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Abstract

From the time of William James, psychologists have posited individually importance-
weighted-average models (IWAMs) in which weighting specific attributes by individual
measures of importance improves prediction of the global outcome measures. Because
IWAMSs cause much confusion, we briefly review a general taxonomic paradigm and
structural equation models for testing IWAMSs, and demonstrate its application for 2
simulated and 3 diverse “real” data applications (multidimensional measures of self-concept,
quality of life, and job satisfaction). Consistent across the real data applications and previous
research more generally, there is surprisingly little support for IWAMs when tested
appropriately. In these diverse tests of IWAMSs we integrate new approaches such as
exploratory structural equation modeling (SEM), alternative approaches to constructing latent
interactions, application of bifactor models, modeling method and item-wording effects, and
the juxtaposition of model evaluation in relation to goodness of fit (typically used in SEM

studies) and variance explained (typically used in multiple regression tests of IWAMS).
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Individually Weighted-Average Models: Testing a Taxonomic SEM Approach Across
Different Multidimensional/Global Constructs Because the Weights “Don’t Make No
Nevermind”

This study is a substantive-methodological synergy in which new and evolving
structural equation modeling (SEM) methodology is used to address substantively important

issues (Marsh & Hau, 2007). The particular focus is on stronger SEM tests of individually
importance-weighted-average models (IWAMs) in which weighting specific attributes by
individual participant ratings of the importance of each attribute improves prediction of the
global outcome measures. We begin by providing an overview of apparently similar
methodological issues related to testing IWAMs that have independently been identified in
diverse research literatures with surprisingly little cross-citation in relation to these problems.
In the research reviewed here, there is little support for IWAMSs, reminiscent of the classic
review by Wainer (1976) in which he concluded that humans are so bad at differential
weighting variables that it is best to ignore the weights because they “don’t make no
nevermind” (colloquially meaning “it makes no difference”; Wainer, 1976, p. 213)—a phrase
that we also use in the title of this article as a tribute to Wainer. We then present a broadly
applicable methodological approach to problems identified in each of these disciplines based
on evolving SEM approaches to testing latent-variable interactions and demonstrate its
application in four studies. The first is a simulation study using a didactic approach to
illustrate this approach with clear documentation that makes it easy for applied researchers to
apply the approach to their own research. We then analyze “real” data applications that are
realistically complex, demonstrating variations in the application of our IWAM approach
from three diverse research literatures. Although each of the real data applications is
substantively meaningful in its own right, our focus in on the methodological issues raised by
each of these applications that are broadly relevant to other research and on how they can be
addressed within the context of our latent variable approach to IWAMSs. Dating back at least
to James (1963), psychologists and applied social science researchers more generally have
posited weighted-average models for data analysis. In the general paradigm, a set of specific
attributes (e.g., multiple domains of self-concept, quality of life, job satisfaction) are related
to one or more global outcome measures (e.g., global self-esteem, life satisfaction, overall job
satisfaction). According to the individually weighted-average model (IWAM), weighting
each of the specific components by the importance placed on the component by each
individual will provide a better prediction of the global outcome measure than if the weight

assigned to each component is the same across all individuals. Despite the apparent simplicity



of this model, it has caused much confusion in how to test the model and what constitutes
support for it. Our purpose is to briefly review a general paradigm and SEMs for testing
IWAMSs, demonstrate its application with simulated data, and then illustrate its versatility in
three diverse real data applications.

INDIVIDUALLY WEIGHTED-AVERAGE MODELS IN SELF-CONCEPT
RESEARCH

We begin with a brief review of the use of of IWAMs in self-concept research. This
research is relevant in that the IWAM has a particularly long history and has been the basis of
many studies, critical reanalyses, and highly contested debates that still have not been
completely resolved in relation to the substantive literature. More generally, this research
literature is indicative of the surprising complexity involved in tests of IWAMs in other areas
of research. In self-concept research (Marsh, 2008) IWAMs are widely attributed to James
(1963), who proposed that the best representation of a person’s overall self-evaluation is an
appropriately weighted average of self-evaluations in specific domains. James noted that
because a person cannot be all things, each individual must select carefully “the strongest,
truest, deepest self on which to stake his salvation” (p. 310), so that “I, who for the time have
staked my all on being a psychologist, am mortified if others know much more psychology
than 1. But | am contented to wallow in the grossest ignorance of Greek” (p. 310). Objective
accomplishments are evaluated in relation to internal frames of reference so that “we have the
paradox of a man shamed to death because he is only the second pugilist or the second
oarsman in the world. Yonder puny fellow, however, whom everyone can beat, suffers no
chagrin about it, for he has long ago abandoned the attempt to ‘carry that line’” (p. 310).
Putting the two ideas together, James concluded that our sense of self “depends entirely on
what we back ourselves to be and do” (p. 310). Despite this long history, the lack of empirical
support for IWAMs, as embodied in the Jamesian perspective, was highlighted in the
extended debate that largely appeared in the Journal of Personality and Social Psychology
between Marsh (1986, 1993, 1994, 1995, 1996; Marsh & Sonstroem, 1995; also see Marsh,
2007) and Pelham (Pelham, 1991, 1993, 19953, 1995b; Pelham & Swan, 1989), which
included multiple original studies, reanalyses, responses, and counterresponses using diverse
data sets collected by both researchers. When rigorously evaluated with appropriate statistical
tools, individually importance-weighted averages tend to predict self-esteem less well—

certainly no better—than averages of self-concepts in specific domains that simply ignore



importance ratings. Marsh (1995) concluded that even though there were lingering areas of
disagreement, both he and Pelham agreed that support for the Jamesian perspective and the
individual importance hypothesis (the basis of the IWAMs presented here) was surprisingly
weak. Similarly, Pelham (1995b, p. 1165) acknowledged that if “James were around today, I
suspect that he might feel that it has been embarrassingly difficult for us to uncover support
for one of his simplest psychological insights” Hardy and Moriarty’s (2006) review similarly
concluded that support for IWAMs remained elusive.

Nevertheless, despite the apparent lack of empirical support for this Jamesian
perspective as embodied in IWAMSs, there is a dramatic disjuncture between the accepted
psychological wisdom of many leading selfesteem researchers and actual research findings.
Thus, in Kernis’s (2006) monograph Self-Esteem: Issues and Answers, some of the world’s
leading self-esteem researchers cited some version of this Jamesian perspective as a well-
established psychological principle without considering dissenting evidence (e.g., Harter,
2006; Mruk, 2006; O’Brien, Bartoletti, & Leitzel, 2006; Owens & McDavitt, 2006;
Rhodewalt, 2006; Showers & ZeiglerHill, 2006; Tevendale & Dubois, 2006; VVonk, 2006).
Indeed, within self-esteem research circles, the Jamesian perspective continues to be widely
cited as a well-established psychological principle, one that has a solid theoretical and
empirical basis and has withstood the test of time for more than a century. In dramatic
contrast, there is little rigorous empirical support for this widely held assumption, and
apparently none that suggests that it is either strong or robust (see Marsh & Hattie, 1996).
Thus, Hattie (2003) concluded that the logic of this Jamesian perspective is so intuitively
compelling that it has “been one of the more enduring claims in the psychological literature”
(p. 137) even though there is little empirical support for it.

