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Abstract 

From the time of William James, psychologists have posited individually importance-

weighted-average models (IWAMs) in which weighting specific attributes by individual 

measures of importance improves prediction of the global outcome measures. Because 

IWAMs cause much confusion, we briefly review a general taxonomic paradigm and 

structural equation models for testing IWAMs, and demonstrate its application for 2 

simulated and 3 diverse “real” data applications (multidimensional measures of self-concept, 

quality of life, and job satisfaction). Consistent across the real data applications and previous 

research more generally, there is surprisingly little support for IWAMs when tested 

appropriately. In these diverse tests of IWAMs we integrate new approaches such as 

exploratory structural equation modeling (SEM), alternative approaches to constructing latent 

interactions, application of bifactor models, modeling method and item-wording effects, and 

the juxtaposition of model evaluation in relation to goodness of fit (typically used in SEM 

studies) and variance explained (typically used in multiple regression tests of IWAMs). 
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Individually Weighted-Average Models: Testing a Taxonomic SEM Approach Across 

Different Multidimensional/Global Constructs Because the Weights “Don’t Make No 

Nevermind” 

This study is a substantive-methodological synergy in which new and evolving 

structural equation modeling (SEM) methodology is used to address substantively important 

issues (Marsh & Hau, 2007). The particular focus is on stronger SEM tests of individually 

importance-weighted-average models (IWAMs) in which weighting specific attributes by 

individual participant ratings of the importance of each attribute improves prediction of the 

global outcome measures. We begin by providing an overview of apparently similar 

methodological issues related to testing IWAMs that have independently been identified in 

diverse research literatures with surprisingly little cross-citation in relation to these problems. 

In the research reviewed here, there is little support for IWAMs, reminiscent of the classic 

review by Wainer (1976) in which he concluded that humans are so bad at differential 

weighting variables that it is best to ignore the weights because they “don’t make no 

nevermind” (colloquially meaning “it makes no difference”; Wainer, 1976, p. 213)—a phrase 

that we also use in the title of this article as a tribute to Wainer. We then present a broadly 

applicable methodological approach to problems identified in each of these disciplines based 

on evolving SEM approaches to testing latent-variable interactions and demonstrate its 

application in four studies. The first is a simulation study using a didactic approach to 

illustrate this approach with clear documentation that makes it easy for applied researchers to 

apply the approach to their own research. We then analyze “real” data applications that are 

realistically complex, demonstrating variations in the application of our IWAM approach 

from three diverse research literatures. Although each of the real data applications is 

substantively meaningful in its own right, our focus in on the methodological issues raised by 

each of these applications that are broadly relevant to other research and on how they can be 

addressed within the context of our latent variable approach to IWAMs. Dating back at least 

to James (1963), psychologists and applied social science researchers more generally have 

posited weighted-average models for data analysis. In the general paradigm, a set of specific 

attributes (e.g., multiple domains of self-concept, quality of life, job satisfaction) are related 

to one or more global outcome measures (e.g., global self-esteem, life satisfaction, overall job 

satisfaction). According to the individually weighted-average model (IWAM), weighting 

each of the specific components by the importance placed on the component by each 

individual will provide a better prediction of the global outcome measure than if the weight 

assigned to each component is the same across all individuals. Despite the apparent simplicity 
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of this model, it has caused much confusion in how to test the model and what constitutes 

support for it. Our purpose is to briefly review a general paradigm and SEMs for testing 

IWAMs, demonstrate its application with simulated data, and then illustrate its versatility in 

three diverse real data applications.  

 

INDIVIDUALLY WEIGHTED-AVERAGE MODELS IN SELF-CONCEPT 

RESEARCH 

 

We begin with a brief review of the use of of IWAMs in self-concept research. This 

research is relevant in that the IWAM has a particularly long history and has been the basis of 

many studies, critical reanalyses, and highly contested debates that still have not been 

completely resolved in relation to the substantive literature. More generally, this research 

literature is indicative of the surprising complexity involved in tests of IWAMs in other areas 

of research. In self-concept research (Marsh, 2008) IWAMs are widely attributed to James 

(1963), who proposed that the best representation of a person’s overall self-evaluation is an 

appropriately weighted average of self-evaluations in specific domains. James noted that 

because a person cannot be all things, each individual must select carefully “the strongest, 

truest, deepest self on which to stake his salvation” (p. 310), so that “I, who for the time have 

staked my all on being a psychologist, am mortified if others know much more psychology 

than I. But I am contented to wallow in the grossest ignorance of Greek” (p. 310). Objective 

accomplishments are evaluated in relation to internal frames of reference so that “we have the 

paradox of a man shamed to death because he is only the second pugilist or the second 

oarsman in the world. Yonder puny fellow, however, whom everyone can beat, suffers no 

chagrin about it, for he has long ago abandoned the attempt to ‘carry that line’” (p. 310). 

Putting the two ideas together, James concluded that our sense of self “depends entirely on 

what we back ourselves to be and do” (p. 310). Despite this long history, the lack of empirical 

support for IWAMs, as embodied in the Jamesian perspective, was highlighted in the 

extended debate that largely appeared in the Journal of Personality and Social Psychology 

between Marsh (1986, 1993, 1994, 1995, 1996; Marsh & Sonstroem, 1995; also see Marsh, 

2007) and Pelham (Pelham, 1991, 1993, 1995a, 1995b; Pelham & Swan, 1989), which 

included multiple original studies, reanalyses, responses, and counterresponses using diverse 

data sets collected by both researchers. When rigorously evaluated with appropriate statistical 

tools, individually importance-weighted averages tend to predict self-esteem less well—

certainly no better—than averages of self-concepts in specific domains that simply ignore 
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importance ratings. Marsh (1995) concluded that even though there were lingering areas of 

disagreement, both he and Pelham agreed that support for the Jamesian perspective and the 

individual importance hypothesis (the basis of the IWAMs presented here) was surprisingly 

weak. Similarly, Pelham (1995b, p. 1165) acknowledged that if “James were around today, I 

suspect that he might feel that it has been embarrassingly difficult for us to uncover support 

for one of his simplest psychological insights” Hardy and Moriarty’s (2006) review similarly 

concluded that support for IWAMs remained elusive.  

Nevertheless, despite the apparent lack of empirical support for this Jamesian 

perspective as embodied in IWAMs, there is a dramatic disjuncture between the accepted 

psychological wisdom of many leading selfesteem researchers and actual research findings. 

Thus, in Kernis’s (2006) monograph Self-Esteem: Issues and Answers, some of the world’s 

leading self-esteem researchers cited some version of this Jamesian perspective as a well-

established psychological principle without considering dissenting evidence (e.g., Harter, 

2006; Mruk, 2006; O’Brien, Bartoletti, & Leitzel, 2006; Owens & McDavitt, 2006; 

Rhodewalt, 2006; Showers & ZeiglerHill, 2006; Tevendale & Dubois, 2006; Vonk, 2006). 

Indeed, within self-esteem research circles, the Jamesian perspective continues to be widely 

cited as a well-established psychological principle, one that has a solid theoretical and 

empirical basis and has withstood the test of time for more than a century. In dramatic 

contrast, there is little rigorous empirical support for this widely held assumption, and 

apparently none that suggests that it is either strong or robust (see Marsh & Hattie, 1996). 

Thus, Hattie (2003) concluded that the logic of this Jamesian perspective is so intuitively 

compelling that it has “been one of the more enduring claims in the psychological literature” 

(p. 137) even though there is little empirical support for it. 

As repeatedly emphasized by Marsh and colleagues (Marsh, 1993, 1994, 1995, 2008; 

Scalas, Marsh, Nagengast, & Morin, 2013; Scalas, Marsh, Vispoel, Morin, & Wen, 2017; 

Scalas, Morin, Marsh, & Nagengast, 2014) in the self-concept literature, the apparent 

problem has been in the failure to specify an appropriate statistical model with which to test 

the theoretical predictions. Indeed, there have been several examples in publications claiming 

to support the individual weighted-average model that were shown to provide little if any 

support when the appropriate statistical model is applied (see Marsh, 1995, 1996, 2008; 

Scalas et al., 2013). Based on this ongoing research in relation to self-concept theory, a more 

appropriate statistical model has evolved that provides clearer tests of the model and clarity to 

potential areas of confusion. In this investigation, we more fully develop a taxonomic 

approach to testing IWAMs based on simulated data, briefly review how apparently similar 
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problems have arisen in diverse areas of research where IWAMs have been applied, and 

demonstrate its versatility in three diverse real data applications (multiple and global 

measures of self-concept, quality of life, and job satisfaction).  

 

INDIVIDUALLY WEIGHTED-AVERAGE MODEL: A GENERAL 

PARADIGMATIC APPROACH 

 

Historically the IWAM has been applied to manifest measures; either single-item 

ratings or scale scores representing each of the specific components, their importance, and the 

global outcomes they are designed to predict. More recently, stronger latent variable models 

are used in which some or all of the components are represented by latent variables based on 

multiple indicators. In the latent variable version of the paradigm model (Figure 1) there are 

three specific domains, each based on multiple indicators. Critical components are as follows:  

• Actuals (act1, act2, and act3 in the upper left corner), which represent, for example, 

ratings of the multiple domains of a multidimensional construct. In self-concept research 

these might be academic, physical, or social self-concept, but could also represent other 

areas of research; dimensions of job satisfaction (e.g., pay, relations with colleagues, 

working conditions), or quality of life (e.g., work, family, leisure). 
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• Importance (imp1, imp2, imp3 in the lower left corner), which represent ratings of the 

importance that each individual places on each domain (e.g., how important is physical 

competence to you).  

• Actual-by-importance interactions (int1, int2, int3 in the upper right corner) representing 

the multiplicative combination of the actual and importance rating for each domain. 

