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a b s t r a c t

Electricity demand forecasting is of great significance to the electricity system and residents’ life, but
it is difficult to forecast the electricity demand series because of the influence of cyclical factors.
Electricity demand forecasting also faces the problem of small data amounts. Therefore, we need to
design a model that is less affected by data volume and can cope with complex electricity demand
series. Based on the Autoformer model, this paper establishes a novel forecasting framework with
excellent performance. In the part of data preprocessing, multiple linear regression with 10 variables
and Bootstrap processing are added. In the part of the model, the Auto-Correlation mechanism is
modified to better extract the historical and nonlinear characteristics of electricity demand series from
different time spans. Using this framework, we further analyze the impact of working days and sea-
sonal changes on the electricity demand in Taixing City and New South Wales. In addition, we propose
a new electricity demand forecasting method, which can adjust the original sequence according to the
actual situation. The experimental results show that this method can achieve good precision in demand
forecasting. Taking Taixing of China and New South Wales of Australia as examples, the forecasting
performance with the proposed framework is better than that of Autoformer, Reformer, Informer, and
other mainstream models. The forecasting indexes with our proposed framework of the test set are
MAE: 35.05, RMSE: 47.28, MAPE: 1.63 in Taixing and MAE: 193.17, RMSE: 239.96, MAPE: 2.43 in NSW.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For electricity enterprises, an accurate electricity supply is
n essential step in regional grid planning (Lerner et al., 2009;
rew et al., 2017). Clearly, electricity demand forecasting is a key
ink to maintaining the dynamic balance between the electricity
upply and electricity demand (Hong et al., 2020; Feinberg and
enethliou, 2005; Kumar Singh et al., 2012). Particularly, short-
erm electricity demand forecasting (Ud Din and Marnerides,
017; Tang et al., 2019) is to forecast the next few hours or days,
hich can help electricity enterprises to set reasonable electricity
rices and facilitate users to know the demand peak and low
eak and arrange electricity reasonably. Meanwhile, when the
lectricity grid executes the transferred business, it can make an
lectricity generation plan and dispatch plan according to the
hort-term electricity demand forecasting data and the operation
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nc-nd/4.0/).
parameters of each generator (Metaxiotis et al., 2003). With the
further development of the electricity market, the influence of
short-term demand forecasting on the economic operation of the
electricity system will become more and more obvious. Many
models need to be based on a certain amount of historical in-
formation when making electricity demand forecasting. However,
when electricity demand data is counted once a day and only a
thousand or two thousand data can be used, the model tends to
be less effective. So how to sufficiently extract the information
from these data is essential in electricity demand forecasting.
Meanwhile, electricity demand is often affected by many factors
such as holidays, working days, seasons, and emergencies (Kha-
toon et al., 2014; Mustapha et al., 2015). These problems make
the forecast more difficult. Therefore, how to build a short-term
electricity demand forecasting method with accurate forecasting
performance is crucial. This method can consider some factors
affecting the electricity demand based on a small amount of data,
and achieve effective short-term forecasting.

1.1. Literature review

In statistical learning, the Autoregressive Moving Average

model (ARMA) (Pappas et al., 2010) and Autoregressive Integrated

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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oving Average model (ARIMA) (Zhu and Shen, 2012) are often
sed for short-term electricity demand forecasting (Wu et al.,
023). Researchers adopt the re-sampling method Bootstrap (Xiao
t al., 2022) to deal with a small amount of data. Except for the
mall amount of electricity demand data, the electricity demand
s not a stationary sequence due to the influence of various
yclical factors such as working days, weekends, holidays, and
easons. Researchers generally use the Multiple linear regression
ethod (MLR) (Zhao et al., 2022; Wu et al., 2023) to describe the

nfluence of these factors.
However, the forecasting performance of statistical learning

ethods is not ideal in the face of nonlinear electricity demand.
o get better forecasting performance, researchers have proposed
any neural network methods to deal with historical and non-

inear characteristics of time series. As early as 1990, Elman
1990) proposed a Recurrent Neural Network (RNN), based on a
oncept of memory mechanism: the network state information
t the last moment will act on the network state at the next
oment, to predict the time series. However, due to the van-

shing gradient of the loss function and activation function in
PNN (Werbos, 1990), RNN cannot consider the information of
ast time steps. Hochreiter and Schmidhuber (1997) introduced
ong–Short Term Memory (LSTM) in 1997 to control the trans-
ission of information by introducing a forgetting gate, input
ate, and output gate, which changes the cumulative multipli-
ation in gradient into accumulation and solves the problem of
anishing gradient. At the same time, Cell State (Ct) variable is
ntroduced to store the long-term situation so that the model
as long-term memory. Gated Recurrent Unit (GRU) (Cho et al.,
014), the variant of LSTM, merges the input gate and the for-
otten gate into the update gate and replaces the Ct variable in
STM with a linear relation. These operations ensure the original
orecasting accuracy and simplify the model calculation. Vaswani
t al. (2017) proposed a model called Transformer based on self-
ttention mechanism and Feed Forward Neural Network (Sarraf,
020), which is different from the sequential processing of RNN
odel and its evolution model LSTM. The model can dynamically
ompute based on all inputs and achieve better performance
ithout using sequentially aligned cyclic architecture. This makes
erformance degradation due to long-term dependencies much
ess likely. But Transformer’s self-attention mechanism is difficult
o find reliable temporal dependence from complex temporal pat-
erns. Wu et al. (2021) proposed an Autoformer model that uses
eep decomposition architecture and an Auto-Correlation mech-
nism. Compared with the sparse attention mechanism of the
ransformer, the Auto-Correlation mechanism realizes efficient
onnection at the sequence level, which can better aggregate
nformation and break the bottleneck of information utilization.
owever, when dealing with complex and small amounts of elec-
ricity demand series, it is difficult for Autoformer to achieve ideal
orecasting performance relying on the original Auto-Correlation.
s for the research on Autoformer such as Zhong et al. (2022)
nd Jiang et al. (2022), there is still room for improvement in
he improvement of Auto Correlation. Because of the limitations
f these models, many hybrid models have been proposed to
rocess the features of time series in stages (Ajitha et al., 2022;
nteha et al., 2021; Alhussein et al., 2020).

