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Abstract 

Background: Advancements in geographic information systems over the past two decades have increased the spec-
ificity by which an individual’s neighborhood environment may be spatially defined for physical activity and health 
research. This study investigated how different types of street network buffering methods compared in measuring a 
set of commonly used built environment measures (BEMs) and tested their performance on associations with physical 
activity outcomes.

Methods: An internationally-developed set of objective BEMs using three different spatial buffering techniques were 
used to evaluate the relative differences in resulting explanatory power on self-reported physical activity outcomes. 
BEMs were developed in five countries using ‘sausage,’ ‘detailed-trimmed,’ and ‘detailed,’ network buffers at a distance 
of 1 km around participant household addresses (n = 5883).

Results: BEM values were significantly different (p < 0.05) for 96% of sausage versus detailed-trimmed buffer com-
parisons and 89% of sausage versus detailed network buffer comparisons. Results showed that BEM coefficients in 
physical activity models did not differ significantly across buffering methods, and in most cases BEM associations with 
physical activity outcomes had the same level of statistical significance across buffer types. However, BEM coefficients 
differed in significance for 9% of the sausage versus detailed models, which may warrant further investigation.

Conclusions: Results of this study inform the selection of spatial buffering methods to estimate physical activity 
outcomes using an internationally consistent set of BEMs. Using three different network-based buffering methods, the 
findings indicate significant variation among BEM values, however associations with physical activity outcomes were 
similar across each buffering technique. The study advances knowledge by presenting consistently assessed relation-
ships between three different network buffer types and utilitarian travel, sedentary behavior, and leisure-oriented 
physical activity outcomes.
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Background
There is an increased interest worldwide in the impact 
of the built environment on physical activity and health-
related outcomes. Numerous studies have reported posi-
tive associations between physical activity levels and 
measures of urban form including residential density, 
street connectivity, and land use mix [1–4]. Recent stud-
ies have further documented associations between built 
environment features and chronic disease outcomes [5, 
6]. It is now thought that long-term impacts of transpor-
tation and land use decisions on health can be costly [7]. 
There is a growing awareness that changes to the built 
environment such as increased investment in transit, 
pedestrian and cycling infrastructures [8], and building 
more compact mixed use environments are required to 
reduce sedentary time [9, 10], promote physical activity 
[11], and stem escalating health care costs [12].

To quantify characteristics of the local built environ-
ment, researchers commonly collect spatial data and 
create built environment measures (BEMs) (e.g. intersec-
tions, transit stops, land use polygons) for an individual’s 
‘neighborhood’ using geographic information systems 
(GIS) software. ‘Neighborhoods’ can be defined using 
the spatial distribution of locations near and associated 
with home, employment, or school. However, Census 
geography often forces an arbitrary depiction of a behav-
ioural setting or neighbourhood for researchers and the 
inability to accurately capture how individuals concep-
tualize their neighborhood. This is known as the ‘modifi-
able areal unit problem’ (MAUP) and defined as issues of 
zone and scale arising from arbitrarily defined bounda-
ries used to aggregate continuous spatial features [13, 14]. 
Kwan [15] argues that the ambiguity of the geographical 
context problem is due to the spatial and temporal uncer-
tainty of where, when and how long individuals experi-
ence environmental influences. These issues can result in 
considerable mischaracterization of built environment 
exposure experienced by an individual. Mis-specification 
of the spatial neighborhood definition constitutes a vio-
lation of the ecological framework whose premise places 
the individual in the center of their environment [16].

An in-depth review by Brownson et al. [17] illustrates 
the lack of consistency in the field of physical activity 
research with respect to both the geographic units and 
scale used to define the spatial extent of an individual’s 
neighborhood. Several studies have shown that the choice 
of different geographic scales (e.g. 400 vs. 800 m buffers) 
used to create GIS-based BEMs has resulted in varia-
tion in the significance of associations between the built 
environment and physical activity and health outcomes 
[18–22]. Different spatial configurations (e.g. grids vs. 
buffers) at a consistent geographic scale have also been 
shown to produce varying results [18, 23]. Furthermore, 

algorithms used to create neighborhood buffers in Envi-
ronmental Systems Research Institute (ESRI)’s ArcGIS 
software program have changed over time limiting com-
parative analyses with previous studies [24]. Variation in 
the geographic unit and scale used to characterize the 
built environment, combined with differences in software 
algorithms used to create neighborhood buffers, may be 
sufficient to result in inconsistent relationships between 
resulting BEMs and physical activity related outcomes. 
The methodological differences can mask consistencies 
that may actually exist between studies needed for policy 
makers to shift limited resources into investments that 
support active transportation.