These test the critical assumption of the IWAM, the effect of an act domain is moderated 

by its importance. For example, the IWAM predicts that if an individual perceives the 

physical domain of self-concept to be most important, then the physical domain should 

contribute more positively to the prediction of global self-esteem than do other 

domains—that the interaction is statistically significant and positive. In relation to a 

simple-slopes perspective (Aiken & West, 1991), the slope of the regression line relating 

physical self-concept to global self-esteem is significantly steeper for individuals who 

perceive the physical domain to be more important.  

• Global outcome (in the lower right corner) and the path coefficients (β6–β9) relating each 

of the latent variables (actuals, importance, and interactions) to the global measure. The 

critical assumption is that at least some of the paths leading from the latent interaction 

terms to the global outcome (β6–β9) are positive, statistically significant, and sufficiently 

large to be substantively meaningful. In particular, even if statistically significant, a 
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negative path (assuming that the domain is positively oriented) provides clear support 

against the IWAM prediction—perhaps even more negative than if the path were 

nonsignificant.  

 

Of course, this paradigmatic model is highly flexible in terms of the number of 

domains, the number and nature of the global outcomes, nature of the measurement model 

underpinning it, and the inclusion of additional variables. However, even this simple model 

provides a good starting point for illustrating the confusion that has resulted from IWAMs.  

The starting point for IWAMs is a well-fitting measurement model. Indeed, many of 

the problems in the application of IWAMs (particularly when based on manifest variables in 

multiple regression analyses rather than latent variables in SEM analyses) stem from the 

failure of the underlying measurement model. Thus, for example, if the multiple indicators of 

the multiple specific domains do not accurately reflect the constructs they are designed to 

measure, or the multiple constructs are so highly correlated they cannot be adequately 

distinguished, then it makes little sense to apply the full IWAM. Thus the famous philosopher 

and storyteller, Mark Twain, is reputed to have said, “The thirteenth stroke of the clock is not 

only false of itself, but casts grave doubt on the credibility of the preceding twelve” (see 

https://en.wikipedia.org/wiki/Thirteenth_stroke_of_ the_clock). For now, let us assume that 

there is a well-fitting measurement model in relation to conventional indexes of fit, and that 

the various components can be adequately distinguished from one another.  

A typical starting point is to evaluate how well the actuals are able to predict the 

global outcome measure (β1–β3 in Figure 1). A naive interpretation might be that there is 

support for the weighted-average model if these paths explain a significant amount of 

variance in the global outcome and are significantly different from each other (i.e., the model 

with β1 = β2 = β3 can be rejected). However, even this simple starting point is fraught with 

interpretational difficulties that are the basis for much of the confusion in the application of 

this model.  

Most importantly, the β1 through β3 paths in Figure 1 are largely irrelevant to tests of 

the IWAM. In particular, they represent normative differences in the relation between each of 

the specific domains and the global outcomes that generalize across individuals in the group 

being tested. A finding that β1 > β2 > β3 does support weighting the components differently 

at the normative group level, but not at the individual level. To clarify this critical issue, 

assume that the first domain (Act 1) is seen as most important by the group as a whole in 

terms of predicting self-esteem (β1 > β2 > β3). However, all individuals are assigned the 
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same higher value for β1 and the same lower value for β2 and β3— independent of their 

individual importance ratings. For example, even if a particular individual rated Act 3 as most 

important and Act 1 as least important, this individual would still be assigned the same values 

(β1 > β2 > β3) as everyone else. In contrast, the IWAM would require that the importance for 

this individual should be higher for Act 3 than Act 1, even though this was different for the 

group as a whole. To clarify this issue, Marsh and colleagues (Marsh et al., 2008; Scalas et 

al., 2013; Scalas, Morin et al., 2014) referred to this as the normatively weighted-average 

model (WAM) to distinguish it from IWAMs. Thus, in the normative WAM the weights can 

differ for the different domains, but not according to different individuals. The different 

weights for each domain can be determined a priori on the basis of theory or design, or 

empirically based on information from the domain ratings using techniques such as factor 

analysis or a multiple regression that determines an empirically optimal set of weights in 

relation to global outcomes. Support for any of these normative WAMs would argue for the 

usefulness of a normative WAM in which every individual had the same (total-group or 

normative) weight for any particular domain, but not an IWAM.  

Support for IWAMs requires that for individuals who place more importance on the 

first domain than do other individuals (i.e., higher values of imp1 in Figure 1), the 

contribution of the first domain (act1 in Figure 1) should be greater—positive if act1 is high 

and negative if act1 is low. In terms of the paradigmatic model, support for the IWAM 

requires that the actual-by-importance interactions are significantly positive and make a 

substantively meaningful contribution to variance explained in the global outcome. The 

IWAM is not supported if the set of interaction effects does not contribute to variance 

explained in the outcomes, or if the direction of the interaction effects is not positive 

(assuming that all the constructs are positively oriented). Operationalizing Latent Interaction 

Effects A complication in Figure 1 is the estimation of latent interactions that are critical in 

testing IWAMs. The estimation and interpretation of interaction effects is an important 

concern in psychology and the social sciences more generally, but particularly in relation to 

latent variables this remains an area in which best practice is still evolving (see overview by 

Marsh, Hau, Wen, Nagengast, & Morin, 2013; Marsh, Wen, & Hau, 2006; Marsh, Wen, 

Nagengast, & Hau, 2012). Although alternative approaches are available, there are two broad 

approaches that have been used to test IWAMs and latent interactions more generally, the 

product-indictor approaches (Jöreskog, 1998; Kenny & Judd, 1984; Marsh, Wen, & Hau, 

2004), and the latent moderated structural equation modeling (LMS) approach (Klein & 

Moosbrugger, 2000; Klein & Muthén, 2007). In this investigation we used the unconstrained 
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product-indicator approach (Figure 1; see also Supplemental Appendix 1D, for present 

parallel analyses based on LMS). Nevertheless, there are complications involved with both 

approaches. One important limitation of the LMS approach is that it is only readily available 

with the Mplus package and specialized software. In contrast, the product-indicator approach 

is easily implemented with any standard SEM software. Also, the LMS approach as 

operationalized in Mplus is very numerically intensive and might not be realistic when there 

are more than three or four latent interactions in the same model (depending on the number of 

domains, the IWAM might involve as many as eight or more latent interactions—one for 

each domain). Furthermore, the LMS approach does not have a properly defined null model 

and thus does not provide general fit statistics (although information criteria such as Akaike’s 

information criterion can be used to compare models). Nevertheless, the LMS approach 

overcomes many of the limitations in how indicators are formed in the product-indicator 

approach. In the product-indicator approach the latent interaction factors are constructed and 

identified with product indicators. Each product indicator is a cross-product of actual and 

importance indicators. In Figure 1, for example, there are three indicators of act1 and three 

indicators of imp1. These are used to define three interaction indicators such that int1i = act1i 

× imp1i where i varies from one to three when there are three indicators. This is reasonable 

when the act indicators are matched to the imp indicators as in this example. However, when 

the number of imp indicators differs from the number of act indicators, there is no completely 

unambiguous way to match imp and act to form latent variable indicators. Although evolving 

best practice has provided a number of heuristic strategies on how to form product indicators 

(Marsh et al., 2012; Wu, Wen, Marsh, & Hau, 2013), this remains a complication that 

depends on the nature of the data available (see Supplemental Appendix 1D and 1G for 

further discussion).  

OPERATIONALIZING TESTS OF THE INDIVIDUALLY WEIGHTED-AVERAGE 

MODEL 

In operationalizing tests of IWAMs we emphasize both goodness of fit and variance 

explained in outcomes. Initially, goodness of fit is important in terms of establishing a 

baseline measurement model in which all factors are merely correlated. Indeed, constructing 

a good-fitting, theoretically defensible measurement model is a critical—but often 

neglected—step in testing IWAMs. Although not a problem for these simulated data sets for 

which the measurement model is well-defined, this is likely to be a critical issue in 

substantive applications based on real data (see subsequent discussion). Given a well-defined, 

baseline measurement model (Model 0 in Table 1), we then test a general taxonomy in which 
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we evaluate models (Models 1–7 in Table 1) based on different combinations of the three sets 

of path coefficients leading to the global outcome (β1–β9 in Figure 1). Although there are 

many ways in which these tests could be operationalized, we offer several strategies that we 

suggest would be useful for applied researchers.  

Appropriate Standardized Solution in Product-Indicator Models  

In multiple regression analyses, standardized effects based on standardized variables 

(with M = 0, SD = 1) facilitate the comparison of effects, particularly when the original 

scales are based on different metrics. Similarly in SEM, it is customary to report completely 

standardized solutions in which both latent factors and observed variables are standardized. 

However, the appropriate standardized solution for an interaction model is not typically 

provided by commercial SEM packages. Indeed, the so-called standardized solutions that are 

provided are typically wrong and should not be used. Although there are a number of 

strategies to overcome this issue (see Marsh et al., 2013; Marsh et al., 2012; Wen, Marsh, & 

Hau, 2010), the approach used here is to begin with standardized variables for all indicators, 

and then follow these steps:  

1. Define latent interaction indicators as the cross-product of the actual and 

importance indicators such that int1i = Zact1i × Zimp1i, where the i indicators of 

each construct (the boxes in Figure 1) are standardized, but the interaction factor 

is not restandardized.  

2. Fit the measurement model (Model 0 in Table 1) in which the metric is established 

by fixing latent variances to 1.0 (rather than fixing one of the factor loadings to an 

arbitrary value such as 1.0). This will transform the unstandardized solution into a 

standardized solution.  