From the above studies in the field of statistical learning
nd neural network methods, we conclude the following three
oints should be considered to optimize the electricity demand
orecasting performance:

(1) How to solve the problem that the model’s forecasting
erformance is not ideal in the case of a small amount of data.
(2) How to design a novel hybrid framework to process the

yclical factors of electricity demand series in stages.
(3) How to improve the learning ability of historical and non-

inear characteristics of electricity demand series.
 m
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1.2. Motivation

Autoformer uses Auto-Correlation to extract sequence corre-
lation rules of time series and works well when dealing with
complex time series based on sufficient data. However, Auto-
former, a single model, cannot solve the three problems we raised
in the previous section well by relying on the original algorithm.

We want to improve on Auto-Correlation and design a novel
hybrid framework based on Autoformer that can better deal
with the complex sequences to achieve more accurate electricity
demand forecasting and our framework can no longer be based
on massive data support. This framework can help the electricity
department to predict the electricity demand in the short term
accurately and do corresponding planning.

1.3. Contributions

This paper analyzes and evaluates the electricity demand data
set of Taixing City in Jiangsu Province and New South Wales
in Australia. We extract weekly, monthly, yearly, and seasonal
patterns to look for some peculiar change rules of electricity
demand in Taixing and New South Wales. Our contributions can
be summed up as follows.

(1) We design a novel hybrid Autoformer framework (HAFF)
hat can process the electricity demand sequence step by step.
he first stage focuses on analyzing its periodic characteristics,
nd the second stage focuses on extracting its seasonal informa-
ion and trend information. HAFF can achieve excellent forecast-
ng results and does not need to be based on large amounts of
lectricity demand data.
(2) We analyzed electricity demand from two data sets over

ifferent time spans. An MLR model with 10 variables is con-
tructed from the analysis results. The training set of the pro-
essed sequence is re-sampled through bootstrap and then
pliced with the original sequence as the input sequence. Based
n the above two processes, HAFF is able to analyze the cyclical
actors of electricity demand in advance and reduce the impact
f low data volume.
(3) We improve the Auto-Correlation mechanism to enable it

an process the correlation of various data points in the sequence
rom different time spans. Improved Auto-Correlation can bet-
er extract historical and nonlinear characteristics of electricity
emand series.
Finally, through the comparison experiments, our HAFF

chieves better forecasting performance compared with Auto-
ormer in the data set of Taixing and New South Wales.

.4. Structure of this paper

The remainder of this article is organized as follows. Section 2
ntroduces the definitions of some terms, Section 3 details the
roposed HAFF, and Section 4 shows the analysis of MLR and
he comparative experiments of HAFF on electricity demand data
rom Taixing, China, and New South Wales, Australia. Section 5
ummarizes this paper.

. Definition of terms

.1. Multiple linear regression

Multiple linear regression (MLR) is used to determine math-
matical relationships between multiple random variables. In
ther words, MLR can examine how multiple independent vari-
bles are related to a dependent variable. Once each self-factor
s identified to predict the dependent variable, information about

ultiple variables can be used to create an accurate forecasting
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f their level of influence on the resulting variable. The model
reates relationships in the form of straight lines (linear) that
re closest to all individual data points. Its general formula is as
ollows:

i = ω1xi1 + ω2xi2 + · · · + ωjxij + b, (1)

where yi represents dependent variables, xi represents explana-
tory variables, ωj represents slope coefficients for each explana-
tory variable and b is constant term.

2.2. Autoformer

2.2.1. Series decomp
Based on the idea of moving average (Lu and Li, 2021), the

serial decomposition part smooths the time series and separates
the cyclical term from the trend term of the original series. The
algorithm of the serial decomposition part is as follows:

Xt = Avgpool(Padding(X)),
Lt = (L + 2padding − kernelsize)/stride + 1,
Xs = X − Xt .