Advancements in spatial analysis methods and software 
capabilities over the last two decades have advanced the 
approach used to model how an individual traverses their 
environment, reducing the impact of the MAUP. The ear-
liest methods to define neighborhoods used pre-existing 
administrative units such as census tracts to assign an 
individual to a neighborhood (i.e. Fig. 1a); among the first 
of these studies was Frank and Pivo [25] who used cen-
sus tracts to test associations between BEMs and travel 
behavior. Limitations to this approach include the poten-
tial inclusion of areas that are inaccessible on foot, and 
differences in built environment exposure for individuals 
who live near the edge of the spatial unit compared to the 
center.

The use of observation-specific circular (‘crow-fly’) 
buffers (i.e. Fig. 1b) offers improvements to the accuracy 
of the neighborhood definition by considering the indi-
vidual’s actual location. This method has been applied in 
several studies [21, 26, 27], but this method does not con-
sider how the street network allows or prevents access 
to specific locations within a given crow-fly or air-line 
distance.

The ability to create street network-based buffers using 
ESRI’s ArcView 3.3 software addressed this limitation 
and offered further refinement to the delineation of an 
individual’s neighborhood. This approach consists of cre-
ating ‘network buffer’ polygons at a given distance from 
the participant’s location based on the street network, 
better representing the area accessible to an individual. 
Network buffer polygons in ArcView 3.3 produced a ‘gen-
eralized’ buffer that could include areas not accessible to 
pedestrians from the street network. Later, ArcGIS 9.x 
offered the ability to create a more accurate, ‘detailed’ 
network buffer that followed the street network more 
closely (i.e. Fig.  1c). As described by Forsyth et  al. [24], 
the progression from ‘generalized’ buffers in ArcView 
3.3 to ‘detailed’ buffers in ArcGIS 9.x may limit the abil-
ity for results in the physical activity research field to be 
compared across time and between studies. Furthermore, 
depending on the parameters used to create ‘detailed’ 



Page 3 of 13Frank et al. Int J Health Geogr  (2017) 16:4 

buffers in Network Analyst (e.g. the ability to specify the 
perpendicular distance from the road centerline (“trim 
distance”) from which the polygon portion of the buffer 
is created), the resulting buffer area can be altered signifi-
cantly. This methodological difference has the potential 
to affect comparability of findings between studies that 
use different types of ‘detailed’ network buffers.

More recently, the ‘sausage’ buffering method (also 
referred to as ‘line-based’ buffers) has been used by 
researchers as an alternate network-based buffer-
ing method [28–30]. The sausage buffering technique 
selects roads within a given distance of the participant, 
and creates a crow-fly buffer around the roads by a set 
distance (e.g. 25 m), thus selecting only the features that 
are directly accessible from the street network. Three 
strengths of the sausage buffer technique have been iden-
tified by Forsyth et al. [24]: (1) they are directly based on 
the pedestrian network where people travel, (2) they have 
similarities with other proprietary techniques, and (3) 
they can be reproduced using different GIS programs and 
software versions, allowing for stable, repeatable meas-
urements to be produced across time.

A limited number of studies have compared whether 
BEMs and their associations with health-related out-
comes differ when using circular buffers versus network 
buffers. Oliver et  al. [31] was the first in the physical 
activity and health research field to compare differences 
in circular buffers versus network buffers in predicting 
physical activity, finding stronger associations between 
BEMs and walking behavior when using sausage net-
work buffers. In a more recent study, James et  al. [19] 

compared circular versus sausage buffers and found that 
only sausage buffers showed a statistically significant 
positive association between business count/density and 
walking for multiple buffer sizes.

