootstrap Likelihood ratio test; LRT: Likelihood Ratio Test; df: Degrees of freedom associated with the LRT; M: Means. 
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Appendix 9.9.  

Results from the MRM conducted on Grade 5 students 

Model LL #fp Scaling AIC CAIC BIC ABIC Entropy aLMR  

Boys     

1 Profile -17404.321 20 3.5792 34848.643 34998.007 34978.007 34914.455 Na Na  

2 Profile -16684.448 35 2.9021 33438.897 33700.284 33665.284 33554.067 0.859 0.014  

3 Profile -16109.734 50 2.2521 32319.468 32692.879 32642.879 32483.997 0.705 0.017  

4 Profile -15894.541 65 2.0129 31919.081 32404.515 32339.515 32132.969 0.682 0.101  

5 Profile -15742.872 80 1.9593 31645.744 32243.201 32163.201 31908.991 0.728 0.483  

6 Profile -15645.363 95 1.7853 31480.726 32190.207 32095.207 31793.331 0.710 0.313  

7 Profile -15584.039 110 1.6912 31388.077 32209.581 32099.581 31750.041 0.671 0.588  

8 Profile -15524.898 125 1.6294 31299.795 32233.322 32108.322 31711.118 0.671 0.447  

Girls    

1 Profile -18127.375 20 3.7546 36294.750 36444.152 36424.152 36360.599 Na Na  

2 Profile -17148.408 35 2.5658 34366.816 34628.269 34593.269 34482.052 0.624 ≤ 0.001  

3 Profile -16481.320 50 2.3318 33062.640 33436.145 33386.145 33227.263 0.757 0.007  

4 Profile -16334.425 65 2.1875 32798.850 33284.406 33219.406 33012.860 0.674 0.504  

5 Profile -16220.750 80 1.9033 32601.500 33199.108 33119.108 32864.898 0.678 0.211  

6 Profile -16138.482 95 1.7497 32466.965 33176.625 33081.625 32779.749 0.693 0.240  

7 Profile -16094.422 110 1.6988 32408.844 33230.556 33120.556 32771.016 0.677 0.240  

8 Profile -16055.877 125 1.5819 32361.754 33295.516 33170.516 32773.312 0.704 ≤ 0.001  

Model LL #fp Scaling AIC CAIC BIC ABIC Entropy LRT df 

Final 3-Profile MRM           

Boys Only -16109.734 50 2.2521 32319.468 32692.879 32642.879 32483.997 0.705   

Girls Only -16481.320 50 2.3318 33062.640 33436.145 33386.145 33227.263 0.757   

Configural -39238.006 95 2.7509 78666.011 79441.430 79346.430 79044.535 0.837   

Regression (R) -39242.173 83 2.9722 78650.346 79327.817 79244.817 78981.056 0.837 6.830 12 

Structural (R,M) -39324.808 68 3.3232 78785.616 79340.653 79272.653 79056.559 0.835 119.674* 15 

Dispersion (R,M,V) -39370.172 53 3.7651 78846.344 79278.946 79225.946 79057.520 0.834 51.497* 15 

Distribution (R,M,V,P) -39372.446 51 3.7293 78846.893 79263.170 79212.170 79050.100 0.834 0.972 2 

Note. *: p ≤ .01; LL: Model LogLikelihood; #fp: Number of free parameters; Scaling = scaling factor associated with MLR loglikelihood estimates; AIC: Akaïke Information 

Criteria; CAIC: Constant AIC; BIC: Bayesian Information Criteria; ABIC: Sample-Size adjusted BIC; aLMR: Adjusted Lo-Mendell-Rubin likelihood ratio test; BLRT: 

Bootstrap Likelihood ratio test; LRT: Likelihood Ratio Test; df: Degrees of freedom associated with the LRT; R: Regressions; M: Means; V: Variances; P: Probabilities.  
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Appendix 9.10.  

Extended Presentation of GMM 

Linear GMM 

 

GMM are built from latent curve models (see Chapter 7; Bollen & Curran, 2006; McArdle & 

Epstein, 1987; Meredith & Tisak, 1990) and relax the assumption that all individuals from the sample 

are drawn from a single population. GMM thus represent longitudinal heterogeneity by the 

identification of subgroups (i.e., latent profiles) following distinct trajectories (e.g., Morin, Maïano et 

al. 2011). To start at the most basic level, let’s assume a linear growth model for outcome yit where i is 

the index for individual and t is the index for time. To this model, add c, a categorical latent variable 

with k levels (k = 1, 2, …, K) that is estimated from the data, with each individual i having a 

probability of membership in each of the k levels.  
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The k subscript indicates that most parameters are allowed to differ across profiles and that each 

profile can thus be defined by its own latent curve model with independent covariance matrices and 

mean vectors. In this equation, iyk  and iyk  respectively represent the random intercept and random 

linear slope of the trajectory for individual i in profile k; yk  and yk  represent the average 

intercept and linear slope in profile k and yik  and yik  are reflect the variability of the estimated 

intercepts and slopes across cases within profiles. yitk  represents the time- individual- and class- 

specific residual. These errors are assumed to have a mean of 0, to be uncorrelated over time, across 

cases or with the other model parameters, and are generally allowed to vary across time. The mixing 

proportion parameter kp  defines the probability that an individual belongs to class k with all 0kp   

and 
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 The variance parameters ( yik , yik ) have a mean of zero and a variance-covariance 

matrix represented by yk :  
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In these models, Time is represented by t , the factor loading matrix relating the time-specific 

indicators to the linear slope factor. Time is typically coded to reflect the passage of time and is thus a 

function of the intervals between measurement points. In the current study, the seven measurements 

points are equally spaced, and it appears reasonable to set the intercept at Time 1 [E( iyk ) = μy1k]. 

Thus, for a linear GMM, time would be coded 1 = 0, 2 = 1, 3 = 2, 4  = 3, 5 = 4 6 = 5, and 7 = 

6. Providing a complete coverage of all issues related to time codes is clearly beyond the scope of the 

current study. However, we would advocate potential users of GMM to consult Biesanz, Deeb-Sossa, 

Papadakis, Bollen, and Curran (2004) and Metha and West (2000) for more details on time codes and 

their impact on parameters estimates. Finally, these models allow the inclusion of predictors of class 

membership. The predictors may also predict the intercept, slopes, time-specific indicators and distal 

outcomes, and these relationships may be freely estimated in each latent trajectory class.  
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Quadratic GMM 

 

From this linear model, it is relatively easy to extrapolate the estimation of curvilinear 

(quadratic) GMM which simply involve the addition of one quadratic slope parameter to the model:  
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In this model (e.g., Diallo, Morin, & Parker, 2014), iyk  remains defined as in equation 2, t  

would remained coded as in the previous linear GMM, and iyk1 and iyk2 respectively represent the 

random linear slope and random quadratic slope of the of the trajectory for individual i in profile k.  

 

Latent Basis GMM 

 

In typical polynomial (linear, quadratic, etc.) specifications of GMM, time codes t are 

usually fixed and constrained to equality over groups, although only two of them need to be fixed to 0 

and 1 respectively for identification purposes, while the remaining codes can be freely estimated in 

the context of a latent basis model (Ram & Grim, 2009). Such latent basis models would globally be 

expressed as in equations 1 to 4 for the linear GMM, but t-2 time codes would be freely estimated in 

t . This model further provides the possibility to freely estimate these t-2 times codes in all profiles 

so that t  becomes tk , allowing for the extraction of trajectories differing completely in shape 

across profiles (see Morin et al., 2013 for an illustration). More precisely, rather than fixing time 

codes to reflect the passage of time and to add polynomial functions to model non-linear trends, a 

latent basis model freely estimates the time codes to reflect the optimal trajectory. For identification 

purposes, two time points need to be fixed to 0 and 1 respectively so that yk  reflects the total 

amount of change occurring between these two points. Freely estimated loadings then represent the 

proportion of the total change ( yk ) that occurred at each specific time point and significance tests 

associated with these loadings that are routinely reported in any statistical package indicate whether 

this proportion of change was significant. Here, time was coded so that the intercepts of the 

trajectories were estimated at Time 1 [E( iyk ) = μy1k; 1 = 0]. The last time point was coded 1 ( 7 = 

1). The remaining time points ( k2 , k3 , k4 , k5 , and k6 ) were freely estimated in all classes.  

 

Piecewise GMM 

 

Another flexible way to model non-linear trajectories when there is an expected transition 

point over the course of the study (school transition, job change, start of an intervention program, etc.) 

is through the use of piecewise GMM. Piecewise GMM are naturally suited to intervention studies 

were turning points can be specified as the beginning, or end, of the treatment. In these piecewise 

models, nonlinearity is through the inclusion of two interrelated linear slopes reflecting growth before 

and after the transition (e.g., Diallo & Morin, 2014). Globally, piecewise models are specified as:  
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In this model, iyk  remains defined as in equation 2, yk  remains defined as in equation 8, 

iyk1 and iyk2 respectively are linear slopes reflecting the growth occurring before and after the 

transition point, and are expressed as in Equations 6 and 7. The main difference between this model 

and the previous one is the reliance on two distinct sets of time scores t1  and t2 reflecting the 

passage of time before, and after the transition point. In the current study, the seven measurements 

points are equally spaced, and it appears reasonable to set the intercept at Time 1 [E( iyk ) = μy1k] and 

to set the transition point when the transition to secondary school occurs. Thus, for a piecewise linear 

GMM, the first set of time scores t1 would be {0, 1, 2, 2, 2, 2, 2} for time 11 t  to 71 t , and reflect 

linear growth between the first three time points (after which the equal loadings allow the remaining 

growth information to be absorbed by the second linear slope factor). Then, the second set of time 

scores t2 would be {0, 0, 0, 1, 2, 3, 4} for time 12 t  to 72 t , reflecting linear growth between the 

last four time points (before which the 0 loadings allow the preceding growth to be absorbed by the 

first linear slope factor). 

