
 

This is an Accepted Article that has been peer-reviewed and approved for publication in the The 

Journal of Physiology, but has yet to undergo copy-editing and proof correction. Please cite this 

article as an 'Accepted Article'; doi: 10.1113/JP277765. 

This article is protected by copyright. All rights reserved. 

DOI: 10.1113/JP277765  

Blood flow restricted resistance exercise and reductions in oxygen tension attenuate 

mitochondrial H2O2 emission rates in human skeletal muscle 

 

Heather L. Petrick1, Christopher Pignanelli1, Pierre-Andre Barbeau1, Tyler A. Churchward-Venne2,3, 

Kaitlyn M.J.H. Dennis1, Luc J.C. van Loon3, Jamie F. Burr1, Gijs H. Goossens3*, Graham P. Holloway1* 

* Contributed equally to the manuscript (co-senior author) 

 

1 Human Health & Nutritional Science, University of Guelph, Guelph, Ontario, Canada. 

2 Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada. 

3 Department of Human Biology, NUTRIM School of Nutrition and Translational Research in 

Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands. 

 

Short title: Blood flow restriction and hypoxia decrease ROS emissions 

Keywords: Blood flow restriction, O2, H2O2 emission, mitochondrial respiration, ROS 

 

Word Count: 4966 

  

https://doi.org/10.1113/JP277765


 

This article is protected by copyright. All rights reserved. 2 

Corresponding author: 

Heather L. Petrick or Graham P. Holloway, PhD  

University of Guelph 

Department of Human Health and Nutritional Sciences 

Guelph, ON, Canada, N1L 0A5 

Email: hpetrick@uoguelph.ca or ghollowa@uoguelph.ca 

Key Points 

 Blood flow restricted resistance exercise (BFR-RE) is capable of inducing comparable adaptations 

to traditional resistance exercise (RE), despite a lower total exercise volume. 

 It has been suggested that an increase in reactive oxygen species (ROS) production may be 

involved in this response, however oxygen partial pressure (pO2) is reduced during BFR-RE, and 

the influence of pO2 on mitochondrial redox balance remains poorly understood. 

 In human skeletal muscle tissue, we demonstrate that both maximal and submaximal 

mitochondrial ROS emission rates are acutely decreased 2 hours following BFR-RE, but not RE, 

occurring along with a reduction in tissue oxygenation during BFR-RE. 

 We further suggest that pO2 is involved in this response, as in vitro analysis revealed that 

reducing pO2 dramatically decreased mitochondrial ROS emissions and electron leak to ROS. 

 Altogether, these data indicate that mitochondrial ROS emission rates are attenuated following 

BFR-RE, a response which is likely influenced by reductions in pO2. 
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Abstract 

Low-load blood flow restricted resistance exercise (BFR-RE) training has been proposed to induce 

comparable adaptations to traditional resistance exercise (RE) training, however the acute signaling 

events remain unknown. While a suggested mechanism of BFR-RE is an increase in reactive oxygen 

species (ROS) production, oxygen partial pressure (pO2) is reduced during BFR-RE, and the influence 

of O2 tension on mitochondrial redox balance remains ambiguous. We therefore aimed to determine 

if skeletal muscle mitochondrial bioenergetics were altered following an acute bout of BFR-RE or RE, 

and to further examine the role of pO2 in this response. To study this, muscle biopsies were obtained 

from 10 males at rest and 2 hours after performing 3 sets of single-leg squats (RE or BFR-RE) to 

failure at 30% 1-RM. We determined that mitochondrial respiratory capacity and ADP sensitivity 

were not altered in response to RE or BFR-RE. While maximal (succinate) and submaximal (non-

saturating ADP) mitochondrial ROS emission rates were unchanged following RE, BFR-RE attenuated 

these responses ~30% compared to pre-exercise, occurring along with a reduction in skeletal muscle 

tissue oxygenation during BFR-RE (p<0.01 vs. RE). In a separate cohort of participants, evaluation of 

mitochondrial bioenergetics in vitro revealed that mild O2 restriction (50µM) dramatically attenuated 

maximal (~4-fold) and submaximal (~50-fold) mitochondrial ROS emission rates and the fraction of 

electron leak to ROS compared to room air (200µM). Combined, these data demonstrate that 

mitochondrial ROS emissions are attenuated following BFR-RE, a response which may be mediated 

by a reduction in skeletal muscle pO2. 

 

Abstract word count: 247 

 

Abbreviations: 1-RM, 1-repetition maximum; ADP, adenosine diphosphate; AMPK, adenosine 

monophosphate-activated protein kinase; BFR-RE, blood flow restricted resistance exercise; ETC, 

electron transport chain; Hb, hemoglobin; H2O2, hydrogen peroxide; JO2, mitochondrial O2 flux; Km, 

Michaelis-Menten constant; LOP, lowest effective occlusive pressure; NIRS, near-infrared 

spectroscopy; Mb, myoglobin; O2, oxygen; pO2, oxygen partial pressure; RCR, respiratory control 

ratio; ROS, reactive oxygen species; RE, resistance exercise; TSI, tissue saturation index. 
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Introduction 

 While high-load resistance exercise (RE) training is known to promote skeletal muscle 

hypertrophy (Tesch, 1988) and mitochondrial adaptations (Pesta et al., 2011; Porter et al., 2015; 

Holloway et al., 2018a), evidence now suggests that RE in the presence of blood flow restriction 

(BFR-RE) is capable of inducing comparable metabolic outcomes, despite a lower volume of work 

(Farup et al., 2015; Groennebaek et al., 2018). While this well-found notion suggests that ischemia 

induced by BFR-RE is sufficient to augment the metabolic perturbations of exercise, the mechanisms 

underlying cellular adaptations to RE and BFR-RE remain poorly understood, particularly when both 

are performed to repetition failure. 