As repeatedly emphasized by Marsh and colleagues (Marsh, 1993, 1994, 1995, 2008;
Scalas, Marsh, Nagengast, & Morin, 2013; Scalas, Marsh, Vispoel, Morin, & Wen, 2017;
Scalas, Morin, Marsh, & Nagengast, 2014) in the self-concept literature, the apparent
problem has been in the failure to specify an appropriate statistical model with which to test
the theoretical predictions. Indeed, there have been several examples in publications claiming
to support the individual weighted-average model that were shown to provide little if any
support when the appropriate statistical model is applied (see Marsh, 1995, 1996, 2008;
Scalas et al., 2013). Based on this ongoing research in relation to self-concept theory, a more
appropriate statistical model has evolved that provides clearer tests of the model and clarity to
potential areas of confusion. In this investigation, we more fully develop a taxonomic

approach to testing IWAMSs based on simulated data, briefly review how apparently similar



problems have arisen in diverse areas of research where IWAMSs have been applied, and
demonstrate its versatility in three diverse real data applications (multiple and global

measures of self-concept, quality of life, and job satisfaction).

INDIVIDUALLY WEIGHTED-AVERAGE MODEL: A GENERAL
PARADIGMATIC APPROACH

Historically the IWAM has been applied to manifest measures; either single-item
ratings or scale scores representing each of the specific components, their importance, and the
global outcomes they are designed to predict. More recently, stronger latent variable models
are used in which some or all of the components are represented by latent variables based on
multiple indicators. In the latent variable version of the paradigm model (Figure 1) there are
three specific domains, each based on multiple indicators. Critical components are as follows:
e Actuals (actl, act2, and act3 in the upper left corner), which represent, for example,

ratings of the multiple domains of a multidimensional construct. In self-concept research
these might be academic, physical, or social self-concept, but could also represent other
areas of research; dimensions of job satisfaction (e.g., pay, relations with colleagues,
working conditions), or quality of life (e.g., work, family, leisure).
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multiple domains of self-concept, multiple domains of job satisfaction, multiple domains of quality of life, or sclf-perceptions of multiple domains in other
areas for which individuals also rate the importance of each of the domains. Although not presented here, corelations within each of the three sets of predictor
tactors (i.e., covariances among Actl, Act? and Act3) are freely estimated.

Importance (impl, imp2, imp3 in the lower left corner), which represent ratings of the
importance that each individual places on each domain (e.g., how important is physical
competence to you).

Actual-by-importance interactions (intl, int2, int3 in the upper right corner) representing
the multiplicative combination of the actual and importance rating for each domain.
These test the critical assumption of the IWAM, the effect of an act domain is moderated
by its importance. For example, the IWAM predicts that if an individual perceives the
physical domain of self-concept to be most important, then the physical domain should
contribute more positively to the prediction of global self-esteem than do other
domains—that the interaction is statistically significant and positive. In relation to a
simple-slopes perspective (Aiken & West, 1991), the slope of the regression line relating
physical self-concept to global self-esteem is significantly steeper for individuals who
perceive the physical domain to be more important.

Global outcome (in the lower right corner) and the path coefficients (f6—39) relating each
of the latent variables (actuals, importance, and interactions) to the global measure. The
critical assumption is that at least some of the paths leading from the latent interaction
terms to the global outcome (B6—fB9) are positive, statistically significant, and sufficiently

large to be substantively meaningful. In particular, even if statistically significant, a



negative path (assuming that the domain is positively oriented) provides clear support
against the IWAM prediction—perhaps even more negative than if the path were

nonsignificant.

Of course, this paradigmatic model is highly flexible in terms of the number of
domains, the number and nature of the global outcomes, nature of the measurement model
underpinning it, and the inclusion of additional variables. However, even this simple model
provides a good starting point for illustrating the confusion that has resulted from IWAMs.

The starting point for IWAMs is a well-fitting measurement model. Indeed, many of
the problems in the application of IWAMs (particularly when based on manifest variables in
multiple regression analyses rather than latent variables in SEM analyses) stem from the
failure of the underlying measurement model. Thus, for example, if the multiple indicators of
the multiple specific domains do not accurately reflect the constructs they are designed to
measure, or the multiple constructs are so highly correlated they cannot be adequately
distinguished, then it makes little sense to apply the full IWAM. Thus the famous philosopher
and storyteller, Mark Twain, is reputed to have said, “The thirteenth stroke of the clock is not
only false of itself, but casts grave doubt on the credibility of the preceding twelve” (see
https://en.wikipedia.org/wiki/Thirteenth_stroke of the_clock). For now, let us assume that
there is a well-fitting measurement model in relation to conventional indexes of fit, and that
the various components can be adequately distinguished from one another.

A typical starting point is to evaluate how well the actuals are able to predict the
global outcome measure (13 in Figure 1). A naive interpretation might be that there is
support for the weighted-average model if these paths explain a significant amount of
variance in the global outcome and are significantly different from each other (i.e., the model
with B1 = B2 = B3 can be rejected). However, even this simple starting point is fraught with
interpretational difficulties that are the basis for much of the confusion in the application of
this model.

Most importantly, the B1 through B3 paths in Figure 1 are largely irrelevant to tests of
the IWAM. In particular, they represent normative differences in the relation between each of
the specific domains and the global outcomes that generalize across individuals in the group
being tested. A finding that B1 > 2 > 33 does support weighting the components differently
at the normative group level, but not at the individual level. To clarify this critical issue,
assume that the first domain (Act 1) is seen as most important by the group as a whole in

terms of predicting self-esteem (B1 > B2 > B3). However, all individuals are assigned the



same higher value for B1 and the same lower value for B2 and p3— independent of their
individual importance ratings. For example, even if a particular individual rated Act 3 as most
important and Act 1 as least important, this individual would still be assigned the same values
(B1 > B2 > B3) as everyone else. In contrast, the IWAM would require that the importance for
this individual should be higher for Act 3 than Act 1, even though this was different for the
group as a whole. To clarify this issue, Marsh and colleagues (Marsh et al., 2008; Scalas et
al., 2013; Scalas, Morin et al., 2014) referred to this as the normatively weighted-average
model (WAM) to distinguish it from IWAMSs. Thus, in the normative WAM the weights can
differ for the different domains, but not according to different individuals. The different
weights for each domain can be determined a priori on the basis of theory or design, or
empirically based on information from the domain ratings using techniques such as factor
analysis or a multiple regression that determines an empirically optimal set of weights in
relation to global outcomes. Support for any of these normative WAMSs would argue for the
usefulness of a normative WAM in which every individual had the same (total-group or
normative) weight for any particular domain, but not an IWAM.

Support for IWAMs requires that for individuals who place more importance on the
first domain than do other individuals (i.e., higher values of impl in Figure 1), the
contribution of the first domain (actl in Figure 1) should be greater—positive if actl is high
and negative if actl is low. In terms of the paradigmatic model, support for the IWAM
requires that the actual-by-importance interactions are significantly positive and make a
substantively meaningful contribution to variance explained in the global outcome. The
IWAM is not supported if the set of interaction effects does not contribute to variance
explained in the outcomes, or if the direction of the interaction effects is not positive
(assuming that all the constructs are positively oriented). Operationalizing Latent Interaction
Effects A complication in Figure 1 is the estimation of latent interactions that are critical in
testing IWAMSs. The estimation and interpretation of interaction effects is an important
concern in psychology and the social sciences more generally, but particularly in relation to
latent variables this remains an area in which best practice is still evolving (see overview by
Marsh, Hau, Wen, Nagengast, & Morin, 2013; Marsh, Wen, & Hau, 2006; Marsh, Wen,
Nagengast, & Hau, 2012). Although alternative approaches are available, there are two broad
approaches that have been used to test IWAMs and latent interactions more generally, the
product-indictor approaches (Joreskog, 1998; Kenny & Judd, 1984; Marsh, Wen, & Hau,
2004), and the latent moderated structural equation modeling (LMS) approach (Klein &
Moosbrugger, 2000; Klein & Muthén, 2007). In this investigation we used the unconstrained



