
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2023) 14:929–945
https://doi.org/10.1007/s13042-022-01672-x

ORIGINAL ARTICLE

A working likelihood approach to support vector regression
with a data‑driven insensitivity parameter

Jinran Wu1 · You‑Gan Wang1,2

Received: 13 November 2021 / Accepted: 19 September 2022 / Published online: 10 October 2022
© Crown 2022

Abstract
The insensitivity parameter in support vector regression determines the set of support vectors that greatly impacts the predic-
tion. A data-driven approach is proposed to determine an approximate value for this insensitivity parameter by minimizing a
generalized loss function originating from the likelihood principle. This data-driven support vector regression also statistically
standardizes samples using the scale of noises different from conventional response scaling method. Statistical standardiza-
tion together with probabilistic regularization based on a working likelihood function produces data-dependent values for
the hyperparameters including the insensitivity parameter. The exact asymptotical solutions are provided when the noises
are normally distributed. Nonlinear and linear numerical simulations with three types of noises (�-Laplacian distribution,
normal distribution, and uniform distribution), and in addition, five real benchmark data sets, are used to test the capacity of
the proposed method. Based on all the simulations and the five case studies, the proposed support vector regression using a
working likelihood, data-driven insensitivity parameter is superior and has lower computational costs.

Keywords Approximate loss function · Parameter estimation · Prediction · Working likelihood

1 Introduction

In the machine learning field, support vector regression
(SVR) has been popular in management and engineering
applications [1–3], due to its solid theoretical foundation
[4–6] and insensitivity to the dimensionality of the sam-
ples [7]. As recommended by Vapnik [8], the parameter
settings in SVR modelling contribute the generalization of
the predictive performance. However, practitioners apply-
ing SVR in real-world applications often cannot obtain the
most effective model. There are two key approaches to set-
ting the hyper-parameter. One option is to use the k-cross
validation to choose the parameters for SVR [9, 10]. The
other approach is to set the parameter as a constant, based
on the empirical practice developed by Chang and Lin [5]. In

particular, the researchers suggested that the regularization
parameter C and the insensitivity parameter � be set at 1.0
and 0.1, respectively. However, although the tuning param-
eter setting provides an acceptable generalization in most
conditions, there is still a huge gap between this solution and
the best SVR using the optimal parameters.

1.1 Literature review

For the insensitivity parameter � that controls the num-
ber of support vectors [11], Schölkopf et al. [12] used the
parameter � to effectively control the number of support
vectors to eliminate the free parameter, � . However, one
drawback is that the choice of � has an impact on the gen-
eralization of the model [13]. Furthermore, insensitivity
parameter estimation methods that consider the noises in
observations have been developed. Jeng et al. [14] pro-
posed to estimate the insensitivity parameter in two steps.
The first step is to estimate the regression errors by the
SVR at � = 0 . Then, the � value is updated by c�̂� with an
empirical constant c and the estimated standard deviation
of the noise �̂� . In the absence of outliers, the standard
deviation can be calculated based on all the regression
errors, and c is set as 1.98. Otherwise, a trimmed estimator

 * You-Gan Wang
 you-gan.wang@acu.edu.au

 Jinran Wu
 wujrtudou@gmail.com

1 Queensland University of Technology, Brisbane 4001,
Queensland, Australia

2 Australian Catholic University, Brisbane 4000, Queensland,
Australia

http://orcid.org/0000-0002-2388-3614
http://orcid.org/0000-0003-0901-4671
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-022-01672-x&domain=pdf

930 International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

is obtained by removing 5–10% of samples at both ends
to achieve robustness, and c is recommended to be fixed
at 3. Obviously, although Jeng et al.’s [14] method aims
to incorporate data size in the estimation, the empirical
settings make the method unable to recognize the noise
level to estimate the insensitivity parameter � . Like Jeng
et al.’s [14] method, Cherkassky and Ma [15] incorporated
sample size into the insensitivity parameter estimation.
As explored by them, the empirical formulation for 𝜖 is
calculated by the product of the empirical constant 3, the
standard deviation of the noise, and an empirical coef-
ficient

√
ln n∕n (n is the sample size). However, when the

sample size increases, this 𝜖 would approach to 0, so this
method does not recognize the noise level for the insen-
sitivity parameter estimation. Now, more recent literature
on tuning parameters in the SVR can be found in [16, 17].

Different from tuning the insensitivity parameter �
directly, in the reference of [6], the authors propose to
train �-support vector regression (�-SVR) where a new
parameter � is introduced for controlling the proportion of
support vectors. In the framework of � , with the parameter
� , the insensitivity parameter can be optimized with other
parameters together. Apparently, the parameter �-SVR
would determine the selection of the support vectors but
must be prior given. Therefore, cross-validation method
based on a pre-set � sequence with huge computational
costs or an empirical setting is used for the implementa-
tion of �-SVR.

Because the selection of the insensitivity parameter � can
be regarded as a complex optimization problem with several
local mini-ma, meta-heuristic algorithms have been popu-
larly used to tune the insensitivity parameter in �-SVR [18]
to overcome the problem of the gradient directed algorithms.
One of the typical examples is the work on estimating the
residential building energy consumption by Tabrizchi et al.
[19] where a multi-verse optimizer is employed for tuning �
for �-SVR with cross-validation. Considering actual applica-
tions, researchers have searched for the tuning � in �-SVR
[18] with meta-heuristic algorithms, such as moth flame
optimization (MFO) [20], whale optimization algorithm
(WOA) [21], grey wolf optimizer (GWO) [22], grasshopper
optimization algorithm (GOA) [23], flower pollination algo-
rithm (FPA) [24], differential evolution [25], and particle
swarm optimization [26]. This kind of combined method
based on cross-validation often requires high computational
costs to obtain a good optimum for the insensitivity param-
eter. Compared with cross-validation method, meta-heuristic
algorithms are used to find the potential solution accord-
ing to fitness function values during search process instead
of a pre-set potential solution set. It should be noted that
although meta-heuristic algorithms can provide a good solu-
tion to tune the insensitivity parameter, more computation
costs are required in practice.

1.2 Contribution

To reduce the computational cost for tuning the insensi-
tivity parameter, we in this paper will derive an elegant
statistical formula to estimate the value of � . As explained
by Vapnik [8], the insensitive loss function consists of
the least modulus (LM) loss and the special Huber loss
function when � = 0 . Hence, in our study, considering the
insensitive Laplacian distribution loss function inspired by
Vapnik et al. [4] and Bartlett et al. [27], we focused on the
insensitivity parameter � and propose a novel SVR with a
data-driven (D-D) insensitivity parameter. Like Jeng et al.
[14] and Cherkassky and Ma [15]’s work, our method is
developed on the theoretical background of SVR instead of
parameter estimation based on re-sampling. Motivated by
Fu et al. [28], we propose designating the working likeli-
hood to estimate the insensitivity parameter for SVR. In
other words, the working likelihood method can estimate
appropriate hyper-parameters to find the most appropriate
�-Laplacian distribution to the real noise distribution. Our
working likelihood (or D-D) method works as a vehicle for
the � loss function parameter estimation. In addition, dif-
ferent from the computational standardization, the target in
the proposed model is standardized in a statistical manner
using the scale of the noise. Thus, our D-D method is more
practicable and intelligent. In our simulations (linear and
nonlinear), three types of error distributions were used to
test the D-D insensitivity parameter estimation, namely,
the insensitive Laplacian distribution, normal distribution,
and uniform distribution. Furthermore, some case stud-
ies were applied to validate that our D-D SVR has novel
generalization in real applications. The meaning of key
symbols are clarified in Table 1.

1.3 Organization of the paper

This rest of this paper is organized as follows. Sect. 2
describes the basic framework of �-SVR. Section 3 illus-
trates the working likelihood method for insensitivity
parameter estimation in �-SVR and present some asymp-
totic properties of our estimate of scale and insensitivity
parameter. Numerical simulations for three different types
of noise sources (the insensitive Laplacian distribution,
normal distribution, and uniform distribution) were imple-
mented, and Sect. 4 presents a discussion of the analyses
of the simulation results, which illustrate the effectiveness
of the working likelihood. Then, in Sect. 5, we validate the
superiority of our D-D SVR on five real data sets: energy
efficiency, Boston housing, yacht hydrodynamics, airfoil
self-noise, and concrete compressive strength according
to the forecasting accuracy and the computational cost.

931International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

Finally, in Sect. 6, we summarize the results that indicate
the working likelihood (D-D) method has superior perfor-
mance on insensitivity parameter estimation based on the
real noise information in SVR, indicating that our D-D
SVR is very effective in handling forecasting problems.

