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Abstract
The insensitivity parameter in support vector regression determines the set of support vectors that greatly impacts the predic-
tion. A data-driven approach is proposed to determine an approximate value for this insensitivity parameter by minimizing a 
generalized loss function originating from the likelihood principle. This data-driven support vector regression also statistically 
standardizes samples using the scale of noises different from conventional response scaling method. Statistical standardiza-
tion together with probabilistic regularization based on a working likelihood function produces data-dependent values for 
the hyperparameters including the insensitivity parameter. The exact asymptotical solutions are provided when the noises 
are normally distributed. Nonlinear and linear numerical simulations with three types of noises ( �-Laplacian distribution, 
normal distribution, and uniform distribution), and in addition, five real benchmark data sets, are used to test the capacity of 
the proposed method. Based on all the simulations and the five case studies, the proposed support vector regression using a 
working likelihood, data-driven insensitivity parameter is superior and has lower computational costs.

Keywords Approximate loss function · Parameter estimation · Prediction · Working likelihood

1 Introduction

In the machine learning field, support vector regression 
(SVR) has been popular in management and engineering 
applications [1–3], due to its solid theoretical foundation 
[4–6] and insensitivity to the dimensionality of the sam-
ples [7]. As recommended by Vapnik [8], the parameter 
settings in SVR modelling contribute the generalization of 
the predictive performance. However, practitioners apply-
ing SVR in real-world applications often cannot obtain the 
most effective model. There are two key approaches to set-
ting the hyper-parameter. One option is to use the k-cross 
validation to choose the parameters for SVR [9, 10]. The 
other approach is to set the parameter as a constant, based 
on the empirical practice developed by Chang and Lin [5]. In 

particular, the researchers suggested that the regularization 
parameter C and the insensitivity parameter � be set at 1.0 
and 0.1, respectively. However, although the tuning param-
eter setting provides an acceptable generalization in most 
conditions, there is still a huge gap between this solution and 
the best SVR using the optimal parameters.

1.1  Literature review

For the insensitivity parameter � that controls the num-
ber of support vectors [11], Schölkopf et al. [12] used the 
parameter � to effectively control the number of support 
vectors to eliminate the free parameter, � . However, one 
drawback is that the choice of � has an impact on the gen-
eralization of the model [13]. Furthermore, insensitivity 
parameter estimation methods that consider the noises in 
observations have been developed. Jeng et al. [14] pro-
posed to estimate the insensitivity parameter in two steps. 
The first step is to estimate the regression errors by the 
SVR at � = 0 . Then, the � value is updated by c�̂� with an 
empirical constant c and the estimated standard deviation 
of the noise �̂� . In the absence of outliers, the standard 
deviation can be calculated based on all the regression 
errors, and c is set as 1.98. Otherwise, a trimmed estimator 
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is obtained by removing 5–10% of samples at both ends 
to achieve robustness, and c is recommended to be fixed 
at 3. Obviously, although Jeng et al.’s [14] method aims 
to incorporate data size in the estimation, the empirical 
settings make the method unable to recognize the noise 
level to estimate the insensitivity parameter � . Like Jeng 
et al.’s [14] method, Cherkassky and Ma [15] incorporated 
sample size into the insensitivity parameter estimation. 
As explored by them, the empirical formulation for 𝜖 is 
calculated by the product of the empirical constant 3, the 
standard deviation of the noise, and an empirical coef-
ficient 

√
ln n∕n (n is the sample size). However, when the 

sample size increases, this 𝜖 would approach to 0, so this 
method does not recognize the noise level for the insen-
sitivity parameter estimation. Now, more recent literature 
on tuning parameters in the SVR can be found in [16, 17].

Different from tuning the insensitivity parameter � 
directly, in the reference of [6], the authors propose to 
train �-support vector regression ( �-SVR) where a new 
parameter � is introduced for controlling the proportion of 
support vectors. In the framework of � , with the parameter 
� , the insensitivity parameter can be optimized with other 
parameters together. Apparently, the parameter �-SVR 
would determine the selection of the support vectors but 
must be prior given. Therefore, cross-validation method 
based on a pre-set � sequence with huge computational 
costs or an empirical setting is used for the implementa-
tion of �-SVR.

Because the selection of the insensitivity parameter � can 
be regarded as a complex optimization problem with several 
local mini-ma, meta-heuristic algorithms have been popu-
larly used to tune the insensitivity parameter in �-SVR [18] 
to overcome the problem of the gradient directed algorithms. 
One of the typical examples is the work on estimating the 
residential building energy consumption by Tabrizchi et al. 
[19] where a multi-verse optimizer is employed for tuning � 
for �-SVR with cross-validation. Considering actual applica-
tions, researchers have searched for the tuning � in �-SVR 
[18] with meta-heuristic algorithms, such as moth flame 
optimization (MFO) [20], whale optimization algorithm 
(WOA) [21], grey wolf optimizer (GWO) [22], grasshopper 
optimization algorithm (GOA) [23], flower pollination algo-
rithm (FPA) [24], differential evolution [25], and particle 
swarm optimization [26]. This kind of combined method 
based on cross-validation often requires high computational 
costs to obtain a good optimum for the insensitivity param-
eter. Compared with cross-validation method, meta-heuristic 
algorithms are used to find the potential solution accord-
ing to fitness function values during search process instead 
of a pre-set potential solution set. It should be noted that 
although meta-heuristic algorithms can provide a good solu-
tion to tune the insensitivity parameter, more computation 
costs are required in practice.

1.2  Contribution

To reduce the computational cost for tuning the insensi-
tivity parameter, we in this paper will derive an elegant 
statistical formula to estimate the value of � . As explained 
by Vapnik [8], the insensitive loss function consists of 
the least modulus (LM) loss and the special Huber loss 
function when � = 0 . Hence, in our study, considering the 
insensitive Laplacian distribution loss function inspired by 
Vapnik et al. [4] and Bartlett et al. [27], we focused on the 
insensitivity parameter � and propose a novel SVR with a 
data-driven (D-D) insensitivity parameter. Like Jeng et al. 
[14] and Cherkassky and Ma [15]’s work, our method is 
developed on the theoretical background of SVR instead of 
parameter estimation based on re-sampling. Motivated by 
Fu et al. [28], we propose designating the working likeli-
hood to estimate the insensitivity parameter for SVR. In 
other words, the working likelihood method can estimate 
appropriate hyper-parameters to find the most appropriate 
�-Laplacian distribution to the real noise distribution. Our 
working likelihood (or D-D) method works as a vehicle for 
the � loss function parameter estimation. In addition, dif-
ferent from the computational standardization, the target in 
the proposed model is standardized in a statistical manner 
using the scale of the noise. Thus, our D-D method is more 
practicable and intelligent. In our simulations (linear and 
nonlinear), three types of error distributions were used to 
test the D-D insensitivity parameter estimation, namely, 
the insensitive Laplacian distribution, normal distribution, 
and uniform distribution. Furthermore, some case stud-
ies were applied to validate that our D-D SVR has novel 
generalization in real applications. The meaning of key 
symbols are clarified in Table 1.