3. In subsequent SEMs (Models 1–7 in Table 1), use the factor loadings from this 

Model 0 as the starting values (these are conveniently saved by Mplus, but values 

from the output can be used as well). For each latent factor (e.g., the 10 latent 

factors in Figure 1 representing actual, importance, interaction, and global 

factors), fix one of the factor loadings (conveniently the largest) to values from the 

measurement model (not to 1.0 as is typical), and freely the estimate of the latent 

variance term. The results for the unstandardized solution using this approach will 

result in appropriately standardized parameter estimates. Wen et al. (2010) 

showed that traditional standard errors based on this approach closely 

approximated those obtained from a bootstrap approach, suggesting that tests of 

significance of parameter estimates using this approach were trustworthy. We also 
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note this approach to standardization is often useful even when there are no latent 

interactions in the model. (This approach is illustrated with simulated and real 

data analyses and syntax for each study presented in the Supplemental Materials.)  
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Taxonomy of Models Used to Test IWAMs  



13 

In a preface to the introduction of this taxonomy of IWAMs, it is relevant to 

distinguish between total and unique variance explained by different sets of predictors, and to 

juxtapose traditional practice in multiple regression analyses of manifest variables and SEM 

analyses of latent variables. This issue is not only very important in relation to IWAMs, but 

also in SEM more generally. For multiple regression analyses of IWAMs, the results include 

correlations between predictor variables and outcomes as well as the path coefficients. 

Particularly when there are many predictors, it is useful to evaluate how much variance can 

be explained by a set of predictors (i.e., the total variance explained by the predictors without 

controlling for other predictors) and how much variance can be explained by the set of 

predictors over and above what can be explained by other variables in the predictor equation 

(i.e., the unique variance explained by a set of predictor variables after controlling for the 

other predictors). In traditional multiple regression packages (e.g., SPSS) this is done by 

introducing sets of variables in a stepwise fashion (evaluating the change in variance 

explained in each step) and a summary of the final regression model that includes the 

variance uniquely explained by each set of variables. Historically, this type of unpacking of 

the multiple regression prediction equation has been important in the evaluation of support 

for IWAMs (e.g., Marsh, 1986, 1993, 1995). However, this type of information is not so 

readily available in SEMs. In most SEM studies the main focus is on global goodness of fit 

and the path coefficients rather than the variance explained by a set of predictors. Consistent 

with approaches to the evaluation of IWAMs based on multiple regression, in latent IWAMs 

it is also relevant to evaluate the total and unique variance that can be explained by domains 

and the interaction effects. The overarching rationale of the taxonomy of IWAMs presented 

here is to provide this decomposition of effects in relation to variance explained in outcome 

variables as well as goodness of fit. More specifically, starting with a well-defined, baseline 

measurement model (Model 0 in Table 1), we then evaluate the contribution of each of the 

three sets of parameters to goodness of fit and variance explained in the global outcome using 

a taxonomy of models (Models 1–7 in Table 1).  

Model 1  

We begin with Model 1 in which all paths (β1–β9) are estimated. This full SEM is 

equivalent to the measurement model (Model 0) in that the number of estimated parameters, 

degrees of freedom, and goodness of fit are all the same. The major difference is that 

covariances between the three sets of predictor factors and the global outcome factor are now 

represented as path coefficients (i.e., β1–β9 in Figure 1). Hence, so long as the measurement 

model fits the data well, so will Model 1.  
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Model 2  

In Model 2, only paths leading from the actual latent factors to the outcome variable 

(β1–β3 in Figure 1) are freely estimated, whereas the paths from the importance factors (β4–

β6) and interaction factors (β7–β9) are constrained to be zero. For this model we provide path 

coefficients (β1–β3), the change in goodness of fit based on the Wald test (Muthén &, 

Muthén, 2015; also see subsequent discussion) compared to the full model (Model 1), and the 

variance explained by the three paths included in the model. In this way, Model 2 provides an 

estimate of the total variance that can be explained by the actual factors, without taking into 

account the variance explained by the importance and interaction factors. Also, the difference 

in variance estimates based on Models 1 and 2 provide an estimate of the variance explained 

by the paths not included in Model 2 (β4–β9). Models 3 and 4  

Similar to Model 2, Models 3 and 4 provide estimates of the variance explained and 

fit of models based on only the importance factors (β4–β6; Model 3) or only the interaction 

factors (β7–β9; Model 4). Model 4 is potentially interesting as a “pure” weighted-average 

model in that it only includes the effects of actual factors weighted by the importance factors. 

Although useful in terms of variance explained, it is also clear that the variance explained by 

the interactions confounds variance attributable to main effects (which are absent in this 

model) and variance that is uniquely explained by the interaction effects. However, an 

important contribution of the paradigmatic approach is that it provides estimates of the total 

variance explained by a set of parameters (including variance that can be explained by other 

variables) and unique variance explained by a set of parameters (excluding variance that can 

be explained by other variables). Furthermore, in much substantive research, Model 4 is a 

typical operationalization of the weighted-average model (i.e., the average of each actual 

domain weighted by its importance). Nevertheless, a cautious interpretation of this model is 

warranted in that interactions potentially confound the “main” effects of the actual and 

importance factors with variance that can be uniquely attributed to the interactions after 

controlling for the main effects.  

Model 5  

In Model 5, paths leading from the actual (β1–β3) and importance (β4–β6) latent 

factors to the outcome variable are freely estimated, whereas the paths from the interaction 

factors (β7–β9) are constrained to be zero. Again we provide path coefficients, the change in 

goodness of fit based on the Wald test compared to the full model, and the variance explained 

by the paths included in Model 5. In this way, support for the comparison of Model 5 (with 

no latent interactions) and Model 1 (the full model) provides a particularly important test of 
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the IWAM. The difference in variance explained by the two models is an estimate of the 

variance uniquely attributable to the interactions. The IWAM is supported when the change 

in goodness of fit for Models 1 and 5 is significant, the change in variance explained by 

Models 1 and 5 is substantively meaningful, and the direction of the path coefficients leading 

from the interaction factors to the global outcome is positive.  

Models 6 and 7 

Similar to Model 5, Models 6 and 7, compared to Model 1, provide estimates of 

variance uniquely explained by the importance factors (Model 6, which excludes the 

importance factors) and the actual factors (Model 7, which excludes the actual factors). 

Whereas this distinction between total variance explained by a set of predictors and variance 

uniquely explained by a set of predictors is a typical concern in applied multiple regression, it 

has been given surprisingly little attention in SEM.  

Operationalizing Models 1 Through 7 in the Taxonomy of Models  

For Models 2 through 7, we conducted two complementary analyses. First, we used 

the same syntax as for Model 1, but changed paths to covariances (as in the measurement 

model). Thus, for example, in Model 2 the six paths (β4–β9) were specified as covariances 

rather than paths. In this way only the actual factors (β1–β3) contributed to the prediction of 

the global factor, and variance explained was thus based on only these factors. However, 

because the relations represented by the excluded paths (β4–β9) are included in the model as 

covariances, Models 1 and 2 are equivalent in the sense that the number of estimated 

parameters, degrees of freedom, and goodness of fit are all the same. Indeed, in this sense all 

eight models, including the measurement model, are equivalent. This strategy has the 

advantage of providing estimates of the covariances between the excluded latent predictor 

factors and the global outcome variables, after controlling for the included latent factors (in 

subsequent tables these covariances are shaded to distinguish them from the path 

coefficients). Importantly, however, this approach holds the model constant when estimating 

changes due to excluding or including different sets of parameters (i.e., they are merely 

transformed rather than excluded), whereas it is possible that completely eliminating different 

parameters (even in nested models) could result in offsetting changes in other parameter 

estimates that cascade through the model. However, because the goodness of fit for all the 

models is the same, this approach does not provide a test of the change in fit due to 

completely eliminating the parameters in question. Thus, we also reran each analysis using 

the Wald test to evaluate the change in fit associated with constraining the paths to be zero 

(and not representing these as covariances).  
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STUDY 1: TESTING INDIVIDUALLY WEIGHTEDAVERAGE MODELS WITH 

SIMULATED DATA 

Study 1: Simulated Data With Meaningful Interactions  

We begin by demonstrating the application of this approach to IWAMs with two 

simulated data sets based on Figure 1. The two population generating models are essentially 

the same, except that one is designed to support the IWAM (i.e., latent interactions, β7–β9 in 

Figure 1 are positive, and substantively meaningful) whereas the other is not (β7–β9 are zero 

in the population generating model). Approximating true population-level data, each of these 

simulated data sets is based on a very large number of cases (N = 100,000; see Supplemental 

Appendix 1A for the syntax used to generate the two data sets that can be used to replicate 

and extend analyses presented here; also see Supplemental Appendix 1B and 1C for syntax 

examples of the models presented below). For purposes of instruction, we present the results 

in detail.  

Model 0  

We begin with tests of the measurement model (Model 0) for the simulated data with 

substantively meaningful interactions in support of the IWAM. Although this is typically a 

critical step in tests of the IWAM, for these simulated data it is trivial to show that the 

measurement model provides a good fit, χ 2 (419) = 451, p = .130, root mean square error of 

approximation (RMSEA) = .001, comparative fit index (CFI) = Tucker–Lewis Index (TLI) = 

1.00 (see Supplemental Appendix 1E for a brief discussion of goodness of fit).  

Model 1  

In Model 1 (the full model), consistent with the population generating model, all the 

paths from the actual (β1–β3) and interaction (β7–β9) are statistically significant and 

meaningfully large. The positive direction of these paths—particularly the interaction 

effects—is consistent with the IWAM. The paths from the importance factors (β4–β6) are 

much smaller in size. The variance explained by the three sets of factors in the full Model 1 

(mult R2 = .648 in Table 2) is substantial and all the paths from the interaction factors to the 

global outcomes are positive. Thus, Model 1 provides preliminary support for the IWAM.  

