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A B S T R A C T

This article examines the integration of blockchain, eXplainable Artificial Intelligence (XAI), especially in the
context of federated learning, for credit scoring in financial sectors to improve the credit assessment process.
Research shows that integration of these cutting-edge technologies is in its infancy, specifically in the areas
of embracing broader data, model verification, behavioural reliability and model explainability for intelligent
credit assessment. The conventional credit risk assessment process utilises historical application data. However,
reliable and dynamic transactional customer data are necessary for robust credit risk evaluation in practice.
Therefore, this research proposes a framework for integrating blockchain and XAI to enable automated credit
decisions. The main focus is on effectively integrating multi-party, privacy-preserving decentralised learning
models with blockchain technology to provide reliability, transparency, and explainability. The proposed
framework can be a foundation for integrating technological solutions while ensuring model verification,
behavioural reliability, and model explainability for intelligent credit assessment.
1. Introduction

Credit Assessment (CA) is the process that assures the development
of credit scorecards to assess the creditworthiness of the customers and
loan applications following the policy of the lending institution. Mature
banks are looking at making the process efficient, transparent and
sustainable to reduce the model risk and provide adequate governance.
Increasing competition and growing pressure for revenue generation
are setting the requirements for the banks to explore further effective
integration and technologies that will result in quicker turnaround time
while managing the authenticity of the data source, transparency and
privacy protection. It is necessary to employ an efficient, transparent,
traceable, secure, and interpretable modelling process to ensure ac-
curate credit risk assessment. This approach aims to minimise model
risk, mitigate bias and imperfections, and deliver reliable and sufficient
results.

Problem statement: Traditional financial institutions assess credit ap-
plications based on data available to them at the time of the credit
application, such as customers’ credit scores, existing debt and income.
The risk associated with the customer’s creditworthiness may not be
appropriately identified as the customer data comes from a single
source of information provided at the time of the application, such
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as historical spending patterns. Thus, it does not consider the broader
dynamic transactional customer data associated with the customer’s
financial behaviour, such as dynamic payment behaviour, spending
patterns, and financial health. To mitigate the data scarcity in small and
medium-sized financial institutions and reduce information asymmetry
between lenders and borrowers, a proposed solution in [1] involves
leveraging blockchain technology to establish a credit data-sharing
alliance.

The risk in the existing process is that the customer may be deemed
creditworthy based on the limited dataset. In [2] presented that com-
bining call-detail records with traditional data in credit scoring models
significantly increases their performance. At the same time, they may
have a high likelihood of defaulting on their credit obligations. Addi-
tionally, some customers may be unfairly denied due to limited credit
history [3]. Ensuring the absence of model bias and discrimination is
crucial throughout the scoring process [4]. Therefore, there is a risk to
the existing credit assessment system’s trustworthiness, efficiency and
fairness [5].

The credit assessment process encounters several challenges that
need to be addressed. Firstly, recognising the increasing challenges aris-
ing from liability concerns, sharing or broadcasting data across various
organisations. Various data-sharing regulations, such as the General
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Data Protection Regulation (GDPR), limit data sharing opportunities
across different organisations. Hence, increasingly complex regulatory
compliance and governance requirements must be met [6]. Addition-
ally, verifying and validating the accuracy of customer-provided in-
formation is crucial, ensuring that it reflects their actual financial
behaviour, including income, expenses, assets, and liabilities. Investi-
gating the customer’s history of late payments or inconsistent employ-
ment records is also important. Traditionally, credit risk assessment has
relied on historical application data, but acquiring reliable and dynamic
transactional data for model development has proven challenging.
Another essential aspect is the need for secure, transparent, traceable,
explainable, and robust modelling techniques to ensure an ethical credit
assessment decision process. Evaluating the strength and adaptability of
the scorecard model is another area of concern. Assessing its robustness
and enabling dynamic updates is crucial to ensure its effectiveness over
time. Finally, leveraging emerging technologies becomes necessary to
construct an intelligent and reliable scorecard engine that upholds
data privacy, security, and immutability while enhancing the overall
customer experience.

Blockchain can facilitate providing a decentralised credit scoring
solution, as it trains a single credit scoring model without sharing
customer data, as Hassija et al. [7] suggested. Additionally, Feder-
ated Learning (FL) may serve as part of a privacy-preserving machine
learning framework, allowing multiple parties to collaboratively train
a single credit scoring model without sharing their customer data.
However, the authors in [7] consider single-model training.