(2)

In the above formula, X is the original sequence, Xt stores the
ean value of each sliding kernel to represent the trend term
f the sequence, and Xs represents the smooth sequence with

seasonality. Padding makes the length of Xt equal to X by adding
length to the beginning and the end of the X sequence. Avgpool
represents the operation of calculating the average value of the
moving step size. Its operation on the length of the sequence
corresponds to the second expression: Lt represents the length
of the output sequence, L represents the length of the input
sequence kernelsize represents the size of the sliding module,
stride represents the step size of the moving module and the
padding in this expression defaults to 0. The above formula is
summarized as:

Xt , Xs = SeriesDecomp(X). (3)

2.2.2. Autoformer-correlation
To capture the correlation information of time series, Aut-

oformer uses the design method of an Auto-Correlation mech-
anism as the attention layer. The correlation coefficient R of
the input time series can be obtained by fast Fourier transform
(FFT ) (Heckbert, 1995), which can reflect the similarity between
the two input time series. In the application of electricity data,
Autoformer introduces Q , K , and V (Vaswani et al., 2017) into
the Auto-Correlation mechanism. The application of this attention
mechanism can capture the cyclical characteristics of data very
well. This series of treatments can be summarized as follows:

RQt,Kt (τ ) = F−1(F (Qt )F conj(Kt )), (4)

where RQt,Kt is auto correlation between Q and K , F represents
FFT , F−1 represents inverse transformation, and F conj represents
conjugate treatment.

After calculating autocorrelation, according to the aggrega-
tion processing method of time series, the information with the
highest confidence of k sub-sequences is selected to reduce the
complexity of the information.

τ1, . . . , τk = argTopk(RQt,Kt (τ )),
S1, . . . , Sk = softmax(RQt,Kt (τ1), . . . , RQt,Kt (τk)).

(5)

Then, after normalization operation (Ye et al., 2022), it is
multiplied with the input time series after Roll operation.

AutoCorrelation(Q , K , V ) =

k∑
Roll(Vt , τi)Si, (6)
i

3802
where argTopk refers to the maximum k parameters in the ex-
tracted sequence (the value of k is set manually). Vt refers to the
input time series after mapping processing, and Roll refers to the
rolling processing of the input sequence with a delaying length
of τ .

2.2.3. Encoder and Decoder
In the Encoder part, the weighted sum of the original sequence

is obtained by the Auto-Correlation, and the trend item is re-
moved by the Series Decomp after adding the original sequence
with the result of Auto-Correlation. After adding the Feed For-
ward and the second Series Decomp, the global seasonal item
after treatment is passed to the Decoder. The algorithm of this
part can be summarized as follows:

S l,1en = SeriesDecomp(AutoCorrelation(X l−1
en ) + X l−1

en ),

S l,2en = SeriesDecomp(FeedForward(S l,1en ) + S l,1en ),

X l
en = S l,2en ,

(7)

where X l
en denotes the output of lth encoder layer, S l,ien, i ∈ [1, 2]

represents the seasonal component after the ith series decompo-
sition block in the lth layer respectively.

In the Decoder part, season and trend items are dealt with.
For the season item, it will add the result to itself after each
Auto-Correlation processing, the season item is obtained as Q ;
secondly, the season item transmitted by Encoder is regarded as
K and V ; Q , K and V are used with Auto-Correlation to obtain
the weighted sum of global historical information. After Series
Decomp, repeat Feed Forward and Series Decomp operations to
extract seasonal information and get the final seasonal forecast-
ing. For the part of the trend item, the trend item of the original
series is weighted and aggregated with the trend information
obtained from the three Series Decomp to obtain the final trend
prediction. The algorithm of this part can be summarized as
follows:

S l,1de , T l,1
de = SeriesDecomp(AutoCorrelation(X l−1

de ) + X l−1
de ),

S l,2de , T l,2
de = SeriesDecomp(AutoCorrelation(S l,1de + XN

en) + S l,1de ),

S l,3de , T l,3
de = SeriesDecomp(FeedForward(S l,2de ) + S l,2de ),

T l
de = T l−1

de + Wl,1T
l,1
de + Wl,2T

l,2
de + Wl,3T

l,3
de ,

X l
de = S l,3de ,

(8)

where X l
de denotes the output of lth decoder layer, S l,ide, T

l,i
de , i ∈

[1, 2, 3] represent the seasonal component and trend-cyclical
component after the ith series decomposition block in the lth
layer respectively. XN

en represents the output of the N encoder
layers. Wl,i, i ∈ [1, 2, 3] represents the linear projector for the
ith extracted trend T l,i

de as the adaptor.
Thus, we can draw a conclusion: For the season item, the

Encoder–Decoder structure uses Auto-Correlation to perform de-
pendency mining based on the cyclical nature of the sequence
and aggregates sub-sequences with similar processes. For the
trend item, the cumulative method is used to gradually extract
the trend information from the predicted hidden variables.

3. The proposed model

3.1. Multiple linear regression

To eliminate the effects of working days, weekends, seasons,
and other cyclical factors on electricity demand. We use the MLR
model to construct 10 variables that fit these factors to describe
the relevant effects.

At the same time, we use a harmonic function to represent
time-related variables, which enables our MLR model to describe
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Table 1
10 variables constructed for multiple linear regression model.
Variables Definition Variables Definition

weekend =

{
1 if in weekend
0 otherwise

Time = t = 1, 2, . . .

WeeklySin = sin( 2π t
T ), T = 7 WeeklyCos = cos( 2π t

T ), T = 7

MonthlySin = sin( 2π t
T ), T =

365
12 MonthlyCos = cos( 2π t

T ), T =
365
12

SeasonlySin = sin( 2π t
T ), T =

365
4 SeasonlyCos = cos( 2π t

T ), T =
365
4

YearlySin = sin( 2π t
T ), T = 365 YearlyCos = cos( 2π t

T ), T = 365
t
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time series more accurately. Finally, we eliminate the results
of the MLR model to obtain the relatively stationary series for
subsequent processing. Details of the variables in this section are
shown in Table 1.