Models 2 Through 4  

Consistent with the interpretation of paths in Model 1, the variance components for 

these models show that a substantial amount of variance can be explained by the actual 

factors (.478, Model 2) and interaction factors (.152, Model 4), whereas the variance 

explained by the importance factors is smaller but still statistically significant (.081, Model 
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3). Similarly, the Wald tests show that each of these three models provides a significantly 

poorer fit to the data if any of the sets of predictors is excluded. It is also interesting to note 

that path coefficients in these models tend to be somewhat larger than the corresponding 

paths in Model 1. Although this will typically be the case, the extent of these differences will 

depend on the sizes of covariances among the different factors (as is the case in any 

regression model). The sizes of the residual covariances (those shaded in gray in Table 2) 

provide an indication of the effect of constraining the corresponding path to be zero to the fit 

of the model. In general, these residual covariances will be smaller than the corresponding 

covariances in the measurement model (Model 0 in Table 2), but again these differences will 

depend on the sizes of relations among the predictor factors as well as what paths are 

included in the model. Models 5 Through 7  

This set of models provides estimates of the variance uniquely explained by each of 

the combinations of any two of the three sets of predictor factors. Comparison of variance 

components based on these models with that in the full Model 1 provides an estimate of how 

much variance is uniquely explained by each set of predictors. For example, in Model 5 with 

paths leading from the actual (β1–β3) and importance (β4– β6), latent factors, the variance 

component is .495. The difference between this value and the value for the full Model 1 (.648 

– .495 = .153) is an estimate of the variance uniquely explained by the interaction factors that 

were excluded from Model 5. Similarly, the results indicate that variance uniquely explained 

by the importance factors (Model 6) is only .017 (.648 – .631), and that due to actual factors 

(Model 7) is .414 (.648 – .234). However, due in part to the artificially large sample sizes, the 

fits of Models 2 through 7 differ significantly (all ps < .001) from that of the full model. 
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Of course, there are a huge number of additional models that could be tested in 

addition to those included in the taxonomy of variables. For present purposes we consider 

Model 5X that is similar to Model 5 in that the latent interactions that are critical to the 

IWAM are excluded. However, whereas in Model 5 the paths from the latent interaction 

factors were constrained to be zero, in Model 5X latent interactions are not even included in 

the model. Although the χ 2 (665, 211) for this model is statistically significant due to the 

huge N, the fit indexes (RMSEA = .005, CFI = 1.000, TLI = .999) indicate that the fit of this 

model is remarkably good. Hence, an inappropriate conclusion based on the fit of Model 5X 

might be that the fit is so good that it is not necessary test for latent interactions. This 

illustrates the point noted by Mooijaart and Bentler (2010) and others that conventional fit 

indexes are not sensitive to multiplicative relations between latent variables. This also 

demonstrates the importance of evaluating total and unique variance components associated 

with each of the three sets of predictor variables in relation to the IWAM taxonomy of 

models.  

Study 1B: Simulated Data With Interactions Specified to Be Zero  

The second simulated data set is similar to the first with the major exception that the 

latent interactions in the population generating model were specified to be zero. Without 

evaluating each of the separate models in detail, we point to several key features. In 

particular, the Wald test comparing results of Models 1 and 5 is nonsignificant, indicating 

that constraining the latent interaction effects to be zero has no influence on goodness of fit. 
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Similarly, the variance component for Model 5 (with latent interactions constrained to be 

zero) is the same as for full Model 1 (with latent interactions freely estimated). Hence the 

variance uniquely attributable to the latent interactions is 0. Finally, the variance explained by 

Model 4 (latent interaction effects only) was 0, indicating that the total effect of the latent 

interactions was also 0. It is also of interest to fit an additional Model 1X in which the three 

paths leading from actual factors (β1–β3 in Figure 1) are constrained to be equal. The Wald 

test (552, 2, p < .0001) based on this constrained model shows that the fit of this model is 

significantly poorer than that of Model 1, indicating the paths are significantly different. In 

this special case where the latent interactions are not statistically significant, there is evidence 

in favor of a normative WAM but not an IWAM. Importantly, however, this support for a 

normative WAM should not be confused with support for an IWAM. In particular, whereas 

an optimally weighted combination of the three actual factors performs better than an equally 

weighted combination, the same higher weight for act2 (β2 = .395) is the same for every case, 

as are the lower weights for the other two actual factors (β1 = .328, β2 = .257). In this sense, 

act1 is more important across the group as a whole, but the contribution of actual1 is the same 

for individuals who rate this factor as relatively more or less important; the effects of actuals 

1–3 are not moderated in the importance ratings.  

The juxtaposition between the results based on the two simulated data sets is also 

important in that it clearly demonstrates that the taxonomic approach to IWAMs presented 

here is able to demonstrate support for the IWAM when the model is true, as well as provide 

evidence against it when the model is false. This is important in that particularly based on 

results of the IWAM in self-concept research, there is little support for IWAMs based on 

either latent SEM emphasized here or manifest (multiple regression) models that are the basis 

of much previous research. We now turn to three real data applications of the IWAM and 

offer suggestions about how to overcome the issues involved in the analysis of each of these 

data sets; suggestions that might have broad applicability to real data from other areas of 

research involving weighted models.  

 

STUDY 2: TESTING THE INDIVIDUALLY WEIGHTED-AVERAGE 

MODEL: SELF-CONCEPT DATA  

 

Overview of the Data Set  

Marsh (2008) argued that to the extent that there is any support for the IWAM at all, it 

might only apply to a few narrowly focused self-concept domains (those that are unimportant 
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to most people but very important to a few, such as spiritual self-concept or, perhaps, 

physical self-concept) and for limited subgroups of individuals, and obviously does not have 

generalizability over different self-concept domains and different individuals as originally 

envisioned by James (1963). Indeed, even James focused on his self-beliefs in relation to his 

competence in the Greek language, a very narrowly focused domain that was likely to be 

highly important to a few individuals but unimportant to many— including James. Following 

Marsh (2008), Scalas et al. (2013) evaluated support for the IWAM for components of self-

concept specifically selected as being most likely to support the model (see their article where 

the sample, materials, and results are presented in more detail). Here we reanalyze these data 

specifically chosen to be optimal in terms of being likely to support IWAMs in relation to 

selfconcept theory and research.  

Briefly the sample consisted of UK adolescents (n = 402; 13–15 years old) who 

completed self-concept responses to positively worded self-concept items in three specific 

domains: physical (six items; e.g., I feel good about who I am physically), academic (three 

items; e.g., I learn quickly in most academic subjects), and spiritual (six items; e.g., I am a 

better person as a consequence of my spiritual/religious beliefs). Students also completed the 

Rosenberg Measure of Global Self-Esteem Inventory (Rosenberg, 1965) consisting of five 

positively and five negatively worded items (e.g., Overall, most things I do turn out well). All 

items were rated on a 6-point Likert-type scale ranging from 1 (false for my actual self) to 6 

(true for my actual self). For the importance ratings, the original items were re-presented with 

instructions to rate how important each item was to them rather than how they actually saw 

themselves. Another 6-point Likert-type scale was used ranging from 1 (not important) to 6 

(important).  

Measurement Model  

The measurement model for these data (see syntax in Supplemental Appendix 2A) 

resembles Figure 1 in that there are three multi-item actual self-concept scales, three 

corresponding multi-item importance scales, and one multiitem global outcome (self-

esteem)—although the number of items in each scale varies. However, as is typical with real 

data, there are several features that make the measurement model more complicated. First, 

responses to the Rosenberg Self-Esteem Scale typically do not result in a cleanly defined 

single factor. Previous research (Marsh, 1996; Marsh, Scalas, & Nagengast, 2010) argued 

that responses to this instrument are best represented as a global selfesteem factor and item-

wording method factors reflecting the positively and negatively worded items. Following the 

original analyses by Scalas et al. (2013) and consistent with recommendations by Marsh et al. 
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(2010), here we also use a bifactor model (Reise, 2012; also see Marsh, Morin, Parker, & 

Kaur, 2014) in which all 10 items load on the global esteem factor, whereas positively 

worded items load on a positive item method factor and negatively worded items load on the 

negative-item method factor (see syntax in Supplemental Appendix 2A). The two method 

factors are constrained so as to be uncorrelated with each other and all other factors in the 

model.  

Second, the self-concept and importance items (and thus the interaction indicators) 

had parallel wording. When items with the same wording are designed to measure different 

factors, typically there are item-wording method effects such that responses to the items are 

more highly correlated than can be explained by covariances among the different factors. 

Following Scalas et al. (2013), we included a priori correlated uniquenesses for self-concept 

ratings, importance rating, and the interaction indicators based on items with the same 

wording (see syntax in Supplemental Appendix 2A). We also note that even when self-

concept and importance ratings do not have parallel wording, it is important to allow errors in 

the product terms to covary with the corresponding errors for the self-concept and importance 

indicators (see Marsh et al., 2004). 

Results  

Analyses presented here follow closely those presented in Study 1 with simulated 

data. In particular, we standardized all measured variables (M = 0, SD = 1), defined 

indicators of the latent interaction factors as the cross-product actual selfconcept and 

importance ratings, and fit a measurement model (as described previously). We then used 

factor loadings from the measurement model to construct appropriately standardized latent 

interaction models to test the IWAM corresponding to the eight models in Table 1 (see syntax 

in Appendices 2A and 2B). The overall measurement model provided an acceptable goodness 

of fit, χ 2 (1330) = 2,158, RMSEA = .039, CFI = .931, TLI = .923. Next we summarize 

results based on the application of the taxonomy of models to these data.  