1.3  Organization of the paper

This rest of this paper is organized as follows. Sect. 2 
describes the basic framework of �-SVR. Section 3 illus-
trates the working likelihood method for insensitivity 
parameter estimation in �-SVR and present some asymp-
totic properties of our estimate of scale and insensitivity 
parameter. Numerical simulations for three different types 
of noise sources (the insensitive Laplacian distribution, 
normal distribution, and uniform distribution) were imple-
mented, and Sect. 4 presents a discussion of the analyses 
of the simulation results, which illustrate the effectiveness 
of the working likelihood. Then, in Sect. 5, we validate the 
superiority of our D-D SVR on five real data sets: energy 
efficiency, Boston housing, yacht hydrodynamics, airfoil 
self-noise, and concrete compressive strength according 
to the forecasting accuracy and the computational cost. 
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Finally, in Sect. 6, we summarize the results that indicate 
the working likelihood (D-D) method has superior perfor-
mance on insensitivity parameter estimation based on the 
real noise information in SVR, indicating that our D-D 
SVR is very effective in handling forecasting problems.

2  The support vector regression (SVR)

Assume the training data (x1, y1),… , (xn, yn) ∈  ×ℝ , 
where  denotes the space of the input patterns. The case of 
linear function f (⋅) can be formed as

where ⟨⋅, ⋅⟩ represents the dot product in  . In �-SVR, the 
target is to obtain a function f(x) that has at most � devia-
tion from the actual obtained target yi for all the training 
data, and at the same time, is as flat as possible [7, 29]. This 
means that smaller errors ( ≤ � ) are ignored, and larger errors 
will be accounted for in the loss function. Flatness in Eq. (1) 
means finding a small � . Now, the objective function for the 
basic SVR can be presented with a ridge penalty ‖�‖2 and an 
�-Laplace loss |r|� with residuals ri = yi − f (xi) [29],

where a regularization parameter C (a positive constant) is 
introduced to determine the trade-off between the flatness 
of f and the amount up to which deviations are larger than � . 
Here, we define |ri|� as max{z+, z−} with z+ = max{ri − �, 0} 
and z− = max{−ri − �, 0} . Notice that the optimization prob-
lem is feasible; it means that there exists such a function f 
that approximates all pairs ( xi, yi ) with � precision. Then, 
the slack variables �i and �∗

i
 are introduced to cope with the 

otherwise infeasible constraints of the optimization version 
in Eq. (2). Now, the formulation is shown as,

(1)f (x) = ⟨�, x⟩ + b � ∈ , b ∈ R,

(2)min
�,b

1

2
‖�‖2 + C

n�
i=1

�r
i
�� ,

The primal problem of the basic SVR can be transformed to 
the corresponding dual problem as follows [29]:

Here, �i and �∗
i
 are Lagrange multipliers for 

� + �i − yi + ⟨�, xi⟩ + b and � + �∗
i
− ⟨�, xi⟩ − b + yi , respec-

tively. This dual optimization has a general solution,

where the offset b can be estimated according to the KKT 
conditions, and k(xi, x) is the kernel function including linear 
function as a special case.

As illustrated by Vapnik [8], three important parameter set-
tings in SVR significantly impact the model’s generalization: 
the regularization parameter C, the kernel parameter � , and the 
insensitivity parameter � . The first one, C, can be estimated by 
the 0.95 quantile of |yi| [15],

min
�,b,�i,�

∗
i

1

2
‖�‖2 + C

n�
i=1

(�i + �∗
i
)

s.t.

⎧
⎪⎨⎪⎩

yi − ⟨�, xi⟩ − b ≤ � + �i,

⟨�, xi⟩ + b − yi ≤ � + �∗
i
,

�i, �
∗
i
≥ 0.

max
�,�∗

−
1

2

n�
i,j=1

(�i − �∗
i
)(�j − �∗

j
)⟨xi, xj⟩

− �

n�
i=1

(�i + �∗
i
) +

n�
i=1

yi(�i − �∗
i
)

s.t.

⎧
⎪⎨⎪⎩

n∑
i=1

(�i − �∗
i
) = 0,

�i, �
∗
i
∈ [0,C].

f (x) =

n∑
i=1

(�i − �∗
i
)k(xi, x) + b,

CCM = |yi|(0.95), i = 1,… , n.

Table 1  Nomenclature

Notation Description Notation Description Notation Description

s Scale of noise � Insensitivity parameter C Regularization parameter
n Sample size p Dimension of predictors R2 Coefficient of determination
ri ith residual ui ith standardized residual xi Features of the ith sample
V(⋅) Loss function g(⋅) Working density function yi Response of the ith sample
�∗ Asymptotic � value L(⋅) Joint likelihood function s∗ Asymptotic � value
h(⋅) True density function � Indicator function MAE Mean absolute error
𝜖 Estimated � ŝ Estimated s RMSE root mean square error
CV Cross validation CM Cherkassky and Ma’s method D-D Data-driven method
RatioMAE Ratio of MAE RatioRMSE Ratio of RMSE �i ith clean response
� Kernel parameter
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In addition, Wu and Wang [30] pointed out that when the 
dimension p of predictors are very large, the regularization 
parameter C can be of the order of 

√
n∕ log(p).

Then, the second kernel parameter � in kernel functions 
(e.g., radial basis function kernel and polynomial kernel) is 
applied to adjust the mapping from the original space to the 
high-dimensional space; this is decided by the type of ker-
nel function and the application domain. The last one is the 
most important parameter, � , which controls the number of 
support vectors. We will explore how to estimate the insen-
sitivity parameter � based on the loss function mechanism 
from a statistical perspective in the next section.

3  The data‑driven SVR

3.1  Working likelihood for insensitivity parameter 
estimation

Suppose the training data set consists of n samples 
(xi, yi), (i = 1, 2,… , n) , and the target yi , is generated from 
the following model:

where f (⋅) represents the expected value, while the second 
component, ri (which is decomposed as sui ) is the noise (s is 
the scale, and ui is the noise after scaling s).

In �-SVR, the loss function is defined as

where r = y − ⟨�, x⟩ − b is the residual item. The corre-
sponding density function for ri is,

which will correspond to the loss function given by Eq. (3) 
up to a constant.

Thus, suppose that all ri are identically and independently 
distributed with a density function g(⋅) . Let � be a vector col-
lecting all the unknown parameters (�, s) . The negative log-
likelihood based on the training data is then

Once the SVR approach is adapted, we essentially assume ri 
follows a density function that is proportional to exp(−V(r)) . 
Our working likelihood D-D method estimates all the 

yi = f (xi) + ri = f (xi) + s ⋅ ui,

(3)

V(r) = �r�𝜖 ,

=

⎧⎪⎨⎪⎩

r − 𝜖 r > 𝜖,

0 −𝜖 ≤ r ≤ 𝜖,

−r − 𝜖 r < −𝜖,

g(r;�) =
1

2(1 + �)
exp(−|r|�),

− log L(�) = −
∑n

i=1
log

�
g

�
yi − f (xi)

s

��

+ n log(s).

parameters in � by maximizing L(�) [31]. We investigate the 
choice of the insensitivity parameter � in the SVR approach. 
Clearly, the � value that results by maximizing L is data 
dependent and expected to be more effective. Meanwhile, 
the scale of the noise s can also be estimated.

Next, recalling that ri = sui , assume that r1, r2,… rn are 
independent and identically distributed random variables. 
Denote (�, s) = � . Their joint working likelihood function 
is

Therefore, L(�) is a likelihood function with parameters 
� and s properly regularized.

Theorem Suppose that (𝜖, ŝ) are the estimates by minimizing 
L, and (�∗, s∗) are the limiting values of (𝜖, ŝ) . Under the mild 
assumption of E(r2

i
) < +∞ , we have

where h(⋅) is the true density function of the noise term ri.

Proof First, the estimators of � can be achieved by minimiz-
ing the negative log-likelihood function,

Next, the derivatives of (− log L(�)) with respect to � and 
s are given as

The working likelihood approach to (�, s) estimates is 
equivalent to solving the following equations,

L(�) =

n∏
i=1

(
1

s
g
( ri
s
;�, s

))

=
(
1

s

)n

⋅

(
1

2(1 + �)

)n

⋅ exp

(
−

n∑
i=1

| ri
s
|�
)
.

