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ABSTRACT
Purpose: Recent research on the potential of using eye-tracking to measure 
reading comprehension ability suggests that the relationship between stan-
dard eye-tracking measures and reading comprehension is influenced by 
differences in task demands between comprehension assessments. We com-
pared standard eye-tracking measures and scanpath regularity as predictors 
of reading comprehension scores.
Method: We used a dataset in which 79 participants (mean age: 22 years, 
82% females, 76% monolingual English speakers) were administered three 
widely-used reading comprehension assessments with varying task demands 
while their eye movements were monitored: the York Assessment of Reading 
for Comprehension; (YARC), the Gray Oral Reading Test; (GORT-5), and the 
sentence comprehension subtest of the Wide Range Achievement Test; 
(WRAT-4).
Results: Results showed that scanpath regularity measures, similarly to 
standard eye-tracking measures, were influenced by differences in task 
demands between the three tests. Nevertheless, both types of eye-tracking 
measures made unique contributions as predictors of comprehension and 
the best set of predictors included both standard eye-tracking measures and 
at least one scanpath measure across tests.
Conclusion: The results provide evidence that scanpaths capture differences 
in eye-movement patterns missed by standard eye-tracking measures. 
Overall, the results highlight the effect of task demands on eye-movement 
behavior and suggest that reading goals and task demands need to be 
considered when interpreting eye-tracking data.

In the last decades, researchers have investigated eye movements as a potential measure of language 
and reading ability. Several studies have suggested that features of eye-movement behavior during 
reading such as fixation durations, saccade length, and regression rates could be used to 
estimate second language proficiency (Berzak et al., 2018; Reich et al., 2022), classify readers at risk 
of dyslexia (Benfatto et al., 2016; Rello & Ballesteros, 2015), as well as estimate performance on reading 
comprehension assessments (Copeland & Gedeon, 2013; Copeland et al., 2014, 2016; D’Mello et al.,  
2020; Inhoff et al., 2018; Martínez-Gómez & Aizawa, 2014; Mézière et al., 2023; Reich et al., 2022; 
Southwell et al., 2020).
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Studies on the relationship between eye movements and reading comprehension accuracy have 
shown that eye-movement behavior can successfully predict performance on commonly-used reading 
comprehension tasks, including cloze tasks (Copeland et al., 2014; Mézière et al., 2023), multiple- 
choice comprehension questions (D’Mello et al., 2020; Inhoff et al., 2018; Southwell et al., 2020), and 
open-ended questions (Mézière et al., 2023). However, there are inconsistent findings regarding the 
types of predictive eye-movement behaviors. For example, studies have found that better reading 
comprehension is associated with fewer regressions (Kim et al., 2019; Parshina et al., 2021; Southwell 
et al., 2020), more regressions (Schotter, Tran, et al., 2014; Wonnacott et al., 2016), or not related to 
regressions at all (Christianson et al., 2017).

In a recent study, Mézière et al. (2023) investigated the relationship between types of eye-movement 
behavior and reading comprehension ability using three commercial standardized reading compre-
hension assessments: the York Assessment of Reading for Comprehension (YARC, Australian edition; 
Snowling et al., 2009), the Gray Oral Reading Test (GORT-5; Wiederholt & Bryant, 2012), and the 
sentence comprehension subtest of the Wide Range Achievement Test (WRAT-4; Wilkinson & 
Robertson, 2006). These tests were chosen to represent the wide range of task demands employed 
by reading comprehension assessments. Specifically, the tests differed in the comprehension task 
[open-ended questions (YARC and GORT) versus cloze (WRAT)], the length of the text being read 
[passages (YARC and GORT) versus sentences (WRAT)], the reading modality [silent (YARC and 
WRAT) versus aloud (GORT)], and whether participants had access to the text during the compre-
hension task [access (YARC and WRAT) versus no access (GORT)]. The results showed that standard 
eye-tracking measures such as fixation durations (e.g., gaze duration) or regression rates could be used 
to predict performance on all three tests. However, the relationship between these eye-movement 
measures and reading comprehension scores was moderated by the varying task demands of the three 
tests to such an extent that no measure could be identified as a useful predictor of comprehension 
across the three tests. Additionally, the direction of the relationship between eye-movement measures 
and comprehension scores sometimes differed between tests. For example, longer average fixation 
durations were associated with higher comprehension scores in the YARC but with lower comprehen-
sion scores on the GORT. Critically, supposedly “efficient” eye-movement behavior (i.e., shorter 
fixations, fewer regressions) was not necessarily associated with better comprehension across com-
prehension measures.

In sum, although previous research suggests that features of eye-movement behavior during 
reading can be used to successfully predict performance on individual reading comprehension tests, 
there is no universal set of eye-movement measures that predict performance on comprehension tests. 
This may be partially because readers adapt their reading strategies and cognitive processes to the 
reading goals and specific task demands of various comprehension measures (Bax & Chan, 2019; 
Kaakinen & Hyönä, 2010; O’Reilly et al., 2012; Radach et al., 2008; Schotter, Bicknell, et al., 2014). The 
eye-movement measures used in previous studies (e.g., fixation durations, saccade length, regression 
rate) typically focused on local or word-level measures commonly used in research on eye-movement 
behavior during reading (Clifton et al., 2007). However, there are other methods of analyzing eye- 
movement data that may be less susceptible to the influence of task demands, and therefore may 
identify more reliable predictors of reading comprehension ability across comprehension assessments. 
One candidate is the scanpath measure of eye-movement behavior during reading.

Scanpaths as a measure of eye-movement behavior

A scanpath is a sequence of eye fixations represented by fixation location (i.e., x- and y-coordi-
nates) and fixation duration. Standard eye-tracking measures used in reading research focus on 
specific areas of interest, typically single words or phrases. In contrast, scanpaths capture eye- 
movement behavior that extends beyond local word-based measures to the sentence or discourse 
level and provide a more holistic representation of the overall pattern of gaze behavior during 
reading. For example, when regressive eye movements are of interest (e.g., for processing 
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ambiguous sentences), scanpaths capture not only whether a regression occurred, but also the 
target of a regression (e.g., start of the sentence versus area of interest), and the type of regression 
(e.g., short regressions, multiple re-readings). These detailed representations of global eye- 
movement behavior provide a useful tool to investigate qualitative differences in eye-movement 
patterns both within and between groups of readers.