Now we can construct a multiple linear regression model with
hose variables:

(ω) =ω1weekend + ω2WeeklySin + ω3WeeklyCos
+ ω4MonthlySin + ω5MonthlyCos
+ ω6SeasonlySin + ω7SeasonlyCos + ω8YearlySin
+ ω9YearlyCos

+ ω10time + b, (9)

where ω = [ω1, ω2, . . . , ω10]
T is the coefficient vector for the

variables, and b is an intercept item.

3.2. Bootstrap

After obtaining the output result of the MLR model, we sub-
tract the original electricity demand sequence X0 from the result
F (ω) to reduce the influence of the variables constructed in the
MLR model. The result after subtracting is X . Then, we divided the
training set and test set and conducted a Bootstrap resampling
operation on the training set to avoid information leakage during
subsequent training. Finally, we spliced the resampled sequence
with X . The preceding operations are as follows:

X = X0 − F (ω),
X1 = Bootstrap(X),
X = Concat(X1, X).

(10)

3.3. Auto-correlation

Auto-Correlation uses Autocorrelation Function (ACF) (Scargle,
1989) to calculate the degree of correlation between a data point
and its delay of k unit data point. ACF is calculated as:

Rxx(k) = lim
L→∞

1
L

L−1∑
t=0

XtXt−k. (11)

he processing helps Auto-Correlation extract similar sequences
rom the overall sequence for information aggregation. This
eans that this processing can improve the learning ability of his-

orical and nonlinear characteristics of electricity demand series.
owever, we found that ACF can only calculate the correlation
egree between a certain day and k days before it if the electricity
emand data is counted at intervals of one day. That means its
bility to learn these characteristics is limited when considering
he small amount of data and the influence of cyclical factors.
herefore, our idea is to allow the ACF of Auto-Correlation to
alculate the correlation of various data points in the series over
ifferent time spans. We add one-dimensional convolution to
uto-Correlation to handle input sequences. After this layer of
rocessing, the length of the sequence will be reduced to 1/n

of the original length. It is clear that one data point in the new
 p
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sequence can represent the information of the original n data
points. So through ACF, we can approximate the correlation on n
days span. This improvement enables the model to fully learn the
historical and nonlinear characteristics of the electricity demand
series even with a small amount of data. The processing of this
part is shown in Fig. 1.

Since Auto-Correlation uses the attention mechanism, so we
let the original input Q , K , V pass one-dimensional convolu-
ion. The processed length of Q , K , and V will be 1/n of the
riginal length. Then we repeat the Auto-Correlation results of
ne-dimensional convolution processing. So that the result is
he same size as the one without the one-dimensional convolu-
ion. Finally, we add up the results of these different treatments.
mproved Auto-Correlation can analyze the trend characteristics
nd historical characteristics of electricity demand series from
ifferent time spans. The frame diagram of the Auto-Correlation
echanism before and after modification is shown in Fig. 2. The
pecific implementation process of the algorithm is shown in
lgorithm 1.

.4. Overall structure of HAFF

We added the MLR model and Bootstrap to the data prepro-
essing part of Autoformer and improved its Auto-Correlation.
inally, we proposed HAFF, and the overall algorithm flow of
AFF is as follows:
Step 1: Multiple linear regression. This section sets the vari-

bles associated with the electricity demand series. Then we
ubtract the result of this part to get the final residual. This step
akes the sequence relatively stable in advance to facilitate the
nalysis of subsequent models. Since the cyclical factors in the
equence are not eliminated, we will deal with them in the next
teps.
Step 2: Bootstrap. In response to the small amount of electric-

ty demand data, we set a specific threshold for the sequence with
nsufficient length, extend the training set of it with the Bootstrap
ethod, and then splice it with the original sequence to Step 3.
Step 3: Encoder. For the new sequence after processing, the

riginal features of the samples are put into the Encoder for Auto-
orrelation and Feed Forward processing. After each segment,
eries Decomp is conducted to transfer the season information
f the whole sequence to Step 4.
Step 4: Decoder. First, Series Decomp is used to decompose

he processed new sequences into trend and season items, and
hen two improved Auto-Correlations are used to aggregate the
eason item to aggregate similar sequences. In the second Auto-
orrelation, the information from Step 3 is used as the K , V
arameter. The improved Auto-Correlation algorithm can im-
rove the ability of Autoformer model to capture the historical
nd nonlinear characteristics of sequences.
Step 5: Predict. The forecast results consist of the final season

nd trend item. The season item in the Decoder will be pro-
essed continuously. Finally, the trend item and season item after

rocessing are added to get the forecast results.
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Fig. 1. The schematic diagram of the ACF before and after one-dimensional convolution, in which the sequence length L becomes L
n . ACF can calculate the correlation

n the time span of n days. This figure takes n = 2 as an example.
Fig. 2. For the Auto-Correlation part before and after modification, Q , K , V enter Auto-Correlation after one-dimensional convolution, and the output is repeated to
he original size and added with the original Auto-Correlation output.
Here, parameters in Step 1 can be added according to specific
ituations, and appropriate parameters can improve the final
orecasting accuracy. In Step 2, if features are constructed for
amples in advance, sequence expansion will also expand corre-
ponding features. The overall structure of HAFF is shown in Fig. 3
elow. The specific implementation process of the HAFF model is
rovided in Algorithm 2.