Model 1  

In Model 1 (the full model, Table 3), there are only three statistically significant 

paths, actual academic (.395), actual physical (.679), and the physical–importance interaction 

(–.146). Overall, the variance explained is substantial (mult R2 = .835). Although one of the 

latent interactions is statistically significant, the direction of the effect was negative rather 

than positive (i.e., the effect of physical selfconcept was smaller, not larger, for students who 

felt physical self-concept was more important). This is demonstrated in Figure 2, a simple-

slopes graph of the interaction showing the effect of physical self-concept is greater (i.e., the 
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slope is steeper) for students who perceive physical self-concept as less important, opposite to 

the a priori prediction based on the IWAM. A literal interpretation of this effect is that the 

physical self-concept has a more positive effect on self-esteem for respondents who rate the 

domain as less important. Because the direction of the interaction is negative rather than 

positive, it provides clear evidence against the IWAM. In summary, Model 1 provides no 

support for the IWAM.  

 

Models 2 Through 4  

The variance components for these models show that a substantial amount of variance 

can be explained by the actual self-concept factors (mult R2 = .816, Model 2); the variance 

components are much smaller for importance (.273, Model 3) and for interactions (.184, 

Model 4). However, all three variance components are statistically significant. Similarly, the 

Wald tests show that each of these three models provides a significantly poorer fit to the data 

than the full Model 1. However, although the results indicate support for the inclusion of 

latent interactions, this is due primarily to the physical–importance interaction in which the 

negative direction of the effect is opposite to that predicted by the IWAM (see Figure 2), 

again offering no support for the IWAM.  

Models 5 Through 7  
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Models that include actual self-concepts explain substantial portions of data in global 

self-esteem: Model 5 (actual and importance; mult R2 = .820) and Model 6 (actual and 

interactions; mult R2 = .832).  

 

Indeed, the Wald test comparing Model 1 (full model) and Model 6 (actual & 

interaction) is not statistically significant (Wald = 2, df = 3, p = .602) and the amount of 

variance uniquely explained by the importance factors is close to zero (.003 = .835 – .832). 

However, like Model 1, the direction of the latent physical–importance interaction is negative 

rather than positive and none of the other latent interactions is statistically significant. It is 

also relevant to note that the total variance that can be explained by the importance ratings 

(.273 in Model 3) is substantial, but that the amount of variance uniquely explained by the 

importance ratings after controlling for actual and interaction effects is close to zero (.003). 

This illustrates that there is much multicollinearity associated with the importance ratings that 

is likely to complicate interpretations of the data unless appropriate statistical modeling is 

used.  

Methodologically, analyses of these self-concept data extend the analyses based on 

simulated data in several important ways that are likely to have broad generalizability to other 

applied research. The use of the bifactor approach with the Rosenberg scale to control for 

item-wording method effects is likely to generalize to other outcome variables that are based 

on a mixture of positively and negatively worded items. Similarly, the correlated uniqueness 

approach used to model items based on parallel worded items is also likely to be useful when 

the same wording is used for items designed to assess actual and importance factors. 

Substantively, the results provide a clear lack of support for the IWAM consistent with a 

growing body of self-concept research based on manifest (multiple regression) and latent 

(SEM) analyses reviewed earlier.  
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STUDY 3: TESTING THE INDIVIDUALLY WEIGHTED-AVERAGE MODEL: 

QUALITY OF LIFE 

Background to the Application of the IWAM to Quality of Life and Life Satisfaction  

Data for this study came from Transitions from Education to Employment (TREE), a 

longitudinal panel study following up Swiss students who participated in the Programme for 

International Student Assessment (PISA 2000) and who left compulsory schools in the same 

year. For more details on the sample, variables, and availability of the data, see TREE 

(2013a, 2013b, 2013c). Data used here are based on Panel 8 collected in 2010 when most of 

the respondents (N = 2,751) were about 26 years of age. Quality of life was assessed in 

relation to four domains: employment, education, and training; partnership and children; 

social activities (e.g., associations, political organizations or parties, unions, political 

organizations, volunteer work); and leisure (hobbies, sports, recreational activities, contacts 

with friends). Multiple-item global outcome variables were anomie, self-esteem, depression, 

positive emotions, negative emotions, and positive life attitudes.  

The multiple domains of life satisfaction in the TREE survey were derived from the 

German Socioeconomic Panel Study framework (Schimmack, 2008). However, one criticism 

of the original framework noted by Schimmack (2008) is that the domains are not weighted 

by subjective importance (Andrews & Whithey, 1976; Schimmack & Oishi, 2005; 

Schimmack, Diener, & Oishi, 2002), an issue addressed in TREE data by the inclusion of 

subjective ratings of importance. In support of WAM approaches, Schimmack et al. (2002) 

reported that weighted-average measures of domains added to the prediction of global life 

satisfaction beyond what could be explained by unweighted averages. Nevertheless, their 

approach did not distinguish between what here we refer to as normative weighted-average 

models (i.e., the regression weights are not identical for each of the domains, but are identical 

across individuals) and the individually weighted-average model (IWAM based on latent 

interactions where weights vary according to the individual importance placed in each 

domain) presented here. Furthermore, other researchers (e.g., Campbell, Converse, & 

Rodgers, 1976) have argued that there is little or no empirical support for the use of 

importance as a weighting factor, although Hsieh (2013) noted that the role of domain 

importance continues to be a topic in quality of life research. Indeed, Hsieh (2013) argued 

that inconclusive evidence is due substantially to the way that importance weighting is 

assessed. In this respect, there are many parallels between research into quality of life and 

self-concept research reviewed earlier—particularly potential confusion between normative 

WAMs and IWAMs.  
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Measurement Model  

For each of the domains of quality of life, individuals rated satisfaction (1 = very 

unsatisfied to 6 = very satisfied) and importance (1 = entirely unimportant to 6 = very 

important) based on single item ratings. Interactions were based on the cross-product of 

satisfaction and importance ratings. Life satisfaction is related to six global outcomes: 

anomie, self-esteem, depression, positive emotions, negative emotions, and global positive 

life satisfaction. To facilitate interpretations, all negatively worded items and scales are 

reverse-scored so that higher values reflected more positive outcome. After standardizing (M 

= 0, SD = 1) all items, interactions were based on the cross-product of corresponding 

satisfaction and importance ratings.  

The measurement model (see Supplemental Appendix 3A) for these data is based on 

Figure 1, but also incorporates a number of features that are specific to these data. First, each 

of the specific domains (actual and importance ratings) is represented by a single item rather 

than multiple indicators. Although typical in quality of life research, this is a potentially 

important limitation in terms of assessing the factor structure and controlling for 

measurement error (both unreliability in the specific domains and also potential method 

effects in complex measurement structures).  

Second, the global outcome measures consist of a set of six global well-being 

measures. Although global positive life satisfaction is most closely aligned to measures of 

satisfaction in specific life domains, it is important to emphasize that the IWAM is easily 

extended to include multiple outcome measures; indeed constructs such as those considered 

here are frequently used in quality of life research. A typical approach might be to use scale 

scores to represent each of the outcomes or, perhaps, to model each as a latent factor in six 

separate analyses. However, there are important methodological and substantive limitations 

to these approaches that led us to represent all six global outcomes as latent factors in the 

same model. Thus, for example, this allows us to evaluate the factor structure underlying 

these constructs to determine whether the factors are welldefined and distinguishable. Also, 

although beyond the scope of this demonstration, there are many potentially interesting 

analyses that could not be performed if each outcome were considered in separate models 

(e.g., whether the pattern of paths from specific components is invariant over multiple 

outcomes).  

For present purposes, we used exploratory structural equation modeling (ESEM) to 

model the factor structure underlying the six outcome measures. Although a detailed review 

of ESEM is beyond the scope of this investigation (see Marsh et al., 2014; Marsh et al., 2009; 



26 

Morin, Marsh, & Nagengast, 2013), Marsh and colleagues have argued that ESEM represents 

an optimal compromise between the flexibility of exploratory factor analysis (EFA) and the 

parsimony and rigor of confirmatory factor analysis (CFA). Using target rotation, the analyst 

can specify an a priori factor structure as in CFA, but like EFA, ESEM allows items to cross-

load on different factors. Marsh et al. emphasized that the typical CFA structure is almost 

always too restrictive, specifying that each item loads on one and only one factor. Indeed, 

using the ESEM-within-CFA strategy (Marsh et al., 2014), it is possible to transform an 

ESEM into an equivalent CFA model. In this case, CFA is a special case of ESEM in which 

all cross-loadings are constrained to be zero. Simulation and a growing number of real data 

studies (see Marsh et al., 2014) demonstrate that ESEM almost always results in a better fit to 

the data than does CFA and latent factors that are more distinguishable (i.e., less correlated in 

that constraining nonzero factor loadings to be zero typically results in positively biased 

estimates of factor covariances). Although in its simplest form ESEM is the same as EFA, 

ESEM allows researchers to incorporate the full range of CFA and SEM models, such as 

those required to test IWAMs in ways that are not possible with EFAs.  

Results  

As in Studies 1 and 2, we standardized all measured variables (M = 0, SD = 1), 

defined interaction factors as the cross-product of actual and importance ratings, and fit a 

measurement model. The a priori ESEM measurement model (with 15 single-item factors—5 

actual satisfaction, 5 importance, and 5 interaction factors—and the six global outcomes) 

provided an acceptable goodness of fit, χ 2 (484) = 1,999, RMSEA = .034, CFI = .956, TLI = 

.927. (See Supplemental Appendix 3A for syntax for the measurement model and further 

discussion of ESEM.) We then constructed appropriately standardized latent interaction 

models to test the IWAM corresponding to the eights models in Table 1 summarized in 

Tables 4 and 5.  