2 The support vector regression (SVR)

Assume the training data (x1, y1),… , (xn, yn) ∈ ×ℝ ,
where denotes the space of the input patterns. The case of
linear function f (⋅) can be formed as

where ⟨⋅, ⋅⟩ represents the dot product in . In �-SVR, the
target is to obtain a function f(x) that has at most � devia-
tion from the actual obtained target yi for all the training
data, and at the same time, is as flat as possible [7, 29]. This
means that smaller errors (≤ �) are ignored, and larger errors
will be accounted for in the loss function. Flatness in Eq. (1)
means finding a small � . Now, the objective function for the
basic SVR can be presented with a ridge penalty ‖�‖2 and an
�-Laplace loss |r|� with residuals ri = yi − f (xi) [29],

where a regularization parameter C (a positive constant) is
introduced to determine the trade-off between the flatness
of f and the amount up to which deviations are larger than � .
Here, we define |ri|� as max{z+, z−} with z+ = max{ri − �, 0}
and z− = max{−ri − �, 0} . Notice that the optimization prob-
lem is feasible; it means that there exists such a function f
that approximates all pairs (xi, yi) with � precision. Then,
the slack variables �i and �∗

i
 are introduced to cope with the

otherwise infeasible constraints of the optimization version
in Eq. (2). Now, the formulation is shown as,

(1)f (x) = ⟨�, x⟩ + b � ∈ , b ∈ R,

(2)min
�,b

1

2
‖�‖2 + C

n�
i=1

�r
i
�� ,

The primal problem of the basic SVR can be transformed to
the corresponding dual problem as follows [29]:

Here, �i and �∗
i
 are Lagrange multipliers for

� + �i − yi + ⟨�, xi⟩ + b and � + �∗
i
− ⟨�, xi⟩ − b + yi , respec-

tively. This dual optimization has a general solution,

where the offset b can be estimated according to the KKT
conditions, and k(xi, x) is the kernel function including linear
function as a special case.

As illustrated by Vapnik [8], three important parameter set-
tings in SVR significantly impact the model’s generalization:
the regularization parameter C, the kernel parameter � , and the
insensitivity parameter � . The first one, C, can be estimated by
the 0.95 quantile of |yi| [15],

min
�,b,�i,�

∗
i

1

2
‖�‖2 + C

n�
i=1

(�i + �∗
i
)

s.t.

⎧
⎪⎨⎪⎩

yi − ⟨�, xi⟩ − b ≤ � + �i,

⟨�, xi⟩ + b − yi ≤ � + �∗
i
,

�i, �
∗
i
≥ 0.

max
�,�∗

−
1

2

n�
i,j=1

(�i − �∗
i
)(�j − �∗

j
)⟨xi, xj⟩

− �

n�
i=1

(�i + �∗
i
) +

n�
i=1

yi(�i − �∗
i
)

s.t.

⎧
⎪⎨⎪⎩

n∑
i=1

(�i − �∗
i
) = 0,

�i, �
∗
i
∈ [0,C].

f (x) =

n∑
i=1

(�i − �∗
i
)k(xi, x) + b,

CCM = |yi|(0.95), i = 1,… , n.

Table 1 Nomenclature

Notation Description Notation Description Notation Description

s Scale of noise � Insensitivity parameter C Regularization parameter
n Sample size p Dimension of predictors R2 Coefficient of determination
ri ith residual ui ith standardized residual xi Features of the ith sample
V(⋅) Loss function g(⋅) Working density function yi Response of the ith sample
�∗ Asymptotic � value L(⋅) Joint likelihood function s∗ Asymptotic � value
h(⋅) True density function � Indicator function MAE Mean absolute error
𝜖 Estimated � ŝ Estimated s RMSE root mean square error
CV Cross validation CM Cherkassky and Ma’s method D-D Data-driven method
RatioMAE Ratio of MAE RatioRMSE Ratio of RMSE �i ith clean response
� Kernel parameter

932 International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

In addition, Wu and Wang [30] pointed out that when the
dimension p of predictors are very large, the regularization
parameter C can be of the order of

√
n∕ log(p).

Then, the second kernel parameter � in kernel functions
(e.g., radial basis function kernel and polynomial kernel) is
applied to adjust the mapping from the original space to the
high-dimensional space; this is decided by the type of ker-
nel function and the application domain. The last one is the
most important parameter, � , which controls the number of
support vectors. We will explore how to estimate the insen-
sitivity parameter � based on the loss function mechanism
from a statistical perspective in the next section.

3 The data‑driven SVR

3.1 Working likelihood for insensitivity parameter
estimation

Suppose the training data set consists of n samples
(xi, yi), (i = 1, 2,… , n) , and the target yi , is generated from
the following model:

where f (⋅) represents the expected value, while the second
component, ri (which is decomposed as sui) is the noise (s is
the scale, and ui is the noise after scaling s).

In �-SVR, the loss function is defined as

where r = y − ⟨�, x⟩ − b is the residual item. The corre-
sponding density function for ri is,

which will correspond to the loss function given by Eq. (3)
up to a constant.

Thus, suppose that all ri are identically and independently
distributed with a density function g(⋅) . Let � be a vector col-
lecting all the unknown parameters (�, s) . The negative log-
likelihood based on the training data is then

Once the SVR approach is adapted, we essentially assume ri
follows a density function that is proportional to exp(−V(r)) .
Our working likelihood D-D method estimates all the

yi = f (xi) + ri = f (xi) + s ⋅ ui,

(3)

V(r) = �r�𝜖 ,

=

⎧⎪⎨⎪⎩

r − 𝜖 r > 𝜖,

0 −𝜖 ≤ r ≤ 𝜖,

−r − 𝜖 r < −𝜖,

g(r;�) =
1

2(1 + �)
exp(−|r|�),

− log L(�) = −
∑n

i=1
log

�
g

�
yi − f (xi)

s

��

+ n log(s).

parameters in � by maximizing L(�) [31]. We investigate the
choice of the insensitivity parameter � in the SVR approach.
Clearly, the � value that results by maximizing L is data
dependent and expected to be more effective. Meanwhile,
the scale of the noise s can also be estimated.

Next, recalling that ri = sui , assume that r1, r2,… rn are
independent and identically distributed random variables.
Denote (�, s) = � . Their joint working likelihood function
is

Therefore, L(�) is a likelihood function with parameters
� and s properly regularized.

Theorem Suppose that (𝜖, ŝ) are the estimates by minimizing
L, and (�∗, s∗) are the limiting values of (𝜖, ŝ) . Under the mild
assumption of E(r2

i
) < +∞ , we have

where h(⋅) is the true density function of the noise term ri.

Proof First, the estimators of � can be achieved by minimiz-
ing the negative log-likelihood function,

Next, the derivatives of (− log L(�)) with respect to � and
s are given as

The working likelihood approach to (�, s) estimates is
equivalent to solving the following equations,

L(�) =

n∏
i=1

(
1

s
g
(ri
s
;�, s

))

=
(
1

s

)n

⋅

(
1

2(1 + �)

)n

⋅ exp

(
−

n∑
i=1

| ri
s
|�
)
.

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�∗ =
∫

s
∗�∗

0

{h(r) + h(−r)}dr

∫
∞

s∗�∗
{h(r) + h(−r)}dr

,

s
∗ = ∫

∞

s∗�∗
(h(r) + h(−r)) ⋅ rdr,

(5)

− log L(𝜃) = n log s + n log [2(1 + 𝜖)] +

n∑
i=1

| ri
s
|𝜖

= n log s + n log (2(1 + 𝜖))

+

n∑
i=1

((ri
s
− 𝜖

)
⋅ �

(ri
s
> 𝜖

))

+

n∑
i=1

((
−
ri

s
− 𝜖

)
⋅ �

(ri
s
< −𝜖

))
.

⎧⎪⎨⎪⎩

𝜕(− log L(𝜃))

𝜕𝜖
=

n

1+𝜖
−

n∑
i=1

�
���
ri

s

��� > 𝜖,

𝜕(− log L(𝜃))

𝜕s
=

n

s
−

1

s2

n∑
i=1

�r
i
� ⋅ ����

ri

s

��� > 𝜖.

933International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

Under the assumption of E(r2
i
) < +∞ , we have

E(|r
i
|) <

√
{E(r2

i
)} < +∞ , and E{|r

i
|�(|r

i
| > 𝜖∗s∗)}2 ≤ E(r2

i
) < +∞ ,

the law of large numbers hence holds for the two terms on
the right-hand side of Eq. (6). Taking the limit as n → +∞ ,
we obtain

which is equivalent to Eq. (4). ◻

Remark 1 According to Eq. (4), the meaning of (�∗, s∗) is
clear. This indicates that �∗ is the odds ratio of being inside
the box (≤ �∗) versus outside the box (≥ �∗). The parameter
s∗ is the average distance of the support vectors, while the
distance of non-support vectors is regarded as 0.

Corollary 1 Suppose that (𝜖, ŝ) are the estimates by mini-
mizing L, and (�∗, s∗) are the limiting values of (𝜖, ŝ) . If the
true density function h(⋅) is �-Laplacian distribution (𝜖 > 0),
there exists a unique solution of limiting values (�∗, s∗).

Proof If the true probability density function of the noise
is �-Laplacian,

Plugging h(r) from Eq. (7) into Eq. (4), and we can obtain

F r o m t h e f i r s t s u b - e q u a t i o n w e h ave
exp(

�� − s∗�∗

�
) =

1 + �
1 + �∗

 , which can be plugged into the
second sub-equation on the right hand side, which simplifies
to s∗ = � . The �∗ can be obtained by solving

Denote t(�∗) = 1 + �∗

exp(�∗)
 , the derivative of t(�∗) with respect

to �∗ can be given as t�(𝜖∗) = −𝜖∗ exp(−𝜖∗) < 0 . This means
t(�∗) is strictly monotonic. In general, if t(�∗) is strictly
monotonic, t(�∗) = t(�) implies �∗ = � . Therefore, � is a
unique solution of �∗ . ◻

(6)

⎧⎪⎨⎪⎩

1

𝜖+1
=

1

n

n∑
i=1

�(�r
i
� > 𝜖s),

s =
1

n

n∑
i=1

�r
i
� ⋅ �(�r

i
� > 𝜖s).