It should be noted that there is no need for yk2  to be significantly different from yk1  or 

for yik2  to be significantly different from yik1 . Indeed, it may be far more interesting to verify 

whether the predictors or outcomes of iyk1  differ from those of iyk2 . Similarly, although turning 

points are typically determined a priori, it is also possible to empirically locate the turning point and 

even allowing it to differ across subjects (e.g., to study the latency of treatment effects, e.g., Cudeck & 

Harring, 2007; Cudeck & Klebe, 2002; Kholi, Harring, & Hancock, 2013; Kwok, Luo, & West, 2010).  

 

Additional non-linear GMM specifications 

 

 Latent curve models, and by extension GMMs, are quite flexible at modeling various 

functional forms. We have elected here to focus on the most common (linear and quadratic), and to 

illustrate two that we considerer to be quite flexible and thus highly useful across many contexts 

(latent basis and piecewise). However, many additional functional forms can be estimated. Although a 

complete coverage of these forms would be well beyond the scope of the present chapter, we suggest 

the following references to interested readers: Blozis, 2007; Browne and DuToit, 1991; Grimm, Ram, 

and Hamagami, 2011; Grimm et al., 2010; Ram and Grimm, 2007, 2009.  

 

Restricted parameterisations of GMM and implicit invariance assumptions 

 

As noted, the k subscript associated with most model parameters indicates that most parameters 

are allowed to differ across profiles so that each profile can thus be defined by its own latent curve 

model. However, fully variant GMM are seldom estimated. This may in part be related to the fact that 

more complex models run more frequently into estimation and convergence problems. But this is also 

likely to be related to the popularity of simpler more restricted parameterizations (see Morin, Maïano, 

et al., 2011 for an extensive discussion). Nagin’s (1999) group-based latent class growth analysis 

(LCGA) is arguably the most widely known of these restricted parameterizations. In LCGA, the 

variances of the growth factors (e.g., iyk , iyk1 , iyk2 ) are constrained to be zero, thus taking out the 

latent variance-covariance matrix from the model ( yk  = 0). In this sense, LCGA is essentially a 

restricted form of GMM in which all members of a profile are assumed to follow the same trajectory. 

Typically, LCGA also assumes thee time-specific residuals to be equal across profiles 

( yityitk   ).Another typically used restricted parameterisations of GMM is related to the defaults of 

the Mplus software (Muthén & Muthén, 2014), which specify yk , yk1 and yk2  to be freely 

estimated in all profiles but constrain the latent variance-covariance parameters as well as the time-

specific residuals to be equal across the profiles ( yyk   and yityitk   ).  
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Although these restrictions are common, simulation studies have shown that similar restrictions 

could result in the over-extraction of latent classes and biased parameter estimates in the context of 

mixture models more generally (e.g., Bauer & Curran, 2004; Enders & Tofighi, 2008; Lubke & 

Muthén, 2007; Lubke & Neale, 2006, 2008; Magidson & Vermunt, 2004). In discussing the likely 

impact and meaning of these different restrictions, Morin, Maïano et al. (2011) presented them as 

untested implicit invariance assumptions that are unlikely to hold in real life and generally fails to be 

supported when empirically tested. Using a real data set, they further showed that relying on such 

restricted parameterizations was likely to result in drastically changed substantive conclusions. 

Unfortunately, arguments supporting the adequacy of these restricted parameterizations are seldom 

provided in applied research, and tests of these assumptions (which are easy to conduct using the 

information criteria and LRTs) are almost never implemented. This is worrisome, as these restrictions 

may substantively change the interpretations of the results. Thus, whenever possible, we suggest that 

GMM models be estimated with fully independent within-profile models parameters: yk , yk1 , 

yk2 , yik , yik1 , yik2 , yk , yitk , and even tk  in latent basis models.  

 

This is the approach taken in the present chapter. However, as we already noted, more complex 

models tend to frequently converge on improper solutions, to converge on local maximum, or not to 

converge at all. These problems, when they cannot be solved by using the strategies proposed in 

Appendix 9.2 or in the chapter (see the section on piecewise GMM), suggest that the model may have 

been overparameterized in terms of requesting too many latent profiles, or allowing too many 

parameters to differ across profiles so that more parsimonious models may be superior (Bauer & 

Curran, 2003; Chen et al., 2001; Henson et al., 2007). Should GMM users face such problems, we 

suggest that the following sequence of constraints should be implemented: (1) yitk  = yit ; (2) 

yk1 , yk2 , yk21 = y1 , y2 , y21 ; (3) yk  = y ; (4) yk  = 0. However, this 

sequence should not be followed blindly and should be adapted to the specific research question that 

is pursued, and to the specific research context. For instance, in some context research the ability to 

investigate yitk  is even more critical than the ability to investigate yk  (for examples, see Morin et 

al., 2012, 2013). Similarly, although we do not recommend the use of LCGA in general, there are 

some specific research contexts where the sample size makes it impossible to use alternative 

parameterisations and where LCGA provides the only way to obtain meaningful results.  
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Appendix 9.11.  

Results from the GMM  

Model LL #fp Scaling AIC CAIC BIC ABIC Entropy aLMR BLRT 

Latent Basis Models of Cardiovascular Fitness       

1 Profile -23492.749 17 1.6172 47019.499 47159.017 47142.017 47087.993 Na Na Na 

2 Profile -19884.348 35 1.9214 39838.696 40125.939 40090.939 39979.714 0.445 ≤ 0.001 ≤ 0.001 

3 Profile -18476.234 53 2.3299 37058.468 37493.435 37440.435 37272.009 0.442 0.030 ≤ 0.001 

4 Profile -17362.897 71 1.9411 34867.795 35450.487 35379.487 35153.860 0.522 0.324 ≤ 0.001 

5 Profile -16666.651 89 1.6119 33511.302 34241.719 34152.719 33869.890 0.512 0.162 ≤ 0.001 

Unconstrained Piecewise Models of Physical Strength        

1 Profile -21076.156 16 1.4800 42184.311 42315.622 42299.622 42248.776 Na Na Na 

2 Profile -18848.542 33 1.2236 37763.084 38033.913 38000.913 37896.044 0.550 ≤ 0.001 ≤ 0.001 

3 Profile -18346.297 50 1.2111 36792.593 37202.940 37152.940 36994.047 0.496 ≤ 0.001 ≤ 0.001 

4 Profile -17954.425 67 1.3227 36042.851 36592.716 36525.716 36312.799 0.603 ≤ 0.001 ≤ 0.001 

5 Profile -17739.077 84 1.4106 35646.153 36335.536 36251.536 35984.596 0.507 0.046 ≤ 0.001 

Constrained Piecewise Models of Physical Strength        

1 Profile -21076.156 16 1.4800 42184.311 42315.622 42299.622 42248.776 Na Na Na 

2 Profile -18850.562 33 1.2035 37767.124 38037.953 38004.953 37900.083 0.549 Na ≤ 0.001 

3 Profile -18445.386 50 1.4659 36990.773 37401.119 37351.119 37192.227 0.704 Na ≤ 0.001 

4 Profile -18182.396 67 1.2976 36498.793 37048.657 36981.657 36768.741 0.599 Na ≤ 0.001 

5 Profile -17987.048 84 1.2718 36142.095 36831.478 36747.478 36480.538 0.521 Na ≤ 0.001 

Note. *: p ≤ .01; LL: Model LogLikelihood; #fp: Number of free parameters; Scaling = scaling factor associated with MLR loglikelihood estimates; AIC: Akaïke Information 

Criteria; CAIC: Constant AIC; BIC: Bayesian Information Criteria; ABIC: Sample-Size adjusted BIC; aLMR: Adjusted Lo-Mendell-Rubin likelihood ratio test; BLRT: 

Bootstrap Likelihood ratio test; LRT: Likelihood Ratio Test; df: Degrees of freedom associated with the LRT. 
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Appendix 9.12.  

Parameters estimates from the final Latent Basis GMM 

Parameter Profile 1 (U-Shaped) Profile 2 (Increasing) Profile 3 (Low) 

 Estimate (t) Estimate (t) Estimate (t)  

Intercept mean 0.062 (2.000)* -0.015 (-0.567) -0.050 (-1.913) 

Slope mean 0.023 (2.035)* 0.028 (2.101)* 0.001 (0.144) 

Intercept variability (SD = √σ) 0.937 (17.681)** 0.939 (22.520)** 0.794 (12.404)** 

Slope variability (SD = √σ) 0.152 (5.825)** 0.677 (17.053)** 0.402 (4.336)** 

Intercept-slope correlation -0.273 (-11.340)** -0.302 (-14.804)** -0.139 (-3.274)** 

Loading Grade 4 (
1 ) 0.000 (NA) 0.000 (NA) 0.000 (NA) 

Loading Grade 5 ( k2 ) -0.239 (-7.093)** -0.014 (-1.251) 0.120 (3.008)** 

Loading Grade 6 ( k3 ) -0.508 (-5.416)** 0.215 (5.602)** 0.802 (7.731)** 

Loading Grade 7 ( k4 ) -0.314 (-2.525)* 0.626 (12.955)** 1.402 (10.119)** 

Loading Grade 8 ( k5 ) 0.161 (1.711) 0.885 (23.948)** 1.486 (13.620)** 

Loading Grade 9 ( k6 ) 0.800 (19.942)** 1.021 (113.909)** 1.156 (38.834)** 

Loading Grade 10 ( 7 ) 1.000 (NA) 1.000 (NA) 1.000 (NA) 

SD(εyi1) 0.332 (17.002)** 0.237 (16.361)** 0.247 (9.100)** 

SD(εyi2) 0.239 (11.741)** 0.122 (6.425)** 0.077 (1.577) 

SD(εyi3) 0.148 (7.015)** 0.161 (10.137)** 0.167 (12.294)** 

SD(εyi4) 0.221 (7.444)** 0.173 (15.583)** 0.161 (9.430)** 

SD(εyi5) 0.161 (8.133)** 0.130 (10.050)** 0.071 (4.486)** 

SD(εyi6) 0.130 (6.619)** 0.105 (6.989)** 0.161 (8.838)** 

SD(εyi7) 0.192 (7.095)** 0.138 (10.632)** 0.197 (10.032)** 

Note. * p ≤ .05; ** p ≤ .01; t = Estimate / standard error of the estimate (t value are computed from original 

variance estimate and not from their square roots); NA = Not applicable; SD(εyit) = Standard deviations of the 

time-specific residuals; We present the square roots of the estimates of variability (trajectory factors, time-

specific residuals) so that these results can be interpreted in the same units as the constructs used in these models 

(here, standardized factor scores).  
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Appendix 9.13.  