. Case studies

In the case studies, we first analyzed the data set and the
LR part of the design and then designed a comparative ex-
eriment for HAFF to analyze the performance of HAFF further.
3804
Algorithm 1: Modified Auto-Correlation
Input: Electricity demand data Xi(i = 1, 2, 3, ..., T ).
Output: New sequence after time delay aggregation

Xatten(i = 1, 2, 3, ..., T ×
dmodel
N−head ).

1 Xi is transposed to Q , K , V by WQ , WK , WV (i = 1, 2, 3, ..., T ×
dmodel
N−head ) ;

2 Q , K , V goes through the convolution layer to Q1 , K1 , V1

(i = 1, 2, 3, ..., T
n ×

dmodel
Nhead );

3 AutoCorrelation(Q , K , V ) and AutoCorrelation(Q1, K1, V1) are added
together to get Xatten .
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Fig. 3. The whole structure of HAFF.
a

M

Algorithm 2: HAFF
Input: Electricity demand data Xi(i = 1, 2, 3, ..., T ).
Output: Final forecasting result Yi(i = 1, 2, 3, ..., T ).

1 Xi enters MLR model to get F (ω);
2 Xi minus F (ω) and then bootstrap expands to get X

′

i ;
3 Determine the total number of sub-sequences C;
4 X

′

i is decomposed into Xs and Xt by Series Decomposition;
5 for k = e − layers do
6 X

′

i goes into the Encoder layer and passes through Modified
Auto-Correlation to get a new sequence after delay
aggregation then linked by residuals to X l−1

en

(i = 1, 2, 3, ..., T ×
dmodel
N−head );

7 X l−1
en is goes through Series Decomp to get S l,1en
(i = 1, 2, 3, ..., T ×

dmodel
N−head );

8 S l,1en passes through the FeedForward layer and is connected to X l,1
en

by residuals (i = 1, 2, 3, ..., T ×
dmodel
N−head );

9 X l,1
en is decomposed into S l,2en by Series Decomp;

10 S l,2en goes into the Decoder layer and is transposed to K
′

, V
′

by W
′

K ,
W

′

V (i = 1, 2, 3, ..., T ×
dmodel
N−head ).

11 end
12 for k = d − layers do
13 Xs goes into the Decoder layer and passes through Modified

Auto-Correlation then linked by residuals to X l,1
de

(i = 1, 2, 3, ..., T ×
dmodel
N−head ) ;

14 X l,1
de is decomposed into S l,1de and T l,1

de by Series Decomp;
15 S l,1de is transposed to Q

′

by W
′

Q (i = 1, 2, 3, ..., T ×
dmodel
N−head );

16 Q
′

and the K
′

, V
′

from Encoder pass through Modified
Auto-Correlation then linked by residuals to X l,2

de ;
17 X l,2

de is decomposed into S l,2de and T l,2
de by Series Decomp;

18 S l,2de passes through the FeedForward layer and is connected to X l,3
de

by residuals;
19 X l,3

de is decomposed into S l,3de and T l,3
de by Series Decomp;

20 T l,1
de , T

l,2
de , T

l,3
de are added up by weigh matrix Wl,1 , Wl,2 , Wl,3

respectively to get T l
de;

21 T l
de , S

l,3
de are added up to get the final forecasting result Yi .

22 end
23 for k = 1, 2, 3, ..., C do
24 Send updated weighs to the central server, aggregate weighs, and

update the global model.
25 end

To quantitatively analyze the forecasting results, we introduce
Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
and Mean Absolute Percentage Error (MAPE) as our evaluation
indexes. The simulation performance and reasonable degree of
different models are measured by the following indexes:

MAE =
1
n

n∑
|yi − ŷi|, (12)
i=1
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RMSE =

√1
n

n∑
i=1

(yi − ŷi)2, (13)

nd

APE =
1
n

n∑
i=1

|
yi − ŷi

yi
|, (14)

where n is the sample size, and yi and ŷi are the ith observed
value and the forecasting respectively.

Our HAFF uses the adam optimizer. Batch size is set to 32,
seq-len is set to 48; dmodel is 8, dff is 512; e-layers is 2, d- layers
is 1; N-head is set to 8; dropout is 0.05 and lr is 0.01. The n in
the modified Auto Correlation is set to 8. The training process is
early stopped within 10 epochs. The whole validation experiment
is performed on PyCharm Community Edition 2021.1.2 x64 envi-
ronment, using Windows 10 and a 4.20 GHz AMD Ryzen 7 4800H
CPU with 64-bit support and 16 GB RAM.

4.1. Case 1: Electricity demand in Taixing

In this section, we use an electricity demand dataset from
Taixing, China for single-step forecasting. The data was recorded
once a day for a total of 1178 data points (from May 13, 2018, to
August 2, 2021). The data set is divided into training set (60%),
validation set (20%) and test set (20%). The 1178 data points
are expanded to 1854 data points after Bootstrap. The skewness
before the extended sequence is 0.377 and the kurtosis is 0.559.
The skewness after the extended sequence is 0.553 and the kur-
tosis is 1.075. Fig. 4 shows the transformation law of electricity
demand under different time spans in Taixing. Table 2 records the
single-use performance of the three adjustment methods used
in our HAFF and the performance indicators of the comparison
models. Figs. 5 and 6 show part of the single-step forecasting
curve captured from the experimental result curve of the final
test set. The case will be analyzed in detail in the next three
sections.