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�∗ =
∫

s
∗�∗

0

{h(r) + h(−r)}dr

∫
∞

s∗�∗
{h(r) + h(−r)}dr

,

s
∗ = ∫

∞

s∗�∗
(h(r) + h(−r)) ⋅ rdr,

(5)

− log L(𝜃) = n log s + n log [2(1 + 𝜖)] +

n∑
i=1

| ri
s
|𝜖

= n log s + n log (2(1 + 𝜖))

+

n∑
i=1

(( ri
s
− 𝜖

)
⋅ �

( ri
s
> 𝜖

))

+

n∑
i=1

((
−
ri

s
− 𝜖

)
⋅ �

( ri
s
< −𝜖

))
.

⎧⎪⎨⎪⎩

𝜕(− log L(𝜃))

𝜕𝜖
=

n

1+𝜖
−

n∑
i=1

�
���
ri

s

��� > 𝜖,

𝜕(− log L(𝜃))

𝜕s
=

n

s
−

1

s2

n∑
i=1

�r
i
� ⋅ ����

ri

s

��� > 𝜖.
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Under the assumption of E(r2
i
) < +∞ , we have 

E(|r
i
|) <

√
{E(r2

i
)} < +∞ , and E{|r

i
|�(|r

i
| > 𝜖∗s∗)}2 ≤ E(r2

i
) < +∞ , 

the law of large numbers hence holds for the two terms on 
the right-hand side of Eq. (6). Taking the limit as n → +∞ , 
we obtain

which is equivalent to Eq. (4).   ◻

Remark 1 According to Eq. (4), the meaning of (�∗, s∗) is 
clear. This indicates that �∗ is the odds ratio of being inside 
the box ( ≤ �∗ ) versus outside the box ( ≥ �∗ ). The parameter 
s∗ is the average distance of the support vectors, while the 
distance of non-support vectors is regarded as 0.

Corollary 1 Suppose that (𝜖, ŝ) are the estimates by mini-
mizing L, and (�∗, s∗) are the limiting values of (𝜖, ŝ) . If the 
true density function h(⋅) is �-Laplacian distribution ( 𝜖 > 0 ), 
there exists a unique solution of limiting values (�∗, s∗).

Proof If the true probability density function of the noise 
is �-Laplacian,

Plugging h(r) from Eq. (7) into Eq. (4), and we can obtain

F r o m  t h e  f i r s t  s u b - e q u a t i o n  w e  h ave 
exp(

�� − s∗�∗

�
) =

1 + �
1 + �∗

 , which can be plugged into the 
second sub-equation on the right hand side, which simplifies 
to s∗ = � . The �∗ can be obtained by solving

Denote t(�∗) = 1 + �∗

exp(�∗)
 , the derivative of t(�∗) with respect 

to �∗ can be given as t�(𝜖∗) = −𝜖∗ exp(−𝜖∗) < 0 . This means 
t(�∗) is strictly monotonic. In general, if t(�∗) is strictly 
monotonic, t(�∗) = t(�) implies �∗ = � . Therefore, � is a 
unique solution of �∗ .   ◻

(6)

⎧⎪⎨⎪⎩

1

𝜖+1
=

1

n

n∑
i=1

�(�r
i
� > 𝜖s),

s =
1

n

n∑
i=1

�r
i
� ⋅ �(�r

i
� > 𝜖s).

{
1

𝜖∗ + 1
= E�(|r

i
| > 𝜖∗s∗) = ∫ +∞

s∗𝜖∗
{h(r) + h(−r)}dr,

s∗ = E|r
i
| ⋅ �(|r

i
| > 𝜖∗s∗) = ∫ +∞

s∗𝜖∗
(h(r) + h(−r))rdr,

(7)h(r) =
1

2�(1 + �)
exp

(
−| r

�
|�
)
.

⎧⎪⎨⎪⎩

1

1+�∗
=

1
1 + �

⋅ exp
�
�� − s∗�∗

�

�
,

s∗ =
s∗�∗ + �
1 + �

⋅ exp
�
�� − s∗�∗

�

�
.

1 + 𝜖

exp(𝜖)
=

1 + 𝜖∗

exp(𝜖∗)
, 𝜖 > 0.

Corollary 2 If the true density function of the noise h(⋅) is 
normally distributed with mean 0 and standard deviation 
𝜎 < +∞ , the limiting values �∗ and s∗ are 1.524 and 0.557� , 
respectively. This implies that the corresponding limiting 
value of the insensitivity parameter for the raw residuals 
without standardization is 0.848�.

Proof Substituting the normal density function to Eq. (4), 
we can obtain

Clearly, the solution s∗ = �� where � is the solution when 
� = 1 , i.e., we have invariant property s∗(�) = � ⋅ s∗(1) . 
Thus, let � = s∗(1) , and we have

This shows �∗(�) = �∗(1) which is a constant free from � . 
Furthermore, the solution of the equation can be achieved 
as �∗ = 1.524 and � = 0.557 . Therefore, we can have the 
final solution as �∗ = 1.524 and s∗ = 0.557� . Finally, we can 
obtain the estimate of the insensitivity parameter for the raw 
residuals without standardization as s∗ ⋅ �∗ = 0.848� .  
 ◻

When the variance � changes, the s∗ changes propor-
tionally as s∗ = 0.557� and the corresponding insensitivity 
tube also varies accordingly with the radius s∗ ⋅ �∗ = 0.848� 
while keeping the standardized tube unchanged ( �∗ does not 
change with � ). This means, if the target unit is changed 
from cm to mm, for example, the new � becomes larger, as 
10� , our D-D method can adaptively control the width of the 
tube appropriately so that the same prediction results will 
be obtained by automatically updating the hyperparameters. 
Interestingly, according to the limiting result, for any normal 
distributed error, because of s∗ ⋅ �∗ = 0.848� , the proportion 
of support vectors is kept roughly as 2 − 2Φ(0.848) = 0.396.

Remark 2 It should be noted that the optimization objec-
tive (5) is non-convex and more than one solutions exist for 
Eq. (6). (� = 0, s =

∑n

i=1
�ri�) always is a solution of Eq. (6). 

Therefore, to handle such an optimization problem, con-
sidering the popularity of normal distribution, we set the 
initial values of � and s as 1.524 and 0.557, respectively, 
for our optimization in this paper where limited-memory 
BFGS [32] is employed as optimizer. In addition, we also 
recommend using some meta-heuristics algorithms, such as 

⎧
⎪⎨⎪⎩

s∗

�
=

2√
2�

⋅ exp

�
−

1

2
�∗2

�
s∗

�

�2
�
,

1
1 + �∗

= 2
�
1 − Φ

�
�∗
�
s∗

�

���
.

⎧⎪⎨⎪⎩

� =
2√
2�

⋅ exp
�
−

1

2
(�∗�)2

�
,

1
1 + �∗

= 2(1 − Φ(�∗�)).
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particle swarm optimization (PSO) method [33], and repeat 
the optimization procedure and report the best solution with 
the most smallest value of the optimization objective (5) 
from all candidate solutions.

Each paired � = (�, s) value corresponds to a potential 
key to a real data set. We now propose obtaining the “best” 
key in the toolbox. Figure 1 shows some potential keys for 
inferring the unknown noise. This means the �-Laplacian 
distribution can approximate the real noise distribution by 
adapting the scale parameter s and the insensitivity param-
eter �.

