
Accepted Manuscript

Meyer's loop tractography for image-guided surgery depends on
imaging protocol and hardware

Maxime Chamberland, Chantal M.W. Tax, Derek K. Jones

PII: S2213-1582(18)30262-6
DOI: doi:10.1016/j.nicl.2018.08.021
Reference: YNICL 1514

To appear in: NeuroImage: Clinical

Received date: 14 February 2018
Revised date: 31 July 2018
Accepted date: 10 August 2018

Please cite this article as: Maxime Chamberland, Chantal M.W. Tax, Derek K. Jones ,
Meyer's loop tractography for image-guided surgery depends on imaging protocol and
hardware. Ynicl (2018), doi:10.1016/j.nicl.2018.08.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

https://doi.org/10.1016/j.nicl.2018.08.021
https://doi.org/10.1016/j.nicl.2018.08.021


AC
CEP

TE
D M

AN
USC

RIP
T

1 

Meyer’s loop tractography for image-guided surgery depends on imaging protocol and 

hardware 

Maxime Chamberland 1, ∗, Chantal M. W. Tax1, Derek K. Jones1,2 

1Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff 

University, Cardiff, United Kingdom 

2School of Psychology, Faculty of Health Sciences, Australian Catholic University, Victoria, 

Australia. 

∗Correspondence to:  

Maxime Chamberland 

Cardiff University Brain Research Imaging Centre (CUBRIC) 

School of Psychology, Cardiff University 

Maindy Road, Cardiff CF24 4HQ  

Tel: +44(0)29 2087 0365 

Email address: chamberlandm@cardiff.ac.uk 

Abstract word count: 250 

ABSTRACT 

Introduction: Surgical resection is an effective treatment for temporal lobe epilepsy but can 

result in visual field defects. This could be minimized if surgeons knew the exact location of the 

anterior part of the optic radiation (OR), the Meyer’s loop. To this end, there is increasing 

prevalence of image-guided surgery using diffusion MRI tractography. Despite considerable 

effort in developing analysis methods, a wide discrepancy in Meyer’s loop reconstructions is 

observed in the literature. Moreover, the impact of differences in image acquisition on Meyer’s 

loop tractography remains unclear. Here, while employing the same state-of-the-art analysis 

protocol, we explored the extent to which variance in data acquisition leads to variance in OR 

reconstruction. 

Methods: Diffusion MRI data were acquired for the same thirteen healthy subjects using 

standard and state-of-the-art protocols on three scanners with different maximum gradient 

amplitudes (MGA): Siemens Connectom (MGA=300 mT/m); Siemens Prisma (MGA=80 mT/m) 
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and GE Excite-HD (MGA=40 mT/m). Meyer’s loop was reconstructed on all subjects and its 

distance to the temporal pole (ML-TP) was compared across protocols. 

Results: A significant effect of data acquisition on the ML-TP distance was observed between 

protocols (p<0.01 to 0.0001). The biggest inter-acquisition discrepancy for the same subject 

across different protocols was 16.5 mm (mean: 9.4 mm, range: 3.7 - 16.5 mm). 

Conclusion: We showed that variance in data acquisition leads to substantive variance in OR 

tractography. This has direct implications for neurosurgical planning, where part of the OR is at 

risk due to an under-estimation of its location using conventional acquisition protocols. 

1. INTRODUCTION 

Epilepsy is a neurological disorder characterised by recurrent seizures. Temporal lobe 

epilepsy (TLE) seizures originate in the temporal lobe and may be focal, localised to discrete 

cortical or subcortical regions within the temporal lobe, or may spread to other parts of the 

brain. An effective treatment for TLE consists of performing anterior temporal lobe resection 

(ATLR), often combined with amygdalohippocampectomy (Wiebe, Blume, Girvin, & Eliasziw, 

2001). One approach, the trans-middle temporal gyrus approach (or transcortical), enters 

through the trans-middle temporal gyrus. A second approach, the sub-temporal approach, is 

less complex but can cause significant damage to the neocortex. A third, and most technically 

difficult approach, is one where the neurosurgeon has to access the brain though the 

transsylvian fissure. This technique reduces displacement of brain tissues but carries a greater 

risk of vascular complications (Bandt et al., 2013; Kovanda, Tubbs, & Cohen-Gadol, 2014).  