4.1.1. Analysis of data set and MLR
In this section, we analyze the electricity demand data set of

Taixing to obtain the variation rule of its electricity demand under
different time spans. The researched information will serve as a
basis for the design of MLR and an important criterion for testing
whether these variables can describe the electricity demand.

We find that weekly, monthly, and seasonal electricity de-
mand levels show different rules. In general, electricity demand
shows an upward trend. The specific electricity demand variation
rules are shown in Fig. 4
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Fig. 4. Transformation law of electricity demand under different time span in Taixing.
Table 2
One-step forecasting results of HAFF, its applied methods and comparison models on Taixing dataset.
Model Train Test

MAE RMSE MAPE MAE RMSE MAPE

Autoformer 124.629 163.565 7.069 110.36 142.92 5.28
Autoformer with MLR 111.48 141.64 6.15 99.35 134.02 4.73
Autoformer with Bootstrap 95.40 123.52 5.44 141.19 169.03 6.55
Autoformer with new Auto-Correlation 40.11 52.06 2.21 67.09 82.43 3.23
BPNN 191.46 246.77 11.48 143.71 214.07 6.88
LSTNet 115.47 163.97 6.85 208.45 259.47 9.46
LSTM 42.09 57.35 2.37 137.67 170.01 6.55
Transformer 56.362 74.998 3.183 102.86 142.71 4.61
Reformer 46.20 61.65 2.61 57.74 86.94 2.63
Informer 58.12 75.23 3.24 147.68 195.18 6.54
HAFF 36.24 47.24 2.05 35.05 47.28 1.63
From the figure, we can see that there are differences in
lectricity demand between working days and weekends. During
orking days, especially Wednesday and Thursday, the electricity
emand is significantly higher than the other days. By calculating
he average electricity demand, we find that the average electric-
ty demand for working days in Fig. 4(a) is 1671 MW/d, while
hat for weekends, is 1563 MW/d, which indicates that there is a
ignificant difference between the electricity demand for working
ays and that of weekends, and this difference is consistent
ith most cases after multiple calculations. At the same time,
e calculated the average electricity demand of Taixing each
uarter: 1775 MW/d in spring, 2030 MW/d in summer, 1795
W/d in autumn, and 1884 MW/d in winter. This statistical result
3806
is consistent with Fig. 4(c), so the electricity demand of Taixing
is higher in summer and winter.

In the experiment, we obtain the specific coefficients of these
10 variables through training. According to these variables and
coefficients, we construct an MLR model:

F (ω) = − 23.54weekend − 15.76WeeklySin − 7.89WeeklyCos
+ 8.91MonthlySin − 2.92MonthlyCos
− 8.85SeasonlySin − 30.93SeasonlyCos + 83.15YearlySin
− 7.66YearlyCos

+ 0.38time + 1673. (15)

The variables of the specific parameters we see the coefficient
of weekend is −23.54, indicating that the above condition has a
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Fig. 5. Autoformer and Autoformer with applied methods: the captured electricity demand forecasting one-step ahead prediction curve of Taixing from 2021/4/16
to 2021/5/26.
negative effect on Taixing electricity demand. According to the
time coefficient 0.38, we conclude that despite some negative
effects, the overall electricity demand of Taixing is still on the rise.
The analysis of the original data sets shows that the MLR model
we construct is effective.

4.1.2. The performance of the methods we proposed
This section analyzes the first four comparison experiments

in Table 2 to verify the performances of the three adjustment
methods we propose.

The results show that MLR, Bootstrap, and new Auto-
Correlation adjustment methods are used to improve the fore-
casting performance of Autoformer in the Taixing electricity de-
mand training set. In the test set, the single use of MLR (MAE:
99.35, RMSE: 134.02, MAPE: 4.73) and the new Auto-Correlation
(MAE: 67.09, RMSE: 82.43, MAPE: 3.23) improve the performance
of the original model. In both the training set and test set, the new
Auto-Correlation method we use provides the most significant
improvement over the original model. This is because when the
electricity demand fluctuates are more dramatic, our method can
better capture the trend information of the electricity demand
and optimize the sequence decomposition part of the Autoformer.

It is worth noting that Bootstrap (MAE: 141.19, RMSE: 169.03,
MAPE: 6.55) alone did not work well in the test set. To verify
3807
the effectiveness of Bootstrap, we conducted additional exper-
iments HAFF without Bootstrap, and the results are recorded
as the training set (MAE: 42.50, RMSE: 54.29, MAPE: 2.38) and
Test set (MAE: 52.26, RMSE: 70.49, MAPE: 2.49). We find that
when the Bootstrap method is removed, the HAFF becomes less
effective, thus the Bootstrap method can be used with the other
two methods to achieve better results. This is because time series
forecasting has certain requirements for the length of the series.