3.2  The training procedure of our D‑D SVR

Now, the full objective function for our proposed D-D SVR 
can be formulated as:

In details, during the iterative training procedure, with given 
residuals ri , the paired � can be estimated as (𝜖, ŝ) via mini-
mizing Eq. (5). Then, a simplified objective function in our 
iterative procedure can be formulated as:

Furthermore, Eq. (8) can be indirectly solved via R package 
‘e1071’ [34] with scaled response yi∕ŝ and the correspond-
ing scaled regularization coefficient C = |yi∕ŝ|(0.95).

In brief, the pseudo code for our proposed SVR with D-D 
insensitivity parameters is given in Algorithm 1. To imple-
ment our D-D SVR, the maximum number of iteration tMax 
and the threshold of the change of mean square error ΔMin 
must be given. Moreover, the computational complexity for 
our proposed D-D method is affected by the basic �-SVR 
part and the hyperparameter estimation part. The complexity 
of �-SVR is O(n2 × p + n3) with the number of feature p and 
the complexity for estimating hyperparameter is fhp . There-
fore, the computational complexity for our method is 
O(T(n2 × p + n3 + fhp)) where T is the number of iteration. 

min
�,b,�,s

1

2
‖�‖2

+ C

�
n log s + n log [2(1 + �)] +

n∑
i=1

� ri
s
��
�
.

(8)min
𝜔,b

1

2
‖𝜔‖2 + C

n�
i=1

� ri
ŝ
�𝜖 .

In our D-D SVR training, one or two iterations generally 
is adequate for real practice because the residual improve-
ment of order Op(1∕n) after one iteration. A similar point 
also has been found in the references of [35, 36]. In addition, 
we also can conclude the point in our case studies where the 
convergence curves are reported.

4  Simulation experiments

To illustrate how the working likelihood produces D-D 
parameter estimation (D-D) and a prediction, we now con-
sider three types of residuals generated from the uniform 
distribution, the norm distribution, and the �-Laplacian dis-
tribution, respectively.
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Fig. 1  Working likelihood functions with different insensitivity parameters at different scales
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For comparison, we will investigate other three insensi-
tivity parameter estimation methods for the �-SVR. The first 
one is the tuning parameter setting (tuning) ( C = 1.0 and 
� = 0.1 ) [5]. The second method, Cherkassky and Ma’s [15] 
empirical parameter approach (CM), is

where the standard deviation of noise �noise is obtained 
from the residuals using � = 0 . The last one is the k-cross 
validation ( k-CV), where k is fixed at 10, and 5 alternative 
� settings are set as 0.01, 0.05, 0.1, 0.2 and 0.3. Both mean 
absolute error (MAE) and root mean square error (RMSE) 
are calculated for comparison as

and

where ŷi is the i-th prediction, and yi is the i-th observation. 
For each method X using the tuning method as the bench-
mark approach, two ratios are defined as

and

It is obvious that the method X beats the tuning setting 
only if the ratio is larger than 1, and otherwise, it does not. 
The nonlinear simulations and linear simulations are applied 
to show the efficiency of our proposed D-D SVR.

4.1  Nonlinear regression

To demonstrate the performance of our D-D SVR for non-
linear system modelling, the univariate sinc target function 
from the SVR literature [7, 37–39] is considered as

where xi is generated from the uniform distribution 
unif [−10, 10] ; s is the scale of the noise level; and the 
standard noise ui is generated from a known distribution ( �
-Laplacian distribution, normal distribution N(0, �2) , and 
uniform distribution unif [−bd, bd] ). In addition, to make 

�CM = 3�noise

√
ln n

n
,

MAE =
1

n

n∑
i=1

|yi − ŷi|,

RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi)
2,

RatioRMSE =
RMSEtuning

RMSEX

,

RatioMAE =
MAEtuning

MAEX

.

yi = a ⋅
sin(xi)

xi
+ s ⋅ ui, i = 1, 2,… , n,

our simulations more meaningful, the scale of nonlinear 
system a is set as 5, 4, and 6 from insensitive-Laplacian 
noises, normal noises, and uniform noises, respectively. 
Also, we generate n simulation samples, and then the 
samples are divided into two groups of the same size. All 
experiments are repeated 100 times to calculate the aver-
age performance of the benchmark SVRs and our proposed 
D-D SVR. The kernel of the SVR is the default radial basic 
function k(xi, xj) = exp(−�‖xi − xj‖2) with � = 1 [34]. It 
should be noted that, for our comparison, the ratio is cal-
culated based on the gap between the prediction ŷi and the 
�i ( �i = a sin(xi)∕xi ). This can show the performance of our 
D-D SVR at eliminating the interruption from noise and 
model a real system. All the nonlinear simulation results 
are displayed in Table 2 (insensitive Laplacian distribu-
tion), Table 3 (normal distribution), and Table 4 (uniform 
distribution).

As illustrated in Table 2, compared with the CM and 
10-CV, the ratios of the D-D from both RMSE and MAE 
are significantly greater than 1, indicating that our proposed 
SVR allowed for remarkable improvements in the fore-
casting performance for all 27 simulations. However, the 
insensitivity parameter � tends to be underestimated. The 
main reason for this is that, as shown in Fig. 1, the scale 
mainly contributes to the working likelihood function when 
the insensitivity parameter is small. Another reason is that 
the training sample size is not large enough to estimate the 
insensitivity parameter accurately. As the training set size 
enlarges, the estimated insensitivity parameter converges to 
the true �.

Table 3 shows the second case, where the errors follow 
normal distributions. Our proposed method works well for 
approximating the best �-Laplacian distribution, leading to 
significant improvements in the forecasting accuracy of all 
the simulation scenarios displayed in the Table. When the 
noise level is low (both s and � are small), the superiority 
of the D-D approach is more prominent. For the simulation 
with noise settings ( n 1000 , s 0.7 , and � 0.5 ), the D-D’s pre-
diction achieves an amazing improvement (MAE, 64% , and 
RMSE, 48% ), while both the CM and 10-CV methods each 
obtained only a slight increase. In the simulation setting with 
n = 200 , s = 1.1 , and � = 1.5 (i.e., noises contribute more 
to responds), we have checked our simulations where one 
of the simulations are with plenty of large outliers. The per-
formance of our method is heavily depended on the quality 
of data; as a result, our forecasting performance is not good.

The third nonlinear case also shows that our D-D method is 
an effective approach to data modelling with noises from the 
uniform distribution, and the simulation results are given in 
Table 4. Obviously, two ratios from the proposed D-D method 
are notably greater than 1. For instance, compared with the 
CM and 10-CV methods, both ratios of the simulation from the 
D-D method with noise setting n 1000 , s 5.0 and bd 1.2 , are 
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nearly 200% (MAE) and 193% (RMSE), respectively, so our 
D-D method obtained a nearly twofold improvement.

From the above three types of nonlinear simulations, it 
can be concluded that our proposed D-D method for �-SVR 
noticeably improves the forecasting performance in nonlinear 
applications.

4.2  Linear regression

Now we consider the most popular linear model generated by 
the following:

where �0 = 1 and xi is generated from the normal distribution 
N(0, 1). Considering different noise levels for all simula-
tions, we set �1 as 2, 2, and 1 for noises generated from 
the �-Laplacian distribution, normal distribution, and uni-
form distribution, respectively. In addition, the kernel of 

yi = �0 + �1 ⋅ xi + s ⋅ ui, i = 1, 2,… , n,

the �-SVR is the linear function k(xi, xj) = x�
i
⋅ xj . All sim-

ulations are implemented 100 times to record the average 
performance. The linear simulation results for the �-Lapla-
cian distribution, normal distribution N(0, �2) , and uniform 
distribution unif [−bd, bd] are listed in Tables 5, 6 and 7, 
respectively.