 

All three surgical approaches can result in visual field deficits (VFDs) in more than half of the 

patients undergoing the procedures, reducing the quality of life of these patients (Pathak-Ray, 

Ray, Walters, & Hatfield, 2002). This is due to the transection of the optic radiation (OR), a 

white matter (WM) fibre bundle of utmost importance, responsible for transmitting visual 

information between the lateral geniculate nucleus (LGN) and the visual cortex (Ebeling & 

Reulen, 1988; Rubino, Rhoton, Tong, & Oliveira, 2005; Winston et al., 2012). Meyer’s loop is a 

section of the OR that projects most anteriorly, with a sharp backwards bend (Chamberland et 
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al., 2017; Ebeling & Reulen, 1988; Goga & Ture, 2015). The extent and angulation to which the 

Meyer’s loop fans out anteriorly is known to vary between subjects. From a neurosurgical 

perspective, it behooves us to pay particular attention to the 3D trajectory of the OR in order to 

reduce the risk of inducing VFDs. Knowing the exact location of the OR, and more specifically of 

the Meyer’s loop, is crucial information that may help reduce morbidity for patients undergoing 

ATLR. Therefore, subject-specific information on the distance between the most anterior tip of 

the Meyer’s loop and the temporal pole (TP), also referred to as the ML-TP distance (Figure 1, 

Table 1), could greatly aid surgeons in preparation for such intervention, and lead to improved 

patient outcome. However, the anterior extent of Meyer’s loop is 1) often located within the 

resection area; 2) known to vary between subjects (Goga & Ture, 2015) and 3) invisible on 

conventional MRI techniques.  

 

Authors Mean ML-TP + range (mm) 

Ebeling and Reulen (1988) 27 (22 – 37) 

Peuskens et al. (2004) 27 (15 – 30) 

Rubino et al. (2005) 25 (22 – 30) 

Choi, Rubino, Fernandez-

Miranda, Abe, and Rhoton 

(2006) 

31.4 (28 – 34) 

Chowdhury and Khan (2010) 26 (23 – 31) 

Table 1: Average ML-TP distance derived from ex-vivo dissection studies. 

Since the OR cannot be identified visually during surgery, substantial effort has been exerted 

in obtaining an accurate localization of the OR using tractography derived from dMRI (for 

review, see (Benjamin, Singh, Prabhu, & Warfield, 2014; Lilja & Nilsson, 2015; Mandelstam, 

2012)). Yet, various issues hamper the complete and accurate reconstruction of the human OR, 

particularly due to its characteristic high curvature (Figure 1). A common observation is that the 

anterior extent of the Meyer’s loop is underestimated by most reconstruction methods 
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currently employed in clinical research (Lilja et al., 2014). Indeed, an accurate Meyer’s loop 

tractography should produce a dense set of streamlines (Benjamin et al., 2014; Goga & Ture, 

2015) with no separation or gaps between the fibres (Figure 1, red circle), mirroring the known 

anatomy of the bundle (Ebeling & Reulen, 1988; Goga & Ture, 2015). A possible limitation 

comes from the inability of the diffusion tensor (DT) representation, which is often employed in 

clinical research, to resolve the underlying complex local directions of the WM fibre pathways 

(Tournier, Mori, & Leemans, 2011).  

 

In addition, the impact of image acquisition on Meyer’s loop reconstruction remains unclear. 