product-indicator approach (Figure 1; see also Supplemental Appendix 1D, for present
parallel analyses based on LMS). Nevertheless, there are complications involved with both
approaches. One important limitation of the LMS approach is that it is only readily available
with the Mplus package and specialized software. In contrast, the product-indicator approach
is easily implemented with any standard SEM software. Also, the LMS approach as
operationalized in Mplus is very numerically intensive and might not be realistic when there
are more than three or four latent interactions in the same model (depending on the number of
domains, the IWAM might involve as many as eight or more latent interactions—one for
each domain). Furthermore, the LMS approach does not have a properly defined null model
and thus does not provide general fit statistics (although information criteria such as Akaike’s
information criterion can be used to compare models). Nevertheless, the LMS approach
overcomes many of the limitations in how indicators are formed in the product-indicator
approach. In the product-indicator approach the latent interaction factors are constructed and
identified with product indicators. Each product indicator is a cross-product of actual and
importance indicators. In Figure 1, for example, there are three indicators of actl and three
indicators of impl. These are used to define three interaction indicators such that intli = actli
x impli where i varies from one to three when there are three indicators. This is reasonable
when the act indicators are matched to the imp indicators as in this example. However, when
the number of imp indicators differs from the number of act indicators, there is no completely
unambiguous way to match imp and act to form latent variable indicators. Although evolving
best practice has provided a number of heuristic strategies on how to form product indicators
(Marsh et al., 2012; Wu, Wen, Marsh, & Hau, 2013), this remains a complication that
depends on the nature of the data available (see Supplemental Appendix 1D and 1G for
further discussion).

OPERATIONALIZING TESTS OF THE INDIVIDUALLY WEIGHTED-AVERAGE

MODEL
In operationalizing tests of IWAMSs we emphasize both goodness of fit and variance

explained in outcomes. Initially, goodness of fit is important in terms of establishing a
baseline measurement model in which all factors are merely correlated. Indeed, constructing
a good-fitting, theoretically defensible measurement model is a critical—but often
neglected—step in testing IWAMSs. Although not a problem for these simulated data sets for
which the measurement model is well-defined, this is likely to be a critical issue in
substantive applications based on real data (see subsequent discussion). Given a well-defined,

baseline measurement model (Model O in Table 1), we then test a general taxonomy in which



we evaluate models (Models 1-7 in Table 1) based on different combinations of the three sets
of path coefficients leading to the global outcome (B1—f9 in Figure 1). Although there are
many ways in which these tests could be operationalized, we offer several strategies that we
suggest would be useful for applied researchers.
Appropriate Standardized Solution in Product-Indicator Models

In multiple regression analyses, standardized effects based on standardized variables
(with M =0, SD = 1) facilitate the comparison of effects, particularly when the original
scales are based on different metrics. Similarly in SEM, it is customary to report completely
standardized solutions in which both latent factors and observed variables are standardized.
However, the appropriate standardized solution for an interaction model is not typically
provided by commercial SEM packages. Indeed, the so-called standardized solutions that are
provided are typically wrong and should not be used. Although there are a number of
strategies to overcome this issue (see Marsh et al., 2013; Marsh et al., 2012; Wen, Marsh, &
Hau, 2010), the approach used here is to begin with standardized variables for all indicators,
and then follow these steps:

1. Define latent interaction indicators as the cross-product of the actual and
importance indicators such that intli = Zactli x Zimpli, where the i indicators of
each construct (the boxes in Figure 1) are standardized, but the interaction factor
IS not restandardized.

2. Fit the measurement model (Model 0 in Table 1) in which the metric is established
by fixing latent variances to 1.0 (rather than fixing one of the factor loadings to an
arbitrary value such as 1.0). This will transform the unstandardized solution into a
standardized solution.

3. Insubsequent SEMs (Models 1-7 in Table 1), use the factor loadings from this
Model 0 as the starting values (these are conveniently saved by Mplus, but values
from the output can be used as well). For each latent factor (e.g., the 10 latent
factors in Figure 1 representing actual, importance, interaction, and global
factors), fix one of the factor loadings (conveniently the largest) to values from the
measurement model (not to 1.0 as is typical), and freely the estimate of the latent
variance term. The results for the unstandardized solution using this approach will
result in appropriately standardized parameter estimates. Wen et al. (2010)
showed that traditional standard errors based on this approach closely
approximated those obtained from a bootstrap approach, suggesting that tests of

significance of parameter estimates using this approach were trustworthy. We also
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note this approach to standardization is often useful even when there are no latent
interactions in the model. (This approach is illustrated with simulated and real

data analyses and syntax for each study presented in the Supplemental Materials.)
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TABLE 1
Taxonomy of Models Used to Test the Individually Weighted-Average
Model (WAM)

Aciwal-by
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Nate. Depicted is the pattemn of path coefficients relating cach of the
nine predictor vanables to the ghobal outcome factor (see Figure 1); each
cocfhicient 15 freely estimated or constramned to be zero. Model O 15 a
measurement model in which all latent factors are merely comelated (1.e.,
there are no path coefficients). Model 1 is the full model in which all the
path coefficients are freely estimated. In each of the other models, one or
two scts of the three sets of path coefficients are constrained to be zero.
Companson of the different models provedes estimates of the fotal and
unique effects that can be explained by ecach set of coefficients, as well as
the change in fit associated with the various sets of constraints. Thus, for
example, Model 2 provides estimates of the tofal effects associated wath the
st of three actual factors (including vanance that 15 shared with the other
two sets), whereas the difference between Models 1 and 7 provides an
estimate of the unigue effects assoceated wrth the actual factors (Le.,
variance that cannot also be explained by wvanance associated with the
other two sets). This emphass on total and unique components of vanance
explained 15 typical in multiple regression analyses based on mamifest
varnables, but strangely = often 1gnored iIn SEM.

Taxonomy of Models Used to Test IWAMs
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In a preface to the introduction of this taxonomy of IWAMs, it is relevant to
distinguish between total and unique variance explained by different sets of predictors, and to
juxtapose traditional practice in multiple regression analyses of manifest variables and SEM
analyses of latent variables. This issue is not only very important in relation to IWAMs, but
also in SEM more generally. For multiple regression analyses of IWAMs, the results include
correlations between predictor variables and outcomes as well as the path coefficients.
Particularly when there are many predictors, it is useful to evaluate how much variance can
be explained by a set of predictors (i.e., the total variance explained by the predictors without
controlling for other predictors) and how much variance can be explained by the set of
predictors over and above what can be explained by other variables in the predictor equation
(i.e., the unique variance explained by a set of predictor variables after controlling for the
other predictors). In traditional multiple regression packages (e.g., SPSS) this is done by
introducing sets of variables in a stepwise fashion (evaluating the change in variance
explained in each step) and a summary of the final regression model that includes the
variance uniquely explained by each set of variables. Historically, this type of unpacking of
the multiple regression prediction equation has been important in the evaluation of support
for IWAMs (e.g., Marsh, 1986, 1993, 1995). However, this type of information is not so
readily available in SEMs. In most SEM studies the main focus is on global goodness of fit
and the path coefficients rather than the variance explained by a set of predictors. Consistent
with approaches to the evaluation of IWAMSs based on multiple regression, in latent IWAMs
it is also relevant to evaluate the total and unique variance that can be explained by domains
and the interaction effects. The overarching rationale of the taxonomy of IWAMSs presented
here is to provide this decomposition of effects in relation to variance explained in outcome
variables as well as goodness of fit. More specifically, starting with a well-defined, baseline
measurement model (Model 0 in Table 1), we then evaluate the contribution of each of the
three sets of parameters to goodness of fit and variance explained in the global outcome using
a taxonomy of models (Models 1-7 in Table 1).