The researchers in [8] presented a credit scoring system that com-
bines explainable federated learning and blockchain to tackle chal-
lenges related to credit model sharing and safeguarding data privacy.
Their method elucidates the FL process, suggesting a decentralized
Byzantine fault-tolerant stochastic gradient descent algorithm (D-SGD).
From a mathematical perspective, the study integrates the Shapley
value with DPOS (Delegated Proof of Stake) as a consensus protocol,
enabling the algorithm to compute the contribution values of the
involved parties during the execution of the federated algorithm.

Imteaj and Amini [9] introduced a model based on FL to anticipate
financial distress among borrowers. This approach involves construct-
ing a global machine-learning model that evolves from the local models
of distributed agents. The model achieved prediction accuracy almost
indistinguishable from that of a centralised model. However, there is
no interpretability of the model and local model generation applying
Stochastic Gradient Descent (SGD).

Cheng et al. [10] proposed SecureBoost, an FL boosting model,
providing theoretical evidence that the model achieves accuracy on
par with the non-federated boosting model. However, the model is not
interpretable.

Our motivation is to thoroughly understand customers’ creditwor-
thiness and trustworthiness in model prediction and to address the
needs for well-informed decision-making in the financial sector while
protecting customer privacy. We emphasise collaborative modelling,
privacy-preserving protection, and adherence to regulatory require-
ments to ensure the accuracy and reliability of credit assessments while
respecting all involved parties’ privacy settings. This approach pro-
vides various benefits, including enhanced collaboration among mul-
tiple entities, improved privacy protection through multiparty privacy-
preserving measures, and the development of more accurate credit as-
sessment models. Integrating advanced technologies such as
blockchain, FL, and XAI also fosters technological innovation and
creates trustworthiness and unbiased credit assessment models. Overall,
these advancements aim to optimise credit risk management, reduce
defaults, and strengthen trust in the financial system.

The significance of this research is as follows:

• A novel credit assessment process is required that leverages com-
prehensive data sources and applies them to advanced Artificial
2

Intelligence (AI) algorithms to provide a more holistic view of
the customer’s creditworthiness. The real-world financial sectors
require a broader range of data sources and models to ensure
well-informed decision-making in the credit assessment process.

• Enabling multi-source data support in credit modelling promotes
collaborative modelling among multiple parties while upholding
privacy. Moreover, incorporating multiparty privacy-preserving
protection in credit modelling carries significant business bene-
fits by facilitating accurate credit assessment while ensuring the
privacy of all involved parties.

• Trustworthiness and unbiased evaluation are essential for reliable
credit assessment processes. However, the complex algorithms
utilised in FL and blockchain-based consensus mechanisms can
obscure the rationale behind credit assessments, posing chal-
lenges in meeting evolving regulatory requirements around ex-
plainability. While the use of blockchain can enable trustwor-
thiness and transparency, XAI contributes to fairness in credit
scoring.

• Enabling the reliability and impartiality of the credit assessment
models by incorporating adherence to regulatory requirements.
Therefore, its significance enables financial institutions to employ
trustworthy, unbiased credit assessment models.

We propose an automated credit decision framework focusing on the
robust integration of blockchain and XAI to achieve these goals. The
primary contributions of this paper can be summarised as follows:

• Our research explores the fundamental features of XAI and
blockchain for credit scoring. We have conducted an in-depth
credit scoring analysis and presented a taxonomy of the
blockchain and XAI, which has not been done before. Our compre-
hensive taxonomy of blockchain and XAI features highlights their
importance and insights for use within credit assessment. This can
assist researchers and practitioners in navigating and applying
these evolving technologies effectively within the domain of
credit scoring.

• Performed a comparative analysis of proposed architectures that
combine blockchain, FL, and XAI technologies to construct credit
scoring systems. We examine the difficulties of integrating these
technologies into credit assessment, addressing fundamental chal-
lenges and examining the integration mechanisms implemented
across diverse industrial applications. Our findings highlight that
current solutions primarily focus on data storage security and
privacy, with limited impact on model verification, behavioural
reliability and explainability in intelligent credit assessment.

• We present a conceptual framework that combines blockchain,
FL, and XAI technologies to establish an automated decision-
making credit assessment process. By utilising the optimal fea-
tures of these technologies, this framework aims to fulfil the
requirements of the banking industry and regulatory standards.
The result is a credit scoring system that is both effective and
explainable, thereby enhancing reliability and transparency in the
decision-making process.

After thoroughly examining the qualitative features required for
designing an efficient credit scoring framework, we performed an initial
complexity analysis of the proposed framework.