Figs. 5(a), 5(b), 5(c), and 5(d) visually show the forecast-
ing curve comparison of Autoformer with new Auto-Correlation,
MLR, Bootstrap, and original Autoformer. According to Fig. 5,
Autoformer with new Auto-Correlation has the best fitting per-
formance on the electricity demand curve and can predict the
fluctuation of electricity demand. Autoformer with MLR also re-
flects its tendency to conform to the fluctuation of electricity
demand to some extent. This indicates that our proposed method
is reasonable and can effectively predict the electricity demand
under a complicated situation.

4.1.3. Comparative experiment between our HAFF and other com-
parison models

In this section, we use the simple feed-forward multilayer
neural network BPNN (Rumelhart et al., 1986) and the classical
time series forecasting model LSTNet (Lai et al., 2018), LSTM
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Fig. 6. HAFF and comparison models: the captured electricity demand forecasting one-step ahead prediction curve of Taixing from 2021/4/16 to 2021/5/26.
(Hochreiter and Schmidhuber, 1997), Transformer (Hochreiter
and Schmidhuber, 1997), Reformer (Kitaev et al., 2019) and In-
former (Zhou et al., 2021). The hyperparameters of each compar-
ison model are recorded in Table A.4. Take the electricity demand
data set in Taixing as an example, the error indexes of the above
comparison model and HAFF under single-step forecasting are
calculated and counted. In addition, we also used the statistical
model ARIMA for similar processing. Through the training set,
p, d, and q are respectively set as 2, 1, and 4. The final error
ndex in the test set is (MAE: 54.31, RMSE: 74.04, and MAPE:
.54). According to the results in Table 2 and Fig. 6, HAFF has
he best forecasting performance in both the training set and the
est set. Compared with the original Autoformer, the test set per-
ormance in MAE of HAFF is improved by about 68%. Compared
ith Reformer, another excellent time series forecasting model,
he test set performance in MAE of HAFF is improved by about
9%. It is worth noting that, except for the Autoformer model, the
alidation performance of the above comparison models is lower
han that of the training set, and the LSTM model is the most
bvious. This is one of the reasons we finally chose Autoformer
s our base model. Through a series of adjustment methods, the
orecasting ability of Autoformer is greatly improved.

Moreover, we choose the model with a better forecasting
ndex from the comparison models, then we plot forecasting
esults with LSTM, Transformer, Reformer, Informer, and HAFF in
igs. 6(a), 6(b), 6(c), and 6(d) respectively. As can be seen from
he partial forecasting curve in Fig. 6(c), although the forecasting
erformance of the Reformer is second only to that of the HAFF
n this experiment, it cannot well fit the sudden fluctuation of
3808
Taixing electricity demand, and this phenomenon is most obvious
in the second half of the sequence. Curves in Figs. 6(a), 6(b)
and 6(d) also reflect this problem: when the stationary series
has fluctuations, the model is often difficult to make accurate
forecasting due to the lack of analysis ability of local trends.

4.2. Case 2: Electricity demand in NSW

In this section, to prove the generality of our model, we
selected the electricity demand data in New South Wales, Aus-
tralia, which has more significant fluctuations and is recorded
once a day. A total of 1012 data points (from January 2, 2020,
to September 7, 2022) are expanded to 1588 data points by
Bootstrap. The data set is divided into a training set (60%), a
validation set (20%), and a test set (20%). The skewness before
the extended sequence is 0.425 and the kurtosis is −0.302. The
skewness after the extended sequence is 0.254 and the kurtosis
is −0.571. Table 3 records the forecasting error indexes for each
experiment using this data set. Figs. 8 and 9 show the single-step
forecasting curves of HAFF and other experiments.

4.2.1. Analysis of data set and MLR
In this section, we analyze the electricity demand data set of

NSW, and we find that it also shows special rules on weekly,
monthly, yearly, and seasonal levels in Fig. 7.

From Fig. 7(a), we find that the electricity demand of NSW is
opposite to that of Taixing in weekly mode, and the electricity
demand for weekends is much higher than that of working days.
After calculating the average electricity demand, we find that
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Fig. 7. Transformation law of electricity demand under different time span in NSW.
Table 3
One-step forecasting results of HAFF, its applied methods and comparison models on NSW dataset.
Model Train Test

MAE RMSE MAPE MAE RMSE MAPE

Autoformer 325.65 429.35 4.19 464.87 592.69 5.89
Autoformer with MLR 425.55 562.39 5.42 453.37 562.39 5.80
Autoformer with Bootstrap 354.50 462.13 4.52 375.83 490.64 4.77
Autoformer with new Auto-Correlation 232.08 306.73 3.01 264.77 322.12 3.38
BPNN 672.88 812.96 8.44 651.38 781.01 9.48
LSTNet 540.59 653.68 7.29 513.81 631.76 6.57
LSTM 293.82 386.30 3.83 564.72 702.01 6.90
Transformer 417.96 520.38 5.38 589.37 705.93 7.17
Reformer 278.05 364.53 3.59 285.22 360.80 3.57
Informer 471.54 604.89 6.10 542.38 670.36 6.99
HAFF 327.04 423.67 4.18 264.21 332.67 3.32
the electricity demand is 7609 MW/d on working days and 9533
MW/d on weekends.