Model 1

We begin with Model 1 in which all paths (31—39) are estimated. This full SEM is
equivalent to the measurement model (Model 0) in that the number of estimated parameters,
degrees of freedom, and goodness of fit are all the same. The major difference is that
covariances between the three sets of predictor factors and the global outcome factor are now
represented as path coefficients (i.e., B1—9 in Figure 1). Hence, so long as the measurement

model fits the data well, so will Model 1.
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Model 2

In Model 2, only paths leading from the actual latent factors to the outcome variable
(B1-B3 in Figure 1) are freely estimated, whereas the paths from the importance factors (f4—
B6) and interaction factors (B7—B9) are constrained to be zero. For this model we provide path
coefficients (B1—p3), the change in goodness of fit based on the Wald test (Muthén &,
Muthén, 2015; also see subsequent discussion) compared to the full model (Model 1), and the
variance explained by the three paths included in the model. In this way, Model 2 provides an
estimate of the total variance that can be explained by the actual factors, without taking into
account the variance explained by the importance and interaction factors. Also, the difference
in variance estimates based on Models 1 and 2 provide an estimate of the variance explained
by the paths not included in Model 2 (B4—p9). Models 3 and 4

Similar to Model 2, Models 3 and 4 provide estimates of the variance explained and
fit of models based on only the importance factors (B4—6; Model 3) or only the interaction
factors (B7—B9; Model 4). Model 4 is potentially interesting as a “pure” weighted-average
model in that it only includes the effects of actual factors weighted by the importance factors.
Although useful in terms of variance explained, it is also clear that the variance explained by
the interactions confounds variance attributable to main effects (which are absent in this
model) and variance that is uniquely explained by the interaction effects. However, an
important contribution of the paradigmatic approach is that it provides estimates of the total
variance explained by a set of parameters (including variance that can be explained by other
variables) and unique variance explained by a set of parameters (excluding variance that can
be explained by other variables). Furthermore, in much substantive research, Model 4 is a
typical operationalization of the weighted-average model (i.e., the average of each actual
domain weighted by its importance). Nevertheless, a cautious interpretation of this model is
warranted in that interactions potentially confound the “main” effects of the actual and
importance factors with variance that can be uniquely attributed to the interactions after
controlling for the main effects.
Model 5

In Model 5, paths leading from the actual (31-3) and importance (B4—p6) latent
factors to the outcome variable are freely estimated, whereas the paths from the interaction
factors (B7—p9) are constrained to be zero. Again we provide path coefficients, the change in
goodness of fit based on the Wald test compared to the full model, and the variance explained
by the paths included in Model 5. In this way, support for the comparison of Model 5 (with

no latent interactions) and Model 1 (the full model) provides a particularly important test of
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the IWAM. The difference in variance explained by the two models is an estimate of the
variance uniquely attributable to the interactions. The IWAM is supported when the change
in goodness of fit for Models 1 and 5 is significant, the change in variance explained by
Models 1 and 5 is substantively meaningful, and the direction of the path coefficients leading
from the interaction factors to the global outcome is positive.
Models 6 and 7

Similar to Model 5, Models 6 and 7, compared to Model 1, provide estimates of
variance uniquely explained by the importance factors (Model 6, which excludes the
importance factors) and the actual factors (Model 7, which excludes the actual factors).
Whereas this distinction between total variance explained by a set of predictors and variance
uniquely explained by a set of predictors is a typical concern in applied multiple regression, it
has been given surprisingly little attention in SEM.
Operationalizing Models 1 Through 7 in the Taxonomy of Models

For Models 2 through 7, we conducted two complementary analyses. First, we used
the same syntax as for Model 1, but changed paths to covariances (as in the measurement
model). Thus, for example, in Model 2 the six paths (B4—p9) were specified as covariances
rather than paths. In this way only the actual factors (B1—3) contributed to the prediction of
the global factor, and variance explained was thus based on only these factors. However,
because the relations represented by the excluded paths (B4—9) are included in the model as
covariances, Models 1 and 2 are equivalent in the sense that the number of estimated
parameters, degrees of freedom, and goodness of fit are all the same. Indeed, in this sense all
eight models, including the measurement model, are equivalent. This strategy has the
advantage of providing estimates of the covariances between the excluded latent predictor
factors and the global outcome variables, after controlling for the included latent factors (in
subsequent tables these covariances are shaded to distinguish them from the path
coefficients). Importantly, however, this approach holds the model constant when estimating
changes due to excluding or including different sets of parameters (i.e., they are merely
transformed rather than excluded), whereas it is possible that completely eliminating different
parameters (even in nested models) could result in offsetting changes in other parameter
estimates that cascade through the model. However, because the goodness of fit for all the
models is the same, this approach does not provide a test of the change in fit due to
completely eliminating the parameters in question. Thus, we also reran each analysis using
the Wald test to evaluate the change in fit associated with constraining the paths to be zero

(and not representing these as covariances).
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STUDY 1: TESTING INDIVIDUALLY WEIGHTEDAVERAGE MODELS WITH
SIMULATED DATA

Study 1: Simulated Data With Meaningful Interactions

We begin by demonstrating the application of this approach to IWAMs with two
simulated data sets based on Figure 1. The two population generating models are essentially
the same, except that one is designed to support the INAM (i.e., latent interactions, B7—9 in
Figure 1 are positive, and substantively meaningful) whereas the other is not (B7—f9 are zero
in the population generating model). Approximating true population-level data, each of these
simulated data sets is based on a very large number of cases (N = 100,000; see Supplemental
Appendix 1A for the syntax used to generate the two data sets that can be used to replicate
and extend analyses presented here; also see Supplemental Appendix 1B and 1C for syntax
examples of the models presented below). For purposes of instruction, we present the results
in detail.
Model 0

We begin with tests of the measurement model (Model 0) for the simulated data with
substantively meaningful interactions in support of the IWAM. Although this is typically a
critical step in tests of the IWAM, for these simulated data it is trivial to show that the
measurement model provides a good fit, x 2 (419) =451, p = .130, root mean square error of
approximation (RMSEA) = .001, comparative fit index (CFI) = Tucker—Lewis Index (TLI) =
1.00 (see Supplemental Appendix 1E for a brief discussion of goodness of fit).
Model 1

In Model 1 (the full model), consistent with the population generating model, all the
paths from the actual (B1—p3) and interaction (B7—39) are statistically significant and
meaningfully large. The positive direction of these paths—particularly the interaction
effects—is consistent with the IWAM. The paths from the importance factors (f4—36) are
much smaller in size. The variance explained by the three sets of factors in the full Model 1
(mult R2 = .648 in Table 2) is substantial and all the paths from the interaction factors to the
global outcomes are positive. Thus, Model 1 provides preliminary support for the IWAM.
Models 2 Through 4

Consistent with the interpretation of paths in Model 1, the variance components for
these models show that a substantial amount of variance can be explained by the actual
factors (.478, Model 2) and interaction factors (.152, Model 4), whereas the variance

explained by the importance factors is smaller but still statistically significant (.081, Model
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3). Similarly, the Wald tests show that each of these three models provides a significantly
poorer fit to the data if any of the sets of predictors is excluded. It is also interesting to note
that path coefficients in these models tend to be somewhat larger than the corresponding
paths in Model 1. Although this will typically be the case, the extent of these differences will
depend on the sizes of covariances among the different factors (as is the case in any
regression model). The sizes of the residual covariances (those shaded in gray in Table 2)
provide an indication of the effect of constraining the corresponding path to be zero to the fit
of the model. In general, these residual covariances will be smaller than the corresponding
covariances in the measurement model (Model 0 in Table 2), but again these differences will
depend on the sizes of relations among the predictor factors as well as what paths are
included in the model. Models 5 Through 7