First, in the linear simulation for residuals generated 
from the �-Laplacian distribution, the estimated insensi-
tivity parameter 𝜖 and the estimated scale parameter ŝ all 
approximate to the real settings with our D-D method in 
different noise levels, as shown in Table 5. For comparison 
of the accuracy for the forecasting performance, in the lin-
ear regression with n = 300 and R2 = 0.38 , our proposed 
D-D SVR performed better than the CM and the 10-CV, 
with a more than 68% improvement with MAE and a 69% 
improvement with RMSE. In addition, according to simula-
tion results with n = 100 , s = 0.5 , and � = 1.0 , we can find 
our proposed methods are like the 10-CV method much bet-
ter than the CM method and the basic tuning method. Here, 

Table 2  Nonlinear case ( �-Laplacian distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning 
approach

Noise settings Parameters CM 10-CV D-D

n s � ŝ 𝜖 RatioMAE RatioRMSE RatioMAE RatioRMSE RatioMAE RatioRMSE

200 0.8 0.2 0.66 0.00 0.95 0.97 0.99 1.00 1.47 1.32
400 0.8 0.2 0.73 0.02 0.94 0.95 1.11 1.00 1.71 1.55
1000 0.8 0.2 0.77 0.01 0.95 0.95 1.11 1.01 1.86 1.69
200 0.8 0.5 0.70 0.00 0.96 0.97 1.07 1.01 1.44 1.36
400 0.8 0.5 0.77 0.04 0.95 0.96 1.09 1.00 1.66 1.52
1000 0.8 0.5 0.82 0.06 0.96 0.96 1.10 1.01 1.70 1.56
200 0.8 1.0 0.81 0.03 0.96 0.97 1.06 1.00 1.30 1.22
400 0.8 1.0 0.87 0.15 0.97 0.97 1.09 1.00 1.54 1.42
1000 0.8 1.0 0.87 0.53 0.99 0.99 1.10 1.01 1.71 1.56
200 1.0 0.2 0.85 0.00 0.96 0.97 1.10 1.01 1.47 1.34
400 1.0 0.2 0.93 0.01 0.94 0.95 1.10 1.00 1.66 1.51
1000 1.0 0.2 0.98 0.01 0.94 0.94 1.10 1.01 1.78 1.64
200 1.0 0.5 0.89 0.00 0.95 0.96 1.07 0.99 1.41 1.31
400 1.0 0.5 0.97 0.02 0.95 0.96 1.08 1.00 1.55 1.44
1000 1.0 0.5 1.03 0.05 0.96 0.96 1.08 1.01 1.65 1.54
200 1.0 1.0 0.99 0.04 0.98 0.98 1.05 1.00 1.24 1.18
400 1.0 1.0 1.08 0.15 0.97 0.98 1.05 1.00 1.42 1.35
1000 1.0 1.0 1.08 0.57 1.00 1.00 1.09 1.01 1.67 1.54
200 1.2 0.2 1.02 0.00 0.94 0.95 1.08 1.00 1.39 1.28
400 1.2 0.2 1.10 0.00 0.93 0.94 1.09 1.00 1.55 1.41
1000 1.2 0.2 1.17 0.01 0.93 0.93 1.11 1.01 1.73 1.58
200 1.2 0.5 1.08 0.02 0.95 0.95 1.06 1.00 1.26 1.19
400 1.2 0.5 1.16 0.01 0.95 0.95 1.07 0.99 1.45 1.34
1000 1.2 0.5 1.24 0.06 0.96 0.97 1.08 1.01 1.64 1.52
200 1.2 1.0 1.20 0.07 0.99 0.98 1.04 1.00 1.18 1.14
400 1.2 1.0 1.32 0.14 0.99 0.99 1.06 1.01 1.29 1.22
1000 1.2 1.0 1.31 0.49 1.00 1.01 1.09 1.02 1.52 1.42
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it is noted that more computational costs in CV method are 
required to find a proper parameter from a pre-set sequence 
of � . Overall, our D-D method can precisely improve fore-
casting performance by auto-adapting the insensitivity 
parameter.

The second linear simulation, shown Table 6, is the 
regression with noises from the normal distribution N(0, �2) . 
The simulation results show that with R2 from 0.40 to 0.86, 
all the ratioMAE and ratioRMSE for D-D are all signifi-
cantly greater than 1. In other words, our proposed method 
can auto-recognize a limited scale and obtain a limiting 
insensitivity parameter to approach real noises; as a result, 
the forecasting performance is superior. It is interesting that 
corresponding to the type of noise, the scale is also auto 
adapted to match the most approximate � in the insensi-
tive Laplacian distribution. In the simulation setting with 
n = 300 , s = 2.0 , and � = 1.2 , the noises contribute more as 
60% to the response, thus, the data are with high randomiza-
tion. We still can find our forecasting performances are like 
10-CV with less computational costs. Overall, according to 

the reported table, we can find our proposed method can 
beat other two methods in almost simulations. Therefore, our 
method can make �-SVR more efficient in the linear model 
with Gaussian noises.

The final simulation, shown in Table 7, illustrates that our 
D-D method can obtain surprisingly good improvements. 
This is because the ratios from our D-D method are quite 
large, indicating that our proposed method can model the 
linear model with perfect accuracy. The most interesting 
finding in the parameter estimation analysis is that with an 
increasing number of samples, our D-D method approaches 
approximating the �-Laplacian loss function by increasing � 
and decreasing s; two parameter estimations will converge 
to limiting values. To sum up, for the noise from uniform 
distribution, our method is still a powerful tool for improv-
ing the linear regression forecasting.

Furthermore, for the mechanism exploration of our 
D-D method, compared with the CM in linear simulations, 
which is motivated by the noise following the normal dis-
tribution, our D-D’s forecasting performance is close, but 

Table 3  Nonlinear case (normal distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning approach