Parameters estimates from the final Piecewise GMM 

Parameter Profile 1 (Low-Decreasing) Profile 2 (Increasing) Profile 3 (High-Stable) Profile 4 (Mid-Stable) 

 Estimate (t) Estimate (t) Estimate (t)  Estimate (t)  

Intercept mean -0.323 (-9.926)** 0.044 (0.700) 0.140 (8.909)** -0.038 (-0.744) 

First slope mean -0.028 (-4.738)** 0.067 (2.603)** -0.002 (-0.795) -0.006 (-1.883) 

Second slope mean -0.029 (-5.040)** 0.000 (0.065) -0.001 (-0.344) -0.003 (-0.567) 

Intercept variability (SD = √σ) 1.063 (25.878)** 0.872 (9.713)** 0.801 (32.812)** 0.609 (4.769)** 

First slope variability (SD = √σ) 0.210 (22.018)** 0.303 (5.441)** 0.138 (10.093)** 0.045 (4.968)** 

Second slope variability (SD = √σ) 0.195 (17.246)** 0.084 (8.043)** 0.095 (23.060)** 0.045 (4.202)** 

Intercept-first slope correlation -0.060 (-2.471)* -0.371 (-5.491)** -0.070 (-2.610)** 0.824 (18.022)** 

Intercept-second slope correlation -0.268 (-11.568)** -0.192 (-3.320)** -0.301 (-16.973)** 0.793 (0.067)** 

First-second slopes correlations 0.036 (1.237) -0.396 (-5.462)** 0.017 (0.594) 0.941 (0.043)** 

SD(εyi1) 0.000 (0.000) 0.000 (0.000) 0.084 (4.005)** 0.000 (0.000) 

SD(εyi2) 0.200 (21.041)** 0.300 (4.510)** 0.141 (12.376)** 0.032 (2.420)* 

SD(εyi3) 0.000 (0.000) 0.371 (3.567)** 0.100 (4.931)** 0.000 (0.000) 

SD(εyi4) 0.381 (20.853)** 0.148 (2.827)** 0.179 (18.466)** 0.045 (2.491)* 

SD(εyi5) 0.345 (22.227)** 0.152 (4.862)** 0.161 (18.167)** 0.063 (3.051)** 

SD(εyi6) 0.195 (8.743)** 0.130 (8.560)** 0.114 (16.735)** 0.100 (3.370)** 

SD(εyi7) 0.329 (11.157)** 0.000 (0.000) 0.134 (9.282)** 0.197 (4.180)** 

Note. t = Estimate / standard error of the estimate (t value are computed from original variance estimate and not from their square roots); NA = Not applicable; SD(εyit) = 

Standard deviations of the time-specific residuals; We present the square roots of the estimates of variability (trajectory factors, time-specific residuals) so that these results 

can be interpreted in the same units as the constructs used in these models (here, standardized factor scores); * p ≤ .05; ** p ≤ .01.  
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Appendix 9.14. Basic Mplus Input Set Up for Mixture Models 
 

In Mplus input files, all section of text preceded by and exclamation point are annotations. Here, we 

will present the first three sections of the Mplus input file (DATA, VARIABLE, ANALYSIS), as well 

as the last (OUTPUT) to avoid repeating them in the remaining sections.  
 

The first part of the Mplus input file allows the user to identify the data set that is to be used in the 

analysis. If the data set is in the same folder as the input file, only the name of the data set needs to be 

indicated. If the data set is in another folder, then the full path needs to be specified.  
 

DATA:  

FILE IS DataSing.dat; 
 

The next section is the VARIABLE section. The NAMES functions precedes a list of all variables 

included in the data set, in their order of appearance. Then, the USEVARIABLES functions defines 

the specific variables to be used in the analysis. The MISSING function defines the code that is used 

in the data set to identify missing variables (we recommend using the same missing data code for all 

variables). The IDVARIABLE function defines the unique identifier for participants. The CLUSTER 

function defines the unique identifier for the clustering (level 2) variable to be controlled in the 

analysis (here, the school) and should only be included when the user wants to control for clustering. 

The CLASSES function defines the number of latent profiles required in the analyses (here 5) and 

thus defines a latent categorical variable (here labeled “c”) with five distinct levels. Finally, the 

USEOBS function is used to estimate the model using only a subset of the participants. Here, we 

request that the estimation be limited to participants for whom the variable SEX (representing gender) 

has a value of 2 (corresponding to females). This function is simply taken out when the model is to be 

estimated on the full sample.  
 

VARIABLE: 

NAMES = Index ID Sex P4Code P5Code P6Code S1Code S2Code S3Code S4Code ZP4Sit ZP4Flex ZP4snr 

ZP4shut ZP4sbj ZP4Run ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ZP6Sit ZP6Flex ZP6snr ZP6shut 

ZP6sbj ZP6Run ZS1Sit ZS1Flex ZS1snr ZS1shut ZS1sbj ZS1Run ZS2Sit ZS2Flex ZS2snr ZS2shut ZS2sbj 

ZS2Run ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run ZS4Sit ZS4Flex ZS4snr ZS4shut ZS4sbj ZS4Run 

ZBMI_P4 ZBMI_P5 ZBMI_P6 ZBMI_S1 ZBMI_S2 ZBMI_S3 ZBMI_S4;  

USEVARIABLES = ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run;  

MISSING = all (-99999); 

IDVARIABLE = ID; 

CLUSTER = P5Code; 

CLASSES = c (5); 

USEOBS Sex EQ 2; 
 

The next section covers the type of analyses to be conducted. Here, we request the estimation of a 

mixture model (TYPE = MIXTURE) including a correction for the nesting of students within schools 

(TYPE = COMPLEX) and using the robust maximum likelihood estimator (ESTIMATOR = MLR). 

The function STARTS = 5000 200 requests 5000 sets of random start values, and that the best 200 of 

these starts be kept for final stage optimization. The function STITERATIONS = 100 requests that all 

random starts be allowed a total of 100 iterations.  
 

Analysis: 

TYPE = MIXTURE COMPLEX;  

ESTIMATOR = MLR; 

STARTS = 5000 200; STITERATIONS = 100; 
 

The final section of the input covers specific sections of the output to be requested. Here we request 

standardized model parameters (STDYX), sample statistics (SAMPSTAT), confidence intervals 

(CINTERVAL), the starts values corresponding to the solution (SVALUES), the residuals 

(RESIDUAL), the arrays of parameter specifications and starting values (TECH1), the profile-specific 

sample characteristics (TECH7), the LMR and aLMR (TECH11), and the BLRT (TECH14).  
 

OUTPUT: 

STDYX SAMPSTAT CINTERVAL SVALUES RESIDUAL TECH1 TECH7 TECH11 TECH14; 
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Appendix 9.15. Estimation of a 5-Profile LPA solution 

 

In mixture models, the MODEL section includes an %OVERALL% section describing the global 

relations estimated among the constructs, and profile specific statements (here %c#1% to %c#5%, 

where c corresponds to the labeled used to define the categorical latent variable in the CLASSES 

section of the VARIABLE: section, and the number 1 to k refers to the specific value of this variable 

(the specific profile). Here, no relations are estimated between the variables so nothing appears in the 

%OVERALL% section. The profile specific sections request that the means (indicated by the name of 

the variable between brackets []) and variances (indicated simply by the names of the variables) of the 

indicators be freely estimated in all profiles. To estimate profiles with variances that are equal across 

profiles, the statements (e.g., “ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run”) referring to the 

variances of the indicators simply need to be taken out.  

 

MODEL: 

%OVERALL% 

%c#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run];  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  

%c#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run];  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  

%c#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run];  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  

%c#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run];  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  

%c#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run];  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  
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Appendix 9.16. Estimation of a 5-Profile Factor Mixture Solution 

 

Here we present an input for the estimation of the global factor mixture model described in Morin and 

Marsh (2014) and described in Appendix 9.4. as providing a way to control for global levels shared 

among the indicator in order to estimate clearer latent profiles. The only difference with the previous 

model is the introduction of a common factor model in the %OVERALL% section of the input (as this 

factor model is specified as invariant across profiles, nothing needs to be added to the profile-specific 

statements). Here, the common factor is labeled G, and defined by the various indicators (the 

command BY defines factor loadings). All loadings on this factor are freely estimated (the * 

associated with the first indicators is to override the Mplus default of constraining the loading of the 

first factor to be 1 for identification purposes, which requires its variance to be fixed to 1 (the @ is 

used to fix a parameter to a specific value). Because the intercepts of the indicators of this factor will 

be freely estimated across profiles, the factor means needs to be fixed to 0 for identification purposes. 

 

MODEL: 

%OVERALL% 

G BY ZP5Sit* ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  

G@1; 

[G@0]; 

%c#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run];  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  

%c#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run];  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  

%c#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run];  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  

%c#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run];  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  

%c#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run];  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run ;  
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Appendix 9.17.  

Estimation of a 5-Profile LPA in Multiple Observed Groups (Configural Invariance) 

In the VARIABLE section of the input, the multiple observed groups across which the model will be 

estimated needs to be defined. In mixture models, this is done using the KNOWCLASS function, 

which uses a label (here we use cg) to define this new grouping variable, and the levels of this new 

grouping variables are defined as: (a) including participants with a value of 1 (male) on the variable 

SEX, and (b) including participants with a value of 2 (female) on the variable SEX. The mixture 

model will now considered that there are two latent grouping variables, C estimated as part of the 

model estimation (the profiles) and having k levels (here we are still working with a solution 

including 5 profiles) and CG reflecting the observed subgroups (gender) which has 2 levels. 

Participants are allowed to be cross classified on these two grouping variables.  
 