This set of models provides estimates of the variance uniquely explained by each of
the combinations of any two of the three sets of predictor factors. Comparison of variance
components based on these models with that in the full Model 1 provides an estimate of how
much variance is uniquely explained by each set of predictors. For example, in Model 5 with
paths leading from the actual (B1—3) and importance (B4— p6), latent factors, the variance
component is .495. The difference between this value and the value for the full Model 1 (.648
—.495 = .153) is an estimate of the variance uniquely explained by the interaction factors that
were excluded from Model 5. Similarly, the results indicate that variance uniquely explained
by the importance factors (Model 6) is only .017 (.648 — .631), and that due to actual factors
(Model 7) is .414 (.648 — .234). However, due in part to the artificially large sample sizes, the
fits of Models 2 through 7 differ significantly (all ps <.001) from that of the full model.
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TABLE 2
Tests of Individually Weighted-Average Models (IWAMs) Based on Two Simulated Data Sets

Aciual-by Impartance
Actual {det) Importance () Interaction (g} Kummary

Muodel Act! Ace2 Acid Tmpd Imp2 Imp3 Inil Ine2 Ini3 Mudriple 7 Waldydf) p-value

Simulated Data Set 1 (with latent interactions)

() measurement E19 E47 A37 212 A77 75 190 316 A30 N/A 1]

I fiull model 300 66 237 124 59 -3 88 316 133 JG48(.003) 1]

2 act only 338 377 220 0w 059 01 190 317 134 ATE(.003) H$3506) 000
3 imp only A54 492 A13 211 AT6 75 91 316 A28 (DE1{.003) 207T26) 000
4 int only E19 248 A38 218 A74 75 189 314 129 152(.003) 261T1(6) 000
5 act & imp 302 364 236 119 63 — A4 190 317 133 A495(.003) 3T768(3) 000
6 act & int 338 78 221 133 L 01 188 315 133 J631(.003) S108(3) 000
T imp & int A54 494 413 218 A72 76 190 315 A28 J134(.003) I0TTE) 000
12X full act = 3oz 3oz 3oz 124 D81 —026 189 316 134 JG46(.003) 427(2) .000
Simulated Data Set 2 (with no latent interactions)

{} measurement S65 592 AT4 233 188 Jgl 02 Joa1 04 NA 1]

1 fiull model 328 395 257 133 64 —.004 02 003 A0E _584(.003) 1]

2 act only 369 A08 239 21 K] L 001 002 08 S64(.003) GTS5(6) 000
3 imp only A% 534 A48 132 186 AE2 003 002 002 D96(.003) I3946) 000
4 int only S65 592 AT4 233 188 LG M2 01 A4 D003} J266T(6) 000
5 act & imp 328 393 256 133 64 —.004 002 003 008 _5H40.003) 1(3) .B44
6 act & int 365 402 236 119 059 0o 1] 002 08 564(.003) 6T53(3) .000
T imp & int ABT 26 442 219 84 AE0 003 002 002 D96(.003) 2394%6) 000

Neve. See Figure 1 and Table 1 for a depiction of the models, factors, and vanables. Coeflicients shown in bold are statistically significant (p < 05). Shaded
parameters represent covanances, whereas those not shaded are path coetficients. Multiple R® is the variance in the global outcome explamed by predictor
variables {unshaded coctficients). The Wald test is based on the difference bebween the full model (Model 1) and each subsequent model. For Data Sets | and 2
respectively, ;.'_:14I‘}l} =451 & H8, p = 10; root mean square emor of approximation = (W1, comparative fit mdex = 1.000; Tucker-Lewis Index = 100

Of course, there are a huge number of additional models that could be tested in
addition to those included in the taxonomy of variables. For present purposes we consider
Model 5X that is similar to Model 5 in that the latent interactions that are critical to the
IWAM are excluded. However, whereas in Model 5 the paths from the latent interaction
factors were constrained to be zero, in Model 5X latent interactions are not even included in
the model. Although the y 2 (665, 211) for this model is statistically significant due to the
huge N, the fit indexes (RMSEA = .005, CFI = 1.000, TLI =.999) indicate that the fit of this
model is remarkably good. Hence, an inappropriate conclusion based on the fit of Model 5X
might be that the fit is so good that it is not necessary test for latent interactions. This
illustrates the point noted by Mooijaart and Bentler (2010) and others that conventional fit
indexes are not sensitive to multiplicative relations between latent variables. This also
demonstrates the importance of evaluating total and unique variance components associated
with each of the three sets of predictor variables in relation to the IWAM taxonomy of
models.

Study 1B: Simulated Data With Interactions Specified to Be Zero

The second simulated data set is similar to the first with the major exception that the
latent interactions in the population generating model were specified to be zero. Without
evaluating each of the separate models in detail, we point to several key features. In
particular, the Wald test comparing results of Models 1 and 5 is nonsignificant, indicating

that constraining the latent interaction effects to be zero has no influence on goodness of fit.
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Similarly, the variance component for Model 5 (with latent interactions constrained to be
zero) is the same as for full Model 1 (with latent interactions freely estimated). Hence the
variance uniquely attributable to the latent interactions is 0. Finally, the variance explained by
Model 4 (latent interaction effects only) was 0, indicating that the total effect of the latent
interactions was also 0. It is also of interest to fit an additional Model 1X in which the three
paths leading from actual factors (B1—p3 in Figure 1) are constrained to be equal. The Wald
test (552, 2, p <.0001) based on this constrained model shows that the fit of this model is
significantly poorer than that of Model 1, indicating the paths are significantly different. In
this special case where the latent interactions are not statistically significant, there is evidence
in favor of a normative WAM but not an IWAM. Importantly, however, this support for a
normative WAM should not be confused with support for an IWAM. In particular, whereas
an optimally weighted combination of the three actual factors performs better than an equally
weighted combination, the same higher weight for act2 (2 = .395) is the same for every case,
as are the lower weights for the other two actual factors (B1 =.328, B2 =.257). In this sense,
actl is more important across the group as a whole, but the contribution of actuall is the same
for individuals who rate this factor as relatively more or less important; the effects of actuals
1-3 are not moderated in the importance ratings.

The juxtaposition between the results based on the two simulated data sets is also
important in that it clearly demonstrates that the taxonomic approach to IWAMSs presented
here is able to demonstrate support for the IWAM when the model is true, as well as provide
evidence against it when the model is false. This is important in that particularly based on
results of the IWAM in self-concept research, there is little support for IWAMs based on
either latent SEM emphasized here or manifest (multiple regression) models that are the basis
of much previous research. We now turn to three real data applications of the IWAM and
offer suggestions about how to overcome the issues involved in the analysis of each of these
data sets; suggestions that might have broad applicability to real data from other areas of

research involving weighted models.