In one of the first studies demonstrating the usefulness of scanpaths, von der Malsburg and 
Vasishth (2011) examined strategies used by readers when they encounter ambiguous sentences, 
which had previously been studied using word-based eye-movement measures such as fixation 
durations or regression rates (e.g., Frazier & Rayner, 1982; Meseguer et al., 2002). The results of von 
der Malsburg and Vasishth (2011) revealed three reading patterns: Pattern A showed target regres-
sions to the start of the sentence followed by subsequent fixations across the whole sentence; Pattern 
B showed regressions to the start of the sentence followed by no fixations (i.e., end of trial); Pattern 
C showed regression to the source of the ambiguity. Critically, the subsequent fixations would not 
have been apparent if only word-based measures had been used, demonstrating that scanpaths can 
capture effects that can be missed by more traditional eye-movement measures (see also von der 
Malsburg & Vasishth, 2013; von der Malsburg et al., 2015).

This method can be used to investigate the degree of similarity between scanpaths, and how 
typical a reader’s scanpath is in comparison to others, with the assumption that more distinctive 
scanpaths often reflect differences in processing, such as reading difficulties. Scanpath regularity is 
defined by the reading pattern that occurs most often in a dataset. This can be used to investigate 
individual and group differences, and the relationship between reading strategies and reading 
skills. For example, Parshina et al. (2021) used scanpath regularity to investigate the reading 
processes of mono-lingual adults, children, heritage speakers (bilingual speakers who acquired 
their minority language at home), and second-language learners of Russian. They identified three 
patterns of scanpath regularity: “fluent” scanpaths characterized by regular left-to-right eye move-
ments, short fixations, few regressions, and high proportions of skipping; “intermediate” scanpaths 
characterized by longer fixations, short regressions to individual words, and less skipping; and 
“beginner” scanpaths characterized by the longest fixations, frequent re-readings of the whole 
sentence, and little to no skipping. As expected, the four groups of readers differed in how much 
they used these three strategies. While monolingual adults typically exhibited the “fluent” scanpath 
strategy, the children, heritage speakers, and second-language learners more often exhibited the 
“intermediate” and “beginner” strategies. Interestingly, there was a relationship between reading 
strategies and reading and language skills. For heritage speakers, higher language proficiency 
scores were associated with more use of the “fluent” scanpaths, and for second-language learners 
higher reading comprehension scores were associated with more use of the “fluent” scanpaths. 
These findings suggest that scanpath regularity may reflect reading comprehension, and hence may 
prove an accurate predictor of reading comprehension ability.

A potential limitation to predictive power of scanpath regularity is the aforementioned fact that 
readers adapt their reading strategies to differences in task demands between reading tasks (Bax & 
Chan, 2019; Kaakinen & Hyönä, 2010; O’Reilly et al., 2012; Radach et al., 2008; Schotter, Bicknell, 
et al., 2014). Like all eye-movement measures, this will limit the degree to which scanpath regularity 
identified in previous studies (e.g., the “fluent” strategy in Parshina et al., 2021) can generalize across 
reading tasks and studies. However, unlike other eye-movement measures, scanpath regularity 
assesses eye movements relative to the most common reading strategy employed to meet task 
demands – regardless of what those demands are. For example, for tests in which participants have 
to fill in missing words, a common strategy might be to spend time around the blanks, but for a test 
that requires readers to answer comprehension questions linear reading strategies may be commonly 
used. In both cases, any deviation from this most common strategy would result in irregular scanpaths, 
regardless of the fact that the regular scanpaths represent very different strategies. Thus, scanpath 
regularity may prove less susceptible to task-demand effects that influenced word-based measures in 
previous studies (e.g., Mézière et al., 2023), and hence may provide a more reliable predictor of reading 
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comprehension per se, both as individual predictors and in combination with other eye-movement 
measures.

The present study

The present study aims to investigate the relationship between eye-movement behavior and 
reading comprehension ability (Copeland & Gedeon, 2013; Copeland et al., 2014, 2016; D’Mello 
et al., 2020; Inhoff et al., 2018; Martínez-Gómez & Aizawa, 2014; Mézière et al., 2023; Southwell 
et al., 2020) using two types of eye-tracking measures – scanpath regularity and word-based 
measures. Specifically, we investigate the relative contributions of these two types of measures as 
predictors of performance on reading comprehension tasks with varying task demands. We 
hypothesize that scanpath regularity measures will contribute unique variance to the prediction 
of reading comprehension ability over and above word-based eye-movement measures. 
Additionally, while it is unlikely that measures derived from scanpaths will be entirely insensitive 
to differences in task demands, we hypothesize that they may be more stable than the word-based 
eye-tracking measures used in previous research.

Method

The data used in this study was initially collected for a study reported by Mézière et al. (2023), which 
analyzed local and global eye-movements measures, but not scanpath regularity. For convenience we 
repeat the key points below.

Participants

79 undergraduate students with no history of reading or language difficulties participated in the study 
(65 females, mean age 22 years). Of those, 60 were monolingual native speakers of English, 8 were 
bilinguals with English as their primary language, and 11 were bilinguals whose primary language was 
not English. This sample ensured a wide range of reading comprehension abilities of skilled readers to 
avoid the artificial restriction of the reading comprehension continuum which can affect the validity of 
statistical outcomes. All participants were living and studying in Australia at the time of testing and 
participated for course credit. All participants gave their informed consent prior to participating. This 
study was approved by the Macquarie University Ethics Committee and conforms with the standard of 
the Australian National Statement on Ethical Conduct in Human Research.

Materials

Participants completed three standardized reading comprehension tests while their eye-movements 
were tracked: (1) the York Assessment of Reading for Comprehension – Passage Reading Secondary, 
Australian Edition (YARC; Snowling et al., 2009); (2) the Gray Oral Reading Test − 5th edition 
(GORT-5; Wiederholt & Bryant, 2012); and (3) the word reading and sentence comprehension 
subtests of the Wide Range Achievement Test − 4th edition (WRAT-4; Wilkinson & Robertson,  
2006). Although these tests each have two sets of forms for test-retest purposes, only one form was 
used in this experiment (YARC form A, GORT-5 form A, and WRAT-4 Green form).