KNOWCLASS = cg (Sex = 1 Sex = 2);  

CLASSES = cg (2) c (5); 
 

The %OVERALL% section of the model section, are used to indicate that the class sizes are freely 

estimated in all observed samples (males and females) using the ON function (reflecting regressions) 

indicating that profile membership is conditional on gender. Only k-1 statements are required (i.e., 4 

for a 5-profile model). Then, profile-specific statements now need to be defined using a combination 

of both the known classes CG and the estimated classes C. Labels in parentheses identify parameters 

that are estimated to be equal across groups. Here, even though all parameters are labeled, none of 

these labels are share between groups, so that the means and variances are freely estimated in all 

combinations of profiles and gender. Lists of constraints (e.g., m1-m3) apply to the parameters in 

order of appearance (e.g., m1 applies to ZP5Sit, m2 to ZP5Flex, m3 to ZP5snr and so on).  

%OVERALL% 

c#1 on cg#1; c#2 on cg#1; c#3 on cg#1; c#4 on cg#1; 

%cg#1.c#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v1-v6);  

%cg#1.c#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m7-m12);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v7-v12);  

%cg#1.c#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m13-m18);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v13-v18);  

%cg#1.c#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m19-m24);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v19-v24);  

%cg#1.c#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m25-m30);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v25-v30);  

 

%cg#2.c#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (mm1-mm6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv1-vv6);  

%cg#2.c#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (mm7-mm12);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv7-vv12);  

%cg#2.c#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (mm13-mm18);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv13-vv18);  

%cg#2.c#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (mm19-mm24);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv19-vv24);  

%cg#2.c#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (mm25-mm30);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv25-vv30); 
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Appendix 9.18.  

Estimation of a 5-Profile LPA in Multiple Observed Groups (Structural Invariance) 

 

The only difference between this model and the previous one is that the means are constrained to be 

equal across gender within each profile using identical labels in parentheses.  

 

%OVERALL% 

c#1 on cg#1; c#2 on cg#1; c#3 on cg#1; c#4 on cg#1; 

%cg#1.c#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v1-v6);  

%cg#1.c#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m7-m12);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v7-v12);  

%cg#1.c#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m13-m18);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v13-v18);  

%cg#1.c#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m19-m24);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v19-v24);  

%cg#1.c#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m25-m30);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v25-v30);  

 

%cg#2.c#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv1-vv6);  

%cg#2.c#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m7-m12);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv7-vv12);  

%cg#2.c#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m13-m18);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv13-vv18);  

%cg#2.c#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m19-m24);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv19-vv24);  

%cg#2.c#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m25-m30);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv25-vv30); 
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Appendix 9.19.  

Estimation of a 5-Profile LPA in Multiple Observed Groups (Dispersion Invariance) 

 

The only difference between this model and the previous one is that the variances are also constrained 

to be equal across gender within each profile using identical labels in parentheses.  

 

%OVERALL% 

c#1 on cg#1; c#2 on cg#1; c#3 on cg#1; c#4 on cg#1; 

%cg#1.c#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v1-v6);  

%cg#1.c#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m7-m12);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v7-v12);  

%cg#1.c#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m13-m18);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v13-v18);  

%cg#1.c#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m19-m24);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v19-v24);  

%cg#1.c#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m25-m30);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v25-v30);  

 

%cg#2.c#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v1-v6);  

%cg#2.c#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m7-m12);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v7-v12);  

%cg#2.c#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m13-m18);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v13-v18);  

%cg#2.c#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m19-m24);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v19-v24);  

%cg#2.c#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m25-m30);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v25-v30); 
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Appendix 9.20.  

Estimation of a 5-Profile LPA in Multiple Observed Groups (Distribution Invariance) 

 

Given that the dispersion invariance of the model was not supported, this model was built from the 

model of structural invariance. However, to build it from the model of dispersion invariance, one only 

needs to reinstate the invariance constraints on the variance parameters. The only difference between 

this model and the model of structural invariance one is that nothing appears in the %OVERALL% 

section of the input to reflect the fact that the sizes of the profiles are no longer conditional on gender.  

 

%OVERALL% 

%cg#1.c#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v1-v6);  

%cg#1.c#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m7-m12);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v7-v12);  

%cg#1.c#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m13-m18);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v13-v18);  

%cg#1.c#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m19-m24);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v19-v24);  

%cg#1.c#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m25-m30);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v25-v30);  

 

%cg#2.c#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv1-vv6);  

%cg#2.c#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m7-m12);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv7-vv12);  

%cg#2.c#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m13-m18);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv13-vv18);  

%cg#2.c#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m19-m24);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv19-vv24);  

%cg#2.c#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m25-m30);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (vv25-vv30); 
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Appendix 9.21.  

Estimation of a 5-Profile LPA in Multiple Observed Groups, Including Predictors with Effects 

Freely Estimated Across Gender.  

 

This models uses the SVALUES associated with the previous model of dispersion invariance 

(specified as * followed by the value of the estimated parameters), and simply include covariates 

effects on profile membership (c#1-c#4 ON ZBMI_P4;, reflecting the idea that profile membership is 

conditional on BMI). To allow these effects to be freely estimated across gender, they need to be 

constrained to 0 in the %OVERALL% section, and freely estimated in both gender groups in a new 

section of the input specifically referring to CG. See all sections in bold.  

 

%OVERALL% 

[ cg#1*-0.00217 ]; [ c#1*-0.49034 ]; [ c#2*0.64971 ]; [ c#3*0.38954 ]; [ c#4*-0.53810 ]; 

c#1-c#4 ON ZBMI_P4@0; 

%CG#1.C#1% 

[ zp5sit*-1.03305 ] (m1); [ zp5flex*-1.08704 ] (m2); 

[ zp5snr*-0.42895 ] (m3); [ zp5shut*1.35821 ] (m4); 

[ zp5sbj*-1.35181 ] (m5); [ zp5run*1.29563 ] (m6); 

zp5sit*0.93220 (v1); zp5flex*0.14704 (v2); 

zp5snr*0.79632 (v3); zp5shut*1.09086 (v4); 

zp5sbj*0.74147 (v5); zp5run*0.68367 (v6); 

%CG#1.C#2% 

[ zp5sit*-0.26254 ] (m7); [ zp5flex*-0.45790 ] (m8); 

[ zp5snr*-0.64127 ] (m9); [ zp5shut*0.26265 ] (m10); 

[ zp5sbj*-0.34736 ] (m11); [ zp5run*0.27622 ] (m12); 

zp5sit*0.59074 (v7); zp5flex*0.36366 (v8); 

zp5snr*0.21725 (v9); zp5shut*0.35089 (v10); 

zp5sbj*0.24847 (v11); zp5run*0.57875 (v12); 

%CG#1.C#3% 

[ zp5sit*0.58893 ] (m13); [ zp5flex*0.19735 ] (m14); 

[ zp5snr*-0.39566 ] (m15); [ zp5shut*-0.74653 ] (m16); 

[ zp5sbj*0.72653 ] (m17); [ zp5run*-0.67554 ] (m18); 

zp5sit*0.68416 (v13); zp5flex*0.42929 (v14); 

zp5snr*0.22035 (v15); zp5shut*0.43196 (v16); 

zp5sbj*0.58758 (v17); zp5run*0.46840 (v18); 

%CG#1.C#4% 

[ zp5sit*0.72479 ] (m19); [ zp5flex*1.56628 ] (m20); 

[ zp5snr*1.47831 ] (m21); [ zp5shut*-0.82727 ] (m22); 

[ zp5sbj*0.98243 ] (m23); [ zp5run*-0.85448 ] (m24); 

zp5sit*0.54772 (v19); zp5flex*0.37416 (v20); 

zp5snr*0.26672 (v21); zp5shut*0.60201 (v22); 

zp5sbj*0.73433 (v23); zp5run*0.36566 (v24); 

%CG#1.C#5% 

[ zp5sit*-0.16071 ] (m25); [ zp5flex*0.38795 ] (m26); 

[ zp5snr*1.20871 ] (m27); [ zp5shut*0.24698 ] (m28); 

[ zp5sbj*-0.15526 ] (m29); [ zp5run*0.17023 ] (m30); 

zp5sit*0.69737 (v25); zp5flex*1.03973 (v26); 

zp5snr*0.27897 (v27); zp5shut*0.43848 (v28); 

zp5sbj*0.41388 (v29); zp5run*0.55283 (v30); 

%CG#2.C#1% 

[ zp5sit*-1.03305 ] (m1); [ zp5flex*-1.08704 ] (m2); 

[ zp5snr*-0.42895 ] (m3); [ zp5shut*1.35821 ] (m4); 
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[ zp5sbj*-1.35181 ] (m5); [ zp5run*1.29563 ] (m6); 

zp5sit*1.03814 (vv1); zp5flex*0.09550 (vv2); 

zp5snr*0.86685 (vv3); zp5shut*1.14245 (vv4); 

zp5sbj*0.83652 (vv5); zp5run*1.01864 (vv6); 

%CG#2.C#2% 

[ zp5sit*-0.26254 ] (m7); [ zp5flex*-0.45790 ] (m8); 

[ zp5snr*-0.64127 ] (m9); [ zp5shut*0.26265 ] (m10); 

[ zp5sbj*-0.34736 ] (m11); [ zp5run*0.27622 ] (m12); 

zp5sit*0.78006 (vv7); zp5flex*0.39196 (vv8); 

zp5snr*0.20980 (vv9); zp5shut*0.49815 (vv10); 

zp5sbj*0.42562 (vv11); zp5run*0.60355 (vv12); 

%CG#2.C#3% 

[ zp5sit*0.58893 ] (m13); [ zp5flex*0.19735 ] (m14); 

[ zp5snr*-0.39566 ] (m15); [ zp5shut*-0.74653 ] (m16); 

[ zp5sbj*0.72653 ] (m17); [ zp5run*-0.67554 ] (m18); 

zp5sit*0.56603 (vv13); zp5flex*0.49250 (vv14); 

zp5snr*0.24091 (vv15); zp5shut*0.51077 (vv16); 

zp5sbj*0.60299 (vv17); zp5run*0.57497 (vv18); 

%CG#2.C#4% 

[ zp5sit*0.72479 ] (m19); [ zp5flex*1.56628 ] (m20); 

[ zp5snr*1.47831 ] (m21); [ zp5shut*-0.82727 ] (m22); 

[ zp5sbj*0.98243 ] (m23); [ zp5run*-0.85448 ] (m24); 

zp5sit*0.78422 (vv19); zp5flex*0.72949 (vv20); 

zp5snr*0.29214 (vv21); zp5shut*0.53613 (vv22); 

zp5sbj*0.63470 (vv23); zp5run*0.62658 (vv24); 

%CG#2.C#5% 

[ zp5sit*-0.16071 ] (m25); [ zp5flex*0.38795 ] (m26); 

[ zp5snr*1.20871 ] (m27); [ zp5shut*0.24698 ] (m28); 

[ zp5sbj*-0.15526 ] (m29); [ zp5run*0.17023 ] (m30); 

zp5sit*0.78790 (vv25); zp5flex*1.14398 (vv26); 

zp5snr*0.31522 (vv27); zp5shut*0.58147 (vv28); 

zp5sbj*0.49954 (vv29); zp5run*0.68549 (vv30); 

MODEL cg: 

%cg#1% 

c#1-c#4 ON  ZBMI_P4; 

%cg#2% 

c#1-c#4 ON  ZBMI_P4; 
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Appendix 9.22.  