Model 1  

In the full Model 1, the variance explained is statistically significant for each of the 

six outcomes (Table 4). Consistent with the design of the study, the variance component is 

higher for the global measure of life satisfaction (mult R2 = .447). Indeed, except for positive 

emotions (.301), the variance components for the other global measures of well-being are 

more modest (.128–.144).  

The path coefficients relating all five actual satisfaction factors to the six global 

outcomes are nearly all positive and statistically significant (28 of 30 were significant, 2 were 

not; see Table 5). However, there is substantial variation depending on the outcome and the 
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domain. The largest paths tend to be for the global positive life satisfaction outcome 

(particularly paths from employment, education, and partner domains, but not from social and 

leisure). Nevertheless, the pattern of effects is quite differentiated. Thus, for example, 

employment is the best predictor of positive life satisfaction and positive emotions, but is the 

weakest predictor of self-esteem, whereas the social and leisure domains are the weakest 

predictors of positive life satisfaction but better predictors of positive and negative emotions. 

In contrast to the satisfaction paths, paths from the importance factors are mostly small and 

the majority (17 of 30) are not even statistically significant. In terms of support for the 

IWAM, the critical paths are from the interaction factors. However, these are even smaller 

(the largest was .091) and only 3 of 30 reach statistical significance. 

Models 2 Through 7  

It is relevant to compare variance components in Model 1 (full model) and with those 

in Models 2 through 7 (Table 4). This shows that much of the variance in the global outcomes 

that can  
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be explained by full Model 1 can also be explained by the actual satisfaction ratings alone 

(Model 2) and, to a lesser extent by the importance factors (Model 3). Thus, for example, the 

variance explained in positive life satisfaction is .438 in Model 1 and .394 in Model 2 (Table 

4). In contrast, variance explained in Model 3 (importance only) is .143 and that in Model 4 

(interactions only) is not statistically significant. Although variance components for the other 

global outcomes are smaller than for positive life satisfaction, the pattern of results is similar. 



29 

In particular, none of the variance components for Model 4 (interaction only) is statistically 

significant for any of the six outcome measures.  

Across the entire set of models, those that contain paths from the actual satisfaction 

factors to the global outcomes (Models 1, 2, 5, and 6 in Table 4) explain substantial amounts 

of variance, whereas models that do not contain these paths explain much less variance. In 

particular, unique variance explained by the set of interaction factors (the difference between 

Model 1 and Model 5) is small for all six outcomes; differences in variance components 

varied from .002 (anomie) to .007 (positive emotions). Also, only 2 of the 30 residual 

covariances relating interaction factors and outcomes are statistically significant. 

Nevertheless, due in part to the large sample size, the Wald test comparing Models 1 and 5 is 

statistically significant, providing some limited support for the IWAM.  

Methodologically, analyses of these quality-of-life ratings extend the evaluations of 

IWAMs in several ways that could have generalizability to other research. Thus, the IWAM 

taxonomic approach can be applied even when actual and importance ratings are based on 

single-item indicators, although reliance on these manifest indicators substantially 

undermines the strength of the latent variable approach. Also, the use of such a diverse set of 

outcome variables provides a much richer framework for evaluating IWAMs. Although 

beyond the scope of this demonstration study, it would have been possible to evaluate the 

similarity in the paths across the different outcomes, to evaluate paths in relation to a higher 

order factor that represented all six global outcomes, or to evaluate whether specific (actual, 

importance, and interaction) paths were able to explain significant portions of variance in 

outcome factors beyond the global positive life satisfaction factor. Finally, the introduction of 

ESEM was important in terms of providing an acceptable-fitting measurement model 

compared to the highly restrictive CFA model in which all cross-loadings are constrained to 

be zero. Although ESEM could not be applied to the specific ratings that were based on 

single-item indicators in this study, ESEM offers potentially even more important advantages 

when the specific ratings are also based on multiple indicators (see discussion of job 

satisfaction ratings in Study 4). Substantively, at best the results provide very weak support 

for the IWAM in that across the entire set of 30 interactions (Model 1) only 3 were 

statistically significant and the unique variance attributable to interactions was nonsignificant 

and very small for all six outcomes.  

STUDY 4: TESTING THE INDIVIDUALLY WEIGHTED-AVERAGE MODEL: JOB 

SATISFACTION 

Background to the Application of the IWAM to Job Satisfaction  
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Job satisfaction is among the most widely studied topics on work-related attitudes and 

constructs (Judge, Weiss, Kammeyer-Mueller, & Hulin, 2017). The use of WAMs has a long 

and controversial history in the study of job satisfaction (Quinn & Mangione, 1973; 

Rosenberg, 1957; Vroom, 1964) that has considerable overlap with studies of IWAMs in 

other areas. Thus, Quinn and Mangione (1973) argued that most advocates of WAMs in job 

satisfaction studies used theoretical or common-sense rationales but offered limited empirical 

support in relation to a priori predictions. However, in their empirical study (based on 

alternative methods of weighting specific components by importance ratings in relation to the 

prediction of global job satisfaction), Quinn and Mangione (1973) found, “The data not only 

failed to support the hypothesis that the validity of job satisfaction ratings may be increased 

by weighting them by importance ratings but indicated, on the contrary, that importance-

weighting actually reduced the validity of satisfaction ratings” (p. 1). They noted several 

statistical issues (e.g., high correlations among constructs resulting in multicollinearity, 

restriction of the range, appropriate statistical models, use of ipsative importance scores) 

similar to issues raised in the Marsh– Pelham debates (see earlier discussion) in relation to 

IWAMs in self-concept research. Also similar to Marsh’s (2008) suggestion in relation to 

self-concept research (stemming from James), Quinn and Mangione (1973) argued that the 

strongest test of a WAM would entail a diversity of job facets, at least some of which were 

highly important to a few workers and highly unimportant to most, whereas most studies 

involved job facets selected to be at least reasonably important to all workers. 

Ongoing research about the nature of job satisfaction has not resolved controversies 

about the relevance of WAMs. Thus, as emphasized by Judge et al. (2002; also see Judge et 

al., 2017), “job satisfaction is typically characterized as a global construct that also comprises 

specific factors” (p. 26). In evaluating support for the facet approach to job satisfaction, 

Judge et al. argued that an appropriate test is to predict global job satisfaction with the 

specific domains (essentially Model 2 in the taxonomy), but noted that the domains are so 

highly correlated that an unweighted model does nearly as well (e.g., Model 2 with paths 

constrained to be equal). Similarly, studies that regress job satisfaction domains on global 

outcomes other than global job satisfaction (e.g., global self-esteem, life satisfaction, 

commitment) also are based on an implicit WAM in which the weights are empirically 

determined as regression weights. Furthermore, as noted by Judge et al. (2017), other 

theoretical models such as Locke’s (1976) value-percept theory explicitly weight domains in 

relation to importance (as in the IWAM), whereas other studies evaluate individual-difference 
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variables (other than importance) as moderators of the relation between specific components 

of job satisfaction and global outcomes.  

Measurement Model and Preliminary Analyses  

Following from the facet approach to job satisfaction and the evaluation of their 

relative importance, Stamp (1997) developed the Index of Work Satisfaction (IWS) used in 

this investigation. The IWS is a two-part multidimensional job satisfaction instrument. Part A 

measures satisfaction in relation to six specific domains of job satisfaction based on 

responses to 44 items: pay, professional status, autonomy, organizational policies, task 

requirements, and interactions. Part B consists of paired-comparison ratings of all possible 

combinations of the six specific domains. For each of these 15 paired-comparison ratings, 

respondents selected the one that they felt meant the most to their feeling of job satisfaction. 

In this investigation, outcome measures were multi-item scales that measure global job 

satisfaction, global self-esteem, and global work self-concept. The participants (332 

registered Australian nurses) had a mean age of 46 years old (SD = 9), were mostly female 

(94%), and had an average of 23 years of working experience (for more detailed descriptions 

of the data, measures, and participants, see Cowin, 2002; Cowin, Johnson, Craven, & Marsh, 

2008).  

The measurement model is based on Figure 1, but also incorporates a number of 

features that are specific to these data. Preliminary factor analyses (ESEMs) revealed the 

necessity of splitting the interactions factor into two separate factors (nurse–nurse 

interactions and nurse–doctor interactions), a possibility specifically noted by Stamps (1997). 

A distinctive aspect of these data is the use of paired-comparison ratings of the specific 

domains in which the most important domain of each pair is scored +1 and the other domain 

was scored −1. Summing the responses for each domain provides a measure of relative 

importance that overcomes some potential problems with Likert-scale responses. However, it 

also results in ipsative scores (i.e., they sum to zero for each participant) that complicate the 

statistical analyses. In particular, any one of the scales is completely determined by the other 

five scales, so that one of the scales must be excluded from the analyses to avoid a positive 

nondefinite matrix (Cattell, 1944; Jackson & Alwin, 1980; also see Marsh, 1993; in relation 

to IWAMs) needed to pursue factor analysis models.  

Another complication is the construction of the interaction terms. When the number 

of items measuring specific domains and their importance is the same, and particularly when 

there is a logical matching of specific domain and importance ratings (as in the self-concept 

data), the construction of indicators for the interaction factors is straightforward. However, 
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when the numbers are not the same and there is no one-to-one matching, there has been 

considerable discussion of how to form the interaction indicators. In their original 

presentation of the product-indicator approach to latent interactions, Marsh, Wen, and Hau 

(2004, 2006) proposed that the strategy should use all the importance and specific-domain 

items, but not reuse any of the items (see Supplemental Appendix 1G for further discussion).  