By observing Figs. 7(b) and 7(c), we also find that the electric-
ty demand of NSW is consistent with Taixing in terms of overall
hange because the electricity demand in summer and winter
s significantly higher than that in the other two seasons. The
verage electricity demand of the four seasons is 7176 MW/d in
pring, 8127 MW/d in summer, 7358 MW/d in autumn, and 8493
W/d in winter.
However, it is worth noting that the yearly electricity demand

ata, different from the change rule of Taixing, does not show
trend of decline or rise. Therefore, when building the MLR

ariable, we removed the time variable to avoid it affecting the
ccuracy of the other variables. From the above analysis, we built
3809
an MLR model:

F (ω) = − 395.38weekend + 107.62WeeklySin
+ 326.62WeeklyCos − 46.16MonthlySin
+ 29.29MonthlyCos
+ 48.45SeasonlySin − 77.79SeasonlyCos − 4.74YearlySin
− 470.66YearlyCos

+ 7775.37. (16)

4.2.2. The performance of the methods we proposed
Through the first four comparison experiments in Table 3,

it can be found that all three adjustment methods we use can
improve the performance of the Autoformer model in the test set.
Among them, our new Auto-Correlation method (MAE: 264.77,
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Fig. 8. Autoformer and Autoformer with applied methods: the captured electricity demand forecasting one-step ahead prediction curve of NSW from 2022/3/6 to
2022/4/15.
RMSE: 322.12, MAPE: 3.38) has the most significant improve-
ment. This is because, in addition to the electricity demand fluc-
tuation caused by some cyclical factors, NSW itself has a large
electricity demand fluctuation, which makes it difficult for the
original Autoformer to analyze the trend part of the data set.

Figs. 8(a), 8(b), 8(c), and 8(d) visually show forecasting curves
f Autoformer with new Auto-Correlation, Autoformer with MLR,
utoformer with Bootstrap, and Autoformer. By observing Fig. 8,
e find that new Auto-Correlation is still the most effective one.
e also found that Bootstrap does not allow the model to fit the

pike of fluctuations well, but Autoformer with Bootstrap has a
reat improvement in the fitting of the overall amplitude of the
lectricity demand compared with the original Autoformer.

.2.3. Comparative experiment between our HAFF and other com-
arison models
In this section we still use the LSTNet, BPNN, LSTM, Trans-

ormer, Reformer, and Informer as comparison models. For the
RIMA model, p, d, q are set to 3, 1, 6 through the training set
nd the error-index is (MAE: 412.65, RMSE: 518.55, MAPE: 5.16).
rom the forecasting results shown in Table 3 and Fig. 9, HAFF
emains the best forecasting performance. In the test set, HAFF in
AE improves by about 43% compared to the original Autoformer
nd 7% compared to Reformer. Moreover, the performance of
AFF in the test set is still higher than that in the training set.
3810
As seen from Fig. 9, it is difficult for the comparison model
to fit the fluctuation trend of electricity demand, especially the
peak part of the fluctuation, when the value changes sharply and
the frequency of fluctuation increases substantially. HAFF can still
achieve good forecasting performance under complex electricity
demand sequences.

5. Conclusion

In recent years, with the advancement of new industrial-
ization, the change range of short-term electricity demand has
increased, which brings more pressure to electricity system oper-
ators. Therefore, improving the accuracy of short-term electricity
demand forecasts has a very positive effect on the maintenance
security and management efficiency of the electricity system. In
order to improve the accuracy of the short-term forecast of elec-
tricity demand forecast, we designed a hybrid model HAFF which
combines MLR and Bootstrap with an improved Auto Correla-
tion mechanism. Taking complex electricity demand sequences of
Taixing City in China and New South Wales State in Australia as
examples, the experimental results show that HAFF can achieve
excellent short-term forecasting effect without relying on a large
amount of electricity demand data, and HAFF can pay attention
to the seasonal and trend information of electricity demand so
as to accurately track the daily variation of electricity demand.
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Fig. 9. HAFF and comparison models: the captured electricity demand forecasting one-step ahead prediction curve of NSW from 2022/3/6 to 2022/4/15.
ompared with the mainstream model, HAFF can provide more
ccurate basic data for the electricity market and facilitate its
easonable pricing. HAFF can also help sales companies reduce
he discrepancy between reported and actual demand in pursuit
f higher economic returns. Therefore, HAFF is of great signifi-
ance to realize the modernization of electricity system manage-
ent and the transformation of electricity-selling companies into

he electricity spot market.
Although HAFF has achieved excellent prediction results, it

till has some limitations. For example, HAFF is not very effec-
ive in multi-step prediction. The MLR part of HAFF can only
e used as data preprocessing, where the weight value may
ot reach the best situation. Although HAFF’s Auto Correlation
echanism is optimized, HAFF can only extract information from

nput sequences and cannot analyze electricity demand data from
long-term perspective. Based on the above limitations, our

ollow-up research directions are as follows: (1) Use the Boost or
agging algorithm in HAFF to improve sample utilization. (2) Find
ays to use Bootstrap more effectively such as combining with
ixup methods. (3) Seek for more accurate variables to improve
LR’s fitting performance to electricity demand and to cope
ith some emergencies. (4) Incorporate MLR into the Autoformer
odel to iterate over the weights of variables. (5) Autoformer

ocuses on reducing the complexity of the attention computation
ut this operation is not significant for time series prediction.
e still need to optimize the Auto Correlation. (6) Improve the

ccuracy of HAFF in medium- and long-term forecasts.
3811
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Table A.4
The hyperparameters of the comparison models.
Models Hyperparameters
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