In the YARC, participants read two long passages of text silently, each text followed by 13 open- 
ended comprehension questions and were allowed to return to the text during reading, and to answer 
the questions. The final comprehension question was always a summary question, for which they were 
not allowed to return to the text. In the test manual, the authors indicate that the summary scores 
should be used with caution, hence we chose not to include the summary score in our analysis, and 
only the score on the comprehension questions was used as a comprehension measure for the YARC.
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In the GORT, participants were given 11 passages of text to read aloud, each followed by 5 open- 
ended comprehension questions and were not allowed to return to the text.

In the sentence comprehension subtest of the WRAT, participants were given 31 items of 1–2 
sentences each with one missing word, which the participants are asked to provide. The items were 
scored for accuracy based on the correct answers listed in the test manual, with the number of 
alternative correct answers ranging from only one correct option to “anything denoting concept X.”

All items were presented on a computer screen for the purpose of eye-tracking. The tests were all 
administered and scored following the procedures outlined in the test manuals. One exception was 
made for the baseline and discontinue rules which were only applied during scoring. This was done so 
that all participants would read the same items across all tests, while still keeping scoring procedures as 
close to the manual instructions as possible. The raw scores from each test were transformed into 
standard scores following the procedures in the test manuals. The YARC (Australian edition) has 
norms up to 18 years 11 months, the GORT-5 up to 23 years 11 months, and the WRAT-4 up to 94  
years. For all tests, participants were scored with norms as close to their actual age as possible. 
Standard scores had a mean of 100 and standard deviation of 15.

Apparatus

Eye movements were recorded with an EyeLink 1000+ eye tracker (SR Research, Toronto, Ontario, 
Canada). The experiment took place in a sound-proof lab, and participants were seated in approxi-
mately 95 cm from the display screen, such that each letter occupied approximately 0.24° of visual 
angle on the screen. A headrest was provided to minimize head movements.

The texts were presented in Courier New font with a size of 24 pt in black color on a gray 
background (RGB: 204, 204, 204) on a BenQ Zowie XL2540 screen with a screen resolution of 
1,920 × 1,080 pixels and a refresh rate of 240 Hz. Long test items (i.e., passages from the YARC and 
GORT) were spread over the whole screen across multiple pages (4 pages per item for the YARC, 1–3 
pages for the GORT), and single-sentence items (i.e., WRAT items) were presented in the middle of 
the screen. In the YARC and GORT, participants were instructed to press a button to move forward in 
the text or when they had finished reading. They were then asked the comprehension questions. In the 
WRAT, the experimenter moved forward to the next item as soon as the participant gave their answer. 
The three tests were administered in random order.

Procedure

At the start of each test session, the eye tracker was calibrated with a 9-point calibration to ensure 
accuracy of the recorded eye movements. The calibration was repeated at the start of test items as 
necessary throughout the testing sessions (e.g., if calibration became poor, or participants moved), and 
at the start of both YARC items. The maximum tolerance for the calibration error for all points was 
0.45°, with only one participant exceeding this cutoff with a maximum of 0.48°. All test items started 
with a drift detection point, placed at the very start of the text/sentence. The eye tracker collected 
fixation positions and durations. This information was then used to calculate various eye-movement 
measures for data analysis.

Data pre-processing

Test items that were not read in their entirety (e.g., if participants skipped a page) could not be scored 
accurately and were treated as missing data for both test comprehension scores and eye-movement 
measures. These included 7 GORT items and 2 WRAT items.

The eye-tracking data was first pre-processed in Data Viewer (SR Research, Toronto, Ontario, 
Canada). Participants and items with poor eye-tracking data were excluded based on visual inspection 
of the data (e.g., fixations were not aligned with the text), resulting in the exclusion of 2 participants, 
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and a total loss of 7% of trials. Additionally, all fixations shorter than 80 ms and longer than 800 ms 
were excluded. Further pre-processing of the eye movement data differed slightly between the word- 
based eye-tracking measures as described by Mézière et al. (2023) and the scanpath measures used in 
this article. For the dataset including word-based eye-tracking measures, all words around punctua-
tion marks were excluded from analysis to remove effects of clause/sentence wrap-up effects, and all 
forward saccades longer than the perceptual span (20 characters; Rayner, 2009) were excluded from 
analysis (3% of all forward saccades). This pre-processing was identical to that described in Mézière 
et al. (2023). For the scanpath analysis, initial fixations on a page made beyond the third word of a text 
(e.g., if initial fixations were made at the end/middle of the page) were excluded from analysis for the 
multi-paged GORT and YARC items, as these fixations were likely the result of flipping pages rather 
than actual fixations during reading. Unlike the word-based measures, fixations on words around 
punctuation were not removed in the scanpath analysis to calculate scanpath regularity measures. 
Finally, re-readings of the YARC while answering questions were excluded from analysis, and only one 
set of eye movements per page was included in the analysis when calculating scanpath measures.

Data analysis

All analyses were conducted in R (R Core Team, 2021). In the first step of the data analysis, we 
calculated three measures of scanpath regularity as potential predictors of comprehension, namely 
scanpath dissimilarity, scanpath density, and cluster membership. The measures were calculated in six 
steps, which are described in details below: 1) create scanpaths; 2) calculate dissimilarities between 
scanpaths; 3) create multi-dimensional maps of scanpath space; 4) calculate scanpath density from 
maps; 5) clustering of scanpaths; and 6) calculate cluster membership. We then used linear models to 
predict reading comprehension scores using the three scanpath measures as well as the eight eye- 
tracking measures used by Mézière et al. (2023), which were average fixation duration, forward 
saccade length (in characters), skipping rate, first-fixation duration, gaze duration, regression rate, go- 
past time, and total reading time. To investigate the usefulness of our predictors, we ran multiple- 
regression models for every possible combination of our predictors, and used cross-validation to 
compare models and select the best models. To investigate the stability of our predictors, we examined 
and compared the output of single-predictor models.