Despite the utility of sausage buffers to produce con-
sistent, repeatable buffers for quantifying the built envi-
ronment accessible to the individual, limited sensitivity 
analyses have been conducted comparing the degree 
to which commonly used BEMs and their associations 
with physical activity outcomes may vary between sau-
sage buffers versus other network buffers types derived 
using proprietary algorithms. Such comparisons are 
highly salient, as ESRI’s ArcGIS Network Analyst is a 
commonly used tool for generating neighborhood buff-
ers. To the knowledge of the authors, Forsyth et al. [24] 
is the only study that systematically compared BEMs 
and health-related predictors produced by the sausage 
buffering technique to other network buffer types gen-
erated by ESRI’s ArcGIS Network Analyst tool (general-
ized, detailed, and detailed-trimmed). They found that 
measures of access to fast-food restaurants, convenience 
stores, and open space were highly correlated between 
buffer types (Pearson correlations > 0.94), while correla-
tion coefficients for self-reported fast food purchases and 
fast-food restaurant counts, fruit and vegetable consump-
tion and convenience store counts, moderate-and-vig-
orous physical activity (MVPA) and percent open space 
were similar in magnitude and statistical significance 
between buffer types, with the exception of open space 
and MVPA which showed slightly greater magnitude dif-
ferences in correlation. Though this study is informative, 

Fig. 1 Land use parcels selected by three different neighborhood definition types. The orange point represents the participant’s home; the street 
network is highlighted in black; and gray polygons symbolize land use parcels that intersect each neighborhood type. a Census tract boundary, b 1 
km circular (crow-fly) buffer, c 1 km street network buffer
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it was conducted only in the US, and findings may vary 
in other countries that have very different built environ-
ment characteristics and physical activity patterns. Thus, 
it would be useful to compare the performance of various 
network buffering methods in an international study with 
greater diversity.

The present study seeks to build on previous research 
conducted by Forsyth et  al. [24] by leveraging a large 
dataset of internationally developed, consistent built 
environment variables and commonly used physical 
activity outcomes across several countries. Each of the 
study areas exhibits different levels of urbanization and 
cultural backgrounds and supports testing relative dif-
ferences in explanatory power of three different network 
buffering methods to predict physical activity outcomes.

The overall purpose of this study is to investigate 
whether different buffering techniques alter the predic-
tive strength of BEMs on physical activity and seden-
tary behavior. Specifically, we aim to apply inferential 
modeling techniques to examine statistical differences 
among an expanded set of common BEMs calculated for 
detailed, detailed-trimmed, and sausage buffers around 
International Physical Activity and Environment Net-
work (IPEN) Adult participants’ household addresses, 
and to assess whether the statistical relationship between 
various physical activity domains and BEMs calculated 
using the sausage buffer technique are significantly differ-
ent compared to other network buffer techniques.

Methods
Participants
This study used cross-sectional built environment and 
physical activity data collected as part of the IPEN Adult 
study. The details of the study design have been published 
elsewhere [32, 33]. Briefly, an international study was 
conducted in 17 cities across 12 countries for the purpose 
of increasing intra-regional and inter-country compa-
rability using a common research design and method-
ology, with the aim of ensuring a broad range of built 
environment features and use of comparable objective 
and self-reported measures of physical activity and the 
built environment. The overarching goal of the study was 
to inform evidence-based physical activity policies and 
interventions at both the international and country level 
to mitigate obesity and other chronic diseases.

For this study, data from a subset of the IPEN Adult 
study sites from five countries (Brazil, Denmark, New 
Zealand, United Kingdom, and the United States) were 
used based on each study site’s access to common spa-
tial data to develop comparable built environment meas-
ures, availability of internal GIS expertise to produce 
the required variables and willingness to participate in 
the spatial buffer comparison analysis. The home is a 

common and widely investigated location for quantifying 
built environment exposure within the literature among 
similar physical activity studies and was selected as the 
most suitable representation of participant neighborhood 
environment for comparability across the five countries 
[34]. The combined dataset from these sites consists of 
5883 adults from five countries (Brazil, Denmark, New 
Zealand, United Kingdom, and the United States) Par-
ticipant recruitment at each study site was stratified by 
socio-economic status (SES) and transport-related walk-
ability, which have been described in detail in other pub-
lications [32].

Buffer development
Three different network buffer types were used to com-
pare differences in BEM relationships with physical activ-
ity outcomes: (1) detailed; (2) detailed-trimmed; and (3) 
sausage. The buffers were used to identify all spatial fea-
tures that are accessible within 1  km (10–15  min walk) 
of each participant’s home, a distance commonly used 
to typify the environment accessible within reasonable 
walking distance [17, 35]. The buffers were generated in 
GIS based on a walkable street network derived from the 
road class type that excluded limited access highways 
and highway entrance ramps where pedestrians were not 
permitted to traverse. For the detailed-trimmed and the 
sausage buffers, trim distances of 25 and 75 m were pro-
duced to compare and analyze two threshold distances 
from the road network balancing the need to include 
adjacent polygon features with further set back from the 
roadway, while not erroneously including others that 
cannot be accessed or are on adjacent streets beyond 
1 km at the edges of buffers.