 As a traditional metabolic event associated with aerobic exercise, activation of AMPK in 

response to reductions in energy status is known to regulate mitochondrial ATP production, 

substrate breakdown, and the exercise-induced increase in mitochondrial content (Hawley, 2009). 

However, since AMPK is capable of inhibiting anabolic pathways (Hawley, 2009), acute RE is 

suggested to be a less potent activator of AMPK compared to aerobic exercise (Atherton et al., 2005; 

Lundberg et al., 2014), and recent evidence suggests that a greater increase in AMPK 

phosphorylation is not present following BFR-RE performed to repetition failure (Groennebaek et al., 

2018). As a result, alternative cellular mechanisms are likely involved in mitochondrial adaptations to 

RE and BFR-RE. One such event which may be implicated in this response is the acute exercise-

mediated regulation of skeletal muscle mitochondrial bioenergetics. Specifically, it is well established 

that mitochondrial sensitivity to ADP is acutely impaired in response to aerobic exercise (Perry et al., 

2012; Dohlmann et al., 2018; Barbeau et al., 2018; Petrick & Holloway, 2019), an effect which 

appears required for cellular adaptations to occur (Miotto & Holloway, 2018). As a closely linked 

control point (Holloway, 2017), evidence also suggests that an increase in mitochondrial reactive 

oxygen species (ROS) emission rates in the presence of physiological ADP concentrations occurs 

acutely in response to aerobic exercise (Barbeau et al., 2018; Miotto & Holloway, 2018). While it has 
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been speculated that ROS production is an important mechanism involved in the acute responses to 

BFR-RE, direct evidence in skeletal muscle is lacking, as previous studies have mainly examined 

plasma markers of redox balance (Takarada et al., 2000; Goldfarb et al., 2008; Neto et al., 2017). 

However, in support of a potential role of mitochondrial-specific ROS emissions in mediating the 

training responses to BFR-RE, temporary occlusion induced by BFR is known to decrease tissue 

oxygenation (Ganesan et al., 2015), which could influence mitochondrial bioenergetics, especially 

since decreasing O2 availability renders the ETC overly reduced and optimal for superoxide 

production (Chance & Williams, 1955; Clanton, 2007). Altogether, it appears plausible that 

alterations in mitochondrial ROS production may be implicated in the acute responses to BFR-RE and 

RE, however, to date, this remains to be directly determined.  

 Therefore, in the present study, we aimed to examine if mitochondrial respiration and ROS 

emission rates were altered in permeabilized muscle fibers following an acute bout of BFR-RE or RE 

performed to failure. To further examine the influence of pO2 on mitochondrial bioenergetics in 

vitro, we simultaneously measured mitochondrial respiration and ROS emission rates in the 

presence of room air (~200M O2) and mild O2 restriction (~50µM O2). We provide evidence that 

both an acute bout of BFR-RE and in vitro O2 restriction attenuated skeletal muscle mitochondrial 

ROS emission rates, suggesting that a reduction in skeletal muscle pO2 may be an important 

mechanism influencing ROS emissions, and subsequent metabolic adaptations, in response to BFR-

RE. 

 

Methods 

Participants 

Ten healthy males (24±1 y, 1.77±0.01 m, 78±6 kg) were recruited to examine the acute responses to 

BFR-RE and RE, while a second subset of 6 healthy males (25±2 y, 1.86±0.04 m, 76±4 kg) were 
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recruited to determine the in vitro effect of O2 tension on mitochondrial bioenergetics. Prior to 

enrollment in the study, participants completed health questionnaires to determine eligibility. The 

experimental procedures and risks were thoroughly explained, and written informed consent was 

given by each participant as approved by the Ethics Committee at the University of Guelph (REB#17-

12-005) or the Medical Ethical Committee of Maastricht University+ (METC#153010) in accordance 

with the Declaration of Helsinki. 

 

Mitochondrial bioenergetic responses to resistance exercise 

Study design 

To control for potential between-subject confounding factors, a within-person, unilateral model was 

used to investigate the acute responses of non-occluded RE and occluded BFR-RE single-leg squats. 

Participants arrived to the laboratory for all visits having refrained from lower body exercise for 72 

hours prior, alcohol consumption for 24 hours prior, and food and caffeine for 12 hours prior to all 

measurements. At least 3 days before the experimental day, participants’ 1-repetition maximum (1-

RM) was determined on each leg using a Smith Machine. The leg not performing exercise was 

supported by a band and the participants were instructed to refrain from contacting the ground or 

applying force into the band during each repetition. The load was progressively added based on 

approximately 20% of participant’s body mass and each attempt was separated by 3-5 minutes. 

Once a failed attempt occurred, the load was decreased by 10% body mass. If this was/was not 

made, 2 kg was added/decreased each repetition until participants successfully reached their 1-RM. 