{
1

𝜖∗ + 1
= E�(|r

i
| > 𝜖∗s∗) = ∫ +∞

s∗𝜖∗
{h(r) + h(−r)}dr,

s∗ = E|r
i
| ⋅ �(|r

i
| > 𝜖∗s∗) = ∫ +∞

s∗𝜖∗
(h(r) + h(−r))rdr,

(7)h(r) =
1

2�(1 + �)
exp

(
−| r

�
|�
)
.

⎧⎪⎨⎪⎩

1

1+�∗
=

1
1 + �

⋅ exp
�
�� − s∗�∗

�

�
,

s∗ =
s∗�∗ + �
1 + �

⋅ exp
�
�� − s∗�∗

�

�
.

1 + 𝜖

exp(𝜖)
=

1 + 𝜖∗

exp(𝜖∗)
, 𝜖 > 0.

Corollary 2 If the true density function of the noise h(⋅) is
normally distributed with mean 0 and standard deviation
𝜎 < +∞ , the limiting values �∗ and s∗ are 1.524 and 0.557� ,
respectively. This implies that the corresponding limiting
value of the insensitivity parameter for the raw residuals
without standardization is 0.848�.

Proof Substituting the normal density function to Eq. (4),
we can obtain

Clearly, the solution s∗ = �� where � is the solution when
� = 1 , i.e., we have invariant property s∗(�) = � ⋅ s∗(1) .
Thus, let � = s∗(1) , and we have

This shows �∗(�) = �∗(1) which is a constant free from � .
Furthermore, the solution of the equation can be achieved
as �∗ = 1.524 and � = 0.557 . Therefore, we can have the
final solution as �∗ = 1.524 and s∗ = 0.557� . Finally, we can
obtain the estimate of the insensitivity parameter for the raw
residuals without standardization as s∗ ⋅ �∗ = 0.848� .
 ◻

When the variance � changes, the s∗ changes propor-
tionally as s∗ = 0.557� and the corresponding insensitivity
tube also varies accordingly with the radius s∗ ⋅ �∗ = 0.848�
while keeping the standardized tube unchanged (�∗ does not
change with �). This means, if the target unit is changed
from cm to mm, for example, the new � becomes larger, as
10� , our D-D method can adaptively control the width of the
tube appropriately so that the same prediction results will
be obtained by automatically updating the hyperparameters.
Interestingly, according to the limiting result, for any normal
distributed error, because of s∗ ⋅ �∗ = 0.848� , the proportion
of support vectors is kept roughly as 2 − 2Φ(0.848) = 0.396.

Remark 2 It should be noted that the optimization objec-
tive (5) is non-convex and more than one solutions exist for
Eq. (6). (� = 0, s =

∑n

i=1
�ri�) always is a solution of Eq. (6).

Therefore, to handle such an optimization problem, con-
sidering the popularity of normal distribution, we set the
initial values of � and s as 1.524 and 0.557, respectively,
for our optimization in this paper where limited-memory
BFGS [32] is employed as optimizer. In addition, we also
recommend using some meta-heuristics algorithms, such as

⎧
⎪⎨⎪⎩

s∗

�
=

2√
2�

⋅ exp

�
−

1

2
�∗2

�
s∗

�

�2
�
,

1
1 + �∗

= 2
�
1 − Φ

�
�∗
�
s∗

�

���
.

⎧⎪⎨⎪⎩

� =
2√
2�

⋅ exp
�
−

1

2
(�∗�)2

�
,

1
1 + �∗

= 2(1 − Φ(�∗�)).

934 International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

particle swarm optimization (PSO) method [33], and repeat
the optimization procedure and report the best solution with
the most smallest value of the optimization objective (5)
from all candidate solutions.

Each paired � = (�, s) value corresponds to a potential
key to a real data set. We now propose obtaining the “best”
key in the toolbox. Figure 1 shows some potential keys for
inferring the unknown noise. This means the �-Laplacian
distribution can approximate the real noise distribution by
adapting the scale parameter s and the insensitivity param-
eter �.

3.2 The training procedure of our D‑D SVR

Now, the full objective function for our proposed D-D SVR
can be formulated as:

In details, during the iterative training procedure, with given
residuals ri , the paired � can be estimated as (𝜖, ŝ) via mini-
mizing Eq. (5). Then, a simplified objective function in our
iterative procedure can be formulated as:

Furthermore, Eq. (8) can be indirectly solved via R package
‘e1071’ [34] with scaled response yi∕ŝ and the correspond-
ing scaled regularization coefficient C = |yi∕ŝ|(0.95).

In brief, the pseudo code for our proposed SVR with D-D
insensitivity parameters is given in Algorithm 1. To imple-
ment our D-D SVR, the maximum number of iteration tMax
and the threshold of the change of mean square error ΔMin
must be given. Moreover, the computational complexity for
our proposed D-D method is affected by the basic �-SVR
part and the hyperparameter estimation part. The complexity
of �-SVR is O(n2 × p + n3) with the number of feature p and
the complexity for estimating hyperparameter is fhp . There-
fore, the computational complexity for our method is
O(T(n2 × p + n3 + fhp)) where T is the number of iteration.

min
�,b,�,s

1

2
‖�‖2

+ C

�
n log s + n log [2(1 + �)] +

n∑
i=1

� ri
s
��
�
.

(8)min
𝜔,b

1

2
‖𝜔‖2 + C

n�
i=1

� ri
ŝ
�𝜖 .

In our D-D SVR training, one or two iterations generally
is adequate for real practice because the residual improve-
ment of order Op(1∕n) after one iteration. A similar point
also has been found in the references of [35, 36]. In addition,
we also can conclude the point in our case studies where the
convergence curves are reported.

4 Simulation experiments

To illustrate how the working likelihood produces D-D
parameter estimation (D-D) and a prediction, we now con-
sider three types of residuals generated from the uniform
distribution, the norm distribution, and the �-Laplacian dis-
tribution, respectively.

935International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s=0.5

r value

D
en

si
ty

ε =0

ε=0.1

ε=0.5

ε =1

ε =2

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

s=1

r value

D
en

si
ty

ε =0

ε=0.1

ε=0.5

ε =1

ε =2

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

s=1.5

r value

D
en

si
ty

ε =0

ε=0.1

ε=0.5

ε =1

ε =2

−4 −2 0 2 4

0.
05

0.
10

0.
15

0.
20

0.
25

s=2

r value

D
en

si
ty

ε =0

ε=0.1

ε=0.5

ε =1

ε =2

−4 −2 0 2 4

0.
05

0.
10

0.
15

0.
20

s=2.5

r value

D
en

si
ty

ε =0

ε=0.1

ε=0.5

ε =1

ε =2

−4 −2 0 2 4

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

s=3

r value

D
en

si
ty

ε =0

ε=0.1

ε=0.5

ε =1

ε =2

Fig. 1 Working likelihood functions with different insensitivity parameters at different scales

936 International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

For comparison, we will investigate other three insensi-
tivity parameter estimation methods for the �-SVR. The first
one is the tuning parameter setting (tuning) (C = 1.0 and
� = 0.1) [5]. The second method, Cherkassky and Ma’s [15]
empirical parameter approach (CM), is

where the standard deviation of noise �noise is obtained
from the residuals using � = 0 . The last one is the k-cross
validation (k-CV), where k is fixed at 10, and 5 alternative
� settings are set as 0.01, 0.05, 0.1, 0.2 and 0.3. Both mean
absolute error (MAE) and root mean square error (RMSE)
are calculated for comparison as

and

where ŷi is the i-th prediction, and yi is the i-th observation.
For each method X using the tuning method as the bench-
mark approach, two ratios are defined as

and

It is obvious that the method X beats the tuning setting
only if the ratio is larger than 1, and otherwise, it does not.
The nonlinear simulations and linear simulations are applied
to show the efficiency of our proposed D-D SVR.

4.1 Nonlinear regression

To demonstrate the performance of our D-D SVR for non-
linear system modelling, the univariate sinc target function
from the SVR literature [7, 37–39] is considered as

where xi is generated from the uniform distribution
unif [−10, 10] ; s is the scale of the noise level; and the
standard noise ui is generated from a known distribution (�
-Laplacian distribution, normal distribution N(0, �2) , and
uniform distribution unif [−bd, bd]). In addition, to make

�CM = 3�noise

√
ln n

n
,

MAE =
1

n

n∑
i=1

|yi − ŷi|,

RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi)
2,

RatioRMSE =
RMSEtuning

RMSEX

,

RatioMAE =
MAEtuning

MAEX

.

yi = a ⋅
sin(xi)

xi
+ s ⋅ ui, i = 1, 2,… , n,

our simulations more meaningful, the scale of nonlinear
system a is set as 5, 4, and 6 from insensitive-Laplacian
noises, normal noises, and uniform noises, respectively.
Also, we generate n simulation samples, and then the
samples are divided into two groups of the same size. All
experiments are repeated 100 times to calculate the aver-
age performance of the benchmark SVRs and our proposed
D-D SVR. The kernel of the SVR is the default radial basic
function k(xi, xj) = exp(−�‖xi − xj‖2) with � = 1 [34]. It
should be noted that, for our comparison, the ratio is cal-
culated based on the gap between the prediction ŷi and the
�i (�i = a sin(xi)∕xi). This can show the performance of our
D-D SVR at eliminating the interruption from noise and
model a real system. All the nonlinear simulation results
are displayed in Table 2 (insensitive Laplacian distribu-
tion), Table 3 (normal distribution), and Table 4 (uniform
distribution).