Noise settings Parameters CM 10-CV D-D

n s � ŝ 𝜖 RatioMAE RatioRMSE RatioMAE RatioRMSE RatioMAE RatioRMSE

200 0.7 0.5 0.22 0.00 0.96 0.98 1.00 1.00 1.37 1.16
400 0.7 0.5 0.24 0.00 0.97 0.97 1.01 1.01 1.67 1.46
1000 0.7 0.5 0.24 0.47 1.00 1.00 1.03 1.03 1.64 1.48
200 0.7 1.0 0.44 0.00 0.97 0.98 1.00 1.00 1.29 1.20
400 0.7 1.0 0.49 0.06 0.97 0.98 1.00 1.00 1.48 1.36
1000 0.7 1.0 0.45 0.88 0.98 0.99 1.01 1.01 1.50 1.38
200 0.7 1.5 0.66 0.03 0.98 0.98 1.00 1.00 1.17 1.12
400 0.7 1.5 0.70 0.31 0.97 0.98 1.00 1.00 1.38 1.29
1000 0.7 1.5 0.65 1.05 0.98 0.99 1.01 1.01 1.48 1.36
200 0.9 0.5 0.28 0.00 0.97 0.99 1.00 1.01 1.42 1.25
400 0.9 0.5 0.31 0.01 0.96 0.97 1.00 1.01 1.58 1.42
1000 0.9 0.5 0.30 0.68 0.99 0.99 1.02 1.02 1.59 1.45
200 0.9 1.0 0.57 0.00 0.97 0.97 1.00 1.00 1.17 1.10
400 0.9 1.0 0.62 0.17 0.97 0.98 1.00 1.01 1.33 1.23
1000 0.9 1.0 0.57 0.90 0.98 0.99 1.00 1.00 1.48 1.36
200 0.9 1.5 0.86 0.10 0.98 0.98 1.00 1.00 1.09 1.04
400 0.9 1.5 0.89 0.40 0.98 0.99 1.00 1.01 1.25 1.19
1000 0.9 1.5 0.81 1.15 0.99 0.99 1.01 1.01 1.37 1.28
200 1.1 0.5 0.35 0.00 0.96 0.97 1.00 1.00 1.36 1.24
400 1.1 0.5 0.38 0.04 0.97 0.97 1.00 1.00 1.56 1.41
1000 1.1 0.5 0.35 0.85 0.98 0.98 1.01 1.01 1.59 1.45
200 1.1 1.0 0.69 0.03 0.98 0.98 1.01 1.01 1.14 1.08
400 1.1 1.0 0.75 0.29 0.98 0.98 1.00 1.00 1.33 1.24
1000 1.1 1.0 0.68 1.03 0.99 0.99 1.00 1.00 1.42 1.31
200 1.1 1.5 1.03 0.17 1.00 1.00 1.00 1.00 1.01 0.98
400 1.1 1.5 1.06 0.56 0.98 0.98 1.00 1.00 1.17 1.11
1000 1.1 1.5 1.01 1.07 0.99 0.99 1.00 1.00 1.30 1.22
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still is better when addressing the noise from the normal 
distribution shown in Table 6, while in Tables 5 and 7, 
our D-D method’s performance can significantly improve 
the forecasting accuracy. This illustrates that our D-D 
method can auto-adapt the parameters to approximate any 
unknown noise distribution and improve the SVR’s perfor-
mance, while the CM method focuses on the normal dis-
tribution. Moreover, the computational cost of the 10-CV 
method with five alternative parameter settings is over 10 
times more than our D-D method. In addition, because of 
the parameter setting for the cross validation, the 10-CV 
method cannot guarantee its superior performance with 
high computational costs. Therefore, we can conclude that 
our D-D method can auto-adapt the �-Laplacian loss func-
tion to guarantee the steadiness of a linear model with high 
levels of accuracy. Furthermore, because it is determined 
by the type of noise, the scale and the insensitivity param-
eter will converge to true values (the noise is generated 
from the �-Laplacian distribution) or limiting values (the 
noise is from any other distribution).

5  Case studies

In the section, our D-D �-SVR is evaluated with five case 
studies: energy efficiency (768 samples, eight attributes, and 
two responses) [40], yacht hydrodynamics (308 samples, six 
attributes, and one response) [41], airfoil self-noise (1503 
samples, five attributes, and one response) [42], concrete 
compressive strength (1030 samples, eight attributes, and 
one response) [43] from the UCI Machine Learning Reposi-
tory [44], and Boston housing prices (506 samples, 14 attrib-
utes, and one response) from the StatLib collection [45].

Each benchmark data set was randomly divided into two 
groups: the training set ( 70% of each data set) and the test set 
(the remaining data from each set). Then, each experiment 
was repeated 100 times to obtain the average performance 
of our proposed SVR. In this section, the execution time is 
added to show the efficiency of our proposed method as well. 
Because the scale of each attribute is different, the standard 
normalization was applied for attribute pre-processing before 
the training. The general radial basic function is selected as 

Table 4  Nonlinear case (uniform distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning approach

Noise settings Parameters CM 10-CV D-D

n s bd ŝ 𝜖 RatioMAE RatioRMSE RatioMAE RatioRMSE RatioMAE RatioRMSE

200 3.0 0.8 0.86 0.35 0.99 0.99 1.01 1.01 1.26 1.22
400 3.0 0.8 0.69 2.15 1.00 1.01 1.01 1.01 1.74 1.62
1000 3.0 0.8 0.41 4.96 1.00 1.00 1.02 1.02 2.16 1.94
200 3.0 1.0 1.08 0.37 1.02 1.02 1.01 1.01 1.17 1.15
400 3.0 1.0 0.83 2.28 1.01 1.02 1.01 1.01 1.66 1.59
1000 3.0 1.0 0.51 4.91 1.01 1.01 1.02 1.02 2.23 2.06
200 3.0 1.2 1.23 0.80 1.05 1.06 1.02 1.02 1.27 1.26
400 3.0 1.2 0.99 2.36 1.01 1.02 1.01 1.02 1.67 1.59
1000 3.0 1.2 0.62 4.85 1.01 1.01 1.02 1.02 2.10 1.98
200 4.0 0.8 1.10 0.72 1.02 1.02 1.01 1.01 1.24 1.21
400 4.0 0.8 0.87 2.47 1.02 1.03 1.02 1.02 1.67 1.60
1000 4.0 0.8 0.55 4.87 1.01 1.01 1.02 1.02 2.17 2.02
200 4.0 1.0 1.34 0.87 1.07 1.07 1.02 1.02 1.22 1.20
400 4.0 1.0 1.11 2.25 1.03 1.03 1.01 1.02 1.62 1.56
1000 4.0 1.0 0.69 4.85 1.01 1.01 1.01 1.02 2.07 1.97
200 4.0 1.2 1.66 0.76 1.08 1.09 1.02 1.01 1.14 1.13
400 4.0 1.2 1.25 2.67 1.04 1.04 1.02 1.02 1.54 1.51
1000 4.0 1.2 0.84 4.78 1.01 1.02 1.02 1.02 2.01 1.93
200 5.0 0.8 1.38 0.63 1.05 1.05 1.02 1.01 1.17 1.14
400 5.0 0.8 1.05 2.52 1.03 1.04 1.02 1.02 1.59 1.53
1000 5.0 0.8 0.66 5.11 1.01 1.01 1.02 1.02 2.07 1.97
200 5.0 1.0 1.68 0.96 1.07 1.08 1.02 1.03 1.15 1.15
400 5.0 1.0 1.33 2.56 1.03 1.04 1.01 1.01 1.50 1.47
1000 5.0 1.0 0.85 4.97 1.02 1.02 1.02 1.02 2.12 2.03
200 5.0 1.2 1.94 1.11 1.11 1.10 1.03 1.03 1.16 1.14
400 5.0 1.2 1.47 2.86 1.04 1.04 1.01 1.01 1.48 1.45
1000 5.0 1.2 0.96 5.41 1.03 1.03 1.03 1.03 2.00 1.93
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the kernel. In addition, the 10-CV [9] was applied in the 
insensitivity parameter selection with the same alternative 
parameter settings as the former simulations. In addition, 
according to our literature review, we employed three recent 
meta-heuristics method with 10-CV to tune the insensitiv-
ity parameter for the �-SVR: whale optimization algorithm 
(WOA) [21], grey wolf optimizer (GWO) [22], multi-verse 
optimizer (MVO) [19] with 10 search agents. In addition, 
all algorithms are performed on an Intel i7-8700 CPU with 
16.0 GB of RAM.

The � and � for the five benchmark data sets were esti-
mated using our proposed method, and the convergence 
curves of our proposed method are shown in Fig. 2 for one 
repeated experiment. According to convergence curves of 
MSE index for all investigated cases, we can find the pro-
cedure converges through one or two iterations. We then 
display the work likelihood functions for each case from one 
repeated experiment in Fig. 3. Moreover, the correspond-
ing negative log-likelihood function values with different � 
values at the estimated scale in one of experiments for five 

cases are displayed in Fig. 4. It is obvious that the specific �
-Laplacian loss function is data-driven by the real data sets. 
Different from the original �-SVR, our proposed “scale” �
-SVR can auto-recognize the scale of noise in real data sets 
and self-adapt the insensitivity parameter accordingly.