STUDY 2: TESTING THE INDIVIDUALLY WEIGHTED-AVERAGE
MODEL: SELF-CONCEPT DATA

Overview of the Data Set
Marsh (2008) argued that to the extent that there is any support for the IWAM at all, it

might only apply to a few narrowly focused self-concept domains (those that are unimportant
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to most people but very important to a few, such as spiritual self-concept or, perhaps,
physical self-concept) and for limited subgroups of individuals, and obviously does not have
generalizability over different self-concept domains and different individuals as originally
envisioned by James (1963). Indeed, even James focused on his self-beliefs in relation to his
competence in the Greek language, a very narrowly focused domain that was likely to be
highly important to a few individuals but unimportant to many— including James. Following
Marsh (2008), Scalas et al. (2013) evaluated support for the IWAM for components of self-
concept specifically selected as being most likely to support the model (see their article where
the sample, materials, and results are presented in more detail). Here we reanalyze these data
specifically chosen to be optimal in terms of being likely to support IWAMs in relation to
selfconcept theory and research.

Briefly the sample consisted of UK adolescents (n = 402; 13-15 years old) who
completed self-concept responses to positively worded self-concept items in three specific
domains: physical (six items; e.g., | feel good about who I am physically), academic (three
items; e.g., | learn quickly in most academic subjects), and spiritual (six items; e.g., | am a
better person as a consequence of my spiritual/religious beliefs). Students also completed the
Rosenberg Measure of Global Self-Esteem Inventory (Rosenberg, 1965) consisting of five
positively and five negatively worded items (e.g., Overall, most things | do turn out well). All
items were rated on a 6-point Likert-type scale ranging from 1 (false for my actual self) to 6
(true for my actual self). For the importance ratings, the original items were re-presented with
instructions to rate how important each item was to them rather than how they actually saw
themselves. Another 6-point Likert-type scale was used ranging from 1 (not important) to 6
(important).

Measurement Model

The measurement model for these data (see syntax in Supplemental Appendix 2A)
resembles Figure 1 in that there are three multi-item actual self-concept scales, three
corresponding multi-item importance scales, and one multiitem global outcome (self-
esteem)—although the number of items in each scale varies. However, as is typical with real
data, there are several features that make the measurement model more complicated. First,
responses to the Rosenberg Self-Esteem Scale typically do not result in a cleanly defined
single factor. Previous research (Marsh, 1996; Marsh, Scalas, & Nagengast, 2010) argued
that responses to this instrument are best represented as a global selfesteem factor and item-
wording method factors reflecting the positively and negatively worded items. Following the

original analyses by Scalas et al. (2013) and consistent with recommendations by Marsh et al.
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(2010), here we also use a bifactor model (Reise, 2012; also see Marsh, Morin, Parker, &
Kaur, 2014) in which all 10 items load on the global esteem factor, whereas positively
worded items load on a positive item method factor and negatively worded items load on the
negative-item method factor (see syntax in Supplemental Appendix 2A). The two method
factors are constrained so as to be uncorrelated with each other and all other factors in the
model.

Second, the self-concept and importance items (and thus the interaction indicators)
had parallel wording. When items with the same wording are designed to measure different
factors, typically there are item-wording method effects such that responses to the items are
more highly correlated than can be explained by covariances among the different factors.
Following Scalas et al. (2013), we included a priori correlated uniquenesses for self-concept
ratings, importance rating, and the interaction indicators based on items with the same
wording (see syntax in Supplemental Appendix 2A). We also note that even when self-
concept and importance ratings do not have parallel wording, it is important to allow errors in
the product terms to covary with the corresponding errors for the self-concept and importance
indicators (see Marsh et al., 2004).

Results

Analyses presented here follow closely those presented in Study 1 with simulated
data. In particular, we standardized all measured variables (M =0, SD = 1), defined
indicators of the latent interaction factors as the cross-product actual selfconcept and
importance ratings, and fit a measurement model (as described previously). We then used
factor loadings from the measurement model to construct appropriately standardized latent
interaction models to test the IWAM corresponding to the eight models in Table 1 (see syntax
in Appendices 2A and 2B). The overall measurement model provided an acceptable goodness
of fit, x 2 (1330) = 2,158, RMSEA = .039, CF1=.931, TLI = .923. Next we summarize
results based on the application of the taxonomy of models to these data.

Model 1

In Model 1 (the full model, Table 3), there are only three statistically significant
paths, actual academic (.395), actual physical (.679), and the physical-importance interaction
(—.146). Overall, the variance explained is substantial (mult R2 = .835). Although one of the
latent interactions is statistically significant, the direction of the effect was negative rather
than positive (i.e., the effect of physical selfconcept was smaller, not larger, for students who
felt physical self-concept was more important). This is demonstrated in Figure 2, a simple-

slopes graph of the interaction showing the effect of physical self-concept is greater (i.e., the
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slope is steeper) for students who perceive physical self-concept as less important, opposite to
the a priori prediction based on the IWAM. A literal interpretation of this effect is that the
physical self-concept has a more positive effect on self-esteem for respondents who rate the
domain as less important. Because the direction of the interaction is negative rather than
positive, it provides clear evidence against the IWAM. In summary, Model 1 provides no
support for the IWAM.

Physical 5C X Imp on Global Sel-Estesm
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Physical sell-concept [SD)

FIGURE 2 A simple-slopes graph of the regression line relating phy-
sical selfconcept (5C) to glohal self-esteem (in standard deviabon units)
for individuals who rate the importance of physical self-concept +1, 0, and
—1 standard deviatiwons above or below the mean importance ratings (sce
Model 1, Table 3).

Models 2 Through 4

The variance components for these models show that a substantial amount of variance
can be explained by the actual self-concept factors (mult R2 = .816, Model 2); the variance
components are much smaller for importance (.273, Model 3) and for interactions (.184,
Model 4). However, all three variance components are statistically significant. Similarly, the
Wald tests show that each of these three models provides a significantly poorer fit to the data
than the full Model 1. However, although the results indicate support for the inclusion of
latent interactions, this is due primarily to the physical-importance interaction in which the
negative direction of the effect is opposite to that predicted by the IWAM (see Figure 2),
again offering no support for the IWAM.
Models 5 Through 7
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Models that include actual self-concepts explain substantial portions of data in global
self-esteem: Model 5 (actual and importance; mult R2 = .820) and Model 6 (actual and

interactions; mult R2 = .832).

TABLE 3
Individually Weighted Average Model for Three Self-Concept Domains and Global Self-Esteam

Muodel Self-Concept fmporiance Self~Impt Interaction Summary

Outcome Acad FPlys Kpirt Aecad Phys Spirt Acad Phys Kpirt MRy Waldydfy P-val
0 measurement Al B27 216 Jaz Al6 108 —.0%0 —343 173 L] L]

1 full model 393 615 e — 21 — (12 — {90 036 —. 146 050 B3S(.038) L]

2 act only 386 6T 30 =017 04 —019 —.0i4 —.102 0446 B164.03T) 13646) 000
3 imp only ABS 532 131 G AT2 — 019 043 —116 A0 IT3(.056) 191{6) 000
4 it only SB4 665 141 134 295 40 033 —402 189 A B4(.065) 195(6) 000
5 act & imp 389 6 07 — 037 067 — (19 —.003 —091 {038 BIN.036) 1093) 0040
6 act & int 3946 624 014 —.26 —013 —.023 040 —138 057 E32(.038) 1(3) 602
T imp & int AB2 S A2 38 351 —.035 0% =211 131 J18L061) 17443) .000

Naore. See Figure | and Table 1 for a depiction of the models, factors, and vanahbles. Coefficients shown in bold are statistically significant (p < J03). Shaded
parameiers represent covanances, whereas those not shaded are path coetficients. Multiple R® is the variance in the global outcome explamed by predicior
variables {unshaded coefficients). The Wald test is based on the difference between the full model {Model 1) and each subsequent model. For Models 1 and 2,
and each of the subsequent models when path coefficients constrained to be zero are replaced with covariances. Goodness of fit of the measurement model and
all seven structural equation models was 37 1330) = 2,158, root mean square emor of approximation = 039, comparative fit index = 931, Tucker-Lewis
Index = 923,

Indeed, the Wald test comparing Model 1 (full model) and Model 6 (actual &
interaction) is not statistically significant (Wald = 2, df = 3, p = .602) and the amount of
variance uniquely explained by the importance factors is close to zero (.003 =.835 — .832).
However, like Model 1, the direction of the latent physical-importance interaction is negative
rather than positive and none of the other latent interactions is statistically significant. It is
also relevant to note that the total variance that can be explained by the importance ratings
(.273 in Model 3) is substantial, but that the amount of variance uniquely explained by the
importance ratings after controlling for actual and interaction effects is close to zero (.003).
This illustrates that there is much multicollinearity associated with the importance ratings that
is likely to complicate interpretations of the data unless appropriate statistical modeling is
used.