As illustrated in Table 2, compared with the CM and
10-CV, the ratios of the D-D from both RMSE and MAE
are significantly greater than 1, indicating that our proposed
SVR allowed for remarkable improvements in the fore-
casting performance for all 27 simulations. However, the
insensitivity parameter � tends to be underestimated. The
main reason for this is that, as shown in Fig. 1, the scale
mainly contributes to the working likelihood function when
the insensitivity parameter is small. Another reason is that
the training sample size is not large enough to estimate the
insensitivity parameter accurately. As the training set size
enlarges, the estimated insensitivity parameter converges to
the true �.

Table 3 shows the second case, where the errors follow
normal distributions. Our proposed method works well for
approximating the best �-Laplacian distribution, leading to
significant improvements in the forecasting accuracy of all
the simulation scenarios displayed in the Table. When the
noise level is low (both s and � are small), the superiority
of the D-D approach is more prominent. For the simulation
with noise settings (n 1000 , s 0.7 , and � 0.5), the D-D’s pre-
diction achieves an amazing improvement (MAE, 64% , and
RMSE, 48%), while both the CM and 10-CV methods each
obtained only a slight increase. In the simulation setting with
n = 200 , s = 1.1 , and � = 1.5 (i.e., noises contribute more
to responds), we have checked our simulations where one
of the simulations are with plenty of large outliers. The per-
formance of our method is heavily depended on the quality
of data; as a result, our forecasting performance is not good.

The third nonlinear case also shows that our D-D method is
an effective approach to data modelling with noises from the
uniform distribution, and the simulation results are given in
Table 4. Obviously, two ratios from the proposed D-D method
are notably greater than 1. For instance, compared with the
CM and 10-CV methods, both ratios of the simulation from the
D-D method with noise setting n 1000 , s 5.0 and bd 1.2 , are

937International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

nearly 200% (MAE) and 193% (RMSE), respectively, so our
D-D method obtained a nearly twofold improvement.

From the above three types of nonlinear simulations, it
can be concluded that our proposed D-D method for �-SVR
noticeably improves the forecasting performance in nonlinear
applications.

4.2 Linear regression

Now we consider the most popular linear model generated by
the following:

where �0 = 1 and xi is generated from the normal distribution
N(0, 1). Considering different noise levels for all simula-
tions, we set �1 as 2, 2, and 1 for noises generated from
the �-Laplacian distribution, normal distribution, and uni-
form distribution, respectively. In addition, the kernel of

yi = �0 + �1 ⋅ xi + s ⋅ ui, i = 1, 2,… , n,

the �-SVR is the linear function k(xi, xj) = x�
i
⋅ xj . All sim-

ulations are implemented 100 times to record the average
performance. The linear simulation results for the �-Lapla-
cian distribution, normal distribution N(0, �2) , and uniform
distribution unif [−bd, bd] are listed in Tables 5, 6 and 7,
respectively.

First, in the linear simulation for residuals generated
from the �-Laplacian distribution, the estimated insensi-
tivity parameter 𝜖 and the estimated scale parameter ŝ all
approximate to the real settings with our D-D method in
different noise levels, as shown in Table 5. For comparison
of the accuracy for the forecasting performance, in the lin-
ear regression with n = 300 and R2 = 0.38 , our proposed
D-D SVR performed better than the CM and the 10-CV,
with a more than 68% improvement with MAE and a 69%
improvement with RMSE. In addition, according to simula-
tion results with n = 100 , s = 0.5 , and � = 1.0 , we can find
our proposed methods are like the 10-CV method much bet-
ter than the CM method and the basic tuning method. Here,

Table 2 Nonlinear case (�-Laplacian distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning
approach

Noise settings Parameters CM 10-CV D-D

n s � ŝ 𝜖 RatioMAE RatioRMSE RatioMAE RatioRMSE RatioMAE RatioRMSE

200 0.8 0.2 0.66 0.00 0.95 0.97 0.99 1.00 1.47 1.32
400 0.8 0.2 0.73 0.02 0.94 0.95 1.11 1.00 1.71 1.55
1000 0.8 0.2 0.77 0.01 0.95 0.95 1.11 1.01 1.86 1.69
200 0.8 0.5 0.70 0.00 0.96 0.97 1.07 1.01 1.44 1.36
400 0.8 0.5 0.77 0.04 0.95 0.96 1.09 1.00 1.66 1.52
1000 0.8 0.5 0.82 0.06 0.96 0.96 1.10 1.01 1.70 1.56
200 0.8 1.0 0.81 0.03 0.96 0.97 1.06 1.00 1.30 1.22
400 0.8 1.0 0.87 0.15 0.97 0.97 1.09 1.00 1.54 1.42
1000 0.8 1.0 0.87 0.53 0.99 0.99 1.10 1.01 1.71 1.56
200 1.0 0.2 0.85 0.00 0.96 0.97 1.10 1.01 1.47 1.34
400 1.0 0.2 0.93 0.01 0.94 0.95 1.10 1.00 1.66 1.51
1000 1.0 0.2 0.98 0.01 0.94 0.94 1.10 1.01 1.78 1.64
200 1.0 0.5 0.89 0.00 0.95 0.96 1.07 0.99 1.41 1.31
400 1.0 0.5 0.97 0.02 0.95 0.96 1.08 1.00 1.55 1.44
1000 1.0 0.5 1.03 0.05 0.96 0.96 1.08 1.01 1.65 1.54
200 1.0 1.0 0.99 0.04 0.98 0.98 1.05 1.00 1.24 1.18
400 1.0 1.0 1.08 0.15 0.97 0.98 1.05 1.00 1.42 1.35
1000 1.0 1.0 1.08 0.57 1.00 1.00 1.09 1.01 1.67 1.54
200 1.2 0.2 1.02 0.00 0.94 0.95 1.08 1.00 1.39 1.28
400 1.2 0.2 1.10 0.00 0.93 0.94 1.09 1.00 1.55 1.41
1000 1.2 0.2 1.17 0.01 0.93 0.93 1.11 1.01 1.73 1.58
200 1.2 0.5 1.08 0.02 0.95 0.95 1.06 1.00 1.26 1.19
400 1.2 0.5 1.16 0.01 0.95 0.95 1.07 0.99 1.45 1.34
1000 1.2 0.5 1.24 0.06 0.96 0.97 1.08 1.01 1.64 1.52
200 1.2 1.0 1.20 0.07 0.99 0.98 1.04 1.00 1.18 1.14
400 1.2 1.0 1.32 0.14 0.99 0.99 1.06 1.01 1.29 1.22
1000 1.2 1.0 1.31 0.49 1.00 1.01 1.09 1.02 1.52 1.42

938 International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

it is noted that more computational costs in CV method are
required to find a proper parameter from a pre-set sequence
of � . Overall, our D-D method can precisely improve fore-
casting performance by auto-adapting the insensitivity
parameter.

The second linear simulation, shown Table 6, is the
regression with noises from the normal distribution N(0, �2) .
The simulation results show that with R2 from 0.40 to 0.86,
all the ratioMAE and ratioRMSE for D-D are all signifi-
cantly greater than 1. In other words, our proposed method
can auto-recognize a limited scale and obtain a limiting
insensitivity parameter to approach real noises; as a result,
the forecasting performance is superior. It is interesting that
corresponding to the type of noise, the scale is also auto
adapted to match the most approximate � in the insensi-
tive Laplacian distribution. In the simulation setting with
n = 300 , s = 2.0 , and � = 1.2 , the noises contribute more as
60% to the response, thus, the data are with high randomiza-
tion. We still can find our forecasting performances are like
10-CV with less computational costs. Overall, according to

the reported table, we can find our proposed method can
beat other two methods in almost simulations. Therefore, our
method can make �-SVR more efficient in the linear model
with Gaussian noises.

The final simulation, shown in Table 7, illustrates that our
D-D method can obtain surprisingly good improvements.
This is because the ratios from our D-D method are quite
large, indicating that our proposed method can model the
linear model with perfect accuracy. The most interesting
finding in the parameter estimation analysis is that with an
increasing number of samples, our D-D method approaches
approximating the �-Laplacian loss function by increasing �
and decreasing s; two parameter estimations will converge
to limiting values. To sum up, for the noise from uniform
distribution, our method is still a powerful tool for improv-
ing the linear regression forecasting.