Estimation of a 5-Profile LPA in Multiple Observed Groups, Including Predictors with Effects 

Constrained to Invariance Across Gender (Deterministic Invariance).  

This model is almost identical to the previous one. In order for the effects of the predictors to be 

constrained to invariance across genders, they simply need to be specified as freely estimated in the 

%OVERALL% section (c#1-c#4 ON ZBMI_P4;), while taking out the gender specific sections.  

 

%OVERALL% 

[ cg#1*-0.00217 ]; [ c#1*-0.49034 ]; [ c#2*0.64971 ]; [ c#3*0.38954 ]; [ c#4*-0.53810 ]; 

c#1-c#4 ON ZBMI_P4; 

%CG#1.C#1% 

[ zp5sit*-1.03305 ] (m1); [ zp5flex*-1.08704 ] (m2); 

[ zp5snr*-0.42895 ] (m3); [ zp5shut*1.35821 ] (m4); 

[ zp5sbj*-1.35181 ] (m5); [ zp5run*1.29563 ] (m6); 

zp5sit*0.93220 (v1); zp5flex*0.14704 (v2); 

zp5snr*0.79632 (v3); zp5shut*1.09086 (v4); 

zp5sbj*0.74147 (v5); zp5run*0.68367 (v6); 

%CG#1.C#2% 

[ zp5sit*-0.26254 ] (m7); [ zp5flex*-0.45790 ] (m8); 

[ zp5snr*-0.64127 ] (m9); [ zp5shut*0.26265 ] (m10); 

[ zp5sbj*-0.34736 ] (m11); [ zp5run*0.27622 ] (m12); 

zp5sit*0.59074 (v7); zp5flex*0.36366 (v8); 

zp5snr*0.21725 (v9); zp5shut*0.35089 (v10); 

zp5sbj*0.24847 (v11); zp5run*0.57875 (v12); 

%CG#1.C#3% 

[ zp5sit*0.58893 ] (m13); [ zp5flex*0.19735 ] (m14); 

[ zp5snr*-0.39566 ] (m15); [ zp5shut*-0.74653 ] (m16); 

[ zp5sbj*0.72653 ] (m17); [ zp5run*-0.67554 ] (m18); 

zp5sit*0.68416 (v13); zp5flex*0.42929 (v14); 

zp5snr*0.22035 (v15); zp5shut*0.43196 (v16); 

zp5sbj*0.58758 (v17); zp5run*0.46840 (v18); 

%CG#1.C#4% 

[ zp5sit*0.72479 ] (m19); [ zp5flex*1.56628 ] (m20); 

[ zp5snr*1.47831 ] (m21); [ zp5shut*-0.82727 ] (m22); 

[ zp5sbj*0.98243 ] (m23); [ zp5run*-0.85448 ] (m24); 

zp5sit*0.54772 (v19); zp5flex*0.37416 (v20); 

zp5snr*0.26672 (v21); zp5shut*0.60201 (v22); 

zp5sbj*0.73433 (v23); zp5run*0.36566 (v24); 

%CG#1.C#5% 

[ zp5sit*-0.16071 ] (m25); [ zp5flex*0.38795 ] (m26); 

[ zp5snr*1.20871 ] (m27); [ zp5shut*0.24698 ] (m28); 

[ zp5sbj*-0.15526 ] (m29); [ zp5run*0.17023 ] (m30); 

zp5sit*0.69737 (v25); zp5flex*1.03973 (v26); 

zp5snr*0.27897 (v27); zp5shut*0.43848 (v28); 

zp5sbj*0.41388 (v29); zp5run*0.55283 (v30); 

%CG#2.C#1% 

[ zp5sit*-1.03305 ] (m1); [ zp5flex*-1.08704 ] (m2); 

[ zp5snr*-0.42895 ] (m3); [ zp5shut*1.35821 ] (m4); 

[ zp5sbj*-1.35181 ] (m5); [ zp5run*1.29563 ] (m6); 

zp5sit*1.03814 (vv1); zp5flex*0.09550 (vv2); 

zp5snr*0.86685 (vv3); zp5shut*1.14245 (vv4); 

zp5sbj*0.83652 (vv5); zp5run*1.01864 (vv6); 
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%CG#2.C#2% 

[ zp5sit*-0.26254 ] (m7); [ zp5flex*-0.45790 ] (m8); 

[ zp5snr*-0.64127 ] (m9); [ zp5shut*0.26265 ] (m10); 

[ zp5sbj*-0.34736 ] (m11); [ zp5run*0.27622 ] (m12); 

zp5sit*0.78006 (vv7); zp5flex*0.39196 (vv8); 

zp5snr*0.20980 (vv9); zp5shut*0.49815 (vv10); 

zp5sbj*0.42562 (vv11); zp5run*0.60355 (vv12); 

%CG#2.C#3% 

[ zp5sit*0.58893 ] (m13); [ zp5flex*0.19735 ] (m14); 

[ zp5snr*-0.39566 ] (m15); [ zp5shut*-0.74653 ] (m16); 

[ zp5sbj*0.72653 ] (m17); [ zp5run*-0.67554 ] (m18); 

zp5sit*0.56603 (vv13); zp5flex*0.49250 (vv14); 

zp5snr*0.24091 (vv15); zp5shut*0.51077 (vv16); 

zp5sbj*0.60299 (vv17); zp5run*0.57497 (vv18); 

%CG#2.C#4% 

[ zp5sit*0.72479 ] (m19); [ zp5flex*1.56628 ] (m20); 

[ zp5snr*1.47831 ] (m21); [ zp5shut*-0.82727 ] (m22); 

[ zp5sbj*0.98243 ] (m23); [ zp5run*-0.85448 ] (m24); 

zp5sit*0.78422 (vv19); zp5flex*0.72949 (vv20); 

zp5snr*0.29214 (vv21); zp5shut*0.53613 (vv22); 

zp5sbj*0.63470 (vv23); zp5run*0.62658 (vv24); 

%CG#2.C#5% 

[ zp5sit*-0.16071 ] (m25); [ zp5flex*0.38795 ] (m26); 

[ zp5snr*1.20871 ] (m27); [ zp5shut*0.24698 ] (m28); 

[ zp5sbj*-0.15526 ] (m29); [ zp5run*0.17023 ] (m30); 

zp5sit*0.78790 (vv25); zp5flex*1.14398 (vv26); 

zp5snr*0.31522 (vv27); zp5shut*0.58147 (vv28); 

zp5sbj*0.49954 (vv29); zp5run*0.68549 (vv30); 
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Appendix 9.23.  

Estimation of a 5-Profile LPA in Multiple Observed Groups, Including Distal Outcomes with 

Relations Freely Estimated Across Gender.  

 

This model also uses the SVALUES associated with the model of distributional invariance. Here, we 

simply request the free estimation of the distal outcome means in all profiles x genders ([ZBMI_P6]). 

We also use labels in parentheses to identify these new parameters, which will then be used in a new 

MODEL CONSTRAINT section to request tests of the significance of mean differences between 

profiles and genders.  
 

%OVERALL% 

[ cg#1*-0.00217 ]; [ c#1*-0.49034 ]; [ c#2*0.64971 ]; [ c#3*0.38954 ]; [ c#4*-0.53810 ]; 

%CG#1.C#1% 

[ zp5sit*-1.03305 ] (m1); [ zp5flex*-1.08704 ] (m2); 

[ zp5snr*-0.42895 ] (m3); [ zp5shut*1.35821 ] (m4); 

[ zp5sbj*-1.35181 ] (m5); [ zp5run*1.29563 ] (m6); 

zp5sit*0.93220 (v1); zp5flex*0.14704 (v2); 

zp5snr*0.79632 (v3); zp5shut*1.09086 (v4); 

zp5sbj*0.74147 (v5); zp5run*0.68367 (v6); 

[ZBMI_P6] (oa1); 

%CG#1.C#2% 

[ zp5sit*-0.26254 ] (m7); [ zp5flex*-0.45790 ] (m8); 

[ zp5snr*-0.64127 ] (m9); [ zp5shut*0.26265 ] (m10); 

[ zp5sbj*-0.34736 ] (m11); [ zp5run*0.27622 ] (m12); 

zp5sit*0.59074 (v7); zp5flex*0.36366 (v8); 

zp5snr*0.21725 (v9); zp5shut*0.35089 (v10); 

zp5sbj*0.24847 (v11); zp5run*0.57875 (v12); 

[ZBMI_P6] (oa2); 

%CG#1.C#3% 

[ zp5sit*0.58893 ] (m13); [ zp5flex*0.19735 ] (m14); 

[ zp5snr*-0.39566 ] (m15); [ zp5shut*-0.74653 ] (m16); 

[ zp5sbj*0.72653 ] (m17); [ zp5run*-0.67554 ] (m18); 

zp5sit*0.68416 (v13); zp5flex*0.42929 (v14); 

zp5snr*0.22035 (v15); zp5shut*0.43196 (v16); 

zp5sbj*0.58758 (v17); zp5run*0.46840 (v18); 

[ZBMI_P6] (oa3); 