Calculating scanpath regularity

We calculated three measures of scanpath regularity: dissimilarity, density, and cluster membership. 
The motivation behind using multiple measures is that there is no standard way of capturing scanpath 
regularity, hence we were interested in calculating complementary measures of scanpath regularity to 
determine if one measure was more useful as a predictor of reading comprehension across tasks. These 
measures were calculated for each test, yielding one scanpath per participant per page of text, and then 
aggregated per participant per test. Scanpath dissimilarity is a measure of how dissimilar a scanpath is 
to the central scanpath in the data (i.e., for a given item in test). Scanpath dissimilarity is perhaps the 
most obvious way to measure whether a scanpath is irregular, as it is a measure of how dissimilar 
a scanpath is to the central scanpath in the data (i.e., the most commonly-used reading strategy). 
However, scanpath dissimilarity assumes that there is a single most regular scanpath, which may not 
be the case, particularly in cases where more than one reading strategy is used by readers. Therefore, 
we also calculated scanpath density, which does not make this assumption and instead measures how 
typical a scanpath is given the group of scanpaths (i.e., reading strategy) that is belongs to i.e., it is 
compared to the central scanpath for that strategy as opposed to the central scanpath in the data across 
reading strategies. Although the two measures capture a similar concept, i.e., how dissimilar 
a scanpath is from the central scanpath in the data, they are not identical such that scanpaths with 
high density are not necessarily also highly similar to the central scanpath, such as when two reading 
strategies are used by readers.
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The third measure – cluster membership – is a less direct measure of scanpath regularity. While 
dissimilarity and density assume a graded concept of regularity, the cluster measure assumes that 
regular and irregular scanpaths may be more qualitatively different, and therefore can be “clustered” 
into distinct reading strategies. We first ran a cluster analysis to identify scanpaths that either closely 
resembled the most commonly used reading strategy (i.e., the more regular scanpaths), and scanpaths 
that exhibited more unusual reading strategy (i.e., the more irregular scanpaths). Cluster membership 
was then defined as the proportion of a participant’s scanpaths for each test that exhibited unusual 
reading strategies, as a measure of how irregular a participant’s scanpaths were on average.

In the first step of this part of the analysis, we created plots of the scanpath per participant per test 
page to visualize how participants read the test items, as illustrated in Figure 1. The plots were created 
using the word on which each fixation was made and its time during reading on a given page. This 
inspection of the scanpaths showed that participants differed in how long they spent reading the text, 
and how often they regressed to and re-read earlier parts of the text. These examples also illustrate the 
fact that regular scanpaths are similar across items and tests whereas scanpaths can be irregular in 
multiple ways (e.g., rereading the whole sentence or text versus a zig-zag pattern with variable fixation 
times), demonstrating that scanpath regularity abstracts away from the specific ways in which 
a scanpath is irregular.

Secondly, we calculated scanpath dissimilarity. We identified the most “central” scanpath as the 
scanpath with the smallest average dissimilarity from every other scanpath for each page. We then 
calculated the average dissimilarity of each participant’s scanpath compared to that of the central 
scanpath across pages with the scasim function (“scanpath” package; von der Malsburg, 2018). This 
dissimilarity measure was calculated as the difference between two scanpaths based on the spatial (x- 
and y-coordinates on the screen) and temporal (duration) differences in their fixation sequence. Put 
simply, it is an estimate of how long participants spent looking at different parts of the text. A detailed 
description of the dissimilarity measure and the scasim function can be found in von der Malsburg and 

Figure 1. Example scanpaths for sentence and passage reading. Figure 1 shows examples of highly regular and less regular scanpaths 
when reading single sentences (a) and passages of text (b). The Figure illustrates the overall fixation patterns of readers, and that 
scanpaths can be irregular in different ways, such as multiple re-readings of the sentences (a) or zig-zagging patterns in the reading 
of passages, with varying fixation durations (b).
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Vasishth (2011). For later comparison between pages and aggregating across items, the dissimilarity 
measure was z-transformed.

Thirdly, we then used isoMDS (“MASS” package; Venables & Ripley, 2002) to create a low- 
dimensional representation of scanpath variance to calculate scanpath density and identify 
reading strategies. This method creates n-dimensional maps of scanpath space, whereby each 
scanpath is represented as one datapoint (as in a scatterplot) and the Euclidean distance 
between points represents the dissimilarity between scanpaths, such that more similar scan-
paths are closer to each other on the map (see von der Malsburg et al., 2015; von der 
Malsburg & Vasishth, 2011, 2013 for more detailed explanations of this procedure). 
Examples of such maps are shown in Figure 2. For each page, we set the number of 
dimensions as 5, such that the average amount of unexplained variance was 14.5% for the 
WRAT (sd = 3.2), 18.7% for the GORT (sd = 0.8) and 20.5% for the YARC (sd = 2.23). The 
number of dimensions has an impact on the goodness of fit of the model, but also increases 
the risk of overfitting, hence the number was set to minimize the amount of unexplained 
variance across tests while also minimizing the risk of overfitting. Note that for visualization 
purposes, maps were created using the umap function from the “uwot” package in R (Melville,  
2020), but these were not used for the analysis.

Next, Gaussian mixture models were used to estimate local scanpath densities (“mclust” package; 
Scrucca et al., 2016) from the maps of scanpath space. The density of each scanpath is a measure of 
how likely a scanpath is given the distribution of scanpaths that it belongs to. In other words, it is 
another way of measuring how regular a scanpath is such that scanpaths with higher density are more 
“regular” while scanpaths with low density are more irregular. As with the dissimilarity measure, 
density was z-transformed for the purpose of comparison and aggregating across pages. To run the 
models, the number of Gaussians (i.e., reading strategies) was set to two for all pages. This was set to 
ensure consistency across test pages and based on prior inspection of the data which showed that two 
Gaussians was the most common number of Gaussian needed across tests and pages.