Furthermore, for the mechanism exploration of our
D-D method, compared with the CM in linear simulations,
which is motivated by the noise following the normal dis-
tribution, our D-D’s forecasting performance is close, but

Table 3 Nonlinear case (normal distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning approach

Noise settings Parameters CM 10-CV D-D

n s � ŝ 𝜖 RatioMAE RatioRMSE RatioMAE RatioRMSE RatioMAE RatioRMSE

200 0.7 0.5 0.22 0.00 0.96 0.98 1.00 1.00 1.37 1.16
400 0.7 0.5 0.24 0.00 0.97 0.97 1.01 1.01 1.67 1.46
1000 0.7 0.5 0.24 0.47 1.00 1.00 1.03 1.03 1.64 1.48
200 0.7 1.0 0.44 0.00 0.97 0.98 1.00 1.00 1.29 1.20
400 0.7 1.0 0.49 0.06 0.97 0.98 1.00 1.00 1.48 1.36
1000 0.7 1.0 0.45 0.88 0.98 0.99 1.01 1.01 1.50 1.38
200 0.7 1.5 0.66 0.03 0.98 0.98 1.00 1.00 1.17 1.12
400 0.7 1.5 0.70 0.31 0.97 0.98 1.00 1.00 1.38 1.29
1000 0.7 1.5 0.65 1.05 0.98 0.99 1.01 1.01 1.48 1.36
200 0.9 0.5 0.28 0.00 0.97 0.99 1.00 1.01 1.42 1.25
400 0.9 0.5 0.31 0.01 0.96 0.97 1.00 1.01 1.58 1.42
1000 0.9 0.5 0.30 0.68 0.99 0.99 1.02 1.02 1.59 1.45
200 0.9 1.0 0.57 0.00 0.97 0.97 1.00 1.00 1.17 1.10
400 0.9 1.0 0.62 0.17 0.97 0.98 1.00 1.01 1.33 1.23
1000 0.9 1.0 0.57 0.90 0.98 0.99 1.00 1.00 1.48 1.36
200 0.9 1.5 0.86 0.10 0.98 0.98 1.00 1.00 1.09 1.04
400 0.9 1.5 0.89 0.40 0.98 0.99 1.00 1.01 1.25 1.19
1000 0.9 1.5 0.81 1.15 0.99 0.99 1.01 1.01 1.37 1.28
200 1.1 0.5 0.35 0.00 0.96 0.97 1.00 1.00 1.36 1.24
400 1.1 0.5 0.38 0.04 0.97 0.97 1.00 1.00 1.56 1.41
1000 1.1 0.5 0.35 0.85 0.98 0.98 1.01 1.01 1.59 1.45
200 1.1 1.0 0.69 0.03 0.98 0.98 1.01 1.01 1.14 1.08
400 1.1 1.0 0.75 0.29 0.98 0.98 1.00 1.00 1.33 1.24
1000 1.1 1.0 0.68 1.03 0.99 0.99 1.00 1.00 1.42 1.31
200 1.1 1.5 1.03 0.17 1.00 1.00 1.00 1.00 1.01 0.98
400 1.1 1.5 1.06 0.56 0.98 0.98 1.00 1.00 1.17 1.11
1000 1.1 1.5 1.01 1.07 0.99 0.99 1.00 1.00 1.30 1.22

939International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

still is better when addressing the noise from the normal
distribution shown in Table 6, while in Tables 5 and 7,
our D-D method’s performance can significantly improve
the forecasting accuracy. This illustrates that our D-D
method can auto-adapt the parameters to approximate any
unknown noise distribution and improve the SVR’s perfor-
mance, while the CM method focuses on the normal dis-
tribution. Moreover, the computational cost of the 10-CV
method with five alternative parameter settings is over 10
times more than our D-D method. In addition, because of
the parameter setting for the cross validation, the 10-CV
method cannot guarantee its superior performance with
high computational costs. Therefore, we can conclude that
our D-D method can auto-adapt the �-Laplacian loss func-
tion to guarantee the steadiness of a linear model with high
levels of accuracy. Furthermore, because it is determined
by the type of noise, the scale and the insensitivity param-
eter will converge to true values (the noise is generated
from the �-Laplacian distribution) or limiting values (the
noise is from any other distribution).

5 Case studies

In the section, our D-D �-SVR is evaluated with five case
studies: energy efficiency (768 samples, eight attributes, and
two responses) [40], yacht hydrodynamics (308 samples, six
attributes, and one response) [41], airfoil self-noise (1503
samples, five attributes, and one response) [42], concrete
compressive strength (1030 samples, eight attributes, and
one response) [43] from the UCI Machine Learning Reposi-
tory [44], and Boston housing prices (506 samples, 14 attrib-
utes, and one response) from the StatLib collection [45].

Each benchmark data set was randomly divided into two
groups: the training set (70% of each data set) and the test set
(the remaining data from each set). Then, each experiment
was repeated 100 times to obtain the average performance
of our proposed SVR. In this section, the execution time is
added to show the efficiency of our proposed method as well.
Because the scale of each attribute is different, the standard
normalization was applied for attribute pre-processing before
the training. The general radial basic function is selected as

Table 4 Nonlinear case (uniform distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning approach

Noise settings Parameters CM 10-CV D-D

n s bd ŝ 𝜖 RatioMAE RatioRMSE RatioMAE RatioRMSE RatioMAE RatioRMSE

200 3.0 0.8 0.86 0.35 0.99 0.99 1.01 1.01 1.26 1.22
400 3.0 0.8 0.69 2.15 1.00 1.01 1.01 1.01 1.74 1.62
1000 3.0 0.8 0.41 4.96 1.00 1.00 1.02 1.02 2.16 1.94
200 3.0 1.0 1.08 0.37 1.02 1.02 1.01 1.01 1.17 1.15
400 3.0 1.0 0.83 2.28 1.01 1.02 1.01 1.01 1.66 1.59
1000 3.0 1.0 0.51 4.91 1.01 1.01 1.02 1.02 2.23 2.06
200 3.0 1.2 1.23 0.80 1.05 1.06 1.02 1.02 1.27 1.26
400 3.0 1.2 0.99 2.36 1.01 1.02 1.01 1.02 1.67 1.59
1000 3.0 1.2 0.62 4.85 1.01 1.01 1.02 1.02 2.10 1.98
200 4.0 0.8 1.10 0.72 1.02 1.02 1.01 1.01 1.24 1.21
400 4.0 0.8 0.87 2.47 1.02 1.03 1.02 1.02 1.67 1.60
1000 4.0 0.8 0.55 4.87 1.01 1.01 1.02 1.02 2.17 2.02
200 4.0 1.0 1.34 0.87 1.07 1.07 1.02 1.02 1.22 1.20
400 4.0 1.0 1.11 2.25 1.03 1.03 1.01 1.02 1.62 1.56
1000 4.0 1.0 0.69 4.85 1.01 1.01 1.01 1.02 2.07 1.97
200 4.0 1.2 1.66 0.76 1.08 1.09 1.02 1.01 1.14 1.13
400 4.0 1.2 1.25 2.67 1.04 1.04 1.02 1.02 1.54 1.51
1000 4.0 1.2 0.84 4.78 1.01 1.02 1.02 1.02 2.01 1.93
200 5.0 0.8 1.38 0.63 1.05 1.05 1.02 1.01 1.17 1.14
400 5.0 0.8 1.05 2.52 1.03 1.04 1.02 1.02 1.59 1.53
1000 5.0 0.8 0.66 5.11 1.01 1.01 1.02 1.02 2.07 1.97
200 5.0 1.0 1.68 0.96 1.07 1.08 1.02 1.03 1.15 1.15
400 5.0 1.0 1.33 2.56 1.03 1.04 1.01 1.01 1.50 1.47
1000 5.0 1.0 0.85 4.97 1.02 1.02 1.02 1.02 2.12 2.03
200 5.0 1.2 1.94 1.11 1.11 1.10 1.03 1.03 1.16 1.14
400 5.0 1.2 1.47 2.86 1.04 1.04 1.01 1.01 1.48 1.45
1000 5.0 1.2 0.96 5.41 1.03 1.03 1.03 1.03 2.00 1.93

940 International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

the kernel. In addition, the 10-CV [9] was applied in the
insensitivity parameter selection with the same alternative
parameter settings as the former simulations. In addition,
according to our literature review, we employed three recent
meta-heuristics method with 10-CV to tune the insensitiv-
ity parameter for the �-SVR: whale optimization algorithm
(WOA) [21], grey wolf optimizer (GWO) [22], multi-verse
optimizer (MVO) [19] with 10 search agents. In addition,
all algorithms are performed on an Intel i7-8700 CPU with
16.0 GB of RAM.

The � and � for the five benchmark data sets were esti-
mated using our proposed method, and the convergence
curves of our proposed method are shown in Fig. 2 for one
repeated experiment. According to convergence curves of
MSE index for all investigated cases, we can find the pro-
cedure converges through one or two iterations. We then
display the work likelihood functions for each case from one
repeated experiment in Fig. 3. Moreover, the correspond-
ing negative log-likelihood function values with different �
values at the estimated scale in one of experiments for five

cases are displayed in Fig. 4. It is obvious that the specific �
-Laplacian loss function is data-driven by the real data sets.
Different from the original �-SVR, our proposed “scale” �
-SVR can auto-recognize the scale of noise in real data sets
and self-adapt the insensitivity parameter accordingly.