The rest of this paper is organised as follows: Section 2 presents the
key blockchain concepts. Section 3 reviews XAI techniques, including
the surveyed work on the XAI and CA. Furthermore, we analysed
the integration of FL, blockchain and XAI. In Section 4, we present
the credit assessment’s principal functionalities, including the existing
process’s limitations. Section 5, we propose the conceptual framework
that will address identified limitations and provide an outlook on future
research. Section 6 presents the analysis of the key characteristics re-
quired to build a robust credit assessment. Finally, Section 7 concludes
the paper. Fig. 1 presents an overview of related work integrating

blockchain and XAI for credit assessment.
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Fig. 1. Overview of the integration of technologies and credit assessment.

2. Blockchain features for credit assessment

This section describes the background of blockchain features and
the possible contributions to the credit assessment.

2.1. Blockchain technology

Blockchain as a distributed ledger technology was introduced with
Bitcoin [11] to solve the double-spending problem using a peer-to-peer
network. The proposed peer-to-peer distributed timestamp server uses
the Proof-of-work (PoW) system to record a chronological order of trans-
actions into timestamp blocks. The author defined an electronic coin as
a chain of digital signatures. The hash of the previous transaction and
the owner’s private key are required to sign their transactions digitally.
The public key is used to verify the sender’s identity. A proposed
timestamp server consists of the hash of a block of timestamped items
and the previous timestamp in its hash, constructing a chain. The Proof-
of-work system was implemented by incrementing a nonce in the block
until a value is found that gives the block’s hash the required zero
bits, consistent with the SHA-256 algorithm. The Proof-of-work requires
CPU computation for mining the network nodes and finding a Proof-
of-work for its block. Once the node considers the Proof-of-work, it
broadcasts the block to all nodes. The nodes accept the block only if
all transactions are validated and not spent. A hash of the accepted
block is created to be used as a previous hash for the new block in
the network. The block header contains the hash of the previous block
validated and a hash of all transactions contained in the block (Merkle
tree) as presented in Fig. 2. Privacy is preserved by keeping the public
key anonymous.

The history of the blockchain, starting from Blockchain 1.0 to
Blockchain 4.0, has been discussed by Tanwar [12]. Blockchain 5.0
is the latest generation of blockchain that has been applied together
with AI, hyper-converged infrastructure, and industry 4.0 technologies
for high security, efficiency, reliability, and scalability [12]. Verma
et al. [13] evaluated the integration of blockchain with Industry 5.0
focusing on how the technology can enhance the security challenges of
cyber–physical systems, such as security, trust and transparency.

A systematic literature review of the blockchain-based application
across multiple domains such as supply chain, business process enact-
ment [14], financial, healthcare, IoT, privacy and data management has
been analysed [15–19]. Investigating trends in blockchain technology
by applying text mining and clustering for register patents provides
insights for researchers and inventors [20].
3

Fig. 2. Merkle tree of hash data in blockchain.

The taxonomy of the blockchain for business process enactment
presented in [14] is based on the two characteristics of capabilities and
enforced guarantees. The analysis categorised capabilities based on the
different factors of model support, resource allocation and process flexi-
bility. Model support is a notation for the business process. The authors
used resource allocation to differentiate various source allocations and
examined how different approaches impacted process flexibility. Re-
garding enforcement, the authors determine that control flow, resource
allocation, and data-integrity aspects are enforced on-chain.

The benefits of using blockchain technology to improve security,
transparency, and trust in different applications such as Multi-Agent
Systems (MAS) [21], energy market [22], identity management [23,
24], multi-organisation collaboration system [25] and data store [26].

A detailed survey on blockchain applications for AI shows that
adopting blockchain for AI applications is still in its infancy, [27].
There are many research challenges to be addressed in areas related
to privacy, smart contract security, trusted oracles, scalability, con-
sensus protocols, standardisation, interoperability, quantum computing
resiliency, and governance [27–29].

The integration of FL with blockchain to address machine learn-
ing models’ privacy, security and scalability challenges in distributed
environments has been analysed. Aledhari et al. [30] and Qu et al.
[31] provided an overview of the enabling technologies, protocols and
applications of FL and blockchain-enabled FL, respectively. The com-
prehensive overview of research in blockchain-based FL with different
consensus mechanisms and privacy-preserving techniques is presented
in [32]. The blockchain approach to enhance security and privacy FL
for IoT is proposed in [33,34]. Issa et al. [34] discussed the challenges
and risks of using centralised storage and deep learning for IoT appli-
cations. While FL is a promising solution for preserving data privacy, it
still has a challenge of the model vulnerability. Issa et al. [34] proposed
utilising the blockchain smart contract to safeguard FL and reviewed
the blockchain-based FL techniques securing IoT systems.