All three types of buffers compared for this study were 
generated using the ESRI ArcGIS 10.1 software and the 
Service Area Solver within the Network Analyst exten-
sion. The ‘detailed’ polygon generation option was ena-
bled to generate network polygons for both ‘detailed’ 
and ‘detailed-trimmed’ buffers and trim distances of 25 
and 75 m was applied to the latter. Sausage buffers were 
created following methods described in detail elsewhere 
[36]. The Service Area Solver was used to generate lines 
along the road network to a distance of 1  km using the 
line generation dialog. Output line features were then 
dissolved based on participant identification number to 
obtain one set of line features per participant; the line fea-
tures were then buffered by 25 and 75 m to complete the 
sausage buffer polygons. Figure 2 depicts the three differ-
ent buffer types in urban and semi-rural environments.

Dependent variables
Five self-reported physical activity outcomes from the 
IPEN Adult study were used to test sensitivity of BEMs 
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on physical activity between the three buffer types: walk-
ing for transportation (days/past week); time spent walk-
ing for transportation (minutes/past week); walking for 
leisure (days/past week); time spent walking for leisure 
(minutes/past week) and; time spent sitting (minutes/
past week). All outcome measures are items from the 
International Physical Activity Questionnaire (IPAQ; 

long version). The full IPAQ was originally developed and 
evaluated in 12 countries on five continents and found to 
have good test–retest reliability (ICC =  0.46–0.96) and 
fair-to-moderate criterion validity (median ρ  =  0.30) 
compared against accelerometer measures [37]. In this 
study, outcome measures for both walking for transpor-
tation and walking for leisure during the past 7 days used 

Fig. 2 Illustration of three network buffer types that were generated around participant households. (1) Detailed buffer; (2) Detailed buffer trimmed 
on either side of the street network to 25 m; (3) Sausage buffer with 25 m radius on either side of street
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IPAQ items on walking ‘frequency’ (days per week) and 
‘duration’ (computed from ‘days per week’ times ‘typi-
cal minutes per day’). Total time spent sitting during the 
last 7 days was based on two other IPAQ items and com-
puted as a weighted sum of minutes spent sitting during 
week  days (times 5) plus minutes spent sitting during 
weekend days (times 2).

Independent variables
Eleven BEMs were derived in GIS at the 1  km buffer 
level for (1) detailed buffers, (2) detailed-trimmed buff-
ers, and (3) sausage buffers. The methods for computing 
and ensuring comparability of GIS variables in the IPEN 
Adult study have been previously described [38]. The fol-
lowing BEMs were calculated, all of which are commonly 
used in physical activity and health research: single and 
multi-family net residential density (units per residential 
km2), road intersection density, bus and rail stop access 
(count and density), private recreation access (count 
and density), public park access (count and total acres), 
land use mix (an entropy equation calculating even-
ness of residential, retail (including retail/commercial, 
entertainment and food-related) institutional/civic, and 
recreational land areas on a scale of 0–1), and an over-
all walkability index adapted from Frank et al. [39] (sum 
of z-scores of net residential density, land use mix, and 
intersection density). The input data used to create these 
measures are described in further detail elsewhere [38]. 
Polygon features (e.g. parks) were assigned to buffers 
if any portion of the polygon geometry intersected the 
buffer. Point features (e.g. transit stops, private recreation 
locations) were moved (‘snapped’) to the closest point on 
the road network before aggregating to buffers to ensure 
that all destinations located near the street network were 
accurately acquired by the buffers. BEMs were generated 
for both snapped and unsnapped point features. Differ-
ences in resulting BEMs coefficients were compared, 
with no statistically significant differences found between 
coefficients resulting from the two methods. BEM values 
based on the snapped point features method are reported 
here.

Individual socio-demographic covariates used in the 
analyses were derived by questionnaire and included age, 
gender, education level (less 12  years/high school, high 
school degree or some college, or university degree or 
higher), marital status (married/living with partner or 
other), and employment status (yes/no). The participant’s 
SES and walkability categories were included as covari-
ates in the modeling process. In addition, the cluster unit 
(census-based administrative unit) the participant was 
recruited from was included as a random effect in the 
modeling process.