 On the acute exercise day, a single resting skeletal muscle biopsy (m. vastus lateralis) was 

performed between 7:00-8:00 hours using the Bergström technique, in a randomized manner (RE or 

BFR-RE leg) for each participant. The sample was immediately placed in ice-cold BIOPS (50mM MES, 

7.23mM K2EGTA, 2.77mM CaK2EGTA, 20mM imidazole, 0.5mM dithiothreitol, 20mM taurine, 
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5.77mM ATP, 15mM PCr, 6.56mM MgCl2·H2O; pH 7.1) preservation buffer for preparation of 

permeabilized muscle fibers for mitochondrial bioenergetic experiments. After the resting muscle 

biopsy was obtained, participants conducted a warm-up on a treadmill for 5-10 minutes at a self-

directed pace. Legs were randomized to RE or BFR-RE, and 3 sets of single-leg squats to repetition 

failure were performed at 30% 1-RM, with 100 seconds recovery between sets, and a 5-10 minute 

rest before performing repetitions on the second leg. The lowest effective occlusive pressure (LOP), 

defined as the lowest pressure required to occlude arterial blood flow (Masri et al., 2016), was 

determined for the occluded leg using the personalized tourniquet system containing LOP 

calculation software (11cm cuff, Delfi Inc., Vancouver, Canada) placed on the upper thigh while the 

participants remained seated. Pressure was set to 60-70% LOP (151±6mmHg). Following completion 

of both legs, participants consumed a small granola bar (100 calories; 23% energy as fat, 72% energy 

as carbohydrate, 5% energy as protein), and remained sedentary for 2 hours before a muscle biopsy 

was taken on each leg and immediately placed in ice-cold BIOPS preservation buffer for 

mitochondrial bioenergetic experiments. 

 

Preparation of permeabilized muscle fibers and assessment of mitochondrial bioenergetics 

Vastus lateralis muscle samples in ice-cold BIOPS were trimmed of non-muscle tissue, separated 

with fine-tipped forceps under a microscope, and incubated in saponin prior to performing 

mitochondrial respiration experiments using high-resolution respirometry (Oroboros Oxygraph-2K: 

Oroboros Instruments, Innsbruck, Austria), as previously described (Barbeau et al., 2018; Miotto & 

Holloway, 2018). Briefly, ADP was titrated (concentrations of 25, 100, 175, 250, 500, 1000, 2000, 

4000, 6000, 8000, 10000, 12000 µM ADP) in the presence of 5mM pyruvate and 1mM malate, and 

10mM glutamate and 10mM succinate were sequentially added following ADP titrations to 

determine maximal complex I and complex I/II-linked respiration. 10µM cytochrome c was added at 

the end of all experiments, and an increase in respiration less than 10% was used to confirm the 
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integrity of the mitochondrial membrane. Respiratory control ratios (RCR) were calculated as the 

ratio of pyruvate-malate supported respiration in the presence and absence of ADP to demonstrate 

the mitochondrial coupling. Mitochondrial ROS emission rates were determined in permeabilized 

muscle fibers by measuring the rate of H2O2 release using Amplex Red fluorescence quantification 

(Invitrogen, Carlsbad, CA, USA) at 37ºC, as previously described (Barbeau et al., 2018). 5µM 

blebbistatin was added to all experiments to inhibit myosin ATPase, which has previously been 

shown to be more indicative of the in vivo environment when modelling ADP kinetics (Perry et al., 

2011). After completion of experiments, fiber bundles were recovered and freeze-dried to normalize 

all data to fiber weight. 

 

Western blotting 

Freeze-dried muscle fibers were digested in a lysis buffer containing 10% glycerol, 5% β-

mercaptoethanol, 2.3% SDS in 62.5mM Tris-HCl, and 0.01% bromophenol blue, for 1hr at 65ºC with 

gentle shaking (Barbeau et al., 2018). Samples were vortexed briefly every 15 minutes to improve 

digestion, and 5µL of digested lysate was then loaded onto SDS-polyacrylamide gels for Western 

blotting protein quantification. Proteins were separated by electrophoresis at 150V for 1 hour, and 

transferred at 100V for 1 hour to polyvinylidene difluoride membranes. Commercially available 

antibodies were used to detect COXIV (Invitrogen-A21347), OXPHOS (Mitosciences-ab110413), VDAC 

(Abcam-ab14734), Mi-CK (Abcam-ab131188), SOD2 (Abcam-ab13533) and α-tubulin (Abcam-

ab7291). All samples for each protein were transferred on the same membrane to limit variability, 

and quantified via chemiluminescence using a FluorChem HD imaging system (Alpha Innotech, Santa 

Clara, US). 
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Near-infrared spectroscopy (NIRS)  

A NIRS device (PortaMon, Artinis, The Netherlands) was used to estimate muscle oxygenation by 

measuring the concentration of oxygenated and deoxygenated hemoglobin (Hb) and myoglobin 

(Mb). The device was placed on the vastus lateralis at approximately 50% femur length from the 

lateral epicondyle and greater trochanter, and measured at a penetration depth of ~2.5 cm 

(McManus et al., 2018). The NIRS was secured and protected from outside light, and the location 

was marked pre-exercise to ensure minimal movement of the device during exercise. Participants 

remained upright with minimal movement during baseline and rest periods, and exercise was 

performed as explained above. Tissue saturation index (TSI) was calculated by the equation: 

                        (   )  
   (     )

   (     )       (     )
         

 

In vitro assessment of mitochondrial bioenergetics in response to O2 restriction 

Study design 

In a second subset of experiments, we examined the impact of pO2 on mitochondrial bioenergetics 

using skeletal muscle biopsies obtained from 6 individuals who participated in a larger study 