Conventional whole-brain clinical dMRI acquisitions aim to reduce scan duration by limiting the 

number of diffusion encoding directions (e.g., between 12 and 60 at a single b-value) and 

spatial resolution (e.g. at best 2 × 2 × 2 mm3 isotropic). From an acquisition point-of-view, 

imaging data with higher spatial resolution seems promising for capturing the intricacies and 

fine sharp turn of the Meyer’s loop. However, this often comes at a cost of reduced signal-to-

noise ratio (SNR), which can be compensated for by increasing the acquisition time. However, 

recent advances in hardware have led to dramatic improvements in data quality and reductions 

in scan duration (Sotiropoulos et al., 2013). Stronger magnetic field gradients not only allow 

higher SNR at high b-values, but also provide better spatial resolution. Concomitantly, achieving 

better SNR and/or angular resolution allows better estimation of complex fibre orientations 

(Sotiropoulos & Zalesky, 2017; Tournier et al., 2011). In addition, multiple b-values allow more 

accurate estimation of partial volume effects, a necessity for achieving better estimation of WM 

directions (Jeurissen, Tournier, Dhollander, Connelly, & Sijbers, 2014), which in turn will directly 

impact the results of tractography (Maier-Hein et al., 2017). 

In this paper, we hypothesize that a more complete Meyer’s loop reconstruction can be 

achieved by using state-of-the-art (SoA) hardware and analysis techniques. To this end, we 

compare the ML-TP distance derived from tractography of the same thirteen subjects (healthy 

controls) acquired on three different scanners, using a mixture of five standard (Std) and SoA 

protocols.  
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2. METHODS 

2.1 Data acquisition 

Written informed consent was given by all subjects. Meyer’s loop reconstructions were 

evaluated on a dedicated dataset of the same 13 subjects (labelled from A to M) acquired on 

three different 3T scanners with different maximum gradient amplitudes (MGA): Siemens 

Connectom (MGA = 300 mT/m); Siemens Prisma (MGA = 80 mT/m) and GE Excite-HD (MGA = 40 

mT/m) using Std and SoA acquisition protocols, with the latter having higher spatial and angular 

resolution. Acquisition parameters for all protocols are summarised in Table 2. A T1-weighted 1 

mm isotropic MPRAGE image was acquired for each subject and scanner for anatomical 

reference. 

2.2 Data pre-processing 

Eddy current distortion- and motion correction was performed using FSL EDDY (Andersson & 

Sotiropoulos, 2016) (fsl.fmrib.ox.ac.uk). Susceptibility distortions were also corrected using FSL 

TOPUP (Andersson, Skare, & Ashburner, 2003) for both the Connectom and Prisma data. The 

Connectom data were additionally corrected for geometric distortions due to gradient non-

linearity (Glasser et al., 2013). All data were then upsampled to 1 × 1 × 1 mm3 and aligned 

between scanners, using the Prisma standard data set as the reference frame for each subject. 

Parameters Std-300 mT/m SoA-300 

mT/m 

Std-80 mT/m SoA-80 mT/m Std-40 mT/m 

Scanner Siemens 

Connectom 

Siemens 

Connectom 

Siemens 

Prisma 

Siemens 

Prisma 

GE Excite-HD 

Resolution 

(mm³) 
2.4 × 2.4 × 2.4 1.2 × 1.2 × 1.2 2.4 × 2.4 × 2.4 1.5 × 1.5 × 1.5 2.4 × 2.4 × 2.4 

Directions 

(per b-value) 

30 60 30 60 30 

b-values 

(s/mm²) 

1200  

3000 

1200 

3000 

1200 

3000 

1200 

3000 

1200 
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5000 5000 

TE/TR (ms) 89/7200 68/5400 89/7200 80/4500 89/† 

Table 2: Acquisition parameters for each protocol. Std: standard. SoA: state-of-the-art.  

†: cardiac gated. 

This step facilitated the positioning of region-of-interests (ROIs), reducing subjective bias at the 

inter-individual level and allowed a direct comparison of tractography results between 

protocols. More specifically, the Connectom and Prisma data were affinely co-registered using 

the mean b = 0 and b = 1200 s/mm2 images using ANTs (Avants et al., 2011), followed by 

appropriate B-matrix rotation (Leemans & Jones, 2009). Since the GE Excite-HD data were 

acquired without reverse phase encoding, images were non-linearly warped to the reference 

space to correct for susceptibility distortions. 