Statistical approach
All analyses were conducted for a single, pooled data set 
as well as for the following strata:

1. City: Five countries provided data for eight differ-
ent cities as follows: Curitiba, Brazil (BR); Aarhus, 
Denmark (DK); North Shore (NZ-NS), Wellington 
(NZ-WE), and Christchurch (NZ-CC), New Zealand; 
Stoke-on-Trent, United Kingdom (UK); and Seat-
tle/King County (US-KC) and Baltimore (US-MD), 
United States. Analyses were repeated after strati-
fying the pooled data set by study city, resulting in 
eight sets of city-level results.

2. Neighborhood SES/walkability quadrant: (1) Analy-
ses were repeated after stratifying the pooled data 
set by SES/walkability quadrant, resulting in four sets 
of quadrant-level results, and (2) stratifying the city-
level data set by SES/walkability quadrant, resulting 
in four additional sets of quadrant-level results for 
each of the eight cities.

First, a descriptive analysis of BEMs calculated for each 
buffer type was conducted using both the full sample of 
data (pooled across all study sites) and stratified by quad-
rants (low/high walkability by low/high SES) and cities. 
BEMs calculated for sausage buffers were compared to 
BEMs for (1) detailed-trimmed buffers and (2) detailed 
buffers by t test and by mean squared error.

Next, using only the pooled data, generalized additive 
mixed models (GAMMs) were used to examine shape 
(linear vs. curvilinear), strength, and direction of asso-
ciations between outcomes and BEMs created using each 
buffer method [40, 41]. GAMMs provide two principal 
advantages for this analysis: (1) the shape of the relation-
ship between outcomes and BEMs does not need to be 
pre-determined, rather the shape is derived from the 
data, and (2) the GAMMs are able to model both fixed 
and random effects, and thus are appropriate for mod-
eling hierarchical data (i.e. participants nested within 
neighborhoods nested within cities).

BEM regression coefficients calculated for each sau-
sage buffer model were compared to the equivalent coef-
ficients calculated for the detailed-trimmed and detailed 
buffer models in terms of absolute differences in coeffi-
cient and p value and as evaluated by z test. BEMs were 
standardized (using z-scores) to allow for easier compari-
son between coefficient values. The moderating impact 
of study site on the BEM coefficients was also tested by 
developing separate study site-specific models where 
needed. All models adjusted for the socio-demographic 
covariates listed above. Although 25 and 75 m trim dis-
tances were tested for sausage buffer models, only results 
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from 25  m trim sausage buffers are reported in the fol-
lowing results due to the similarity in results yielding no 
statistically significant differences between the two trim 
distances. All model analyses were performed in R (R 
Development Core Team, 2014) using the packages ‘for-
eign’, ‘mgcv’, ‘metrics’ and ‘nlme’ [42–45].

Results
The study sample was comprised of 5883 adult partici-
pants aged 18–66 years. Table 1 provides a summary of 
the mean socio-demographic characteristics for each 
city. Education level displayed some of the largest vari-
ability among demographic variables (e.g. ‘less than high 
school’ ranging from 0.8% in NZ-WE and 1.3% in US-KC 
to 33.8% in UK and 28.8% in BR).

Walking for transportation frequency varied by coun-
try, with participants in NZ-WE walking most often 
(4.1 days/week), followed by BR (3.5 days/week) (Table 2). 

Walking for leisure was engaged in most frequently by 
DK (2.8 days/week) and NZ-WE (2.3 days/week) partici-
pants. Time spent sitting was highest in DK (2676 min/
week) followed by the US-KC and US-MD study sites, 
averaging 2555 and 2545 min/week respectively.

Buffer comparison
Across all study sites, sausage buffers had the smallest 
average area (0.74  km2). The detailed-trimmed buffers 
had an average area of 0.89  km2, while detailed buffers 
covered the largest area (1.29 km2). Ninety pairs of BEMs 
developed through the three network buffering tech-
niques were compared across the eight study cities. Fig-
ure  3 conveys the sequence of steps used to compare 
BEMs from the three buffering types with the physical 
activity health outcomes. In 96% of cases, sausage buffer 
BEM values were significantly different from detailed-
trimmed buffer BEMs values, while in 89% of cases, 

Table 1 Mean socio-demographic characteristics by study site

Country City N Age (SD) % female Education level % Married % Employed

Less than high 
school (%)

High school/
some college 
(%)

College gradu-
ate or higher 
(%)

Pooled 5883 42.4 (12.4) 53.0 10.9 42.2 46.3 59.2 77.9

United States 
(US)