(Nederlands Trial Register #NTR5111) examining the impact of protein ingestion on responses to 

exercise. However, importantly, all analysis in the current study was performed prior to participants 

receiving their nutritional interventions. On the evening before the experimental trial, participants 

consumed a pre-packaged standardized meal containing 55% energy as carbohydrate, 30% as fat, 

and 15% as protein before 20:00 hours, after which they remained fasted. The following morning a 

single muscle biopsy sample was collected from the m. vastus lateralis using the Bergström 

technique following 90 minutes of exercise (60% Wmax) on a cycle ergometer. The collected muscle 

tissue was freed from any visible blood and non-muscle tissue, and rapidly placed in BIOPS 

preservation buffer for analysis of mitochondrial bioenergetics.  
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Mitochondrial bioenergetic analysis 

O2 consumption and H2O2 emission were simultaneously determined in Buffer Z using an Oxygraph-

2K with a fluorometry modular attachment (Oroboros Instruments) as previously reported (Holloway 

et al., 2018a). However, in the present study pO2 was fluctuated between room air (~200μM O2, 

~150mmHg) and O2 restriction (~50μM O2, ~40mmHg) by lifting the stopper and rapidly injecting 

100% nitrogen (to decrease O2 concentration) or 100% O2 gas (to increase O2 concentration back to 

room air conditions). The rate of H2O2 emission was calculated from a standard curve of known 

concentrations of H2O2 established with the same reaction conditions in room air saturation using 

DatLab software (Oroboros Instruments, Innsbruck, Austria) after subtracting fiber background. As 

standard curves performed in room air and O2 restriction were highly correlated (R2=0.9997), all data 

was analyzed using a standard curve generated at room air saturation. Oxygen consumption (JO2) 

was calibrated to a standard curve performed at a range of O2 concentrations (0µM – 200µM O2). All 

fibers were weighed in Buffer Z before the experiments to normalize data to fiber wet weight.  

  

Statistics 

All data are presented as means±SEM. Repeated-measures ANOVA was used for exercise volume 

and NIRS data comparing RE and BFR-RE (group) at each set/timepoint (time) with Bonferroni 

multiple comparison post-hoc analysis. Paired-samples Student’s t-tests were carried out at similar 

timepoints between RE and BFR-RE. Repeated-measures ANOVA was used to compare mitochondrial 

bioenergetics between rest, RE, and BFR-RE legs with Fisher’s least significant difference post-hoc 

analysis. ADP titrations were analyzed using Michaelis-Menten kinetics with a constraint of 100 in 

Prism 8 (GraphPad Inc., La Jolla, CA, USA).  The influence of pO2 was analyzed using a two-tailed 

paired-samples Student’s t-test in Prism 8. Statistical significance for all data was set at p<0.05. 
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Results 

Acute resistance exercise 

Participant’s single-leg 1-RM was similar between legs randomly assigned to RE (76.6±5.5  kg) and 

BFR-RE (75.2±5.2 kg). Therefore, during the acute exercise bout, the load corresponding to 30% 1-

RM was comparable between legs. However, BFR caused a reduction in the number of repetitions 

performed, and therefore the total exercise volume (load   repetitions) was ~50% lower while 

performing BFR-RE (Figure 1). This study design was specifically chosen as exercise to failure appears 

instrumental in the metabolic adaptations to RE (Burd et al., 2012b; Farup et al., 2015; Holloway et 

al., 2018b). As fatigue occurs earlier when conducting BFR-RE, a work-matched study design may 

therefore compromise the metabolic stimulus of traditional RE and prevent a direct comparison 

between associated acute signaling events. 

 

Mitochondrial protein content and function in response to RE and BFR-RE 

On a cellular level, we aimed to determine if RE and BFR-RE acutely influenced mitochondrial 

bioenergetics. We first characterized markers of mitochondrial content and function, and 

established there were no differences in the content of mitochondrial ETC proteins (CI, CII, CIII, CV; 

COXIV), proteins involved in ADP transport (VDAC, MiCK), or antioxidant proteins (SOD2) (Figure 

2A,B) before or 2 hours after acute RE or BFR-RE. Functionally, RE and BFR-RE did not alter 

mitochondrial respiratory capacity in the presence or absence of maximal ADP (10mM ADP), or 

various substrates (glutamate, succinate), providing further evidence mitochondrial respiratory 

capacity was not different between legs, or following resistance exercise (Figure 2C).  
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Mitochondrial ADP sensitivity in response to RE and BFR-RE 

As moderate (Perry et al., 2012) and high (Dohlmann et al., 2018) intensity aerobic exercise are 

known to acutely impair mitochondrial ADP sensitivity in human permeabilized muscle fibers, we 

examined if resistance exercise, with or without occlusion, influenced this response. However, ADP 

sensitivity was not altered by RE or BFR-RE (Apparent ADP Km = 1138µM and 1134µM ADP, 

respectively), compared to pre-exercise (Apparent ADP Km = 1038µM ADP) (Figure 2D,E). 

 

Mitochondrial ROS emissions in response to RE and BFR-RE 

Given the role of ROS in acute exercise-mediated signaling events, we examined mitochondrial H2O2 

emission rates following RE and BFR-RE. While maximal succinate-supported H2O2 emission rates 

were not altered in response to RE (79.6 pmol min-1 mg dry wt-1), mitochondrial H2O2 emission was 

attenuated ~25% from pre-exercise levels following BFR-RE (65.5 pmol min-1 mg dry wt-1, p=0.01) 

(Figure 3A). A similar response was evident with respect to submaximal H2O2 emission in the 

presence of 100µM ADP, as rates were decreased ~35% following BFR-RE compared to pre-exercise 

(p=0.03). In contrast to the changes in absolute rates of mitochondrial ROS emission, the capacity of 

100µM ADP to suppress maximal H2O2 emission rates was not influenced by RE or BFR-RE compared 

to pre-exercise (Figure 3C).  