The prediction performance for all five cases is listed in
Table 8. Obviously, our proposed method can improve the
accuracy of predictions based on the ratios. The most obvi-
ous cases are the MAE (tuning 3.90 vs. CM 4.11 vs. 10-CV
4.18 vs. D-D �.��) and RMSE (tuning 6.96 vs. CM 6.83
vs. 10-CV 6.83 vs. D-D �.��) for the yacht hydrodynam-
ics. Compared with the tuning, 10-CV, and CM methods,
the MAE and RMSE in the rest of the data sets (energy
efficiency, Boston housing, airfoil self-noise, and concrete
compressive strength) achieved around 10% improvements.
In addition, compared with three meta-heuristic algorithms
(WOA, MVO, and GWO), our proposed D-D method still
can achieve good forecasting performance with less com-
putational costs. For example, for modelling cooling load
data, the forecasting performances are very similar, but the

Table 5 Linear case (�-Laplacian distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning approach

Noise settings Parameters CM 10-CV D-D

n s � R
2 ŝ 𝜖 RatioMAE RatioRMSE RatioMAE RatioRMSE RatioMAE RatioRMSE

100 0.5 0.8 0.87 0.51 0.71 0.80 0.79 0.99 0.98 1.13 1.13
200 0.5 0.8 0.87 0.51 0.71 0.81 0.83 0.97 0.97 1.21 1.21
300 0.5 0.8 0.87 0.49 0.86 1.39 1.35 1.14 1.12 1.46 1.41
100 0.5 1.0 0.85 0.52 0.74 0.96 0.96 1.07 1.06 1.07 1.09
200 0.5 1.0 0.85 0.51 0.93 1.18 1.16 1.16 1.15 1.26 1.25
300 0.5 1.0 0.86 0.50 0.95 1.15 1.14 1.08 1.08 1.23 1.22
100 0.5 1.2 0.86 0.52 1.12 0.99 1.03 1.08 1.11 1.30 1.32
200 0.5 1.2 0.86 0.50 1.21 1.34 1.35 1.16 1.15 1.38 1.38
300 0.5 1.2 0.84 0.52 1.07 1.20 1.19 1.08 1.07 1.33 1.31
100 1.0 0.8 0.65 0.97 0.76 0.98 0.96 1.08 1.07 1.33 1.28
200 1.0 0.8 0.62 1.01 0.73 0.96 0.92 1.04 0.99 1.52 1.53
300 1.0 0.8 0.62 1.00 0.76 1.19 1.20 1.10 1.11 1.20 1.21
100 1.0 1.0 0.61 1.00 0.98 0.76 0.75 1.02 1.03 1.20 1.18
200 1.0 1.0 0.61 1.02 0.95 1.18 1.16 1.11 1.10 1.31 1.28
300 1.0 1.0 0.60 1.01 0.95 1.30 1.27 1.15 1.15 1.52 1.50
100 1.0 1.2 0.58 0.99 1.27 1.32 1.27 1.12 1.11 1.39 1.37
200 1.0 1.2 0.57 1.00 1.17 1.46 1.42 1.22 1.19 1.55 1.50
300 1.0 1.2 0.58 1.02 1.14 1.37 1.36 1.12 1.10 1.62 1.60
100 1.5 0.8 0.43 1.48 0.78 0.89 0.86 1.09 1.07 1.28 1.27
200 1.5 0.8 0.42 1.47 0.77 1.04 1.05 1.03 1.03 1.27 1.28
300 1.5 0.8 0.42 1.49 0.79 1.19 1.20 1.21 1.22 1.25 1.27
100 1.5 1.0 0.42 1.44 1.09 1.07 1.06 1.09 1.09 1.24 1.23
200 1.5 1.0 0.41 1.49 0.99 1.23 1.23 1.14 1.13 1.37 1.35
300 1.5 1.0 0.40 1.48 1.05 1.25 1.23 1.14 1.13 1.30 1.26
100 1.5 1.2 0.38 1.53 1.15 1.37 1.38 1.30 1.30 1.73 1.74
200 1.5 1.2 0.38 1.60 1.04 1.17 1.20 1.07 1.05 1.44 1.40
300 1.5 1.2 0.38 1.50 1.19 1.32 1.29 1.11 1.11 1.68 1.69

941International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

D-D method is more efficient (WOA: 90.87 min, MVO:
84.77 min, GWO: 85.78 min, and D-D: 10.55 min). Further-
more, according to comparisons in the datasets of Boston
housing, yacht hydrodynamics, and concrete compressive
strength), although three meta-heuristic algorithms need
more computational costs, our D-D method still can beat
them with highly accurate preferences.

To show the significance of our forecasting results in
Table 8, a Wilcoxon signed-rank test is used with MAE and
RMSE indexes from 100 repeated experiments for all case
studies and the results are recorded in Table 8. Through the
statistical tests, we obtain that our proposed D-D method
can provide great predictions compared to three meta-heu-
ristic algorithms with less computational costs. Particularly
for datasets of Boston housing, yacht hydrodynamics, and
concrete compressive strength, both two error indexes for
forecasting accuracy of our proposed method are signifi-
cantly superior to those of three meta-heuristic algorithms.
Additionally, for three datasets of heating load, cooling load,
and airfoil self-noise, compared with three meta-heuristics

algorithm, the forecasting accuracy is similar but the execu-
tion time on average is much less.

To summarize, our proposed D-D method can auto-adapt
the insensitivity parameter in the �-Laplacian distribution
approach to the real noise distribution; this means our work-
ing likelihood method can push the �-Laplacian density
function to seek the approximate likelihood function. As a
result, our D-D SVR has an excellent performance in real
applications.

6 Conclusion

The SVR with �-Laplacian loss distribution is a mainstream
algorithm for regression modelling, where the insensitivity
parameter � determines the support vector. However, to date,
after inputs and target scaling, three types of strategies for
parameter selection are used: the k-cross validation, which
requires huge computational costs, the tuning parameter,
which cannot make the SVR work more efficiently, and the

Table 6 Linear case (normal distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning approach

Noise settings Parameters CM 10-CV D-D

n s � R
2 ŝ 𝜖 RatioMAE RatioRMSE ratioMAE RatioRMSE RatioMAE RatioRMSE

100 1.0 0.8 0.86 0.48 1.28 1.13 1.13 1.08 1.09 1.27 1.27
200 1.0 0.8 0.88 0.46 1.39 1.09 1.08 1.05 1.04 1.37 1.34
300 1.0 0.8 0.86 0.47 1.41 1.01 1.04 1.03 1.06 1.26 1.27
100 1.0 1.0 0.81 0.59 1.20 0.95 0.95 1.06 1.08 1.17 1.18
200 1.0 1.0 0.79 0.58 1.43 1.17 1.20 1.11 1.13 1.35 1.36
300 1.0 1.0 0.80 0.58 1.39 1.10 1.10 0.99 1.00 1.34 1.35
100 1.0 1.2 0.74 0.72 1.25 0.85 0.81 0.97 0.97 1.35 1.32
200 1.0 1.2 0.74 0.73 1.26 1.03 1.04 1.00 1.00 1.12 1.12
300 1.0 1.2 0.75 0.68 1.51 1.09 1.09 1.01 1.00 1.21 1.21
100 1.5 0.8 0.75 0.71 1.35 1.04 1.03 1.25 1.24 1.22 1.20
200 1.5 0.8 0.73 0.71 1.32 1.03 1.03 1.00 1.00 1.22 1.19
300 1.5 0.8 0.73 0.70 1.38 1.09 1.09 1.03 1.02 1.27 1.28
100 1.5 1.0 0.67 0.85 1.49 0.79 0.79 1.10 1.10 1.65 1.68
200 1.5 1.0 0.64 0.85 1.47 1.22 1.19 1.09 1.08 1.34 1.33
300 1.5 1.0 0.64 0.86 1.48 1.17 1.19 1.17 1.19 1.37 1.39
100 1.5 1.2 0.56 1.03 1.57 1.09 1.10 1.05 1.04 1.20 1.21
200 1.5 1.2 0.55 1.03 1.48 1.04 1.05 0.97 0.96 1.26 1.25
300 1.5 1.2 0.56 1.03 1.41 1.16 1.16 1.09 1.08 1.24 1.25
100 2.0 0.8 0.62 0.90 1.48 1.23 1.20 0.98 0.97 1.25 1.22
200 2.0 0.8 0.61 0.88 1.65 1.15 1.17 1.05 1.04 1.46 1.46
300 2.0 0.8 0.61 0.91 1.54 1.14 1.12 1.14 1.11 1.43 1.39
100 2.0 1.0 0.52 1.13 1.50 1.07 1.09 1.03 1.04 1.21 1.23
200 2.0 1.0 0.51 1.15 1.42 1.12 1.12 1.03 1.03 1.35 1.32
300 2.0 1.0 0.51 1.11 1.54 1.14 1.12 1.08 1.07 1.45 1.41
100 2.0 1.2 0.43 1.37 1.43 1.51 1.62 1.14 1.15 1.82 1.94
200 2.0 1.2 0.42 1.35 1.48 1.20 1.19 1.05 1.06 1.22 1.22
300 2.0 1.2 0.40 1.36 1.52 0.98 1.00 1.02 1.02 1.01 1.03

942 International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

Table 7 Linear case (uniform distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning approach