Seattle (KC) 1287 44.0 (11.0) 45.2 1.3 35.4 63.0 63.2 81.3

Baltimore (MD) 912 46.6 (10.7) 52.3 2.0 30.3 67.2 60.5 82.6

New Zealand 
(NZ)

North Shore (NS) 511 40.9 (11.8) 63.9 3.7 57.3 38.0 70.4 77.7

Wellington (WE) 496 39.2 (12.6) 51.2 0.8 47.0 52.2 56.7 86.7

Christchurch 
(CC)

495 41.7 (12.6) 55.8 10.7 57.2 31.9 55.4 79.6

Denmark (DK) Aarhus 642 38.9 (13.9) 56.7 7.3 43.1 46.6 65.4 74.6

Brazil (BR) Curitiba 697 41.1 (13.2) 52.9 28.8 32.4 38.7 58.1 77.6

United Kingdom 
(UK)

Stoke-on-Trent 843 43.0 (13.3) 56.1 33.8 51.7 14.0 44.8 64.4

Table 2 Mean physical activity outcomes by study site

Study site N # of days walking 
for transport (days/
past week)

Time spent walking 
for transport (min/
past week)

# of days walking 
for leisure (days/past 
week)

Time spent walking 
for leisure (min/past 
week)

Time spent sitting (min/
past week)

Pooled 5883 3.0 164.1 1.9 112.1 2396

US-KC 1287 2.9 173.9 2.1 120.4 2555

US-MD 912 2.9 171.4 2.0 104.8 2545

NZ-NS 511 2.5 86.1 1.7 84.4 2402

NZ-WE 496 4.1 180 2.3 112.4 2488

NZ-CC 495 2.0 79.7 1.5 75.2 2296

DK 642 3.3 190.8 2.8 198.7 2676

BR 697 3.5 153.3 1.2 54.3 1980

UK 843 3.0 218.4 1.6 129.3 2116



Page 8 of 13Frank et al. Int J Health Geogr  (2017) 16:4 

sausage buffer BEM values were significantly different 
from detailed buffer BEMs values. Density-related BEMs 
tended to show more differences between buffer types 
than count-based BEMs, presumably because the buffer 
area can vary greatly by buffer type.

All possible combinations (n =  450) of built environ-
ment-physical activity pairs for pooled and city-specific 
analyses were run for (1) sausage versus detailed-trimmed 
buffers and (2) sausage versus detailed buffers. No statis-
tically significant differences in associations of sausage 
versus detailed-trimmed buffer BEM with physical activ-
ity outcomes were found. The p value for BEM coefficient 
associations with outcome variables differed in signifi-
cance level (i.e. the coefficient for only one buffer type 
had a p < 0.05) in 17 cases (4%), with the sausage buffer 
BEM statistically significant in 5 cases, and the detailed-
trimmed buffer BEM statistically significant in 12 cases. 
The t-statistic was higher for the sausage buffer BEM 
coefficient in 45% of cases and higher for the detailed-
trimmed buffer BEM coefficient in 55% of cases.

When comparing sausage buffers with detailed buff-
ers, the p value for BEM coefficient associations with 
outcome variables differed in significance (p < 0.05) in 40 
cases (9%), with only the sausage buffer BEM significant 

in 25 cases and only the detailed buffer BEM significant 
in 15 cases. The t-statistic was higher for the sausage 
buffer BEM coefficient in 48% of cases and higher for the 
detailed buffer BEM coefficient in 52% of cases.

It was also observed that BEMs were much more likely 
to be significantly associated with the transportation out-
comes rather than the leisure physical activity or sitting 
outcomes. For one or both buffer types, the BEM was sig-
nificantly associated with the outcome in:

  • Sausage versus detailed-trimmed buffers: 41% of 
transportation walking models; 11% of leisure physi-
cal activity models; 7% of sedentary behavior models;

  • Sausage versus detailed buffers: 44% of transporta-
tion walking models; 13% of leisure physical activity 
models; 9% of sedentary behavior models.