 

Skeletal muscle O2 saturation during RE and BFR-RE 

Since O2 is required for the production of mitochondrial ROS, we next aimed to determine the 

influence of BFR-RE on skeletal muscle O2 saturation as a potential factor mediating the observed 

reduction in H2O2 emission rates. To achieve this, participants returned to the laboratory 7-14 days 

after the initial acute experimental day to estimate muscle oxygenation during identical squats to 



 

This article is protected by copyright. All rights reserved. 14 

repetition failure. This approach revealed that tissue saturation index (TSI) was decreased during all 

RE and BFR-RE sets compared to pre-exercise; however, the reduction in TSI was more pronounced 

during BFR-RE compared to RE sets (Figures 4A,B). Moreover, during the recovery periods between 

sets, TSI returned to baseline levels in the RE leg (Figure 4A,F), while it remained decreased 

throughout the rest period in the BFR-RE leg (BFR-RE: 46.1±2.0 vs. RE: 60.6±1.1%, p<0.01) until cuff 

release following the third set (Figure 4B,F). This reduction in TSI was driven by ~25% decrease in 

oxygenated Hb and ~35% increase in deoxygenated Hb, in the absence of changes in total Hb 

content (Figures 4C-E). Combined, these data suggest that BFR-RE decreased skeletal muscle O2 

saturation throughout the duration of the exercise protocol. 

 

Influence of pO2 on mitochondrial respiration and H2O2 emissions 

As tissue oxygenation was consistently lower during BFR-RE, and H2O2 emission rates were reduced 

following BFR-RE, we next aimed to specifically examine the role of pO2 on mitochondrial 

bioenergetics in vitro, while removing any other confounding factors present during exercise (e.g. 

hypercapnia). In muscle biopsy samples obtained from a second subset of participants (n=6), we first 

determined the concentration of O2 that limited respiration in human permeabilized muscle fibers. 

To achieve this, maximal respiration (10mM ADP) was initiated at room air saturation (~200µM O2, 

21% O2) in the presence of pyruvate and malate and respiration was monitored until anoxia (Figure 

5A), which leads to a progressive decline in mitochondrial respiration rate. Maximal ADP-stimulated 

respiration was stable (>95% of maximal respiration) above ~125M O2, while a mild impairment in 

respiration (~30% inhibition) was observed at ~50M O2 (Figure 5B). Therefore, to determine the 

influence of pO2 on mitochondrial bioenergetics, we simultaneously analysed maximal H2O2 emission 

rates (pyruvate+malate+succinate; absence of ADP), submaximal respiration/H2O2 emission 

(+100M ADP) and maximal respiration (+10mM ADP) in the presence of room air (~200M O2) and 

mild O2 restriction (~50M O2) (Figure 5C).  



 

This article is protected by copyright. All rights reserved. 15 

 With respect to mitochondrial respiratory function, mild O2 restriction attenuated leak 

respiration in the absence of ADP (P+M+S) and maximal ADP-stimulated respiration (10mM ADP) by 

~50% (Figure 6A). As a result of the similar reductions in each respiratory state, the RCR was not 

altered by mild O2 restriction (Figure 6A). In addition, there was a trend (p=0.06) for O2 restriction to 

reduce submaximal respiration in the presence of 100M ADP (~25%), a concentration that models 

the skeletal muscle microenvironment during exercise conditions (Phillips et al., 1996). To ensure 

repeatability of oxygen consumption (JO2) measurements with rapid fluctuations in pO2, submaximal 

respiration was monitored in separate experiments with repeated cycles of mild O2 restriction and 

room air saturation, and the coefficient of variation for both pO2 values was determined to be <10% 

(room air: 81%, mild O2 restriction: 72%). This suggests that the absence of changes in 

submaximal ADP-supported respiration with decreased pO2 was not an artifact of initially stimulating 

respiration in the presence of ADP while exposed to O2 restricted conditions. 

We next examined the influence of reducing O2 availability on rates of mitochondrial H2O2 

emission. Mildly decreasing pO2 markedly attenuated both maximal succinate-supported 

mitochondrial H2O2 emission rates and submaximal H2O2 emission (100µM ADP) (Figure 6B). 

However, this reduction was more pronounced in the presence of submaximal ADP concentrations, 

and therefore the ability of 100µM ADP to supress mitochondrial H2O2 emission was ~4-fold greater 

when O2 was restricted compared to room air (Figure 6C). While reducing pO2 decreased both 

respiration and ROS emission rates, this effect was far greater with respect to ROS, and as a result, 

the fraction of electron leak to ROS was decreased by O2 restriction (Figure 6D). This was most 

pronounced when exercising free ADP concentrations were present (100M ADP), as the fraction of 

electron leak to ROS during O2 restriction was almost non-detectable in this situation (<0.02%).  