Noise settings Parameters CM 10-CV D-D

n s bd R
2 ŝ 𝜖 RatioMAE RatioRMSE RatioMAE RatioRMSE RatioMAE RatioRMSE

100 1.0 0.8 0.81 0.19 4.06 1.25 1.23 1.11 1.09 2.72 2.69
200 1.0 0.8 0.82 0.12 6.29 1.21 1.20 1.14 1.14 3.25 3.23
300 1.0 0.8 0.83 0.09 8.25 1.00 1.00 1.13 1.12 3.14 3.09
100 1.0 1.0 0.77 0.22 4.19 1.42 1.43 1.08 1.09 2.42 2.46
200 1.0 1.0 0.76 0.14 7.15 1.20 1.19 1.13 1.13 3.00 2.96
300 1.0 1.0 0.76 0.12 8.15 1.16 1.17 1.16 1.17 3.89 3.89
100 1.0 1.2 0.68 0.25 4.54 1.47 1.47 1.15 1.15 2.56 2.57
200 1.0 1.2 0.67 0.18 6.61 1.14 1.16 1.09 1.09 3.63 3.65
300 1.0 1.2 0.68 0.14 8.37 1.18 1.20 1.19 1.21 3.61 3.58
100 1.5 0.8 0.66 0.28 4.19 1.13 1.13 1.04 1.03 2.34 2.29
200 1.5 0.8 0.68 0.16 7.52 1.07 1.07 1.01 1.02 3.02 3.05
300 1.5 0.8 0.68 0.15 8.06 1.20 1.20 1.16 1.15 3.36 3.32
100 1.5 1.0 0.58 0.33 4.47 1.64 1.63 1.09 1.09 2.45 2.44
200 1.5 1.0 0.57 0.21 7.30 1.21 1.23 1.10 1.10 3.91 3.92
300 1.5 1.0 0.57 0.17 8.69 1.09 1.08 1.10 1.10 4.08 4.16
100 1.5 1.2 0.47 0.35 5.50 1.23 1.20 1.06 1.05 2.08 2.07
200 1.5 1.2 0.50 0.24 7.55 1.17 1.19 1.05 1.05 3.73 3.90
300 1.5 1.2 0.48 0.21 8.53 1.17 1.19 1.13 1.13 4.13 4.14
100 2.0 0.8 0.53 0.30 5.29 1.42 1.40 1.16 1.12 3.06 3.06
200 2.0 0.8 0.54 0.21 7.85 1.18 1.18 1.15 1.16 3.17 3.20
300 2.0 0.8 0.53 0.19 8.45 1.05 1.02 1.06 1.04 4.27 4.13
100 2.0 1.0 0.43 0.34 5.88 1.16 1.20 0.96 0.98 2.46 2.48
200 2.0 1.0 0.44 0.27 7.43 1.05 1.05 1.00 0.99 2.85 2.83
300 2.0 1.0 0.43 0.22 9.25 1.14 1.14 1.17 1.17 4.17 4.18
100 2.0 1.2 0.35 0.46 5.03 1.38 1.40 1.08 1.08 3.22 3.39
200 2.0 1.2 0.35 0.33 7.58 1.12 1.10 1.04 1.02 3.20 3.14
300 2.0 1.2 0.34 0.26 9.20 1.09 1.07 1.10 1.10 4.32 4.20

0 5 10 15
3

3.5

4

M
S

E

Heating load

0 5 10 15
4

5

6

M
S

E

Cooling load

0 5 10 15

5

10

M
S

E

Boston housing

0 5 10 15

20

25

30

M
S

E

Yacht hydrodynamics

0 5 10 15 20
6

8

10

M
S

E

Airfoil self-noise

0 5 10 15 20
20

25

30

M
S

E

Concrete compressive strength

Fig. 2 The convergence curves of our proposed method in our case
studies. The x-axis is the number of iterations

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

working likelihood function

r

D
en

si
ty

energy efficiency:heating load
energy efficiency: cooling load
boston housing
yacht hydrodynamics
airfoil self−noise
concrete compressive strength

Fig. 3 Six working likelihood D-D functions for five case studies

943International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

empirical statistical estimation, the CM method that is based
on normal distribution with some empirical settings. Obvi-
ously, the mentioned parameter settings are not the most
appropriate hyper-parameters for SVR in most conditions,
so, in this paper, we propose optimization of the insensitivity
parameter based on the working likelihood function devel-
oped by Fu et al. [28], which is a D-D method, to estimate
appropriate hyper-parameters for finding the most appropri-
ate �-Laplacian distribution to the real noise distribution to
guarantee generalization in test sets. In addition, the D-D
support vector regression is standardized by the scale of the
noise in a more meaningful field. In nonlinear and linear sim-
ulations conducted with different types of noises (�-Laplacian
distribution, normal distribution, and uniform distribution),
our proposed method demonstrated that it can automati-
cally estimate the scale and the insensitivity parameter. As a
result, our D-D SVR showed significantly improved forecast-
ing accuracy in the test sets. Moreover, our D-D algorithm

can estimate the approximate likelihood function in five
real benchmark applications, and furthermore, the proposed
method had dramatically improved performance in unknown
sets. Therefore, our proposed D-D SVR is a more intelligent
and powerful technique for the regression problem.

Here, it must be noted that we have no guarantee that
the optimization (Formula (5)) has the only one global
minimization, but we never experienced the problem in
both numerical simulations and case studies. Additionally,
tuning regularization parameter C and kernel parameter
� in an elegant way also are important but challenging.
Interestingly, in the reference of [3], an insensitive lin-
ear-linear loss function was proposed for support vector
regression to minimize the economic cost for load sched-
uling. Particularly, different penalties for over-prediction
and under-prediction are given in the optimization objec-
tive from the real economic loss. Thus, the work Wu et al.
[3] is different from our current work. However, it is of

0.0 0.2 0.4 0.6 0.8 1.0

10
70

10
75

10
80

10
85

10
90

10
95

11
00

11
05

Heating Load

epsilon

−l
og

(L
)

0.0 0.2 0.4 0.6 0.8 1.0

11
65

11
70

11
75

11
80

11
85

11
90

11
95

12
00

Cooling Load

epsilon
−l

og
(L

)
0.0 0.2 0.4 0.6 0.8 1.0

81
0

81
5

82
0

82
5

83
0

83
5

84
0

Boston Housing

epsilon

−l
og

(L
)

0.0 0.2 0.4 0.6 0.8 1.0

63
0

64
0

65
0

66
0

Yacht Hydrodynamics

epsilon

−l
og

(L
)

0.0 0.2 0.4 0.6 0.8 1.0

26
20

26
30

26
40

26
50

26
60

26
70

Airfoil Self−Noise

epsilon

−l
og

(L
)

0.0 0.2 0.4 0.6 0.8 1.0

22
30

22
40

22
50

22
60

22
70

22
80

Concrete Compressive Strength

epsilon

−l
og

(L
)

Fig. 4 The insensitivity parameter-negative likelihood function value plots for five cases

944 International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

interest to develop a data-driven method to tune the insen-
sitive parameter in the insensitive linear-linear loss func-
tion instead of the CV method used in [3]. Similarly, in
machine learning modelling, our D-D method using the
framework of working likelihood is a viable general strat-
egy for parameter estimations such as the twin SVR [46]
and the general robust loss function [47]. For example, we
can incorporate the explored lncosh loss function into SVR
framework to improve the work [39].

Acknowledgements The authors would like to thank the five review-
ers for their constructive comments and suggestions, which have led
to a much-improved paper. This work was supported in part by the
Australian Research Council project DP160104292 and the Australian
Research Council Centre of Excellence for Mathematical and Statistical
Frontiers (ACEMS), under grant number CE140100049.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Data availability A demo of the proposed D-D SVR is available at
https:// github. com/ wujrt udou/ Worki nglik eliho odFor Param eterE stima
tion. git.

Declarations

 Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Chen BJ, Chang MW et al (2004) Load forecasting using sup-
port vector machines: a study on EUNITE competition 2001.
IEEE Trans Power Syst 19(4):1821–1830

 2. Artemiou A, Dong Y, Shin SJ (2021) Real-time sufficient
dimension reduction through principal least squares support
vector machines. Pattern Recognit 112:107768

 3. Wu J, Wang YG, Tian YC, Burrage K, Cao T (2021) Support
vector regression with asymmetric loss for optimal electric load
forecasting. Energy 223:119969

 4. Vapnik V, Golowich SE, Smola AJ (1996) Support vector
method for function approximation, regression estimation and
signal processing. Adv Neural Inf Process Syst 9:281–287

 5. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector
machines. ACM Trans Intell Syst Technol (TIST) 2(3):1–27

Table 8 Results for four case studies with different methods

The unit of execution time: minute
The execution time with tuning method and CM method are not reported because their computational costs are very low
‘∗ ’ represents the forecasting results are significant (p ≤ 0.05) to our D-D method by the Wilcoxon signed-rank test

Dataset Index Tuning CM 10-CV WOA [21] MVO [19] GWO [22] D-D

MAE 1.51∗ 1.45∗ 1.51∗ 1.20 1.20 1.20 1.19
Heating load RMSE 2.32∗ 2.36∗ 2.32∗ 1.82 1.82 1.82 1.87

Execution time – – 76.38 90.30 92.54 93.70 12.82
MAE 1.87∗ 1.84∗ 1.84∗ 1.54 1.54 1.54 1.57

Cooling load RMSE 2.72∗ 2.72∗ 2.73∗ 2.30 2.30 2.30 2.34
Execution time – – 82.56 90.87 84.77 85.78 10.55
MAE 2.42∗ 2.44∗ 2.42∗ 3.71∗ 3.71∗ 3.71∗ 2.22