For both the sausage versus detailed-trimmed and sau-
sage versus detailed buffer comparisons, the table below 
summarizes the number of pairs of BEM coefficients 
differing in statistical significance (the coefficient for 
only one buffer type had a p < 0.05) for the pooled and 
city-level analyses (Table  3). For both the sausage ver-
sus detailed-trimmed and sausage versus detailed buffer 

Fig. 3 Analysis workflow process comparing BEMs from three source network buffering types with both 25 and 75 m trim distances for sausage 
(SA) and detailed trimmed (DT) with physical activity (PA) outcomes. BEM-PA relationships are modeled using generalized additive mixed models 
(GAMM) to determine statistically significant pairs
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comparisons, the most statistically significant BEM coef-
ficient pairs were found for the pooled city analysis (pri-
marily due to having the largest sample size and statistical 
power), followed by US-KC and US-MD. The most BEMs 
coefficient pairs differing in statistical significance were 
found for US-KC and US-MD.

Across all BEM coefficients, the count of statisti-
cally significant coefficient pairs for both sausage versus 
detailed-trimmed and sausage versus detailed compari-
sons was highest for the transportation walking dura-
tion outcome, followed by the transportation walking 
frequency outcome (Table  4). Across all outcomes, the 
count of statistically significant BEM coefficient pairs was 
highest for net residential density and transit stop count 
measures for both sausage versus detailed-trimmed and 
sausage versus detailed buffer comparisons.

The count of BEM-physical activity coefficient pairs dif-
fering in statistical significance was highest for the trans-
portation walking frequency outcome for the sausage 
versus detailed-trimmed comparison (Table  4). Across 
all outcomes, BEM coefficient pairs differing in statistical 
significance were most likely for intersection density and 
transit stop count BEMs. For the sausage versus detailed 
comparison, BEM coefficient pairs differing in statistical 
significance were most likely for the transportation walk-
ing duration outcome, followed by the leisure walking 
duration outcome. Across all outcomes, BEM coefficient 
pairs differing in statistical significance were most likely 
for intersection density and residential density measures.

Discussion
The aim of this study was to investigate how three types 
of network buffers differed in measuring a set of com-
monly used BEMs, and to test their relative ability to 
predict physical activity outcomes. Defining an individ-
ual’s neighbourhood using network buffers has become a 
commonly applied practice in public health research due 
to increased spatial accuracy in capturing an individual’s 
exposure to urban form features compared to coarser 
spatial units such as pre-defined administrative areas or 
circular buffers. However, differences in the techniques 
available to generate network buffers both within and 
between GIS platforms are a limiting factor in the ability 
to compare results between studies. Comparability is fur-
ther hindered by methodological differences in the GIS 
software used impacting the network buffering process.

Results from this international study of cities with 
diverse built environments indicated that BEM val-
ues often differed significantly by buffer type employed. 
However, in the vast majority of cases, BEM associations 
with each physical activity outcome yielded a similar level 
of statistical significance for the sausage buffering tech-
nique as the detailed and detailed-trimmed network buff-
ers derived using proprietary algorithms. However, for 
9% of sausage versus detailed buffer model pairs, BEM 
coefficient associations with outcome variables differed 
in significance. This discrepancy warrants further inves-
tigation, and may be due to larger variation in buffer area 
between sausage and detailed buffers and subsequent 
impact on density-related BEMs.

Despite the similarity of the ability to predict physical 
activity among the various types of buffers examined, 
the findings of this study yield analogous conclusions 
to those provided by Forsyth et  al. [24] using a smaller 
set of BEMs, that the sausage method remains the most 
defensible method for creating network buffers due to 
repeatability and consistency in buffer shape across GIS 
platforms. Specifically, the sausage buffering approach 
produces a representative area for area-based measures 
regardless of street network connectivity, and ensures 
that only point, line and polygon features that are acces-
sible from the road network are used to quantify the built 
environment. However, it should be noted that variation 
in the spatial representation of urban form features (e.g. 
parcels may be in centroid or polygon format) used to 
create BEMs may yield inconsistencies between studies, 
despite the use of a uniform buffering approach.

The present study used a 25  m trim buffer along the 
street network for the detailed-trimmed and sausage 
buffers, with point locations snapped to the road network 
to ensure that all features were captured by the buffer. 