 

Discussion 
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In the present study, we established that acute RE and BFR-RE did not alter maximal respiratory 

capacity or mitochondrial sensitivity to ADP in human permeabilized muscle fibers. In contrast, 

maximal and submaximal mitochondrial H2O2 emission rates in the presence of room air conditions 

were attenuated following BFR-RE, but not RE, suggesting prolonged changes within the ETC 

following BFR-RE. Since BFR-RE decreased skeletal muscle oxygen saturation, we also examined the 

effects of mild reductions in pO2 on mitochondrial bioenergetics in vitro, which revealed an 

attenuation in leak respiration, maximal respiration, and mitochondrial H2O2 emission rates in 

human permeabilized muscle fibers. Importantly, the effect was far more pronounced with respect 

to mitochondrial H2O2 emission, and therefore the fraction of electron leak to ROS was dramatically 

reduced during mild O2 restriction. Altogether, these data suggest that the capacity for 

mitochondrial-derived ROS is acutely decreased in human skeletal muscle following BFR-RE, and the 

reductions in pO2 during BFR-RE may contribute to this response in vivo. 

 

Mitochondrial bioenergetic responses to RE and BFR-RE 

As resistance exercise with or without blood flow restriction does not elicit a degree of AMPK 

activation classically associated with aerobic exercise (Groennebaek et al., 2018), alternative 

mechanisms must be involved in the cellular adaptations to resistance exercise. A well characterized 

AMPK-independent (Miotto et al., 2017) response to both low (Perry et al., 2012; Barbeau et al., 

2018; Miotto & Holloway, 2018) and high (Dohlmann et al., 2018; Petrick & Holloway, 2019) 

intensity aerobic exercise, in both rodents and humans, is an impairment in mitochondrial ADP 

sensitivity. Recent evidence in mice suggests this response is necessary for the acute exercise-

mediated increase in PGC-1α mRNA expression, and as a result, the chronic mitochondrial biogenic 

effects of aerobic exercise (Miotto & Holloway, 2018). As similar mitochondrial adaptations have 

recently been observed following RE and BFR-RE training (Pesta et al., 2011; Farup et al., 2015; 

Groennebaek et al., 2018), and as acute RE increases skeletal muscle PGC-1α mRNA content (Burd et 
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al., 2012a; Ruas et al., 2012) and cellular metabolites indicative of metabolic stress (increased 

lactate, and reductions in ATP, glycogen, and creatine phosphate) (Tesch et al., 1986; Dudley, 1988), 

we speculated mitochondrial ADP sensitivity would also be impaired in these situations. However, 

neither RE nor BFR-RE altered mitochondrial sensitivity to ADP when directly compared between 

both types of exercise performed to failure. This finding may be due to the brief nature of RE (2-3 

minutes total exercise work over 3 sets), while previous research utilizing aerobic exercise was 

significantly more prolonged (30-120 minutes in duration) (Perry et al., 2012; Dohlmann et al., 2018; 

Barbeau et al., 2018; Miotto & Holloway, 2018). As muscle time under tension appears important in 

the hypertrophic effects of RE (Burd et al., 2012a), it is also likely that this may influence 

mitochondrial adaptations to similar types of exercise. While biopsy samples in the current study 

were obtained 2 hours following exercise, this is not expected to alter the exercise-mediated 

regulation of mitochondrial ADP sensitivity, as it has previously been shown that moderate-intensity 

cycling impairs mitochondrial ADP sensitivity for at least 3 hours post-exercise (Perry et al., 2012). 

However, it remains possible that the effects of RE and BFR-RE on mitochondrial ADP sensitivity are 

more transient in nature, and the acute regulation of ADP sensitivity was not maintained 2 hours 

post-exercise. 

 Several lines of evidence also suggest the ability of ADP to supress mitochondrial H2O2 

emission rates is closely linked with the impairment in ADP sensitivity following exercise (Miotto & 

Holloway, 2018), particularly as exercise-mediated reductions in ADP sensitivity are absent in mice 

with attenuated mitochondrial ROS production (Barbeau et al., 2018). Consistent with this closely 

linked relationship, in the current study, along with the absence of changes in mitochondrial ADP 

sensitivity, we observed no differences in the ability of ADP to supress mitochondrial H2O2 emission 

rates. Similar to previous findings in response to aerobic exercise (Barbeau et al., 2018; Miotto & 

Holloway, 2018), we demonstrate that maximal H2O2 production following RE was comparable to 

pre-exercise. Interestingly, however, maximal (succinate-supported) and submaximal (presence of 

100µM ADP) H2O2 emission rates were lower in response to BFR-RE. As ROS is proposed to be an 
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important cellular event mediating responses to exercise (Davies et al., 1982), it remains possible 

that chronic training-induced adaptations are blunted following BFR-RE compared to RE when 

performed to fatigue, as opposed to matched for low exercise volume. We should acknowledge that 

participants consumed a granola bar immediately after the cessation of the exercise protocol to 

better model nutritional approaches utilized outside the laboratory setting. While unknown, given 

the low caloric intake (100 kcal), and the single leg model employed (i.e. both legs exposed to the 

same circulation), the consumption of this granola bar is unlikely to have confounded our 

interpretation that BFR-RE reduces mitochondrial ROS.  

 As the decline in mitochondrial ROS emission rates persisted at a 2 hour timepoint following 

an acute bout of BFR-RE, it is possible that prolonged, post-translational modifications or changes 

within ROS-producing sites of the electron transport chain occurred. Given the reduction in tissue 

oxygen saturation at all time points during and between sets in the BFR-RE leg compared to RE leg, 

we speculated the decrease in pO2 could be an acute event contributing to this response, and as a 

result, the attenuated mitochondrial ROS emissions with BFR-RE. However, it remains unknown if 

this is a direct result of a change within the ETC, or occurred secondary to changes in metabolism, 

ventilation, or blood flow during exercise.  