2.3 Local modelling and tractography 

Next, fibre orientation distribution functions (fODFs) were derived using multi-shell multi-

tissue constrained spherical deconvolution (MSMT-CSD) (Jeurissen et al., 2014), for both 

Connectom and Prisma data. For the single b-value Std-40 mT/m data, free-water elimination 

was performed by only supplying the WM and cerebro-spinal fluid response functions to the 

MSMT-CSD algorithm in MRtrix. The resulting fODF peaks (thresholded at amplitudes ≥ 0.1) 

were used to perform tractography using the FiberNavigator (Chamberland, Whittingstall, 

Fortin, Mathieu, & Descoteaux, 2014). Tractography parameters were fixed for all subjects and 

protocols (angular threshold: 45◦, step size: 1 mm, min/max length: 30/200 mm). For both 

hemispheres of each subject, a 5 × 5 × 5 mm3 seeding ROI with 8000 seeds was interactively 

placed anterolaterally to the LGN (Chamberland et al., 2017; Martıńez-Heras et al., 2015), with 

initial propagation direction oriented along the left/right axis (Figure 2, purple). The seed-ROI 

was large enough to capture part of the LGN, but also interfaced with the adjacent WM to 

ensure that the first few critical tractography steps where performed on well-defined diffusion 

orientations (Chamberland et al., 2017; Martıńez-Heras et al., 2015; Sherbondy, Dougherty, 

Napel, & Wandell, 2008). An inclusion planar-ROI centered in the sagittal stratum (Figure 2, 
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AND) and an exclusion sagittal plane (Figure 2, NOT) acted as filtering regions to reduce false-

positives.  

Next, a 16 × 80 × 40 mm3 magnetic-ROI (Chamberland et al., 2017) was placed in the anterior 

temporal lobe (Figure 2, green) where the Meyer’s loop typically undertakes its turnaround. As 

we previously demonstrated (Chamberland et al., 2017), this new ROI-mechanism aims to 

facilitate Meyer’s loop delineation by incorporating anatomical priors of the expected fibre 

orientation to the tractography algorithm. The magnetic-ROI not only selects streamlines that 

reach it, but also facilitate the choice of direction to follow based on a user-defined propagation 

direction. In the case of Meyer’s loop, streamlines that exit the LGN and enter that ROI will 

propagate along the fODF direction that points toward the occipital pole instead of any other 

existing choice. Finally, the resulting streamlines were quality controlled visually for all subjects 

to ensure that no spurious or isolated streamline remained. 

 
2.4 Statistical analysis 

The ML-TP distance was measured using the axial projection of the most anterior part of the 

Meyer’s loop (i.e., the absolute Y-component of the 3D Euclidean distance). This distance was 

then normalised by head size using the most posterior point of each occipital pole (OP) (i.e., 

100%·(ML-TP)/(TP-OP)), allowing for inter-individual comparisons. Unless specified, all other 

instances of this measurement within this paper refer to the raw ML-TP distance. A one-way 

ANOVA was conducted to compare the effect of scanning protocol on the normalized ML-TP 

distance. Post-hoc results were corrected for multiple comparisons using the Bonferroni-Holm 

test. Finally, a lateralization index was derived for all sixty-five pairs of Meyer’s loop 

reconstructions by subtracting measurements of the right hemisphere from those of the left 

one. A negative value indicates a shorter ML-TP on the left side (e.g. larger anterior extent of 

the Meyer’s loop). 

3.  RESULTS 

The tract reconstructions were highly consistent with anatomical descriptions of the OR for 

all subjects. A representative reconstructed OR of a single subject across all protocols is 
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illustrated in Figure 3, using an oblique lateral view. In a direct side-by-side comparison, one 

can observe a larger anterior extent of the OR for the SoA protocols (e.g., blue and purple) 

when compared to data from the Std protocols. More importantly, even though the ML-TP 

distances are larger in the Std protocols, the tractography result from all data sets show dense 

reconstructions of streamlines in Meyer’s loop, with no separation between the streamlines. 

Coloured lines are drawn in the image space to better depict the intra-subject variance across 

protocols. 