%CG#1.C#4% 

[ zp5sit*0.72479 ] (m19); [ zp5flex*1.56628 ] (m20); 

[ zp5snr*1.47831 ] (m21); [ zp5shut*-0.82727 ] (m22); 

[ zp5sbj*0.98243 ] (m23); [ zp5run*-0.85448 ] (m24); 

zp5sit*0.54772 (v19); zp5flex*0.37416 (v20); 

zp5snr*0.26672 (v21); zp5shut*0.60201 (v22); 

zp5sbj*0.73433 (v23); zp5run*0.36566 (v24); 

[ZBMI_P6] (oa4); 

%CG#1.C#5% 

[ zp5sit*-0.16071 ] (m25); [ zp5flex*0.38795 ] (m26); 

[ zp5snr*1.20871 ] (m27); [ zp5shut*0.24698 ] (m28); 

[ zp5sbj*-0.15526 ] (m29); [ zp5run*0.17023 ] (m30); 

zp5sit*0.69737 (v25); zp5flex*1.03973 (v26); 

zp5snr*0.27897 (v27); zp5shut*0.43848 (v28); 

zp5sbj*0.41388 (v29); zp5run*0.55283 (v30); 

[ZBMI_P6] (oa5); 
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%CG#2.C#1% 

[ zp5sit*-1.03305 ] (m1); [ zp5flex*-1.08704 ] (m2); 

[ zp5snr*-0.42895 ] (m3); [ zp5shut*1.35821 ] (m4); 

[ zp5sbj*-1.35181 ] (m5); [ zp5run*1.29563 ] (m6); 

zp5sit*1.03814 (vv1); zp5flex*0.09550 (vv2); 

zp5snr*0.86685 (vv3); zp5shut*1.14245 (vv4); 

zp5sbj*0.83652 (vv5); zp5run*1.01864 (vv6); 

[ZBMI_P6] (ob1); 

%CG#2.C#2% 

[ zp5sit*-0.26254 ] (m7); [ zp5flex*-0.45790 ] (m8); 

[ zp5snr*-0.64127 ] (m9); [ zp5shut*0.26265 ] (m10); 

[ zp5sbj*-0.34736 ] (m11); [ zp5run*0.27622 ] (m12); 

zp5sit*0.78006 (vv7); zp5flex*0.39196 (vv8); 

zp5snr*0.20980 (vv9); zp5shut*0.49815 (vv10); 

zp5sbj*0.42562 (vv11); zp5run*0.60355 (vv12); 

[ZBMI_P6] (ob2); 

%CG#2.C#3% 

[ zp5sit*0.58893 ] (m13); [ zp5flex*0.19735 ] (m14); 

[ zp5snr*-0.39566 ] (m15); [ zp5shut*-0.74653 ] (m16); 

[ zp5sbj*0.72653 ] (m17); [ zp5run*-0.67554 ] (m18); 

zp5sit*0.56603 (vv13); zp5flex*0.49250 (vv14); 

zp5snr*0.24091 (vv15); zp5shut*0.51077 (vv16); 

zp5sbj*0.60299 (vv17); zp5run*0.57497 (vv18); 

[ZBMI_P6] (ob3); 

%CG#2.C#4% 

[ zp5sit*0.72479 ] (m19); [ zp5flex*1.56628 ] (m20); 

[ zp5snr*1.47831 ] (m21); [ zp5shut*-0.82727 ] (m22); 

[ zp5sbj*0.98243 ] (m23); [ zp5run*-0.85448 ] (m24); 

zp5sit*0.78422 (vv19); zp5flex*0.72949 (vv20); 

zp5snr*0.29214 (vv21); zp5shut*0.53613 (vv22); 

zp5sbj*0.63470 (vv23); zp5run*0.62658 (vv24); 

[ZBMI_P6] (ob4); 

%CG#2.C#5% 

[ zp5sit*-0.16071 ] (m25); [ zp5flex*0.38795 ] (m26); 

[ zp5snr*1.20871 ] (m27); [ zp5shut*0.24698 ] (m28); 

[ zp5sbj*-0.15526 ] (m29); [ zp5run*0.17023 ] (m30); 

zp5sit*0.78790 (vv25); zp5flex*1.14398 (vv26); 

zp5snr*0.31522 (vv27); zp5shut*0.58147 (vv28); 

zp5sbj*0.49954 (vv29); zp5run*0.68549 (vv30); 

[ZBMI_P6] (ob5); 

MODEL CONSTRAINT: 

  ! New parameters are created using this function and reflect pairwise mean differences between 

  ! profiles. So the first of those (y12) reflect the differences between the means of profiles 1 and 2. 

  ! This will be included in the outputs as new parameters reflecting the significance of 

  ! the differences between the means, without those parameters having an impact on the model.  

NEW (y12); 

y12 = oa1-oa2; 

NEW (y13); 

y13 = oa1-oa3; 

NEW (y14); 

y14 = oa1-oa4; 

NEW (y15); 

y15 = oa1-oa5; 

NEW (y23); 

y23 = oa2-oa3; 
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NEW (y24); 

y24 = oa2-oa4; 

NEW (y25); 

y25 = oa2-oa5; 

NEW (y34); 

y34 = oa3-oa4; 

NEW (y35); 

y35 = oa3-oa5; 

NEW (y45); 

y45 = oa4-oa5; 

NEW (z12); 

z12 = ob1-ob2; 

NEW (z13); 

z13 = ob1-ob3; 

NEW (z14); 

z14 = ob1-ob4; 

NEW (z15); 

z15 = ob1-ob5; 

NEW (z23); 

z23 = ob2-ob3; 

NEW (z24); 

z24 = ob2-ob4; 

NEW (z25); 

z25 = ob2-ob5; 

NEW (z34); 

z34 = ob3-ob4; 

NEW (z35); 

z35 = ob3-ob5; 

NEW (z45); 

z45 = ob4-ob5; 

NEW (w11); 

w11 = oa1-ob1; 

NEW (w22); 

w22= oa2-ob2; 

NEW (w33); 

w33= oa3-ob3; 

NEW (w44); 

w44= oa4-ob4; 

NEW (w55); 

w55= oa5-ob5; 
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Appendix 9.24.  

Estimation of a 5-Profile LPA in Multiple Observed Groups, Including Distal Outcomes with 

Relations Constrained to Invariance Across Gender (Predictive Invariance).  

This model is almost identical to the previous one except that the parameter labels are used to 

constrain the outcome means to be invariant across genders. As a result, less lines of code are required 

in the MODEL COSNTRAINT section.  
 

%OVERALL% 

[ cg#1*-0.00217 ]; [ c#1*-0.49034 ]; [ c#2*0.64971 ]; [ c#3*0.38954 ]; [ c#4*-0.53810 ]; 

%CG#1.C#1% 

[ zp5sit*-1.03305 ] (m1); [ zp5flex*-1.08704 ] (m2); 

[ zp5snr*-0.42895 ] (m3); [ zp5shut*1.35821 ] (m4); 

[ zp5sbj*-1.35181 ] (m5); [ zp5run*1.29563 ] (m6); 

zp5sit*0.93220 (v1); zp5flex*0.14704 (v2); 

zp5snr*0.79632 (v3); zp5shut*1.09086 (v4); 

zp5sbj*0.74147 (v5); zp5run*0.68367 (v6); 

[ZBMI_P6] (oa1); 
%CG#1.C#2% 

[ zp5sit*-0.26254 ] (m7); [ zp5flex*-0.45790 ] (m8); 

[ zp5snr*-0.64127 ] (m9); [ zp5shut*0.26265 ] (m10); 

[ zp5sbj*-0.34736 ] (m11); [ zp5run*0.27622 ] (m12); 

zp5sit*0.59074 (v7); zp5flex*0.36366 (v8); 

zp5snr*0.21725 (v9); zp5shut*0.35089 (v10); 

zp5sbj*0.24847 (v11); zp5run*0.57875 (v12); 

[ZBMI_P6] (oa2); 
%CG#1.C#3% 

[ zp5sit*0.58893 ] (m13); [ zp5flex*0.19735 ] (m14); 

[ zp5snr*-0.39566 ] (m15); [ zp5shut*-0.74653 ] (m16); 

[ zp5sbj*0.72653 ] (m17); [ zp5run*-0.67554 ] (m18); 

zp5sit*0.68416 (v13); zp5flex*0.42929 (v14); 

zp5snr*0.22035 (v15); zp5shut*0.43196 (v16); 

zp5sbj*0.58758 (v17); zp5run*0.46840 (v18); 

[ZBMI_P6] (oa3); 
%CG#1.C#4% 

[ zp5sit*0.72479 ] (m19); [ zp5flex*1.56628 ] (m20); 

[ zp5snr*1.47831 ] (m21); [ zp5shut*-0.82727 ] (m22); 

[ zp5sbj*0.98243 ] (m23); [ zp5run*-0.85448 ] (m24); 

zp5sit*0.54772 (v19); zp5flex*0.37416 (v20); 

zp5snr*0.26672 (v21); zp5shut*0.60201 (v22); 

zp5sbj*0.73433 (v23); zp5run*0.36566 (v24); 

[ZBMI_P6] (oa4); 
%CG#1.C#5% 

[ zp5sit*-0.16071 ] (m25); [ zp5flex*0.38795 ] (m26); 

[ zp5snr*1.20871 ] (m27); [ zp5shut*0.24698 ] (m28); 

[ zp5sbj*-0.15526 ] (m29); [ zp5run*0.17023 ] (m30); 

zp5sit*0.69737 (v25); zp5flex*1.03973 (v26); 

zp5snr*0.27897 (v27); zp5shut*0.43848 (v28); 

zp5sbj*0.41388 (v29); zp5run*0.55283 (v30); 

[ZBMI_P6] (oa5); 
%CG#2.C#1% 

[ zp5sit*-1.03305 ] (m1); [ zp5flex*-1.08704 ] (m2); 

[ zp5snr*-0.42895 ] (m3); [ zp5shut*1.35821 ] (m4); 