 

In vitro assessment of mitochondrial bioenergetics in response to O2 restriction 

As tissue oxygen saturation was decreased during BFR-RE, we also aimed to examine the influence of 

decreased pO2 on mitochondrial ROS emissions. Specifically, we evaluated mitochondrial 

bioenergetics in vitro in the absence of other confounding factors that may play a role during 

exercise. This approach revealed that mild O2 restriction decreased mitochondrial ROS emission 

rates in human skeletal muscle compared to room air. As the role of pO2 in mitochondrial redox 

balance is conflicting, our findings of a decrease in ROS production support previous work in isolated 
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mitochondria from rat livers (Hoffman et al., 2007), however they are in contrast to other findings in 

isolated cell lines in which a reduction in O2 increased H2O2 production and induced oxidative stress 

(Duranteau et al., 1998; Chandel et al., 2000). The ambiguity in the ability of O2 to influence 

mitochondrial bioenergetics arises as O2 exerts an obligatory role in regulating both oxidative 

phosphorylation and ROS production. Therefore, as electron flux through the ETC, and thus aerobic 

respiration, is simultaneously reduced in the presence of lower pO2, any absolute changes in 

mitochondrial ROS production may not be representative of relative proportions of electron leak 

towards ROS. This therefore may reflect a different reducing potential and O2 affinity of proximal 

sites within the ETC implicated in ROS production, and the terminal site (Complex IV) mediating 

aerobic respiration.  

 Our data supports this supposition, as while the effect of mild O2 restriction on attenuating 

mitochondrial H2O2 emission rates was extremely pronounced, we only observed a moderate 

decrease in mitochondrial respiration. Interestingly, while maximal respiration was impaired with 

mild O2 restriction, submaximal ADP-stimulated respiration (100µM ADP) was minimally decreased, 

suggesting that a reduction in pO2 would only compromise aerobic respiration to a minor extent in 

the presence of ADP concentrations representative of the skeletal muscle microenvironment. As a 

result of these mild respiratory impairments, we observed a reduction in the fraction of electron leak 

to ROS in both maximal and submaximal conditions, suggesting Complex IV possesses a greater 

affinity for O2 than proximal sites within the ETC implicated in the production of superoxide radicals.  

 

In vivo implications 

The present data imply a reduction in pO2 decreases mitochondrial ROS, a response which appears 

evident following BFR-RE, and is in stark contrast to our hypothesis. Interestingly, this effect 

persisted 2 hours following BFR-RE despite normalized pO2 in vivo, and when assessed in the 
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presence of room air conditions. This suggests that the reduction in pO2 during BFR-RE exerts direct 

acute effects on mitochondrial ROS signaling pathways, in addition to indirect and prolonged post-

translational modifications capable of influencing mitochondrial redox balance. Despite the 

reduction in mitochondrial ROS with mild O2 restriction and BFR-RE, the present data do not 

necessarily indicate an improvement in redox balance in vivo, but rather suggests that BFR-RE and 

reductions in pO2 do not cause an increase in mitochondrial-specific ROS emission 2 hours post-

exercise. In this respect, it has been suggested that decreasing pO2 increases the generation of ROS 

from NADPH oxidase, xanthine oxidase, and various extra-mitochondrial membranes (e.g. 

sarcoplasmic reticulum, transverse tubules, and sarcolemma) (Waypa & Schumacker, 2005), 

pathways which also can influence cellular redox balance in response to exercise (Powers et al., 

2011). In addition, it remains possible that ROS emission rates were transiently elevated 

immediately following exercise, a response which decreased as a compensatory mechanism 2 hours 

following exercise. However, given the importance of delayed post-exercise signaling events in 

mediating chronic training adaptations (Perry et al., 2010) a reduction in ROS emission rates 2 hours 

post-exercise would nonetheless be expected to have important implications for regulating 

subsequent metabolic responses to BFR-RE. While additional work is clearly required to delineate 

the metabolic consequences of reductions in skeletal muscle pO2 in vivo, particularly immediately 

following resistance exercise in a time-course manner, the present data strongly suggests that 

decreasing pO2 attenuates the absolute and relative production of mitochondrial-derived H2O2 in 

human skeletal muscle, an event which appears to occur following BFR-RE. 

 

Conclusion 

The present data provides evidence that submaximal and maximal mitochondrial H2O2 emission 

rates are acutely decreased in response to BFR-RE, but not RE, in the absence of any changes in 

mitochondrial respiration following either exercise. This response is likely influenced by the 
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reduction in tissue oxygenation (i.e. lower pO2) during BFR-RE, as our in vitro data further provides 

evidence that mild O2 restriction dramatically attenuates mitochondrial H2O2 emission rates and 

electron leak to ROS. While we observed a comparatively modest decrease in maximal respiratory 

capacity in vitro, this data suggests Complex IV mediating mitochondrial oxidative phosphorylation is 

more sensitive to O2 than proximal sites implicated in superoxide production. Altogether, these 

findings have important implications for understanding the regulation of basic mitochondrial redox 

biology, particularly as a potential mechanism influencing the training adaptations to BFR-RE and RE. 