Methodologically, analyses of these self-concept data extend the analyses based on
simulated data in several important ways that are likely to have broad generalizability to other
applied research. The use of the bifactor approach with the Rosenberg scale to control for
item-wording method effects is likely to generalize to other outcome variables that are based
on a mixture of positively and negatively worded items. Similarly, the correlated uniqueness
approach used to model items based on parallel worded items is also likely to be useful when
the same wording is used for items designed to assess actual and importance factors.
Substantively, the results provide a clear lack of support for the IWAM consistent with a
growing body of self-concept research based on manifest (multiple regression) and latent

(SEM) analyses reviewed earlier.
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STUDY 3: TESTING THE INDIVIDUALLY WEIGHTED-AVERAGE MODEL:
QUALITY OF LIFE
Background to the Application of the IWAM to Quality of Life and Life Satisfaction

Data for this study came from Transitions from Education to Employment (TREE), a
longitudinal panel study following up Swiss students who participated in the Programme for
International Student Assessment (PISA 2000) and who left compulsory schools in the same
year. For more details on the sample, variables, and availability of the data, see TREE
(2013a, 2013b, 2013c). Data used here are based on Panel 8 collected in 2010 when most of
the respondents (N = 2,751) were about 26 years of age. Quality of life was assessed in
relation to four domains: employment, education, and training; partnership and children;
social activities (e.g., associations, political organizations or parties, unions, political
organizations, volunteer work); and leisure (hobbies, sports, recreational activities, contacts
with friends). Multiple-item global outcome variables were anomie, self-esteem, depression,
positive emotions, negative emotions, and positive life attitudes.

The multiple domains of life satisfaction in the TREE survey were derived from the
German Socioeconomic Panel Study framework (Schimmack, 2008). However, one criticism
of the original framework noted by Schimmack (2008) is that the domains are not weighted
by subjective importance (Andrews & Whithey, 1976; Schimmack & Oishi, 2005;
Schimmack, Diener, & Oishi, 2002), an issue addressed in TREE data by the inclusion of
subjective ratings of importance. In support of WAM approaches, Schimmack et al. (2002)
reported that weighted-average measures of domains added to the prediction of global life
satisfaction beyond what could be explained by unweighted averages. Nevertheless, their
approach did not distinguish between what here we refer to as normative weighted-average
models (i.e., the regression weights are not identical for each of the domains, but are identical
across individuals) and the individually weighted-average model (IWAM based on latent
interactions where weights vary according to the individual importance placed in each
domain) presented here. Furthermore, other researchers (e.g., Campbell, Converse, &
Rodgers, 1976) have argued that there is little or no empirical support for the use of
importance as a weighting factor, although Hsieh (2013) noted that the role of domain
importance continues to be a topic in quality of life research. Indeed, Hsieh (2013) argued
that inconclusive evidence is due substantially to the way that importance weighting is
assessed. In this respect, there are many parallels between research into quality of life and
self-concept research reviewed earlier—particularly potential confusion between normative
WAMs and IWAMs.
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Measurement Model

For each of the domains of quality of life, individuals rated satisfaction (1 = very
unsatisfied to 6 = very satisfied) and importance (1 = entirely unimportant to 6 = very
important) based on single item ratings. Interactions were based on the cross-product of
satisfaction and importance ratings. Life satisfaction is related to six global outcomes:
anomie, self-esteem, depression, positive emotions, negative emotions, and global positive
life satisfaction. To facilitate interpretations, all negatively worded items and scales are
reverse-scored so that higher values reflected more positive outcome. After standardizing (M
=0, SD =1) all items, interactions were based on the cross-product of corresponding
satisfaction and importance ratings.

The measurement model (see Supplemental Appendix 3A) for these data is based on
Figure 1, but also incorporates a number of features that are specific to these data. First, each
of the specific domains (actual and importance ratings) is represented by a single item rather
than multiple indicators. Although typical in quality of life research, this is a potentially
important limitation in terms of assessing the factor structure and controlling for
measurement error (both unreliability in the specific domains and also potential method
effects in complex measurement structures).

Second, the global outcome measures consist of a set of six global well-being
measures. Although global positive life satisfaction is most closely aligned to measures of
satisfaction in specific life domains, it is important to emphasize that the IWAM is easily
extended to include multiple outcome measures; indeed constructs such as those considered
here are frequently used in quality of life research. A typical approach might be to use scale
scores to represent each of the outcomes or, perhaps, to model each as a latent factor in six
separate analyses. However, there are important methodological and substantive limitations
to these approaches that led us to represent all six global outcomes as latent factors in the
same model. Thus, for example, this allows us to evaluate the factor structure underlying
these constructs to determine whether the factors are welldefined and distinguishable. Also,
although beyond the scope of this demonstration, there are many potentially interesting
analyses that could not be performed if each outcome were considered in separate models
(e.g., whether the pattern of paths from specific components is invariant over multiple
outcomes).

For present purposes, we used exploratory structural equation modeling (ESEM) to
model the factor structure underlying the six outcome measures. Although a detailed review
of ESEM is beyond the scope of this investigation (see Marsh et al., 2014; Marsh et al., 2009;
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Morin, Marsh, & Nagengast, 2013), Marsh and colleagues have argued that ESEM represents
an optimal compromise between the flexibility of exploratory factor analysis (EFA) and the
parsimony and rigor of confirmatory factor analysis (CFA). Using target rotation, the analyst
can specify an a priori factor structure as in CFA, but like EFA, ESEM allows items to cross-
load on different factors. Marsh et al. emphasized that the typical CFA structure is almost
always too restrictive, specifying that each item loads on one and only one factor. Indeed,
using the ESEM-within-CFA strategy (Marsh et al., 2014), it is possible to transform an
ESEM into an equivalent CFA model. In this case, CFA is a special case of ESEM in which
all cross-loadings are constrained to be zero. Simulation and a growing number of real data
studies (see Marsh et al., 2014) demonstrate that ESEM almost always results in a better fit to
the data than does CFA and latent factors that are more distinguishable (i.e., less correlated in
that constraining nonzero factor loadings to be zero typically results in positively biased
estimates of factor covariances). Although in its simplest form ESEM is the same as EFA,
ESEM allows researchers to incorporate the full range of CFA and SEM models, such as
those required to test IWAMs in ways that are not possible with EFAs.
Results

As in Studies 1 and 2, we standardized all measured variables (M =0, SD = 1),
defined interaction factors as the cross-product of actual and importance ratings, and fit a
measurement model. The a priori ESEM measurement model (with 15 single-item factors—5
actual satisfaction, 5 importance, and 5 interaction factors—and the six global outcomes)
provided an acceptable goodness of fit, y 2 (484) = 1,999, RMSEA = .034, CF1=.956, TLI =
.927. (See Supplemental Appendix 3A for syntax for the measurement model and further
discussion of ESEM.) We then constructed appropriately standardized latent interaction
models to test the IWAM corresponding to the eights models in Table 1 summarized in
Tables 4 and 5.
Model 1

In the full Model 1, the variance explained is statistically significant for each of the
six outcomes (Table 4). Consistent with the design of the study, the variance component is
higher for the global measure of life satisfaction (mult R2 = .447). Indeed, except for positive
emotions (.301), the variance components for the other global measures of well-being are
more modest (.128-.144).