Lastly, we used the results from the Gaussian modeling to calculate the proportion of 
scanpaths belonging to each of the two clusters (i.e., reading strategies) for each participant. 
Cluster 2 was defined as the cluster with the most amount of variance, meaning that cluster 2 
always contained the most distinctive scanpaths, while cluster 1 contained the more regular 
scanpaths. We calculated “cluster membership” as the proportion of a participant’s scanpaths 

Figure 2. Examples of scanpath variance maps. Figure 2 shows examples of two types of umaps illustrating scanpath 
dissimilarity from the multi-dimensional maps of scanpath space, which showed either clear cluster separation (a) or 
a cloud-like distribution of scanpaths (b). Only the first two components of the maps, which explain the most amount of 
variance, are shown in the figure. V1 = first component; V2 = second component.
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that belonged to cluster 2 within each test (i.e., the proportion of scanpaths that exhibited 
a more unusual reading strategy). This measure was then used as a predictor of 
comprehension.

Predicting reading comprehension

The approach used in this part of the analysis was virtually identical to that used by Mézière et al. 
(2023). We used multiple-regression models and model selection to investigate the relationship 
between eye-tracking measures and comprehension scores and identify the best set of predictors for 
each comprehension test. Similarly to Mézière et al. (2023), we first ran multiple-regression models for 
every possible combination of our predictors, and then used cross-validation to compare models and 
select the best models.

First, all measures were aggregated per participant per test. We then started by fitting 
Bayesian linear regression models with our three scanpath measures and eight eye-tracking 
measures as predictors of reading comprehension. As the focus of this paper is on the 
comparison between scanpaths and word-based eye-tracking measure, we did not include 
reading speed in the analysis, but models including reading speed as a predictor are included 
in Supplementary Materials. The models were run using the “stanarm” package in R, and we 
made inferences about the predictors’ effect based on the 95% credible interval. We ran one 
linear model for every possible combination of our eleven predictors (2,048 models in total), 
once for each test individually and once with data averaged across the three tests, such that 
the number of predictors in our models ranged from none (i.e., the null model with just an 
intercept) to eleven (i.e., the full model). All predictors were scaled and centered (z-trans-
formed) prior to this part of the analysis so that the parameter estimates were comparable 
across predictors.

The models were then evaluated and compared within each set (one per test and one with 
averaged data) using leave-one-out cross-validation (LOO; Gelman et al., 2014; Vehtari et al.,  
2017). LOO estimates a model’s ability to predict new data by running the model as many times as 
there are data points, leaving out a different data point each time, and then estimating how well 
the model predicts the left-out data point. Through this process, the estimated log predictive 
density (elpd) was calculated for each model, which can be used to compare models. It should 
be noted that the LOO-elpd is only a measure of how good a model is at predicting new data, 
hence we also calculated the Bayesian R2 for each model to have a measure of how much variance 
was explained in the existing data (Gelman et al., 2019). To investigate the performance of 
scanpath measures as predictors of comprehension, we then examined the best ten models 
according to the elpd-LOO, and the full model. We were also interested in the stability of the 
relationship between individual eye-tracking measures and comprehension scores across tests, and 
the stability of the scanpath regularity measures in particular. As previous research shows that the 
relationship between word-based measures and comprehension is mediated by task demands, we 
investigated the stability of the relationship between individual eye-tracking measures and com-
prehension scores by looking at the output of single-regression models (i.e., models with only one 
predictor) and comparing the strength of the relationship (i.e., β̂), and the amount of variance 
explained by individual predictors across tests.

Table 1. Summary statistics of comprehension scores.

Test Mean (SD) Range

YARC 90.25 (13.5) 70–127
GORT 90.35 (9.43) 70–110
WRAT 105.78 (12.07) 82–131

SCIENTIFIC STUDIES OF READING 9



Results

Comprehension scores

Descriptive statistics for participants’ performance on the three comprehension tasks are shown in 
Table 1. Comprehension scores ranged from below average to above average on all tests, such that the 
full range of reading comprehension abilities were represented in the sample.

Reading strategies: scanpaths

Figure 3 provides examples of scanpaths across the three tests for three levels of comprehen-
sion (above average (A), average (B), and below average (C)) to illustrate the variations in 
reading times and re-reading behavior across tests and participants. In addition, Figure 4 

Figure 3. Examples of scanpaths across tests and comprehension levels. Figure 3 shows example scanpaths of three participants for 
each test, including above average (A), average (B), and below average (C) comprehenders.

Figure 4. Examples of typical and atypical scanpaths. Figure 4 shows the most typical (a) and most atypical (b) scanpaths for each test 
and for clusters 1 (red) and 2 (blue).

10 D. C. MÉZIÈRE ET AL.



illustrates typical (A) and atypical (B) scanpaths for the three tests, suggesting that atypical 
scanpaths are generally longer, with more extensive re-readings of the text. Importantly, while 
such visualizations provide insight in reading behavior across tests and participants, we cannot 
be certain which features of the scanpaths are critical in the mapping and the clustering part 
of our analysis. Therefore, inferences on the influence of the features that defined the clusters 
across tests and items must be limited.

Figure 5. Stability of predictors across measures. Figure 5 shows the model estimates from single regression models and illustrate the 
stability of the relationship between individual predictors and comprehension scores across tests. The dotted line equals 0, indicating 
no relationship between the predictor and comprehension score.

Table 2. Estimates from single-predictor regressions.

YARC GORT WRAT Average

Predictor β̂ R2 95% CrI β̂ R2 95% CrI β̂ R2 95% CrI β̂ R2 95% CrI

Density 3.6* 0.07 [0.6, 6.6] 1.8 0.04 [−0.5, 4.1] 4.1* 0.12 [1.5, 6.8] 3.8* 0.15 [1.7, 5.9]
Dissimilarity −2.2 0.03 [−5.3, 1.0] −2.8* 0.02 [−4.9, −0.7] −5.8* 0.23 [−8.2, −3.4] −3.1* 0.10 [−5.3, −1.0]
Cluster Membership −2.4 0.03 [−5.5, 0.8] −2.5* 0.07 [−4.7, −0.4] −5.6* 0.21 [−8.2, −3.2] −3.5* 0.13 [−1.5, −6.8]
Average Fixation 

Duration
−2.3 0.03 [−5.3, 0.8] −1.0 0.01 [−3.2, 1.2] −3.3* 0.07 [−5.9, −0.7] −2.1 0.04 [−4.3, 0.1]

Forward Saccade 
Length

2.1 0.02 [−1.0, 5.1] 3.9* 0.17 [1.8, 6.0] 1.2 0.07 [−1.5, 3.9] 2.4* 0.06 [0.3, 4.5]