Figure 4 illustrates the asymmetry of the Meyer’s loop reconstruction for 3 representative 

subjects, both qualitatively and quantitatively. In this figure, each row represents the same 

subject across different protocols. The axial planes were set so that the entire OR was visible 

(e.g. positioned below the deepest point of the Meyers’s loop in the Z axis). Intra- and inter- 

subject variability of the anterior extent of the Meyer’s loop is revealed by the lateralization 

indices. A trend towards a left-lateralization of the Meyer’s loop is observed in SoA 

reconstructions (see Table 3). 

Raw ML-TP distances and lateralization indices across all protocols are reported in Table 3. 

At the group level, SoA protocols reconstruct Meyer’s loop with a smaller ML-TP distance. Most 

notable are the SoA-300 mT/m results with a mean ML-TP distance for the left and right 

hemispheres of 25.0 mm (range: 19.9 - 28.9 mm) and 26.6 mm (range: 23.1 - 29.8 mm), similar 

to the results obtained from direct measurement through ex vivo dissection (Table 1). On 

average, this places Meyer’s loop 9.4 mm (range: 3.7 - 16.5 mm) in front of what was inferred 

by the Std-40 mT/m protocol. In addition, the SoA-300 mT/m protocol also showed a significant 

left lateralization of the OR (p < 0.05). 

Protocol Mean ML-TP (left) Mean ML-TP (right) Mean LI 

SoA-300 mT/m 25.0 (19.9 – 28.9) 26.6 (23.1 – 29.8) -1.6 (*) 

SoA-80 mT/m 26.9 (23.5 – 29.9) 27.7 (23.9 – 34.0) -0.8 
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Std-80 mT/m 30.4 (25.1 – 36.6) 30.1 (25.1 – 34.0) 0.4 

Std-300 mT/m 31.4 (25.2 – 39.0) 30.7 (27.9 – 34.9) 0.7 

Std-40 mT/m 35.4 (30.0 – 43.5) 35.0 (28.3 – 43) 0.4 

Table 3: Average raw ML-TP distance and lateralization index (LI) across all protocols. The 

shortest distances were measured in SoA acquisitions. In addition, both SoA protocols revealed 

a left lateralization trend. However, only the 300mTm/m one was significant (*: p < 0.05) 

The effect of scanning protocol on the measured ML-TP distances for both hemispheres 

(head normalized across scanners) is shown in Figure 5. Based on an analysis of variance, a 

significant effect of scanning protocol on reconstructed ML-TP distance was found at the p < 

0.05 level for both left [F(4, 60) = 25.05, p = 3.17E-12] and right hemispheres [F(4, 60) = 18.46, p 

= 6.16E-10]. Figure 5 also indicates that i) the mean measurements of both SoA protocols (blue 

and pink) were significantly different than the Std-40 mT/m protocol (p < 0.0001); ii) both 

Connectom and Prisma Std protocols (red and green) indicate significant difference with the 

Std-40 mT/m one (p < 0.01 and 0.001). Additionally, both SoA reconstructions indicate 

significant differences over all Std reconstructions, with the exception of the right hemisphere 

SoA and Std 80 mT/m (Figure 5, p = 0.02). Individual ML-TP measurements are provided in the 

Supplementary Materials. 

 

4. DISCUSSION 

4.1 Measurements and asymmetry of the Meyer’s loop 

In this work, we focused on the challenge of reconstructing the optic radiation, which is 

important for epilepsy surgery in the temporal lobe, by providing a quantitative comparison of 

several acquisition protocols from different scanners. There are two main findings associated 

with this study. First, a significantly reduced ML-TP distance was found for both SoA-300 mT/m 

and SoA-80 mT/m acquisitions, with a mean ML-TP distance across both hemispheres of 25.8 

and 27.3 mm, respectively. These measurements are directly in the range of what has been 
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reported by several ex vivo dissection studies (see Figure 6). The Std-300 mT/m and Std-80 

mT/m protocols followed closely with a mean ML-TP measurement of 31.0 and 30.3 mm, 

respectively. This finding is also supported by the average location of the OR across protocols, 

as shown in Supplementary Figure 1 (red-yellow). Additionally, it is worth noting that, although 

underestimating the loop when compared to other protocols, the Std-40 mT/m measurements 

derived from single-shell CSD estimated a smaller ML-TP distance than most previously-

published DTI studies (Figure 6, 35.2 mm). We attribute this to the use of the MAGNET 

algorithm in the current study, which specifically addresses the high curvature of Meyer’s loop 

(Chamberland et al., 2017). Interestingly, matching protocols on different scanners (i.e. Std-80 

mT/m vs Std-300 mT/m and SoA-80 mT/m vs SoA-300 mT/m) did not yield any significant 

difference in terms of tractography reconstructions (Figure 5). Yet, higher gradient strengths 

allow for better SNR per unit time for higher b-values, which in turn will allow more reliable 

estimation of fibre orientations. 