The path coefficients relating all five actual satisfaction factors to the six global
outcomes are nearly all positive and statistically significant (28 of 30 were significant, 2 were

not; see Table 5). However, there is substantial variation depending on the outcome and the
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domain. The largest paths tend to be for the global positive life satisfaction outcome
(particularly paths from employment, education, and partner domains, but not from social and
leisure). Nevertheless, the pattern of effects is quite differentiated. Thus, for example,
employment is the best predictor of positive life satisfaction and positive emotions, but is the
weakest predictor of self-esteem, whereas the social and leisure domains are the weakest
predictors of positive life satisfaction but better predictors of positive and negative emotions.
In contrast to the satisfaction paths, paths from the importance factors are mostly small and
the majority (17 of 30) are not even statistically significant. In terms of support for the
IWAM, the critical paths are from the interaction factors. However, these are even smaller
(the largest was .091) and only 3 of 30 reach statistical significance.
Models 2 Through 7

It is relevant to compare variance components in Model 1 (full model) and with those
in Models 2 through 7 (Table 4). This shows that much of the variance in the global outcomes

that can
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TABLE 4
Quality of Life Variance Components: Individually Weighted-Average Model for Five Quality of Life Facets and Six Global Outcomes

Maudel 1 Model 2 Maode! 3 Maodel 4 Muodel 5 Muodel 6 Muodel 7
Outcone (BAT+ IMP+ fnr) (SAT ouly) {IMP anly) (INT oudy) (SAT+IMP) {EAT+INT) {IMP=INT)
ANOM A2B{.015) AZI015) A25(006) SO0 126(.015) A23.015) D260
SELE A3T(016) A0S(.014) DGI(01T) JME(.003) A31(016) A0 .015) DGS(.011)
DEFR A42{.018) 3017 JO29(.00E) JMDS(004) A39(01T) A3T0IT) D30(.00E)
PANAP 300{.020) 26020 093(.013) O10.005) J293(.020) 2T2.020) A03(.013)
PANAN A49(.018) AO00T) AD2G(.00T) JDG].004) A46(01T) J43(.018) D2B(.00E)
POSL A3B(.022) 304(.024) 430017 16008} A32(021) A .023) AS1L01TY
Wald (df 210 (6, 000y 594 (60, .000) 540 (60, .000) 61 (30, 000y 157 (30, .0D00) 500 (30, 000)
pvaluc)

Nore. The five domains wereemployment, work; education, further education/training; parmership/children; social activities (e.g., associations, political
organizations/parties, unions, political organizations, volunteer work); and leisure (hobhies, sports, recreational activities, contacts with fiiends). For each of the
tive domains, individuals rated satistaction (SAT ) and importance (IMP) based on single item ratings. Interactions (INT) were based on the cross-product of SAT and
IMP ratings. The six global outcomes were ANOM = anomie; SELE = self-csteem; DEPR. = depression; PANAP = positive emotions; PANAN = negative emofions;
and POS = positive life attiudes. Goodness of fit of the measurement model and all seven structural equation models was * (484) = 2,299, root mean square ermor of
approcimation = 035, comparative fit index = 951, Tucker-Lewis Index = 920. The Wald test is based on the difference between the full mode] (Model 1) and each
subsequent model. For Models 1 and 2, and each of the subsequent models when path coefficients constrained to be zero are replaced with covariances Goodness of fit
of the measurement model and all seven stmictural equation models was y{4%4) = 2 299 mot mean square eror of approximation = 035, comparative fit index = 951,
TuckerLewis Index = 920

TABLE 5

Quality of Life (Qol): Individually Weighted Average Model for Five QoL Facets and Six Global Oulcomes

Muodel Satisfaction Ratings Importance Ratings Satisfaction = Imporiance Interactions
Cutcone Employ  Edwe  Partner  Social  Leisure  Employ  Edwe  Partmer  Social  Leisure  Employ  Edwe  Partmer  Sociaél Leisure
N30 ANOM 291 251 51 235 208 118 16 &3 057 77 —-.038 -008 -.019 005 002
SELE 198 253 AT 229 218 149 138 124 AE8 A73 —.056 001 —-054  —-015 013
DEPR 244 231 254 258 232 14 074 097 075 Aol —.06% -015 -—-.042 -028 -0I8
PANAP A36 335 134 327 30 233 17 JAdos A6l 152 —.039 057 033 050 -053
PANAN 264 227 136 298 TR 048 072 —004 A27 07 —.028 -4 003 —048 —060
POS 489 A3 Abb 376 27 235 158 151 A9l Wi —.094 s -092  -058  -.029
M3 ANOM 197 095 036 101 074 013 64 026 —029 034 -013 008 018 015 028
SELE 043 137 _O%0 102 aTe 077 049 052 —015 136 -018 024 o6 —017 06T
DEPR 106 092 A77 105 083 053 003 006 —0D06 059 —.035 007 0oz —023 028
PANAP 325 103 [ ] 87 A78 A5 08s 028 063 057 —-.007 093 033 —043 018
PANAN 166 070 040 142 139 —03% 026 —070 44 050 -021 —027 000 —029 011
POS 366 250 297 A0 097 21 17 141 A5 123 — (45 35 157 — 048 50
M3I ANOM (198 122 043 A1 078 41 6l 07 -9 029 —.028  —.001 (008 025 036
SELE 058 168 091 74 A07 06 08D AD&9 A28 122 —.055 007 —028  —003 D51
DEPR 122 104 AT 92 o097 D66 030 011 009 030 —06% -—011 -005 —.018 018
PANAP 346 146 09z 87 AT9 143 10 035 087 084 —.027 o077 D05 —028 —003
PANAN 154 079 0046 160 153 —013 028 —042 41 037 —-029 -.041 024 —-037 —.009
POS 382 265 319 093 A16 147 081 132 A26 51 —.093 027 -.031 —.036 014
M3IE ANOM 196 95 040 099 o7z 020 063 016 —031 026 —.011 008 015 024 034
SELE 044 139 082 097 o7z 084 4R 052 —018 Bl —-.013 019 006 000 070
DEPR (108 094 AT7 o2 AaTe D65 004 003 —. (07 050 =037 -0 -.002 -.01E 026
PANAP 327 o7 108 77 ATl A0 078 Dog A4 056 019 049 023 —.026 016
PANAN 167 R 038 143 A37 —030 031 —Dé6 143 046 -.031 -038 -003 -.032 005
POS 366 2352 303 81 089 134 02 12 92 113 —.031 039 400 —030 A48

Nate. The five domams were Employ = employment, work; Educ = education, further education/training; Partner = partmership/children; Social = social
activities (¢.g., associations, political organizations/partics, unions, political organizations, volunteer work);, leisure (hobbics, spors, recreational activitics,
contacts with friends). For each of the five domains, individuals rated satisfaction and importance (based on single item ratings). Interactions were based on the
cross-product of satisfaction and importance ratings. The six global outcomes were ANOM = anomie; SELE = self-esteem; DEPR = depression;
PANAP = positive emotions; PANAN = negative emotions; POS = positive lite attitudes;

be expl