[ zp5sbj*-1.35181 ] (m5); [ zp5run*1.29563 ] (m6); 

zp5sit*1.03814 (vv1); zp5flex*0.09550 (vv2); 

zp5snr*0.86685 (vv3); zp5shut*1.14245 (vv4); 

zp5sbj*0.83652 (vv5); zp5run*1.01864 (vv6); 

[ZBMI_P6] (oa1); 
%CG#2.C#2% 



Supplements for Mixture Modeling S40 

[ zp5sit*-0.26254 ] (m7); [ zp5flex*-0.45790 ] (m8); 

[ zp5snr*-0.64127 ] (m9); [ zp5shut*0.26265 ] (m10); 

[ zp5sbj*-0.34736 ] (m11); [ zp5run*0.27622 ] (m12); 

zp5sit*0.78006 (vv7); zp5flex*0.39196 (vv8); 

zp5snr*0.20980 (vv9); zp5shut*0.49815 (vv10); 

zp5sbj*0.42562 (vv11); zp5run*0.60355 (vv12); 

[ZBMI_P6] (oa2); 
%CG#2.C#3% 

[ zp5sit*0.58893 ] (m13); [ zp5flex*0.19735 ] (m14); 

[ zp5snr*-0.39566 ] (m15); [ zp5shut*-0.74653 ] (m16); 

[ zp5sbj*0.72653 ] (m17); [ zp5run*-0.67554 ] (m18); 

zp5sit*0.56603 (vv13); zp5flex*0.49250 (vv14); 

zp5snr*0.24091 (vv15); zp5shut*0.51077 (vv16); 

zp5sbj*0.60299 (vv17); zp5run*0.57497 (vv18); 

[ZBMI_P6] (oa3); 
%CG#2.C#4% 

[ zp5sit*0.72479 ] (m19); [ zp5flex*1.56628 ] (m20); 

[ zp5snr*1.47831 ] (m21); [ zp5shut*-0.82727 ] (m22); 

[ zp5sbj*0.98243 ] (m23); [ zp5run*-0.85448 ] (m24); 

zp5sit*0.78422 (vv19); zp5flex*0.72949 (vv20); 

zp5snr*0.29214 (vv21); zp5shut*0.53613 (vv22); 

zp5sbj*0.63470 (vv23); zp5run*0.62658 (vv24); 

[ZBMI_P6] (oa4); 
%CG#2.C#5% 

[ zp5sit*-0.16071 ] (m25); [ zp5flex*0.38795 ] (m26); 

[ zp5snr*1.20871 ] (m27); [ zp5shut*0.24698 ] (m28); 

[ zp5sbj*-0.15526 ] (m29); [ zp5run*0.17023 ] (m30); 

zp5sit*0.78790 (vv25); zp5flex*1.14398 (vv26); 

zp5snr*0.31522 (vv27); zp5shut*0.58147 (vv28); 

zp5sbj*0.49954 (vv29); zp5run*0.68549 (vv30); 

[ZBMI_P6] (oa5); 

MODEL CONSTRAINT: 

NEW (y12);  

y12 = oa1-oa2; 

NEW (y13); 

y13 = oa1-oa3; 

NEW (y14); 

y14 = oa1-oa4; 

NEW (y15); 

y15 = oa1-oa5; 

NEW (y23); 

y23 = oa2-oa3; 

NEW (y24); 

y24 = oa2-oa4; 

NEW (y25); 

y25 = oa2-oa5; 

NEW (y34); 

y34 = oa3-oa4; 

NEW (y35); 

y35 = oa3-oa5; 

NEW (y45); 

y45 = oa4-oa5; 
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Appendix 9.25. Estimation of a 5-Profile LTA (Configural Invariance).  

The estimation of a latent transition model is highly similar to the estimation of a multiple-group LPA 

with the exception that the latent categorical variable representing the observed group defined using 

the KNOWCLASS function (CG in the previous examples) is replaced by another unknown latent 

categorical variable representing profiles groups estimated at the second time point.  

 

CLASSES = c1 (5) c2 (5); 

 

Because of the similarity of the input set ups, we will not comment the sequence of invariance tests in 

the next sections. In the basic LTA model, the %OVERALL% section states that membership into the 

profiles at the second time point (C2) is conditional on membership in the profiles estimated at the 

first time points (C1). This is necessary to estimate the individual transition probabilities over time. 

Then two sections of the inputs are used to defined the profiles estimated at the first (MODEL C1:) 

and second (MODEL C2:) time points, where the profiles are defined by distinct variables reflecting 

the mixture indicators measured at either the first (e.g., ZP5Sit) or second (e.g., ZS3Sit) time point.  

 

%OVERALL% 

c2 on c1; 

MODEL C1:  

%c1#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v1-V6);  

%c1#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m11-m16);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v11-V16);  

%c1#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m21-m26);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v21-v26);  

%c1#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m31-m36);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v31-V36);  

%c1#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m41-m46);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v41-V46);  

MODEL C2:  

%c2#1% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (mm1-mm6);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (vv1-vv6);  

%c2#2% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (mm11-mm16);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (vv11-vv16);  

%c2#3% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (mm21-mm26);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (vv21-vv26);  

%c2#4% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (mm31-mm36);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (vv31-vv36);  

%c2#5% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (mm41-mm46);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (vv41-vv46); 
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Appendix 9.26. Estimation of a 5-Profile LTA (Structural Invariance).  

Here, parameter labels are simply used to constrain the means to be invariant over time within similar profiles.  

%OVERALL% 

c2 on c1; 

MODEL C1:  

%c1#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v1-V6);  

%c1#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m11-m16);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v11-V16);  

%c1#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m21-m26);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v21-v26);  

%c1#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m31-m36);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v31-V36);  

%c1#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m41-m46);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v41-V46);  

MODEL C2:  

%c2#1% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m1-m6);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (vv1-vv6);  

%c2#2% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m11-m16);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (vv11-vv16);  

%c2#3% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m21-m26);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (vv21-vv26);  

%c2#4% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m31-m36);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (vv31-vv36);  

%c2#5% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m41-m46);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (vv41-vv46); 
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Appendix 9.27. Estimation of a 5-Profile LTA (Dispersion Invariance).  

Here, we provide an input that assumes structural invariance.  

 

%OVERALL% 

c2 on c1; 

MODEL C1:  

%c1#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v1-V6);  

%c1#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m11-m16);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v11-V16);  

%c1#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m21-m26);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v21-v26);  

%c1#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m31-m36);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v31-V36);  

%c1#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m41-m46);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v41-V46);  

MODEL C2:  

%c2#1% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m1-m6);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (v1-v6);  

%c2#2% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m11-m16);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (v11-v16);  

%c2#3% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m21-m26);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (v21-v26);  

%c2#4% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m31-m36);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (v31-v36);  

%c2#5% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m41-m46);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (v41-v46); 
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Appendix 9.28. Estimation of a 5-Profile LTA (Distributional Invariance).  

Here, we provide an input that assumes structural and dispersion invariance. To request distributional 

invariance, labels are used to request that the sizes of the profiles be invariant over time.  

 

%OVERALL% 

c2 on c1; 

[ c1#1] (p1); 

[ c1#2] (p2); 

[ c1#3] (p3); 

[ c1#4] (p4); 

[ c2#1] (p1); 

[ c2#2] (p2); 

[ c2#3] (p3); 

[ c2#4] (p4); 

MODEL C1:  

%c1#1% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m1-m6);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v1-V6);  

%c1#2% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m11-m16);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v11-V16);  

%c1#3% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m21-m26);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v21-v26);  

%c1#4% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m31-m36);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v31-V36);  

%c1#5% 

[ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run] (m41-m46);  

ZP5Sit ZP5Flex ZP5snr ZP5shut ZP5sbj ZP5Run (v41-V46);  

MODEL C2:  

%c2#1% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m1-m6);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (v1-v6);  

%c2#2% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m11-m16);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (v11-v16);  

%c2#3% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m21-m26);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (v21-v26);  

%c2#4% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m31-m36);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (v31-v36);  

%c2#5% 

[ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run] (m41-m46);  

ZS3Sit ZS3Flex ZS3snr ZS3shut ZS3sbj ZS3Run (v41-v46); 
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Appendix 9.29. Estimation of a 3-Profile Mixture Regression.  

In contrast with the previous LPA solution, a mixture regression model specifies a regression model 

in the %OVERALL% section of the input indicating here that Grade 6 BMI (ZBMI_P6) is regressed 

(ON) a series of predictors (ZBMI_P5 SP5 CP5 ZP5snr). Then, the profile-specific sections of the 

input request that these regression coefficients be freely estimated in all profiles, together with the 

means and variances of all predictors and outcomes.  

 

%OVERALL% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr;  

%c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr;  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5; 

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5]; 

%c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr;  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5; 

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5]; 

%c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr;  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5; 

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5]; 
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Appendix 9.30.  

Estimation of a Multiple Group Mixture Regression (Configural Invariance).  

This set-up is highly similar to the one used for the multiple groups LPA models. Here again, the 

KNOWCLASS option is used to defined the observed groups in the VARIABLE section:  

 

KNOWCLASS = cg (Sex = 1 Sex = 2);  

CLASSES = cg (2) c (3); 

 

Then the main section of the input is specified to request the estimation of a model of configural 

invariance. 

 

%OVERALL% 

c#1 on cg#1; 

c#2 on cg#1; 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr ; 

%cg#1.c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r1-r4);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m1-m5);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v1-v5);  

%cg#1.c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r11-r14);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m11-m15);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v11-v15);  

%cg#1.c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r21-r24);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m21-m25);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v21-v25);  

%cg#2.c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (rr1-rr4);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (mm1-mm5);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (vv1-vv5);  

%cg#2.c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (rr11-rr14);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (mm11-mm15);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (vv11-vv15);  

%cg#2.c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (rr21-rr24);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (mm21-mm25);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (vv21-vv25);  
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Appendix 9.31.  

Estimation of a Multiple Group Mixture Regression (Regression Invariance).  

Here, parameter labels are used to specify the invariance of the regression coefficients across genders.  