Boston housing RMSE 4.03∗ 4.03∗ 4.05∗ 6.15∗ 6.15∗ 6.15∗ 3.53
Execution time – – 15.85 18.69 19.69 19.68 4.32
MAE 3.90∗ 4.11∗ 4.18∗ 4.87∗ 4.83∗ 4.83∗ 2.70

Yacht RMSE 6.96∗ 6.83∗ 6.83∗ 9.82∗ 9.83∗ 9.82∗ 5.05
hydrodynamics Execution time – – 10.09 12.62 12.26 12.28 1.57

MAE 2.42∗ 2.42∗ 2.43∗ 1.93 1.93 1.93 1.97
Airfoil self-noise RMSE 3.33∗ 3.33∗ 3.33∗ 2.78 2.78 2.78 2.80

Execution time – – 197.12 212.81 242.15 228.48 35.25
MAE 4.98∗ 4.98∗ 4.96∗ 5.36∗ 5.36∗ 5.36∗ 4.37

Concrete compressive RMSE 6.82∗ 6.82∗ 6.84∗ 7.94∗ 7.94∗ 7.94∗ 6.11
strength Execution time – – 47.48 53.94 60.21 62.68 13.15

https://github.com/wujrtudou/WorkinglikelihoodForParameterEstimation.git
https://github.com/wujrtudou/WorkinglikelihoodForParameterEstimation.git
http://creativecommons.org/licenses/by/4.0/

945International Journal of Machine Learning and Cybernetics (2023) 14:929–945

1 3

 6. Chang CC, Lin CJ (2002) Training v-support vector regression:
theory and algorithms. Neural Comput 14(8):1959–1977

 7. Drucker H, Burges CJ, Kaufman L, Smola A, Vapnik V (1996)
Support vector regression machines. Adv Neural Inf Process
Syst 9:155–161

 8. Vapnik V (2013) The nature of statistical learning theory.
Springer Science & Business Media, Berlin

 9. Hastie T, Tibshirani R, Friedman J (2009) The elements of
statistical learning: data mining, inference, and prediction.
Springer Science & Business Media, Berlin

 10. Ito K, Nakano R (2003) Optimizing support vector regression
hyperparameters based on cross-validation. In: Proceedings of
the international joint conference on neural networks, 2003, vol
3. IEEE, p 2077–2082

 11. Schölkopf B, Bartlett P, Smola A, Williamson RC (1999) Shrink-
ing the tube: a new support vector regression algorithm. Adv Neu-
ral Inf Process Syst 11:330–336

 12. Schölkopf B, Smola AJ, Williamson RC, Bartlett PL (2000) New
support vector algorithms. Neural Comput 12(5):1207–1245

 13. Schölkopf B, Bartlett PL, Smola AJ, Williamson RC (1998)
Support vector regression with automatic accuracy control. In:
International conference on artificial neural networks. Springer,
London, p 111–116

 14. Jeng JT, Chuang CC, Su SF (2003) Support vector interval regres-
sion networks for interval regression analysis. Fuzzy Sets Syst
138(2):283–300

 15. Cherkassky V, Ma Y (2004) Practical selection of SVM param-
eters and noise estimation for SVM regression. Neural Netw
17(1):113–126

 16. Wen Z, Li B, Kotagiri R, Chen J, Chen Y, Zhang R (2017) Improv-
ing efficiency of SVM k-fold cross-validation by alpha seeding.
Proc AAAI Conf Artif Intell 31:2768–2774

 17. Hsia JY, Lin CJ (2020) Parameter selection for linear sup-
port vector regression. IEEE Trans Neural Netw Learn Syst
31(12):5639–5644

 18. Wu CH, Tzeng GH, Lin RH (2009) A novel hybrid genetic algo-
rithm for kernel function and parameter optimization in support
vector regression. Expert Syst Appl 36(3):47–48

 19. Tabrizchi H, Javidi MM, Amirzadeh V (2021) Estimates of resi-
dential building energy consumption using a multi-verse opti-
mizer-based support vector machine with k-fold cross-validation.
Evol Syst 12(3):755–767

 20. Zhou J, Qiu Y, Zhu S, Armaghani DJ, Li C, Nguyen H et al
(2021) Optimization of support vector machine through the use
of metaheuristic algorithms in forecasting TBM advance rate. Eng
Appl Artif Intell 97:104015.

 21. Zhou J, Zhu S, Qiu Y, Armaghani DJ, Zhou A, Yong W (2022)
Predicting tunnel squeezing using support vector machine opti-
mized by whale optimization algorithm. Acta Geotech 1–24

 22. Liu M, Luo K, Zhang J, Chen S (2021) A stock selection algo-
rithm hybridizing grey wolf optimizer and support vector regres-
sion. Expert Syst Appl 179:115078

 23. Algamal ZY, Qasim MK, Lee MH, Ali HTM (2021) Improving
grasshopper optimization algorithm for hyperparameters estima-
tion and feature selection in support vector regression. Chemometr
Intell Lab Syst 208:104196

 24. Li W, Kong D, Wu J (2017) A new hybrid model FPA-SVM con-
sidering cointegration for particular matter concentration fore-
casting: a case study of Kunming and Yuxi, China. Comput Intell
Neurosci 2017

 25. da Silva Santos CE, Sampaio RC, dos Santos Coelho L, Bestard
GA, Llanos CH (2021) Multi-objective adaptive differential evolu-
tion for SVM/SVR hyperparameters selection. Pattern Recognit
110:107649

 26. Kalita DJ, Singh S (2020) SVM hyper-parameters optimization
using quantized multi-PSO in dynamic environment. Soft Comput
24(2):1225–1241

 27. Bartlett PL, Boucheron S, Lugosi G (2002) Model selection and
error estimation. Mach Learn 48(1–3):85–113

 28. Fu L, Wang YG, Cai F (2020) A working likelihood approach for
robust regression. Stat Methods Med Res 29(12):3641–3652

 29. Smola AJ, Schölkopf B (2004) A tutorial on support vector regres-
sion. Stat Comput 14(3):199–222

 30. Wu Y, Wang L (2020) A survey of tuning parameter selection for
high-dimensional regression. Annu Rev Stat Appl 7:209–226

 31. Wang YG, Lin X, Zhu M, Bai Z (2007) Robust estimation using
the Huber function with a data-dependent tuning constant. J Com-
put Graph Stat 16(2):468–481

 32. Liu DC, Nocedal J (1989) On the limited memory BFGS method
for large scale optimization. Math Program 45(1):503–528

 33. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimiza-
tion. Swarm Intell 1(1):33–57

 34. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F,
Chang CC, et al (2019) Package ‘1071’. R 1–66

 35. Lipsitz SR, Fitzmaurice GM, Orav EJ, Laird NM (1994) Perfor-
mance of generalized estimating equations in practical situations.
Biometrics 50(1):270–278

 36. Brown BM, Wang YG (2005) Standard errors and covariance
matrices for smoothed rank estimators. Biometrika 92(1):149–158

 37. Chu W, Keerthi SS, Ong CJ (2004) Bayesian support vector
regression using a unified loss function. IEEE Trans Neural Netw
15(1):29–44

 38. Singla M, Ghosh D, Shukla K, Pedrycz W (2020) Robust twin
support vector regression based on rescaled Hinge loss. Pattern
Recognit 105:107395

 39. Karal O (2017) Maximum likelihood optimal and robust support
vector regression with lncosh loss function. Neural Netw 94:1–12

 40. Tsanas A, Xifara A (2012) Accurate quantitative estimation of
energy performance of residential buildings using statistical
machine learning tools. Energy Build 49:560–567

 41. Ortigosa I, Lopez R, Garcia J (2007) A neural networks approach
to residuary resistance of sailing yachts prediction. In: Proceed-
ings of the international conference on marine engineering
marine. vol 2007. p 250

 42. Lau K, López R, Oñate E, Ortega E, Flores R, Mier-Torrecilla
M, et al (2006) A neural networks approach for aerofoil noise
prediction

 43. Yeh IC (2006) Analysis of strength of concrete using design
of experiments and neural networks. J Mater Civil Eng
18(4):597–604

 44. Dua D, Graff C. UCI machine learning repository. http:// archi ve.
ics. uci. edu/ ml

 45. Fan RE. LIBSVM data: regression. https:// www. csie. ntu. edu. tw/
~cjlin/ libsv mtools/ datas ets/ regre ssion. html

 46. Peng X (2010) TSVR: an efficient twin support vector machine
for regression. Neural Netw 23(3):365–372

 47. Barron JT (2019) A general and adaptive robust loss function.
In: 2019 IEEE/CVF conference on computer vision and pattern
recognition (CVPR). IEEE Computer Society. p 4326–4334

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/regression.html
https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/regression.html

	A working likelihood approach to support vector regression with a data-driven insensitivity parameter
	Abstract
	1 Introduction
	1.1 Literature review
	1.2 Contribution
	1.3 Organization of the paper

	2 The support vector regression (SVR)
	3 The data-driven SVR
	3.1 Working likelihood for insensitivity parameter estimation
	3.2 The training procedure of our D-D SVR

	4 Simulation experiments
	4.1 Nonlinear regression
	4.2 Linear regression

	5 Case studies
	6 Conclusion
	Acknowledgements
	References