 

The second finding is related to the asymmetry of the OR. A trend towards a left 

lateralization of the OR was found for both SoA protocols, although only significant for the 300 

mT/m protocol. This is directly in line with other dissection and tractography studies that also 

observed a reduced ML-TP distance on the left hemisphere (de Gervai et al., 2014; James et al., 

2015; Lilja et al., 2014; Mandelstam, 2012; Nowell et al., 2015; Yogarajah et al., 2009). In a 

recent study, a significant left lateralization of the Meyer’s loop was also found in a cohort of 90 

children, but only in male subjects (Dayan et al., 2015). Another group also found a leftward 

lateralization of the OR using data from the Human Connectom Project, but only in terms of 

volume (Kammen, Law, Tjan, Toga, & Shi, 2015).  

4.2 Pre-processing and tractography choices 

Potential sources of error can include registration, interpolation and the tractography 

algorithm itself. To begin with, our choice of registering the pre-processed data to a single 

reference space could potentially induce errors in distance measures, especially if the 

registration fails to properly align the volumes. However, visual inspection of all datasets 
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confirmed that good registration was achieved for all subjects. This was performed not only 

looking at the overlay of raw diffusion images, but also by inspecting the spatial organisation of 

the diffusion directions (i.e., fODF glyphs), with respect to the anatomy in all three planes. 

Moreover, performing the measurement comparisons in the native space of each acquisition 

might have introduced additional variance in the ML-TP distance, since the exact position of 

anatomical landmarks used for measurements cannot be guaranteed. In this work, we also 

chose to interpolate the diffusion data to the resolution of the anatomical data (i.e. 1 mm3) 

before modelling the fODFs. It has been shown recently that interpolating the raw diffusion 

volumes outperforms the direct interpolation of diffusion-derived measures (Dyrby et al., 

2014). 

Another point to consider following interpolation of the data is that data with different 

spatial resolutions have different partial volume effects. For most diffusion methods using a 

single b-value, it is a challenging task to correctly estimate the fODFs in the presence of 

cerebrospinal fluid (CSF), and our results derived from the Std-40 mT/m protocol may have 

been affected by this. Multi-shell modelling approaches can overcome these drawbacks at the 

tissue interfaces (Jeurissen et al., 2014). Additionally, the performance of multi-shell methods 

will typically increase with the total number of measurements acquired, leading to more 

accurate tractography (e.g., SoA datasets employed in this study). Finally, an inherent limitation 

to our study is that the true underlying fibre architecture of the Meyer’s loop is unknown for 

each subject, and thus the true ML-TP distance is also unknown. 

4.3 Neurosurgical implications 

From a clinical perspective, obtaining a physically-defined border of a specific pathway (e.g., 

tip of Meyer’s loop) is of main interest to minimize post-operative morbidity. Tractography is an 

invaluable tool for surgical planning, being the only tool available for neurosurgeons to visualize 

fibre pathways prior to surgery (Essayed et al., 2017; Nimsky, Bauer, & Carl, 2016) by super-

imposing them onto surgical navigation scans. Multiple groups have attempted to model the 

OR using tractography for surgical planning (Borius et al., 2014; Chen, Weigel, Ganslandt, 

Buchfelder, & Nimsky, 2009; Lilja et al., 2015; Meesters et al., 2017; Nilsson et al., 2007; Nowell 
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et al., 2015; Yogarajah et al., 2009), suggesting a direct link between the ML-TP distance and 

VFDs (Chen et al., 2009). A more recent clinical study revealed that patients with VFDs had their 