Skipping −0.1 0.01 [−3.4, 3.1] 0.8 0.01 [−1.4, 3.1] 1.9 0.02 [−0.9, 4.8] 0.7 0.01 [−1.6, 2.9]
First-Fixation 

Duration
−2.5 0.03 [−5.4, 0.5] −0.7 0.01 [−2.9, 1.6] −3.1* 0.07 [−5.7, −0.5] −2.1 0.04 [−4.3, 0.1]

Gaze Duration −3.4* 0.06 [−6.4, −0.5] −3.3* 0.12 [−5.4, 1.2] −3.4* 0.08 [−6.1, −0.7] −3.2* 0.11 [−5.3, −1.2]
Regressions −0.5 0.01 [−3.6, 2.5] 1.1 0.01 [−1.2, 3.4] −1.1 0.01 [−3.7, 1.7] −0.3 0.01 [−2.6, 2.0]
Go-Past Time −1.1 0.01 [−4.1, 2.0] −2.8* 0.09 [−4.9, −0.7] −5.1* 0.18 [−7.6, −2.5] −3.3* 0.11 [−5.1, −1.1]
Total Reading Time −0.8 0.01 [−4.0, 2.4] −3.4* 0.13 [−5.4, −1.3] −5.9* 0.24 [−8.3, −3.5] −4.0* 0.17 [−6.0, −2.0]

This table shows the model estimate (), r-squared (R2), and 95% credible interval (95% CrI) of models with single predictors. * = 95% 
interval does not include 0. The best predictor for each test is indicated in bold.
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Models with single predictors

The output of the models with single predictors are shown in Table 2, including both model 
estimates (β̂, i.e., the expected difference in comprehension score for a one standard deviation 
increase in the predictor) and credible interval (i.e., the range within which the true value lies with 
95% certainty, given model assumptions). The stability of the relationship between comprehension 
scores and individual predictors is illustrated in Figure 3. As noted in earlier sections, we did not 
include reading speed in this analysis as it is not an eye-tracking measure per se. For a more direct 
comparison with findings from Mézière et al. (2023), the output of the top models when the 
analysis includes reading speed as a predictor can be found in Supplementary Materials. The best 
single predictor for the YARC scores was scanpath density, with an estimate of β̂ = 3.6, 95% CrI 
[0.6, 6.6], and R2 = 0.07. For the GORT, the best single predictor was saccade length, with an 
estimate of β̂ = 3.9, 95% CrI [1.8, 6.0], and R2 = 0.17. For the WRAT, the best single predictor was 
total reading time, with an estimate of β̂ = −5.9, 95% CrI [−8.3, −3.5], and R2 = 0.24. For the 
averaged comprehension score the best single predictor was total reading time, with an estimate of 
β̂ = −4.0, 95% CrI [−6.0, −2.0], and R2 = 0.17.

Best models with multiple predictors

Tables 3–6 show the ten best models, and the respective full models, for each test individually and the 
average of the three tests. Within tests, the results were stable such that the predictors remained highly 
similar across the top models. The “best” predictors were identified as predictors that appeared in the 
majority of the top ten models and were significantly associated with comprehension.

For the YARC, the best predictors of comprehension were gaze duration (average β̂ = −14.8), 
average fixation duration (average β̂ = 8.8), total reading time (average β̂ = 7.4), and scanpath density 
(average β̂ = 3.3).1 The full model explained 31% of the variance, and the best models explained on 
average 23% of the variance in the data. For this test, models that included both a measure of scanpath 
regularity and word-based measures typically performed better than models that included only 
measures of scanpath regularity or only word-based measures.

For the GORT, the best predictors of comprehension were first-fixation duration (average β̂ =  
13.5), average fixation duration (average β̂ = −10.7), total reading time (β̂ = −9.1), scanpath dissim-
ilarity (average β̂ = 5.8), and saccade length (average β̂ = 3.9). The full model explained 41% of the 
variance in the data, and the best models explained 38% of the variance on average. As was the case 
with the YARC, models that included both a measure of scanpath regularity and word-based measures 
performed better than models that only included measures of scanpath regularity or word-based 
measures.

For the WRAT, the pattern of results was less clear-cut. The best predictors were total reading time 
(β̂ = 6.9), go-past time (β̂ = 4.5) and regression rate (β̂ = 3.6). The importance of total reading time as 
a predictor is further supported by the fact that the model with only total reading time as a predictor 
was amongst the best models (Model 5). It is notable however that no predictor seemed to approach 
significance, not even at the 90% credible interval, in the full model, which is probably also 
a consequence of the fact that some predictors are highly correlated. Additionally, all models which 
did not include total reading times as a predictor included scanpath dissimilarity instead (models 1, 4, 
and 7), however no other scanpath measure appeared in any of the top ten models. The full model 
explained 36% of the variance in the data, and the best models explained 29% of the variance on 
average. Unlike the YARC and the GORT, the best models typically only included word-based 
measures, such that measures of scanpath regularity did not appear as useful predictors of perfor-
mance on this test.

In the models predicting the average comprehension score, the best predictors of comprehension 
were total reading time (β̂ = 13.4), scanpath dissimilarity (β̂ = 12.6), saccade length (β̂ = 3.4), and 
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scanpath density (β̂ = 3.2). The full model explained 40% of the variance in the data, and the top 
models explained 35% of the variance on average. As with the YARC and the GORT, models that 
included both measures of scanpath regularity and word-based measures performed better than 
models that only included scanpath regularity or word-based measures.

Discussion

We tested two hypotheses about scanpath regularity measures: first that these measures are unique 
predictors of reading comprehension beyond word-based eye-movement measures, and second that 
they produce more reliable outcomes than word-based eye-movement measures across comprehen-
sion tasks. Using the same analyses as Mézière et al. (2023), we investigated the relative contribution 
and stability of eight eye-tracking measures as predictors of comprehension in addition to three 
measures derived from scanpaths: dissimilarity, density, and cluster membership. We investigated the 
relative contributions of these eleven variables by comparing linear regression models, and investi-
gated their relative importance and stability as predictors of comprehension ability both in models 
with multiple predictors, and as single predictors.