The prediction performance for all five cases is listed in 
Table 8. Obviously, our proposed method can improve the 
accuracy of predictions based on the ratios. The most obvi-
ous cases are the MAE (tuning 3.90 vs. CM 4.11 vs. 10-CV 
4.18 vs. D-D �.�� ) and RMSE (tuning 6.96 vs. CM 6.83 
vs. 10-CV 6.83 vs. D-D �.�� ) for the yacht hydrodynam-
ics. Compared with the tuning, 10-CV, and CM methods, 
the MAE and RMSE in the rest of the data sets (energy 
efficiency, Boston housing, airfoil self-noise, and concrete 
compressive strength) achieved around 10% improvements. 
In addition, compared with three meta-heuristic algorithms 
(WOA, MVO, and GWO), our proposed D-D method still 
can achieve good forecasting performance with less com-
putational costs. For example, for modelling cooling load 
data, the forecasting performances are very similar, but the 

Table 5  Linear case ( �-Laplacian distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning approach

Noise settings Parameters CM 10-CV D-D

n s � R
2 ŝ 𝜖 RatioMAE RatioRMSE RatioMAE RatioRMSE RatioMAE RatioRMSE

100 0.5 0.8 0.87 0.51 0.71 0.80 0.79 0.99 0.98 1.13 1.13
200 0.5 0.8 0.87 0.51 0.71 0.81 0.83 0.97 0.97 1.21 1.21
300 0.5 0.8 0.87 0.49 0.86 1.39 1.35 1.14 1.12 1.46 1.41
100 0.5 1.0 0.85 0.52 0.74 0.96 0.96 1.07 1.06 1.07 1.09
200 0.5 1.0 0.85 0.51 0.93 1.18 1.16 1.16 1.15 1.26 1.25
300 0.5 1.0 0.86 0.50 0.95 1.15 1.14 1.08 1.08 1.23 1.22
100 0.5 1.2 0.86 0.52 1.12 0.99 1.03 1.08 1.11 1.30 1.32
200 0.5 1.2 0.86 0.50 1.21 1.34 1.35 1.16 1.15 1.38 1.38
300 0.5 1.2 0.84 0.52 1.07 1.20 1.19 1.08 1.07 1.33 1.31
100 1.0 0.8 0.65 0.97 0.76 0.98 0.96 1.08 1.07 1.33 1.28
200 1.0 0.8 0.62 1.01 0.73 0.96 0.92 1.04 0.99 1.52 1.53
300 1.0 0.8 0.62 1.00 0.76 1.19 1.20 1.10 1.11 1.20 1.21
100 1.0 1.0 0.61 1.00 0.98 0.76 0.75 1.02 1.03 1.20 1.18
200 1.0 1.0 0.61 1.02 0.95 1.18 1.16 1.11 1.10 1.31 1.28
300 1.0 1.0 0.60 1.01 0.95 1.30 1.27 1.15 1.15 1.52 1.50
100 1.0 1.2 0.58 0.99 1.27 1.32 1.27 1.12 1.11 1.39 1.37
200 1.0 1.2 0.57 1.00 1.17 1.46 1.42 1.22 1.19 1.55 1.50
300 1.0 1.2 0.58 1.02 1.14 1.37 1.36 1.12 1.10 1.62 1.60
100 1.5 0.8 0.43 1.48 0.78 0.89 0.86 1.09 1.07 1.28 1.27
200 1.5 0.8 0.42 1.47 0.77 1.04 1.05 1.03 1.03 1.27 1.28
300 1.5 0.8 0.42 1.49 0.79 1.19 1.20 1.21 1.22 1.25 1.27
100 1.5 1.0 0.42 1.44 1.09 1.07 1.06 1.09 1.09 1.24 1.23
200 1.5 1.0 0.41 1.49 0.99 1.23 1.23 1.14 1.13 1.37 1.35
300 1.5 1.0 0.40 1.48 1.05 1.25 1.23 1.14 1.13 1.30 1.26
100 1.5 1.2 0.38 1.53 1.15 1.37 1.38 1.30 1.30 1.73 1.74
200 1.5 1.2 0.38 1.60 1.04 1.17 1.20 1.07 1.05 1.44 1.40
300 1.5 1.2 0.38 1.50 1.19 1.32 1.29 1.11 1.11 1.68 1.69
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D-D method is more efficient (WOA: 90.87 min, MVO: 
84.77 min, GWO: 85.78 min, and D-D: 10.55 min). Further-
more, according to comparisons in the datasets of Boston 
housing, yacht hydrodynamics, and concrete compressive 
strength), although three meta-heuristic algorithms need 
more computational costs, our D-D method still can beat 
them with highly accurate preferences.

To show the significance of our forecasting results in 
Table 8, a Wilcoxon signed-rank test is used with MAE and 
RMSE indexes from 100 repeated experiments for all case 
studies and the results are recorded in Table 8. Through the 
statistical tests, we obtain that our proposed D-D method 
can provide great predictions compared to three meta-heu-
ristic algorithms with less computational costs. Particularly 
for datasets of Boston housing, yacht hydrodynamics, and 
concrete compressive strength, both two error indexes for 
forecasting accuracy of our proposed method are signifi-
cantly superior to those of three meta-heuristic algorithms. 
Additionally, for three datasets of heating load, cooling load, 
and airfoil self-noise, compared with three meta-heuristics 

algorithm, the forecasting accuracy is similar but the execu-
tion time on average is much less.

To summarize, our proposed D-D method can auto-adapt 
the insensitivity parameter in the �-Laplacian distribution 
approach to the real noise distribution; this means our work-
ing likelihood method can push the �-Laplacian density 
function to seek the approximate likelihood function. As a 
result, our D-D SVR has an excellent performance in real 
applications.

6  Conclusion

The SVR with �-Laplacian loss distribution is a mainstream 
algorithm for regression modelling, where the insensitivity 
parameter � determines the support vector. However, to date, 
after inputs and target scaling, three types of strategies for 
parameter selection are used: the k-cross validation, which 
requires huge computational costs, the tuning parameter, 
which cannot make the SVR work more efficiently, and the 

Table 6  Linear case (normal distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning approach