Meyer’s loop estimates located anterior to the resection margins, whereas in patients without 

VFDs, the Meyer’s loop reconstruction did not reach as far as the resection area (Winston et al., 

2012). Keeping these results in mind, one can consider a thought experiment in which a 

surgeon is about to perform ATLR on a patient whose data were acquired with the 40 mT/m 

protocol described here (e.g. Figure 3, right). In that case, not knowing that the anterior aspect 

of the Meyer’s loop depicted by this Std protocol is 7 to 12 mm behind what is inferred from 

more advanced acquisitions can be dramatic for the patient’s outcome. This undershoot in ML-

TP may in part explain why more than half of ATLR patients suffer from VFDs post-operatively  

(Chen et al., 2009; Winston et al., 2012; Yogarajah et al., 2009).  

 

In light of these results, there remains little standardisation in the acquisition and 

reconstruction of diffusion data for surgical planning. Indeed, application of Meyer’s loop 

tractography in neurosurgery greatly relies on detailed anatomical knowledge and on the 

effects of different acquisitions and analysis methods. OR reconstructions derived from 

tractography should be carefully interpreted since the possible post-surgical outcome for 

patients will be dependent on the hardware and protocol that is available in the hospital. A 

similar study to the current one but based on a large cohort of patients would therefore be 

valuable for the neurosurgical community. 

 

4.4 Recommendations and future directions 

Despite being unable to recover multiple fibre orientations, the diffusion tensor remains the 

most widely employed representation for surgical planning. Based on our Meyer’s loop 

tractography results, being able to resolve complex fibre architecture seems crucial for every 

pipeline that aims to reconstruct the full anterior extent of the OR. Without the ability to 

accurately recover complex fibre configurations, tractography-recovered streamlines are prone 

to a premature halt in the WM.  
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In recent years, more advanced approach have been proposed, surpassing the limitations of 

conventional DTI (Jeurissen, Descoteaux, Mori, & Leemans, 2017; Tournier et al., 2011). MSMT-

CSD is a promising new technique that provides sharper diffusion profiles, allowing the 

estimation of fODFs in complex regions. In addition, MSMT-CSD provides more precise WM 

fibre orientation estimates at the tissue interfaces, which is crucial for tracking to OR from the 

LGN. Although not focused on the Meyer’s loop reconstruction, MSMT-CSD was also recently 

applied in a clinical context to reconstruct the entire optic pathway of twenty-six paediatric 

tumor patients (Hales et al., 2018). Sixty diffusion gradients distributed over two shells (i.e., b = 

1000 and 2200 s/mm2) were used for a total scan duration of 7min 50s, indicating that MSMT-

CSD can be employed in a clinically feasible scan time.  

Moreover, tractography methods are now at a stage where anatomical information can be 

introduced as input to help reduce false-positives and premature tract termination (for review, 

see (Jeurissen et al., 2017)). It is worth mentioning at this point that most of the 

aforementioned advanced tractography methods are already publicly available to clinicians via 

open-source software packages such as the FiberNavigator 

(chamber.github.io/fibernavigator_single), Mrtrix (mrtrix.org) and Dipy (nipy.org/dipy). 

For those with limited access to SoA hardware and acquisition protocols, alternative 

strategies can be considered. From an acquisition point of view, it is suggested to balance 

between spatial and angular resolution (Sotiropoulos & Zalesky, 2017), with the latter having a 

better impact on tractography (Vos et al., 2016). From an image processing point of view, latest 

advances in image quality transfer (Alexander, Zikic, Zhang, Zhang, & Criminisi) may also be 

considered. Methodological advances in denoising and upsampling approaches (Dyrby et al., 

2014) also help to improve both spatial and angular resolution. Furthermore, microstructure-

informed tractography (Girard et al., 2017) is a novel addition to conventional tracking based on 

the idea that each fibre bundle possess unique microstructural features (e.g., axon diameter). 