In this investigation where there is only one importance score per domain, it would be 

possible to construct 44 crossproduct terms—one for each of the specific items. However, 

particularly when the number of specific rating items is substantial as with these data, the 

resulting number of variables becomes unwieldy. An alternative used here is to construct 

factor scores for each of the specific domains in preliminary factor analyses, and then to use 

the factor scores to construct the interaction terms. Thus, the final measurement model 

contained a total of 75 measured variables: 44 items representing seven specific domains, five 

importance scores (noting that one had to be left out because they were ipsative), seven 

interactions (the cross-product of factor scores representing the seven factors and their 

corresponding importance score, noting that because there were two social relation factors 

but only one social relation importance score, the one importance score for social relations 

was used to form interactions with both the specific social relation factors), and 18 items 

designed to measure the three global outcomes.  

We again used ESEM (see earlier discussion in relation to quality of life data) to 

model the factor structure underlying the three global outcome factors as well as the seven 

factors representing domain-specific satisfaction factors. Following the strategy used by 

Marsh, Nagenghast, Morin, Parada, Craven, and Hamilton (2011; also see Marsh et al., 

2014), separate ESEMs were performed for the specific and global factors, but included in a 

single analysis (along with importance and interaction scores). In this way, specific items 

were allowed to cross-load on different specific factors and global items were allowed to load 

on different global factors, but specific items were not allowed to load on global factors and 

global items were not allowed to load on specific factors. Thus the specific and global factors 

were not contaminated by each other at the level of individual items.  

Following the general approach, we constructed a measurement model to represent 

appropriately standardized solutions for each of the eight models in the taxonomy (Table 1). 

We began by standardizing all measured variables (M = 0, SD = 1), defining single-measure 

indicators of the seven interaction factors as the cross-product of the specific domains (a 

factor score for each domain) and importance ratings, and fitting a measurement model based 

on all 75 measured variables (as previously described). We then used factor loadings from the 
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measurement model to construct appropriately standardized latent interaction models to test 

the eight IWAM models in Table 1. The overall measurement model provided an acceptable 

goodness of fit, χ 2 (1330) = 2,158, RMSEA = .039, CFI = .931, TLI = .923, noting that the 

fit for all eight models in the taxonomy is necessarily the same as the measurement (see 

earlier discussion). Next we summarize results based on the application of the taxonomy of 

models to these data.  

Model 1 

In the full Model 1, the variance explained is statistically significant for each of the 

three outcomes (Table 6). Consistent with the design of the study, the variance component is 

highest for the global measure of job satisfaction (mult R2 = .809) and also very high for the 

job self-concept (.718), but substantially smaller for global self-esteem (.208) that was not 

specific to the work setting. The path coefficients relating all seven actual satisfaction factors, 

importance factors, and interaction factors to the three outcomes (Table 7) are quite different 

from those in Studies 1 through 3; only 4 of 57 path coefficients are even statistically 

significant. In relation to each of the three outcomes, by far the largest contribution is for the 

specific satisfaction rating of professional standing. Indeed, only one other path (from task to 

job satisfaction) is statistically significant. In terms of support for the IWAM, the critical 

paths are from the interaction factors. However, none of these interaction terms contributes 

significantly to the prediction of any of the global outcome factors.  

Models 2 Through 7 

The variance components for these models show that much of the variance can be 

explained by various subsets of the 57 paths in the full Model 1. However, given the results 

for Model 1, it is not surprising that all models with the 21 paths from the seven specific 

satisfaction domains to the three outcomes are able to explain most of the variance explained 

by Model 1. Indeed, the fit of Model 2 that has only 21 of these paths does not differ 

significantly from that of the full Model 1 with all 57 paths (Wald = 42, df = 36, p = .298).  
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Although Model 1 is able to explain marginally more variance in each of the global 

outcomes than Model 2, the differences in the variance components in the two models are all 

less than one standard error for each of the outcomes (Table 6), suggesting that the 

differences are due to capitalization on chance. In summary, results based on these job 

satisfaction data provide no support for the IWAM. Methodologically, analyses of these job 

satisfaction data have several distinctive features that are likely to have broad generalizability 

to other applications. Thus, for example, although the use of ipsative importance ratings 

poses statistical complications, they are easily incorporated into our IWAM taxonomy. Also, 

the approach used to construct interaction terms provides a practical solution to the use of the 

productindicator approach when there are large numbers of specific rating items. Finally, the 

study demonstrated how two separate ESEMs (one for specific actual rating factors and one 

for global rating factors) can be incorporated into a single model such that the two sets of 
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factors based on each set of items are not confounded. Substantively, the results provide a 

clear lack of support for the IWAM. 

 

 

DISCUSSION: OVERVIEW, STRENGTHS, WEAKNESSES, AND DIRECTIONS 

FOR FURTHER RESEARCH 

Dating back at least to the time of William James, psychologists and other applied 

researchers have posited heuristic, intuitive, theoretical models based at least implicitly on 

IWAMs. The IWAM is so intuitively appealing that applied researchers continue to argue for 

this model even when empirical support for it is largely nonexistent. Following from James’s 

initial proposal in relation to self, there is a particularly long and at times controversial 

research literature on the IWAM in self-concept research. Nevertheless, despite repeated 

claims and counterclaims, there now exists a clear operationalization of tests of IWAMs 

(Figure 1), which suggests a lack of support for IWAMs in self-concept research. 

Furthermore, even a cursory review of the application of IWAMs in the study of quality of 

life and job satisfaction reveals that many of the issues identified in self-concept research, as 

well as the lack of support for IWAMs, generalizes to these other areas of research as well. 

Indeed, given the prevalence of the issue, it is perhaps surprising that there have not been 

more cross-citations to these related issues and similar findings across different areas of 

research. We suggest that one of the reasons might be that applied researchers in these fields 

of research have concentrated on narrowly focused issues and jargon that is idiosyncratic to 

that area, rather than seeking a broader, more generic methodological framework. Hence, our 

overarching purpose is to propose a general taxonomic paradigm for testing IWAMs, and to 

demonstrate its application across simulated and real data applications. 

Issues Arising From the Application of the Taxonomic Paradigm for Testing IWAMs  
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The simulated data clearly demonstrate that the taxonomic paradigm for testing 

IWAMs (Figure 1 and Table 1) works for ideal data. For simulated data designed to support 

the IWAM the results clearly support it, and for simulated data designed not to support the 

IWAM the results clearly do not support it. We then applied this taxonomic approach to 

testing IWAMs to three diverse data sets reflecting appropriately “messy” real data. There 

were different methodological and statistical complications in the construction of appropriate 

measurement models in each of these data sets. Indeed, many of these issues and the 

proposed resolutions are likely to be of interest to applied researchers more generally as well 

as those testing IWAMs. Nevertheless, in each instance once an appropriate measurement 

model was constructed, application of the taxonomy and tests of the IWAMs were 

straightforward. From this perspective of facilitating the application of this taxonomic 

paradigm, it is also relevant to discuss some of the issues raised in the analyses presented 

here as well as strengths, limitations, and possible directions for further research. 

Individually and Normatively Weighted-Average Models 

In the applied and substantive research literatures into WAMs, the most persistent 

source of confusion is the difference between IWAMs that are our focus and what we refer to 

as normative WAMs. One possible interpretation of a WAM is that the paths leading from 

actual factors to global constructs (i.e., β1–β3 in Figure 1) are not identical. Although 

potentially interesting and easily tested within the framework of the taxonomic paradigm 

(i.e., Model 2 with equality constraints), this issue is largely irrelevant to tests of the IWAM. 

This is clear from a statistical perspective in that the existence or nonexistence of first-order 

“main” effects (that are the focus of normative WAMs) says nothing about the existence or 

nonexistence of interaction effects (that are the focus of IWAMs). From a more substantive 

perspective, the essence of the IWAM is that the relative contribution of the actual factor for 

a given domain differs systematically from individual to individual as a function of how 

important that domain is to a particular individual (i.e., the effects of actuals is moderated by 

importance). In contrast, in Model 2 (i.e., actuals only; β1–β3 in Figure 1) the weight for a 

given actual factor is exactly the same for all individuals; the weights might or might not vary 

for different factors but are constant across individuals for any one actual factor. Thus 

whether these paths are the same or different has no bearing on support for IWAMs. In this 

sense, a potentially important contribution of the taxonomic paradigm is to clarify this 

distinction and eliminate this widespread source of confusion between normative WAMs and 

IWAMs.  

Tests of Latent Interactions  
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Interaction effects (i.e., β7–β9 in Figure 1) are a critical feature of the taxonomic 

paradigm, but also of relevance to applied and substantive researchers more generally. 

Although widely applied (and sometime misunderstood) in relation to manifest models, there 

are important advantages and additional complications in testing latent interactions. Here we 

used the product-indicator approach (see Figure 1) to construct latent interaction factors. 

Although there are alternative approaches to testing latent interactions (see overview by 

Marsh et al., 2013; Marsh et al., 2006; Marsh et al., 2012), the two most widely used 

approaches are the product-indicator approach used here and the LMS approach available in 

Mplus (as well some other specialized software packages). The choice of the product-

indicator approach was, in part, pragmatic in that the LMS is numerically intensive and not 

feasible when there are more than two or three latent interactions, as will typically be the case 

in IWAMs (see Supplemental Appendix 1D, an LMS analysis of the simulated data).  