Noise settings Parameters CM 10-CV D-D

n s � R
2 ŝ 𝜖 RatioMAE RatioRMSE ratioMAE RatioRMSE RatioMAE RatioRMSE

100 1.0 0.8 0.86 0.48 1.28 1.13 1.13 1.08 1.09 1.27 1.27
200 1.0 0.8 0.88 0.46 1.39 1.09 1.08 1.05 1.04 1.37 1.34
300 1.0 0.8 0.86 0.47 1.41 1.01 1.04 1.03 1.06 1.26 1.27
100 1.0 1.0 0.81 0.59 1.20 0.95 0.95 1.06 1.08 1.17 1.18
200 1.0 1.0 0.79 0.58 1.43 1.17 1.20 1.11 1.13 1.35 1.36
300 1.0 1.0 0.80 0.58 1.39 1.10 1.10 0.99 1.00 1.34 1.35
100 1.0 1.2 0.74 0.72 1.25 0.85 0.81 0.97 0.97 1.35 1.32
200 1.0 1.2 0.74 0.73 1.26 1.03 1.04 1.00 1.00 1.12 1.12
300 1.0 1.2 0.75 0.68 1.51 1.09 1.09 1.01 1.00 1.21 1.21
100 1.5 0.8 0.75 0.71 1.35 1.04 1.03 1.25 1.24 1.22 1.20
200 1.5 0.8 0.73 0.71 1.32 1.03 1.03 1.00 1.00 1.22 1.19
300 1.5 0.8 0.73 0.70 1.38 1.09 1.09 1.03 1.02 1.27 1.28
100 1.5 1.0 0.67 0.85 1.49 0.79 0.79 1.10 1.10 1.65 1.68
200 1.5 1.0 0.64 0.85 1.47 1.22 1.19 1.09 1.08 1.34 1.33
300 1.5 1.0 0.64 0.86 1.48 1.17 1.19 1.17 1.19 1.37 1.39
100 1.5 1.2 0.56 1.03 1.57 1.09 1.10 1.05 1.04 1.20 1.21
200 1.5 1.2 0.55 1.03 1.48 1.04 1.05 0.97 0.96 1.26 1.25
300 1.5 1.2 0.56 1.03 1.41 1.16 1.16 1.09 1.08 1.24 1.25
100 2.0 0.8 0.62 0.90 1.48 1.23 1.20 0.98 0.97 1.25 1.22
200 2.0 0.8 0.61 0.88 1.65 1.15 1.17 1.05 1.04 1.46 1.46
300 2.0 0.8 0.61 0.91 1.54 1.14 1.12 1.14 1.11 1.43 1.39
100 2.0 1.0 0.52 1.13 1.50 1.07 1.09 1.03 1.04 1.21 1.23
200 2.0 1.0 0.51 1.15 1.42 1.12 1.12 1.03 1.03 1.35 1.32
300 2.0 1.0 0.51 1.11 1.54 1.14 1.12 1.08 1.07 1.45 1.41
100 2.0 1.2 0.43 1.37 1.43 1.51 1.62 1.14 1.15 1.82 1.94
200 2.0 1.2 0.42 1.35 1.48 1.20 1.19 1.05 1.06 1.22 1.22
300 2.0 1.2 0.40 1.36 1.52 0.98 1.00 1.02 1.02 1.01 1.03
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Table 7  Linear case (uniform distribution): relative performance of the CM, 10-CV, and D-D methods in comparison to the tuning approach

Noise settings Parameters CM 10-CV D-D

n s bd R
2 ŝ 𝜖 RatioMAE RatioRMSE RatioMAE RatioRMSE RatioMAE RatioRMSE

100 1.0 0.8 0.81 0.19 4.06 1.25 1.23 1.11 1.09 2.72 2.69
200 1.0 0.8 0.82 0.12 6.29 1.21 1.20 1.14 1.14 3.25 3.23
300 1.0 0.8 0.83 0.09 8.25 1.00 1.00 1.13 1.12 3.14 3.09
100 1.0 1.0 0.77 0.22 4.19 1.42 1.43 1.08 1.09 2.42 2.46
200 1.0 1.0 0.76 0.14 7.15 1.20 1.19 1.13 1.13 3.00 2.96
300 1.0 1.0 0.76 0.12 8.15 1.16 1.17 1.16 1.17 3.89 3.89
100 1.0 1.2 0.68 0.25 4.54 1.47 1.47 1.15 1.15 2.56 2.57
200 1.0 1.2 0.67 0.18 6.61 1.14 1.16 1.09 1.09 3.63 3.65
300 1.0 1.2 0.68 0.14 8.37 1.18 1.20 1.19 1.21 3.61 3.58
100 1.5 0.8 0.66 0.28 4.19 1.13 1.13 1.04 1.03 2.34 2.29
200 1.5 0.8 0.68 0.16 7.52 1.07 1.07 1.01 1.02 3.02 3.05
300 1.5 0.8 0.68 0.15 8.06 1.20 1.20 1.16 1.15 3.36 3.32
100 1.5 1.0 0.58 0.33 4.47 1.64 1.63 1.09 1.09 2.45 2.44
200 1.5 1.0 0.57 0.21 7.30 1.21 1.23 1.10 1.10 3.91 3.92
300 1.5 1.0 0.57 0.17 8.69 1.09 1.08 1.10 1.10 4.08 4.16
100 1.5 1.2 0.47 0.35 5.50 1.23 1.20 1.06 1.05 2.08 2.07
200 1.5 1.2 0.50 0.24 7.55 1.17 1.19 1.05 1.05 3.73 3.90
300 1.5 1.2 0.48 0.21 8.53 1.17 1.19 1.13 1.13 4.13 4.14
100 2.0 0.8 0.53 0.30 5.29 1.42 1.40 1.16 1.12 3.06 3.06
200 2.0 0.8 0.54 0.21 7.85 1.18 1.18 1.15 1.16 3.17 3.20
300 2.0 0.8 0.53 0.19 8.45 1.05 1.02 1.06 1.04 4.27 4.13
100 2.0 1.0 0.43 0.34 5.88 1.16 1.20 0.96 0.98 2.46 2.48
200 2.0 1.0 0.44 0.27 7.43 1.05 1.05 1.00 0.99 2.85 2.83
300 2.0 1.0 0.43 0.22 9.25 1.14 1.14 1.17 1.17 4.17 4.18
100 2.0 1.2 0.35 0.46 5.03 1.38 1.40 1.08 1.08 3.22 3.39
200 2.0 1.2 0.35 0.33 7.58 1.12 1.10 1.04 1.02 3.20 3.14
300 2.0 1.2 0.34 0.26 9.20 1.09 1.07 1.10 1.10 4.32 4.20
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Fig. 2  The convergence curves of our proposed method in our case 
studies. The x-axis is the number of iterations
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empirical statistical estimation, the CM method that is based 
on normal distribution with some empirical settings. Obvi-
ously, the mentioned parameter settings are not the most 
appropriate hyper-parameters for SVR in most conditions, 
so, in this paper, we propose optimization of the insensitivity 
parameter based on the working likelihood function devel-
oped by Fu et al. [28], which is a D-D method, to estimate 
appropriate hyper-parameters for finding the most appropri-
ate �-Laplacian distribution to the real noise distribution to 
guarantee generalization in test sets. In addition, the D-D 
support vector regression is standardized by the scale of the 
noise in a more meaningful field. In nonlinear and linear sim-
ulations conducted with different types of noises ( �-Laplacian 
distribution, normal distribution, and uniform distribution), 
our proposed method demonstrated that it can automati-
cally estimate the scale and the insensitivity parameter. As a 
result, our D-D SVR showed significantly improved forecast-
ing accuracy in the test sets. Moreover, our D-D algorithm 

can estimate the approximate likelihood function in five 
real benchmark applications, and furthermore, the proposed 
method had dramatically improved performance in unknown 
sets. Therefore, our proposed D-D SVR is a more intelligent 
and powerful technique for the regression problem.

Here, it must be noted that we have no guarantee that 
the optimization (Formula (5)) has the only one global 
minimization, but we never experienced the problem in 
both numerical simulations and case studies. Additionally, 
tuning regularization parameter C and kernel parameter 
� in an elegant way also are important but challenging. 
Interestingly, in the reference of [3], an insensitive lin-
ear-linear loss function was proposed for support vector 
regression to minimize the economic cost for load sched-
uling. Particularly, different penalties for over-prediction 
and under-prediction are given in the optimization objec-
tive from the real economic loss. Thus, the work Wu et al. 
[3] is different from our current work. However, it is of 
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interest to develop a data-driven method to tune the insen-
sitive parameter in the insensitive linear-linear loss func-
tion instead of the CV method used in [3]. Similarly, in 
machine learning modelling, our D-D method using the 
framework of working likelihood is a viable general strat-
egy for parameter estimations such as the twin SVR [46] 
and the general robust loss function [47]. For example, we 
can incorporate the explored lncosh loss function into SVR 
framework to improve the work [39].
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