These features can then be used to guide streamline propagation and potentially solve 

reconstruction ambiguities in regions of complex fibre architecture. In this work, we addressed 
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this problem by incorporating prior anatomical information. Encoding such external prior 

information to the tracking is in great part responsible for achieving a complete reconstruction 

of Meyer’s loop (Chamberland et al., 2017). Using the MAGNET algorithm, streamlines are 

allowed to undertake within-voxel sharp turns as they enter the directionally-encoded ROI 

(Figure 2, green); a scenario that is not supported by most other tractography algorithms.  

5. CONCLUSION 

Taken together, we demonstrate that (where exactly the same tractography parameters 

are used) the choice of acquisition protocol affects Meyer’s loop reconstruction. Specifically, 

acquiring data with a higher spatial and angular resolution (Vos et al., 2016) with more b-values 

gives rise to a more complete anterior delineation of the Meyer’s loop, assuming that SoA 

reconstructions inferred from tractography do reflect Meyer’s loop true location. This has 

important applications in ATLR where surgeons may transect part of the Meyer’s loop due to an 

under-estimation of its location. The results also underpin, when time permits, the importance 

of using SoA imaging protocols for neurosurgical planning. 

Fig. 1: Tractography of the optic radiation. Streamlines are colour coded by orientation (i.e. left-

right: red, antero-posterior: green, superior-inferior: blue). Meyer’s loop is formed of 

streamlines sharply bending in the temporal lobe (left panel, dashed area). The red line (middle 

panel) shows the distance from Meyer’s loop to the temporal pole (ML-TP). 

Viewing angles: lateral, superior and frontal, respectively. 

 

Fig. 2: ROI positioning for each subject. A cubic seeding ROI (purple, S) was positioned in the 

LGN area. An include region (AND, independently displayed for both hemispheres) was placed 

mid-sagittally. An exclude ROI (red, NOT) was also placed lateral to the midsagittal plane. 

Finally, a magnetic-ROI (green) with anatomical prior pointing towards the occipital pole was 

placed in Meyer’s loop area (Chamberland et al., 2017). 
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Figure 3: Qualitative visualization of Meyer’s loop for a single subject’s hemisphere (subject H) 

across each protocol. In a direct comparison, one can observe a larger anterior extent of the 

optic radiation in SoA protocols (blue and purple) when compared to Std protocols (red, green 

and yellow). View: oblique sagittal. 

 

Figure 4: Qualitative and quantitative asymmetry of reconstructed Meyer’s loop illustrated for 3 

representative subjects (subjects F, J, M). Each row represents the same subject across different 

protocols. A trend towards a left-lateralization of the Meyer’s loop is mostly observed in SoA 

reconstructions. Annotated numbers on the lower left hand corners refer to the lateralization 

indices. 

 

Figure 5: Quartile boxplots comparing the effect of scanning protocol on the reconstructed 

normalized ML-TP distances for both hemispheres. SoA protocols reconstruct a larger Meyer’s 

loop anterior extent when compared to Std ones. **: p < 0.01 ***: p < 0.001 ****: p < 0.0001 

(Bonferroni corrected). Dot: mean. Line: median. Note that measurements reported in this 

figure were normalized by the head size of each participant across all scanners. 

 

Figure 6: Average ML-TP distance reported in the literature for healthy controls (both 

hemispheres combined). 1: Ebeling and Reulen (1988). 2: Peuskens et al. (2004). 3: Rubino et al. 

(2005). 4: Choi et al. (2006). 5: Chowdhury and Khan (2010). 6: Current study (SoA-300 mT/m). 

7: Current study (SoA-80 mT/m). 8: Sherbondy et al. (2008). 9: Tax et al. (2014). 10: Meesters et 

al. (2017). 11: Current study (Std-80 mT/m). 12: Kammen et al. (2015). 13: Current study (Std-

300 mT/m). 14: Lilja et al. (2014). 15: Yogarajah et al. (2009). 16: Current study (Std-40 mT/m). 

17: Chamberland et al. (2017). 18: Dayan et al. (2015). 19: Yamamoto, Yamada, Nishimura, and 

Kinoshita (2005). 20: James et al. (2015). 21: Wu et al. (2011). 22: de Gervai et al. (2014). 23: 

Nilsson et al. (2007). 24: Lilja et al. (2014). 
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