Furthermore, the current results exclude the theory that acute elevations in mitochondrial ROS 

emission rates following BFR-RE contribute to comparable training adaptations between low-volume 

BFR-RE and traditional RE training, specifically when both types of exercise are performed to 

repetition failure. 
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Figure legends 

Figure 1 – Exercise volume during each set to repetition failure. Participants performed 3 sets of 

single-leg squats to repetition failure at 30% 1-RM with (BFR-RE) and without (RE) occlusion. n=10, 

values are reported as mean ± SEM. * p<0.05 versus RE. 
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Figure 2 – The influence of acute RE and BFR-RE on mitochondrial protein content and respiratory 

capacity in permeabilized muscle fibers. Neither RE or BFR-RE altered ETC subunits and 

mitochondrial protein content in permeabilized muscle fibers (A and B), maximal complex I/II linked 

respiration (C), or the respiratory sensitivity of mitochondria to ADP titrated in concentrations of 25, 

100, 175, 250, 500, 1000, 2000, 4000, 6000, 8000, 10000, and 12000µM ADP (D and E). Michealis-

Menten R2=0.9727 Pre; 0.9745 RE; 0.9704 BFR-RE. PM, pyruvate+malate; +D, PM+ADP; +G, 

PMD+glutamate; +S, PMDG+succinate; +C, PMDGS+cytochrome C; RCR, respiratory control ratio. 

n=10, values are reported as mean ± SEM. 
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Figure 3 – The effect of RE and BFR-RE on mitochondrial H2O2 emission rates in permeabilized 

muscle fibers. BFR-RE decreased absolute rates of maximal succinate-supported mitochondrial H2O2 

emission (A) and submaximal (+100µM ADP) mitochondrial H2O2 emission rates (B). The ability of 

100µM ADP to attenuate maximal H2O2 emission rates was not altered by RE or BFR-RE (C). n=10, 

values are reported as mean ± SEM. * p<0.05 versus pre-exercise. 

 

  

Pre RE BFR-RE
0

20

40

60

80

1
0
0
µ

M
 A

D
P

 s
u
p
p
re

s
s
io

n
 o

f
 m

ito
c
h
o
n
d
ri
a
l H

2
O

2
 e

m
is

s
io

n
 (

%
)

Pre RE BFR-RE
0

10

20

30

40

50

H
2
O

2
 E

m
is

s
io

n
s

 (
p
m

o
l *

 m
in

-1
 *

 m
g
 d

ry
 w

t-1
)

Pre RE BFR-RE
0

20

40

60

80

100

H
2
O

2
 E

m
is

s
io

n
s

 (
p
m

o
l *

 m
in

-1
 *

 m
g
 d

ry
 w

t-1
)

% Suppression

*

+100µM ADP
B C

*

A
Succinate

M
it
o

c
h
o
n

d
ri
a

l 
H

2
O

2
e
m

is
s
io

n

M
it
o
c
h
o

n
d
ri

a
l 
H

2
O

2
e
m

is
s
io

n



 

This article is protected by copyright. All rights reserved. 32 

Figure 4 – Estimations of muscle oxygenation during RE and BFR-RE. A NIRS device was placed on 

the vastus lateralis to estimate regional skeletal muscle oxygenation. Representative tracings of 

tissue saturation index are represented for RE (A) and BFR-RE (B). Averages across all participants 

are depicted for oxygenated Hb (C), deoxygenated Hb (D), total Hb content (E), and tissue saturation 

index (F). Hb, hemoglobin. n=10, values are reported as mean ± SEM. * p<0.05 versus RE. ✝ p<0.05 

versus baseline for respective leg. 
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Figure 5 – Establishing a protocol to vary oxygen tension in vitro while simultaneously assessing 

respiration and H2O2 emission in permeabilized muscle fibers. Maximal oxidative phosphorylation 

was first initiated with 10mM ADP and the rate of oxygen consumption (JO2) monitored until anoxia 

(A) to directly compare the influence of oxygen concentration on JO2 (B). In separate experiments, 

oxygen concentration (C) was decreased while the rate of oxygen consumption (JO2) and 

mitochondrial H2O2 emission were determined. Leak respiration (P+M+S) and maximal (Max ROS) 

H2O2 were simultaneously measured in the absence of ADP. Submaximal (+100µM D) respiration and 

H2O2 (Submax. ROS) were simultaneously determined in the presence of 100M ADP, while maximal 

respiration (+10mM D) was determined in the presence of 10mM ADP. D, adenosine diphosphate 

(ADP); O2: oxygen; PM, pyruvate+malate; P+M+S, pyruvate+malate+succinate. 
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Figure 6 – The effect of decreasing oxygen tension in vitro on mitochondrial respiration and H2O2 

emission rates in permeabilized muscle fibers. Absolute rates of oxygen consumption (A) were 

determined in room air (~200M O2) and oxygen restriction (~50M O2) in the absence of ADP 

(P+M+S) presence of 100M ADP (submaximal respiration) and 10mM ADP (maximal respiration). 

Absolute rates of H2O2 emission (B) were determined in the absence (Succinate, maximal H2O2 

emission), and presence of 100M ADP (Submaximal H2O2 emission rates). H2O2 was not detectable 

in the presence of 10mM ADP (data not shown). The ability of 100µM ADP to suppress H2O2 is 

reported in (C). Simultaneous measurements enabled the fraction of electron leak to H2O2 to be 

determined in the absence (Succinate) and presence of 100M ADP (+100µM D) (D). D, adenosine 

diphosphate (ADP); P+M+S, pyruvate+malate+succinate; RCR, respiratory control ratio. n=6, values 

are reported as mean ± SEM. * p<0.05 versus room air.  
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