Table 3 Comparison of  BEM-physical activity (PA) coeffi-
cients: statistically significant pairs, by study site

SA-DT sausage buffer versus detailed-trimmed buffer, SA-DO sausage buffer 
versus detailed buffer

* Out of 55 comparisons per country/city; ** BR only has 35 comparisons; *** UK 
only has 30 comparisons

Study site N # of pairs of signifi-
cant BEM-PA coeffi-
cients*

# of pairs differing 
in BEM-PA statisti-
cal significance*

SA-DT SA-DO SA-DT SA-DO

Pooled 5883 26 24 2 2

USA- KC 1287 24 23 4 4

USA-MD 912 11 11 4 1

NZ-NS 511 4 2 0 0

NZ-WE 496 6 3 1 1

NZ-CC 495 2 0 2 4

DK 642 6 5 2 2

BR** 697 2 2 1 0

UK*** 843 2 2 1 0
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The buffer distance from the road influences the num-
ber of point and polygon features captured by the buffer; 
distances that are too large could result in features that 
are not accessible from the road network being included, 
while buffer distances that are too small may result in fea-
tures that are accessible being excluded. Road network 
data are typically available as centreline features, thus a 
minimum buffer distance of 25 m from the road network 
is suggested when creating network-based buffers, due 
to variability in road and sidewalk width depending on 
geographic context. Other studies have used larger trim 
distances ranging from 50 [19, 29, 31, 46] to 150 m [24] 
to capture point features that are not snapped to the road 
network.

Strengths of this study included the diversity of urban 
form from which BEMs were collected (five countries), 
allowing the ability to test the validity and transferability 
of the sausage buffering technique across a wide range 
of environment types. Extensive procedures were imple-
mented to maximize the comparability of BEMs across 
cities [38]. This study uses a large set of BEMs commonly 
used in health research, allowing for an in-depth compar-
ison of how different BEMs and associations with physi-
cal activity outcomes specific to purpose (transport or 
leisure) vary across buffer type. Another strength of the 
current study is the comparison of BEMs produced by the 
different buffers using inferential modeling techniques.

Weaknesses of this study include lack of availability 
of pedestrian features in the road networks used in this 
global investigation (such as non-motorized trails, or 
other pedestrian only ways which do not follow the road 
network) to create buffers. The road only buffers may be 
smaller than buffers created using roads with pedestrian 
connections. Road network data that include pedestrian 
pathways have limited availability, are often prohibitively 
expensive to create or are developed for the purpose of a 
tracking inventory rather than network analysis resulting 
in spatial connectivity issues. In the case of this study, a 
road network containing non-motorized pedestrian trails 
was only readily available for one study regions. Another 
limitation is the lack of objective data collection includ-
ing Global Positioning Systems (GPS) on study par-
ticipants. Finally, the cross-sectional nature of the study 
design limited the causal interpretation of any findings.

A growing body of research suggests that place-based 
definitions focused on the residential neighborhood do 
not adequately capture the fact that daily activities are 
often conducted in multiple environments [15, 47]. Many 
studies have addressed the spatial and temporal variation 
in human activities through the collection of GPS data 
to create individual ‘activity spaces’ [46–48], allowing for 
increased understanding of contextual influences on phys-
ical activity. Alternative buffer methods based on GPS 

data (e.g. ellipse-shaped polygons, daily path areas) offer 
potential to redefine how an individual’s neighborhood is 
conceptualized. The resources and costs of implementing 
a participant GPS data acquisition often make it impracti-
cal for large epidemiological studies; especially those that 
are global and operating with many study regions. GPS 
provide a valuable method to objectively measure where 
people go and duration of time and engagement in spe-
cific activities and exposure to environmental phenom-
ena. However, GPS does not have the ability to supplant 
the need for GIS-based methods to independently inven-
tory and measure built environment features. Develop-
ment of suitable buffers around key habitual locations, 
such as the home, will remain important to understand-
ing the opportunities for behavior an environment offers. 
Future research investigating how street network-based 
buffer methods compare to alternative activity spaces def-
initions, such as those defined using GPS technology, will 
continue to advance understanding of built environment 
relationships with physical activity behaviors.

Conclusions
To the knowledge of the authors, this study is the first to 
evaluate alternative forms of network buffers for capturing 
built environment attributes across multiple international 
study sites, demonstrating strong generalizability within 
a global context. The current study further advances the 
existing scholarship base by presenting consistent rela-
tionships between three different network buffer types 
for utilitarian transportation, sedentary behavior, and lei-
sure-oriented physical activity outcomes. Further studies 
should compare the strength of BEM associations between 
different types of network buffers with other health-related 
measures such as objectively-measured physical activ-
ity, obesity and chronic health outcomes. Investigation 
into the use of these buffering methods may be applied 
to quantify exposure to other environmental phenomena, 
especially when data containing duration of exposure over 
time is available. Additional research may also seek to test 
the strength of BEM associations between different buff-
ering techniques on specific population cohorts including 
those varying by age, gender, and income.
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