Although somewhat tangential to this investigation, we also note that for higher order 

polynomials (e.g., quadratic and cubic effects) in combination with interactions or higher 

order interactions that involve more than two latent variables, the adverse effects due to 

measurement error are likely to be much larger than those with simple latent interaction 

because these errors aggregate multiplicatively. Research into these polynomials and higher 

order interactions, however, is limited. Indeed, we suspect that it would be difficult to test 

these with product-indicator models and might be impossible with the LMS approach as 

currently specified, but might be possible within the evolving Bayesian framework (Marsh et 

al., 2012). A complication with the product-indicator approach is how to match multiple 

actual indicators with multiple importance indictors. This is relatively straightforward in 

some applications (e.g., Studies 1 & 2), and there is a wide variety of different strategies that 

can be used when the matching is not straightforward. In Study 4 (job satisfaction data) we 

demonstrated a new approach to this problem in which the interactions were defined in 

relation to factor scores reflecting each specific actual factor. In this study, there was only a 

single importance indicator for each domain. However, if there had been multi-item 

importance factors, it would also be possible to construct factor scores representing both the 

actual and importance factors that could be used in creation of the interaction terms. This 

two-step approach clearly is desirable from a parsimony perspective, and also consistent with 

the suggestion that interaction terms should use all of the items but not reuse any of the items 

(Marsh, Wen, & Hau, 2004). Nevertheless, because this pragmatic approach is apparently 

new, there is need for further application to evaluate its appropriateness across a variety of 

situations and its relative effectiveness in relation to other approaches. We also note, 
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however, that once the appropriate measurement model has been established (which includes 

interaction terms), the taxonomic approach used here is appropriate no matter how the latent 

interactions are constructed.  

Applied researchers attempting to detect latent interactions also need to be cautious in 

interpreting the goodness of fit of these models, which often is used as a very important (or 

even the sole) criterion in assessing the hypothetical model of the relationships. Using 

goodness of fit for models with latent interactions becomes complicated due to a number of 

issues. First, as in other SEM models, goodness of fit reflects the fit of the whole model and 

thus is not sensitive to any change related to the latent interaction paths alone. Second, the 

saturated and null models for the product-indicator models and LMS approaches are not well 

defined, thus making fit indexes difficult to interpret. Note also that conventional fit indexes 

as well as likelihood tests are not sensitive to nonlinear relations between latent variables 

(Mooijaart & Bentler, 2010). Thus, as illustrated in Study 1 with simulated data, a model with 

no interactions provided an exceptionally good fit to the data even though the taxonomy of 

models in Table 2 showed that the latent interactions were highly significant and 

substantively meaningful. In the approach used here, goodness of fit was an important 

consideration in the evaluation of the initial measurement model that was the basis of 

subsequent tests of IWAMs but not for a priori substantive tests of predictions based on the 

IWAMs. A good-fitting measurement model might or might not support IWAM predictions, 

and support or nonsupport of IWAM predictions does not undermine support for the fit of the 

measurement model. Finally, the use of highly sophisticated statistical tools such as SEMs 

can mislead otherwise knowledgeable applied researchers into thinking that well-known 

problems that exist with less complicated approaches are no longer relevant. Although we 

have focused on important advantages to the use of latent variable approaches to these 

problems, the reader should not think that the latent variable approaches are a panacea for all 

of the complications in evaluating interaction and nonlinear effects. Theoretical and empirical 

research (e.g., Aiken & West, 1991) demonstrates that there are many inherent difficulties in 

estimating interaction effects, even when manifest (nonlatent) variable approaches are used. 

Misspecified models could be a problem. Also, even when the parameter estimates are well 

defined, there is a range of approaches to visualize interaction effects (and their substantive 

importance) in manifest applications that have not been routinely implemented in latent 

interaction studies. These include, for example, testing the statistical significance of simple 

slopes (i.e., whether the effect of one predictor variable is statistically significant at a certain 

value of the other predictor variable; see Figure 2), regions of significance (i.e., the range of 
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the moderator values for which the relation between X1 and Y are statistically significant), 

and, when one predictor is categorical and the interaction is disordinal, the crossing point of 

the two regression lines (see, e.g., Preacher, Curran, & Bauer, 2006). Furthermore, the 

analysis of interaction effects becomes more problematic when the relation between a given 

independent variable and the dependent variable is nonlinear or when the correlations among 

the interacting variables become increasingly large. There is no reason to suggest that 

problems and strategies such as these are not also relevant for latent variable approaches. 

ESEM Versus CFA  

The IWAM can be tested with either ESEM or CFA, and the decision should be 

largely empirical based on a comparison of the measurement models using the two 

approaches. If the fit of the CFA model is not meaningfully worse than the corresponding 

ESEM, and the factor correlations based on the two approaches are similar, then the CFA 

should be preferred in terms of parsimony. Thus, for example, in Study 1 based on data 

simulated from an ICM-CFA model (with all cross-loadings constrained to be zero), CFA 

provides a more parsimonious solution that is essentially the same as the ESEM solution, and 

thus is preferable. However, a growing body of research with real data shows that the CFA 

models with no cross-loadings generally result in poor fits to the data and positively biased 

factor correlations that undermine the distinctiveness of the latent factors (Marsh, 2014; 

Morin et al., 2013). Study 4 also demonstrated an interesting variation on the traditional 

ESEM model in that two separate ESEM structures were incorporated into the same analysis. 

This was important in terms of not contaminating the outcome factors with crossloadings 

from the actual factors. However, this feature of ESEM would be particularly useful in 

studies where there are multi-item scales for both actual and importance factors. Thus, for 

example, it would be possible to have separate ESEMs for actual and importance factors (and 

even allow correlated uniquenesses for matching actual and importance items) but still 

constrain importance items not to load on actual factors and actual items not to load on 

importance factors (e.g., Marsh, Nagengast, et al., 2011). These issues are particularly 

important here because of the potential overlap in the different global measures of well-being 

and the items designed to measure them. More generally, ESEM is a useful tool to reduce the 

typically positively biased correlations among specific actual factors and among specific 

importance factors typical in IWAM studies. Again, however, it is important to emphasize 

that the choice between ESEM or CFA is related to which approach provides the most 

appropriate measurement model, whereas the application of taxonomic paradigm is 

essentially the same for either of these approaches. 
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Summary of Substantive Issues  

It might seem surprising that the lack of support for IWAMs is so consistent across 

the three real data studies, given the diversity of research areas, the issues in each area of 

research, and complications specific to each of the applications considered here. However, 

this result is apparently consistent with research in each of these different areas. 

Substantively, these results call into question the usefulness of the assumptions underpinning 

IWAMs that have been the implicit or explicit basis of so much research in psychology as 

well as the social sciences more generally. Nevertheless, across many different fields of 

application, there seems to be ongoing confusion about how to formulate appropriate tests of 

IWAMs, appropriate statistical approaches to use in their tests, and appropriate interpretation 

of the results. In this respect, the failure to find support for IWAMs should be seen as a 

strength rather than a limitation of the taxonomic paradigm. Indeed, this is why it was 

important to demonstrate that this approach provided clear support for the IWAM based on 

simulated data, even when there seems to be little or no support for IWAMs based on real 

data. Nevertheless, our intent is not to claim that there is never support for IWAMs, but 

merely to provide a common framework for applied researchers to use in testing this 

suggestion. However, it will be interesting to see if future research is able to support IWAMs 

using the taxonomic paradigm approach or, indeed, if reanalyses of previous research 

claiming to support IWAMs actually do support it when evaluated in relation to the 

taxonomic paradigm approach.  

Although the focus of this article is on the methodology used to test IWAMs, it is also 

relevant to speculate on possible substantive explanations for the failure to support IWAMs. 

Although there is clearly variation in the importance ratings the respondents give to different 

domains, this might provide support for normative WAMs (in which the rank-ordering of 

importance is similar across different respondents) rather than IWAMs emphasized here. It is 

also possible that importance ratings are not valid indicators of actual importance. Clearly the 

importance ratings have face validity and when there are multiple indicators of each 

importance factor, there is psychometric evidence that the multiple indicators form a latent 

factor. However, Hattie and Fletcher (2005) found that there was only weak agreement 

among a range of different nomographic and idiographic approaches used to assess 

importance (ranking, identity scenarios, magnitude scaling, personal importance ratings, 

paired comparisons, and the Brunswick lens modeling) and no support for IWAMs based on 

any of them. They concluded that importance is so elusive and difficult to articulate in 
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measurement terms that it might not be possible to conceive of self-concept as a weighted 

average of specific components of self to form self-esteem. 

The problem might also be with the global outcomes being used in which participants 

make ratings based on irrelevant information (see Schwarz & Strack, 1999; in relation to 

subjective well-being and discussion of the Chameleon effect by Marsh & Yeung, 1999) 

rather than the rational aggregation of different components implicit in IWAMs. However, 

some of the outcome measures have been widely validated and not all the outcomes require 

participants (even implicitly) to combine multiple components (e.g., positive and negative 

emotions, anomie, and depression in Study 3). Although all these possibilities and many 

others have been considered (for further discussion see Hattie & Fletcher, 2005; Marsh, 1995, 

2008; Pelham, 1995a; Scalas et al., 2013; Scalas et al., 2017; Scalas et al., 2014) even 

advocates of the Jamesian perspective such as Pelham (1995b) acknowledged that if “James 

were around today, I suspect that he might feel that is has been embarrassingly difficult for us 

to uncover support for one of his simplest psychological insights” (p. 1165). In his classic 

review of weighted-average approaches, Wainer (1976) concluded that humans are not very 

good at differentially weighting constructs so that simple unweighted averages consistently 

outperform weighted averages based on human judgment. This led him to conclude that the 

best way to weight constructs is to simply ignore the weights because in relation to choosing 

optimal weights “it don’t make no nevermind” (colloquially meaning “it makes no 

difference”; p. 213). From Wainer’s perspective, perhaps it is not so surprising that support 

for IWAMs is so weak. Weighted averages based on human judgment have a long history of 

not working, so why should this one be any different? Although there seems no completely 

satisfactory explanation for the failure of IWAMs, the methodology proposed here provides a 

more solid base to pursue these substantive concerns. 
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