 

%OVERALL% 

c#1 on cg#1; 

c#2 on cg#1; 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr ; 

%cg#1.c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r1-r4);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m1-m5);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v1-v5);  

%cg#1.c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r11-r14);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m11-m15);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v11-v15);  

%cg#1.c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r21-r24);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m21-m25);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v21-v25);  

%cg#2.c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r1-r4);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (mm1-mm5);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (vv1-vv5);  

%cg#2.c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r11-r14);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (mm11-mm15);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (vv11-vv15);  

%cg#2.c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r21-r24);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (mm21-mm25);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (vv21-vv25); 
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Appendix 9.32.  

Estimation of a Multiple Group Mixture Regression (Structural Invariance).  

Here, parameter labels are used to specify the invariance of the means across genders.  

 

%OVERALL% 

c#1 on cg#1; 

c#2 on cg#1; 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr ;  

%cg#1.c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r1-r4);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m1-m5);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v1-v5);  

%cg#1.c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r11-r14);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m11-m15);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v11-v15);  

%cg#1.c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r21-r24);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m21-m25);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v21-v25);  

%cg#2.c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r1-r4);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m1-m5);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (vv1-vv5);  

%cg#2.c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r11-r14);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m11-m15);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (vv11-vv15);  

%cg#2.c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r21-r24);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m21-m25);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (vv21-vv25); 
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Appendix 9.33.  

Estimation of a Multiple Group Mixture Regression (Dispersion Invariance).  

Here, parameter labels are used to specify the invariance of the variances across genders.  

 

%OVERALL% 

c#1 on cg#1; 

c#2 on cg#1; 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr ; 

%cg#1.c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r1-r4);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m1-m5);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v1-v5);  

%cg#1.c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r11-r14);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m11-m15);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v11-v15);  

%cg#1.c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r21-r24);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m21-m25);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v21-v25);  

%cg#2.c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r1-r4);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m1-m5);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v1-v5);  

%cg#2.c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r11-r14);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m11-m15);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v11-v15);  

%cg#2.c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r21-r24);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m21-m25);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v21-v25); 
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Appendix 9.34.  

Estimation of a Multiple Group Mixture Regression (Distribution Invariance).  

Here, the statements making profile membership conditional on gender are simply taken out from the 

%OVERALL% statement.  

 

%OVERALL% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr ; 

%cg#1.c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r1-r4);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m1-m5);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v1-v5);  

%cg#1.c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r11-r14);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m11-m15);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v11-v15);  

%cg#1.c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r21-r24);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m21-m25);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v21-v25);  

%cg#2.c#1% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r1-r4);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m1-m5);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v1-v5);  

%cg#2.c#2% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r11-r14);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m11-m15);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v11-v15);  

%cg#2.c#3% 

ZBMI_P6 ON ZBMI_P5 SP5 CP5 ZP5snr (r21-r24);  

ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5 (m21-m25);  

[ZP5snr ZBMI_P5 ZBMI_P6 SP5 CP5] (v21-v25); 
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Appendix 9.35. Estimation of a 3-Profile Latent Basis GMM  

In the estimation of latent curve model, the “I S |” function serves as a shortcut to define longitudinal 

intercepts and slope parameters and are generally followed by a specification of the time-varying 

indicators and their loadings on the slope factor (the loadings on the intercept factor are fixed to 1). In 

a latent basis model, two loadings (typically the first and last) need to be respectively fixed to 0 and 1 

(@0 and @1) while the others are freely estimated. Here, we also request that these be freely 

estimated in all profiles by repeating this function in the profile-specific sections. In this input, we 

also request that the means of the intercepts and slope factors ([I S];), their variances (I S;) and 

covariances (I WITH S;) and all time specific residuals (CP4 CP5  CP6 CS1 CS2 CS3 CS4;) be freely 

estimated in all profiles.  

 

%OVERALL% 

I S | CP4@0 CP5*  CP6* CS1* CS2* CS3* CS4@1; 

%c#1% 

I S | CP4@0 CP5*  CP6* CS1* CS2* CS3* CS4@1; 

I S; 

[I S]; 

I WITH S; 

CP4 CP5  CP6 CS1 CS2 CS3 CS4; 

%c#2% 

I S | CP4@0 CP5*  CP6* CS1* CS2* CS3* CS4@1; 

I S; 

[I S]; 

I WITH S; 

CP4 CP5  CP6 CS1 CS2 CS3 CS4; 

%c#3% 

I S | CP4@0 CP5*  CP6* CS1* CS2* CS3* CS4@1; 

I S; 

[I S]; 

I WITH S; 

CP4 CP5  CP6 CS1 CS2 CS3 CS4; 

 

An interesting function available in Mplus allows the user to obtain plots of the trajectories.  

 

PLOT:  

TYPE IS PLOT3; 

SERIES = CP4-CS4(*);   
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Appendix 9.36. Estimation of a 4-Profile Piecewise GMM 
 

This input is similar to the previous one, with the main differences that two slope factors (S1 and S2) 

are requested and defined using the pattern of time codes described in Appendix 9.10.  

 

%OVERALL% 

I S1 | SP4@0 SP5@1  SP6@2 SS1@2 SS2@2 SS3@2 SS4@2; 

I S2 | SP4@0 SP5@0  SP6@0 SS1@1 SS2@2 SS3@3 SS4@4; 

%c#1% 

I S1 | SP4@0 SP5@1  SP6@2 SS1@2 SS2@2 SS3@2 SS4@2; 

I S2 | SP4@0 SP5@0  SP6@0 SS1@1 SS2@2 SS3@3 SS4@4; 

I S1 S2; 

[I S1 S2]; 

I WITH S1 S2; 

S1 WITH S2; 

SP4 SP5  SP6 SS1 SS2 SS3 SS4; 

%c#2% 

I S1 | SP4@0 SP5@1  SP6@2 SS1@2 SS2@2 SS3@2 SS4@2; 

I S2 | SP4@0 SP5@0  SP6@0 SS1@1 SS2@2 SS3@3 SS4@4; 

I S1 S2; 

[I S1 S2]; 

I WITH S1 S2; 

S1 WITH S2; 

SP4 SP5  SP6 SS1 SS2 SS3 SS4; 

%c#3% 

I S1 | SP4@0 SP5@1  SP6@2 SS1@2 SS2@2 SS3@2 SS4@2; 

I S2 | SP4@0 SP5@0  SP6@0 SS1@1 SS2@2 SS3@3 SS4@4; 

I S1 S2; 

[I S1 S2]; 

I WITH S1 S2; 

S1 WITH S2; 

SP4 SP5  SP6 SS1 SS2 SS3 SS4; 

%c#4% 

I S1 | SP4@0 SP5@1  SP6@2 SS1@2 SS2@2 SS3@2 SS4@2; 

I S2 | SP4@0 SP5@0  SP6@0 SS1@1 SS2@2 SS3@3 SS4@4; 

I S1 S2; 

[I S1 S2]; 

I WITH S1 S2; 

S1 WITH S2; 

SP4 SP5  SP6 SS1 SS2 SS3 SS4; 
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Appendix 9.37. Estimation of a 4-Profile Piecewise GMM (Constrained Estimation) 
 

This input is similar to the previous one, with the main differences that the time specific residuals are 

now labeled and constrained to take a non-zero value.  

 

%OVERALL% 

I S1 | SP4@0 SP5@1  SP6@2 SS1@2 SS2@2 SS3@2 SS4@2; 

I S2 | SP4@0 SP5@0  SP6@0 SS1@1 SS2@2 SS3@3 SS4@4; 

%c#1% 

I S1 | SP4@0 SP5@1  SP6@2 SS1@2 SS2@2 SS3@2 SS4@2; 

I S2 | SP4@0 SP5@0  SP6@0 SS1@1 SS2@2 SS3@3 SS4@4; 

I S1 S2; 

[I S1 S2]; 

I WITH S1 S2; 

S1 WITH S2; 

     sp4* (r1); 

     sp5* (r2); 

     sp6* (r3); 

     ss1* (r4); 

     ss2* (r5); 

     ss3* (r6); 

     ss4* (r7); 

%c#2% 

I S1 | SP4@0 SP5@1  SP6@2 SS1@2 SS2@2 SS3@2 SS4@2; 

I S2 | SP4@0 SP5@0  SP6@0 SS1@1 SS2@2 SS3@3 SS4@4; 

I S1 S2; 

[I S1 S2]; 

I WITH S1 S2; 

S1 WITH S2; 

     sp4* (r11); 

     sp5* (r12); 

     sp6* (r13); 

     ss1* (r14); 

     ss2* (r15); 

     ss3* (r16); 

     ss4* (r17); 

%c#3% 

I S1 | SP4@0 SP5@1  SP6@2 SS1@2 SS2@2 SS3@2 SS4@2; 

I S2 | SP4@0 SP5@0  SP6@0 SS1@1 SS2@2 SS3@3 SS4@4; 

I S1 S2; 

[I S1 S2]; 

I WITH S1 S2; 

S1 WITH S2; 

     sp4* (r21); 

     sp5* (r22); 

     sp6* (r23); 

     ss1* (r24); 

     ss2* (r25); 

     ss3* (r26); 

     ss4* (r27); 

%c#4% 

I S1 | SP4@0 SP5@1  SP6@2 SS1@2 SS2@2 SS3@2 SS4@2; 

I S2 | SP4@0 SP5@0  SP6@0 SS1@1 SS2@2 SS3@3 SS4@4; 

I S1 S2; 

[I S1 S2]; 
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I WITH S1 S2; 

S1 WITH S2; 

     sp4* (r31); 

     sp5* (r32); 

     sp6* (r33); 

     ss1* (r34); 

     ss2* (r35); 

     ss3* (r36); 

     ss4* (r37); 

MODEL CONSTRAINT:  

r1 > 0;  

r2 > 0;  

r3 > 0;  

r4 > 0;  

r5 > 0;  

r6 > 0;  

r7 > 0;  

r11 > 0;  

r12 > 0;  

r13 > 0;  

r14 > 0;  

r15 > 0;  

r16 > 0;  

r17 > 0;  

r21 > 0;  

r22 > 0;  

r23 > 0;  

r24 > 0;  

r25 > 0;  

r26 > 0;  

r27 > 0;  

r31 > 0;  

r32 > 0;  

r33 > 0;  

r34 > 0;  

r35 > 0;  

r36 > 0;  

r37 > 0; 