Scanpath regularity as a predictor of reading comprehension ability

Our first hypothesis was that measures of scanpath regularity would be useful predictors of reading 
comprehension and explain variance over and above word-based eye-movement measures. The results 
are consistent with this hypothesis and show that both scanpath regularity and word-based eye- 
movement measures contribute uniquely as predictors of reading comprehension. Indeed, with the 
exception of the WRAT, patterns of results for the YARC, GORT, and the average dataset include at 
least one measure of scanpath regularity and word-based measures among the best predictors of 
comprehension. This is in line with our prediction that measures of scanpath regularity capture 
unique features of eye-movement behavior over and above what is captured by word-based eye- 
tracking measures alone. Hence, while scanpath regularity and word-based eye-tracking measures may 
capture some of the same information, measures of scanpath regularity do capture features of eye- 
movement behavior and the reading process that are not captured by word-based eye-tracking 
measures, and vice versa. Measures of scanpath regularity were also better predictors than skipping 
and regression rates, which, although traditionally used to capture reading comprehension, did not 
appear useful as predictors of comprehension. The usefulness of these two measures may have been 
affected by the fact that, in text reading, skipping and regression rates are not always calculated as 
accurately as in sentence reading however. Nevertheless, this finding is in line with previous studies 
suggesting that the scanpath measure used in this study is a powerful and useful method of analyzing 
eye-movement data and can provide information that is not apparent when only word-based measures 
are used (von der Malsburg et al., 2012). Specifically, scanpaths capture the overall gaze trajectory, and 
the order in which people read parts of the text, which cannot be captured by word-based measures 
alone. While scanpaths cannot be used to pinpoint exact features of the reading process, they likely 
capture overall reading strategies (e.g., linear reading vs. extensive re-readings) better than word-based 
measures. On the other hand, word-based measures are more informative about the tactics that make 
up these strategies (e.g., lexical processing times).

Importantly, our results also highlight the fact that the two types of measures can be used in 
combination to get a fuller and more accurate picture of reading behavior. Indeed, the results suggest 
that neither type of measure clearly surpasses the other as a predictor of comprehension. On the 
contrary, the results suggest that including both types of measures as predictors of comprehension 
typically improves predictions over models that only include scanpath regularity or word-based 
measures, with the full model including both types of measures explaining 31–41% of the variance 
in our data across tests. This was also illustrated by the fact that scanpath regularity did not 
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systematically surpass word-based measures as single predictors of comprehension, and vice versa. 
Indeed, while scanpath density was the best single predictor of performance on the YARC and 
explained the most amount of variance on average (R2 = 0.18), word-based measures appeared as 
the best single predictors of comprehension in the other datasets. Hence, while the scanpath regularity 
measures may capture a fuller picture of eye-movement behavior than any single word-based measure 
and tended to explain the most variance on average across measures (R2 = 0.10–0.18), they do not 
systematically outperform word-based measures as single predictors of performance across compre-
hension measures but instead usefully complement them.

Regular scanpaths as indicative of good reading comprehension

The relationship between scanpath regularity measures and comprehension is mostly consistent with 
previous studies suggesting that more regular scanpaths tend to be associated with better comprehen-
sion and reading skills (Parshina et al., 2021; von der Malsburg et al., 2015). This pattern was found 
across comprehension measures, suggesting the existence of a single optimal reading process, and that 
readers who deviate from it in some way tend to have lower comprehension scores. Importantly, the 
characteristics of this optimal reading process may differ as a result of differences in task demands or 
reading goal. For example, the optimal reading process when reading during a cloze task may not be 
the same as the optimal process when reading to answer comprehension questions. Nevertheless, our 
results suggest that, across reading comprehension assessments with varying task demands, deviation 
from the optimal reading process for that task is an indicator of poorer comprehension. This provides 
further support for the usefulness of measures such as scanpath regularity that capture the degree to 
which a reader deviates from the optimal reading process as possible markers of poor reading 
comprehension.

Scanpath regularity as a stable predictor of comprehension across tasks

Our second hypothesis was that measures derived from scanpaths may provide more stable predictors 
of reading comprehension across tasks compared to word-based measures. The results were only 
partially consistent with this hypothesis. Indeed, results from the single regression models showed that 
higher scanpath density, lower scanpath dissimilarity, and higher cluster membership (i.e., higher 
proportion of distinctive scanpaths) are all associated with higher comprehension scores, suggesting 
that more regular scanpaths are associated with better comprehension regardless of which measure of 
scanpath regularity or which measure of comprehension is used. However, while both scanpath 
density and scanpath dissimilarity also appeared as useful predictors of comprehension in multiple- 
regression models (i.e., in concert with other measures), this was not the case for cluster membership. 
This suggests that cluster membership, unlike density and dissimilarity, may not provide additional 
information over and above other scanpath and word-based eye-tracking measures.

While the predictive relationship of scanpath density and cluster membership with comprehension 
was consistent across tests and models, this was not the case for scanpath dissimilarity. Indeed, the 
effect of scanpath dissimilarity in the multiple-regression models varied between tests, and results 
from models with multiple predictors indicated that larger scanpaths dissimilarity was sometimes 
associated with better scores. While this finding may seem surprising at first, it may simply be a result 
of the fact that the predictors in our models were correlated to each other, rendering the interpretation 
of the direction of the relationship between predictors and comprehension more difficult. This finding 
is also reminiscent of findings from Mézière et al. (2023) indicating that the direction of the relation-
ship between word-based eye-movement measures and comprehension could also vary between tests. 
A probable explanation for this seemingly surprising finding is that including multiple features of eye- 
movement behavior in the model informs predictions which in turn can mediate the predictive 
relationship between eye-tracking measures and comprehension. This is particularly likely in our 
case as the predictors in our models are often moderately to highly correlated (see Supplementary 
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Materials for full correlation tables). Hence, in models with multiple predictors the measure of 
scanpath dissimilarity may capture a different aspect of eye-movement behavior. For example, this 
seemingly unexpected effect of scanpath dissimilarity may be capturing the balance between reading 
efficiency and depth of processing, such that when other eye-tracking measures in the model capture 
reading efficiency, scanpaths that are too regular can be associated with poorer comprehension, 
without negating the finding that regular scanpaths are generally reflective of more efficient eye 
movements and thus better comprehension. Thus, while the direction of the relationship between 
scanpath measures and comprehension were more consistent across tests than for word-based eye- 
tracking measures, the relative importance and usefulness of the scanpath measures still differed 
between tests. This is not entirely surprising and is consistent with our predictions that, while scanpath 
regularity measures may be somewhat less sensitive to differences in task demands between the three 
tests, they are not entirely insensitive to them either.

The results suggest that both scanpath density and dissimilarity are useful predictors of compre-
hension and make independent contributions as predictors of reading comprehension. Hence, both 
measures are good at quantifying how unusual a scanpath is, but neither of the two measures fully 
capture scanpath regularity. Further research into the relationship between scanpath regularity and 
comprehension ability is therefore necessary to better understand how such measures capture 
qualitative differences in eye-movement behavior and comprehension, and whether a single measure 
can be identified that fully captures the distinctiveness of a reading pattern.

Estimating reading comprehension ability from eye movements

In this study, we used the data collected by Mézière et al. (2023), who used eye movements to examine 
the cognitive processes engaged by reading comprehension tests with varying task demands. The 
results from the current analysis are highly similar to that of Mézière and colleagues, such that the best 
predictors of comprehension varied significantly across the three tests, both in terms of which 
predictors were most useful in predicting comprehension scores and in the direction of the relation-
ship between eye-tracking measures and comprehension. Nevertheless, the current analysis also 
yielded some differences compared to those of Mézière et al. (2023).

The best set of predictors for the GORT scores were identical to previous findings, such that these 
scores were more strongly associated with early eye-tracking measures (first-fixation duration), and 
were best predicted by a combination of global, early, and late measures. Additionally, our results 
indicate that scanpath regularity was a good predictor of performance on the GORT.

In contrast, results for the YARC were widely different from Mézière and colleagues’, as only gaze 
duration remained a consistently good predictor of comprehension across analyses. Like the GORT 
however, scanpath regularity was a good predictor of performance on the YARC. The differences 
between the two studies may be because we did not include the same predictors when running our 
regression models, thus affecting the relative importance and usefulness of word-based eye-tracking 
measures as predictors of comprehension. Critically, we did not include reading speed as a predictor as 
it is not an eye-tracking measure, although it was previously found to be a useful predictor of 
comprehension for the YARC. However, this difference between the two studies is not enough to 
explain the discrepancies in our findings, as some of the differences between the two analyses do 
remain when speed is included as a predictor. The remaining differences are likely explained by the 
inclusion of the scanpath regularity measures in this analysis.

Results for the WRAT also differed from previous findings, such that only regression rate appeared 
as a good predictor across analyses. Scanpaths regularity was a good predictor of performance on the 
YARC and the GORT, but not for the WRAT. Indeed, scanpath dissimilarity only appeared as 
a significant predictor in instances where total reading time was not a predictor, which only occurred 
in three out of the top ten models. In their analysis, Mézière et al. (2023) found that, unlike for the 
other two tests, fixation durations were generally not useful predictors of performance on the WRAT, 
and that reading speed instead appeared as the single most useful predictor. One interpretation of this 
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finding is that the best predictor of performance on the WRAT is how quickly readers can make 
predictions about upcoming linguistic materials and not so much how they do it. Our analysis 
indicates that total reading time,2 the eye-tracking measure typically most highly correlated with 
reading speed, is the most useful predictor for the WRAT scores. Hence, while previous studies suggest 
that cloze tasks may measure word processing more than higher-level processes of reading (Keenan 
et al., 2008; Nation & Snowling, 1997), our results again indicate that the best predictor of performance 
on the WRAT may in fact be how quickly readers can provide the missing word.3 Overall, the results 
for the WRAT suggest that, for this test, scanpaths do not provide additional useful information over 
and above measures that most closely capture how quickly participants are able to perform the task. 
This finding also suggests that, although measures of scanpath regularity do capture reading speed, the 
variations in eye-movement behavior that they capture go beyond reading speed alone. Notably, the 
importance of individual predictors varied between models with single predictors and the models with 
multiple predictors. While this may seem surprising, it illustrates the fact that predictor can be useful 
by itself, but not remain useful when other predictors are included in the model.

Finally, the results for the average of the three tests also differs greatly from previous findings, as only 
total reading time remained a good predictor of comprehension across analyses. Additionally, scanpath 
regularity was a good predictor of comprehension, as two measures (density and dissimilarity) were useful 
predictors in these models. As with the YARC and the WRAT, some of these differences between our 
analysis and Mézière et al. (2023) come from differences in the predictors used in the models, particularly 
reading speed which also appeared as a good predictor of comprehension of the aggregated dataset.

Overall, our findings further demonstrate that there is no simple relationship between eye move-
ments and reading comprehension. On the contrary, reading behavior and eye movements are highly 
adaptive, such that task demands mediate the relationship between eye movements and comprehen-
sion, rendering the identification of eye-movement markers of successful comprehension challenging.

Conclusions

In conclusion, our results show that scanpaths and word-based eye-tracking measures both make unique 
contributions as predictors of reading comprehension, suggesting that scanpaths capture features of eye- 
movement behavior that are not captured by word-based eye-tracking measures alone. Additionally, our 
results suggest that the two types of measures can be combined to get a more detailed and accurate 
picture of eye-movement behavior and study the cognitive processes involved in reading comprehen-
sion. Nevertheless, the differences between the three comprehension scores indicate that both types of 
measures are influenced by differences in task demands between reading comprehension assessments, 
thus highlighting the fact that reading goals and task demands need to be considered when investigating 
the relationship between eye movements and comprehension, and when interpreting eye-tracking data.

Notes

1. The β̂ indicate the increase in the number of points on the test scale expected for one standard deviation of the 
predictor.

2. Total reading time was measured as the sum of all fixations made on a word, while reading speed was measured as 
words read per minute. While the two measures are highly correlated, they are not identical.

3. When the analysis is run with reading speed, the pattern of result for the WRAT is identical to that reported by 
Mézière et al. (2023) with reading speed as the best predictor.
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