2.2. Blockchain technology and credit assessment

The prospect of integrating blockchain within the banking and
financial sector has been presented in [35,36]. Nowadays, blockchain’s
breakthrough is in data storage and information transmission. Regu-
lation, efficiency, and security are the challenges to be resolved for
the anticipated integration of blockchain technology in the banking
industry.

Blockchain integrates computer technologies, distributed data stor-
age, information transmission, consensus mechanisms, and encryption
algorithms. Fig. 3 presents the blockchain’s taxonomy for the credit
assessment application. The taxonomy is organised into four dimen-
sions: type, storage, blockchain features and applications in credit
assessment. A public blockchain is open and permissionless, and decen-
tralised. A private blockchain is permissioned, and access to a network
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Fig. 3. Taxonomy of blockchain technology for credit assessment.
is restricted to authorised participants. A blockchain consortium is
semi-decentralised and permissioned, meaning nodes from multiple
organisations collectively own and manage the network. Storage on the
blockchain can be ‘‘on-chain’’ or ‘‘off-chain’’. On-chain refers to the data
stored on the blockchain, which means the network nodes verify it.
Off-chain refers to storing data outside of the blockchain in a separate
system. The features of blockchains are Immutability, Decentralised,
Security and Cryptography, Distributed Ledgers, Consensus and Smart
Contracts. The immutability features of the blockchain ensure data
integrity and transparency. Blockchains are decentralised networks
without a central authority and are thus more resilient against attack.
Blockchains use various cryptographic algorithms, such as asymmetric-
key algorithms (digital signatures), hashing, public-key cryptography,
elliptic curve cryptography, and the Merkel tree. Asymmetric-key al-
gorithms (digital signatures) are used to authenticate transitions and
ensure the parties approve them. Hashing uses mathematical algo-
rithms to generate one-way functions while ensuring the immutability
and integrity of the data stored on the network. Public-key cryptog-
raphy is used to authenticate transactions and verify identity in the
network. Elliptic curve cryptography ensures private keys’ security and
authenticates transactions. The Merkle Tree verifies the integrity of the
transaction data. Consensus in blockchain refers to the process whereby
nodes in distributed networks work together to validate and process
transactions, which is essential for the integrity and immutability of the
blockchain. There are several blockchain consensus algorithms, such
as Proof of work (PoW), proof of stake (PoS), delegated Proof of stake
(DPoS), Proof-of-Authority (PoA), Proof of elapsed time (PoET), and
Practical Byzantine Fault Tolerance (PBFT).

The blockchain-based credit assessment modelling [7,37,38] con-
siders data privacy protection issues. The blockchain is introduced for
storing credit data, which ensures full data traceability of the credit
scoring process [39], while the consensus mechanism is used to assess
whether the credit data is stored according to a predefined set of rules.

Walambe et al. [40] proposed a system that leverages blockchain’s
secure and immutable nature to store machine learning model expla-
4

nations for credit scoring. The proposed system aims to enable local
interpretations of the global model to be publicly available to customers
to access securely. The authors demonstrated the trustworthiness of an
explained model prediction, with the security, reproducibility, trace-
ability and transparency of blockchain, providing the end-user with a
way to securely request an explanation for the credit-scoring decision.
Blockchain tamper-proof characteristics ensure the authenticity of the
data and minimise the impact of false data for credit evaluation mod-
elling [37]. The blockchain-based framework that assists the gathering
of information about the customers from the various financial insti-
tutions and calculates their score based on the consensus of multiple
institutions improves the credit decision process [41]. For example,
blockchain for the credit evaluation system of traders in the food supply
chain has been analysed [42].

A blockchain-based credit score evaluation is proposed to ensure
transparency in the lending process [7,43]. Blockchain and Decen-
tralized Credit Scoring Model presents a theory to model the optimal
investment strategy for different risk vs. return scenarios [7]. In [43]
KiRTi, a deep learning-based credit recommender, is proposed to auto-
mate loan disbursements and repayments. This work is a step forward
in eliminating the requirement of third-party credit rating agencies for
credit score generation.

Cho et al. [44] designed a Verifiable Credential (VC) model for
VC generation and revocation verification for credit scoring data.
Blockchain-authorised data [1,45] and model sharing [46] enhances
the security of credit reporting.

Nassar et al. [47] proposed a framework based on the principle
that critical decisions in complex AI systems must be subject to con-
sensus among distributed AI and XAI agents hosted in trusted oracles.
Blockchain can fulfil trustworthy AI requirements for resilience to
biases and adversarial attacks. Blockchain provides key features for
XAI agents: Transparency and Visibility, Immutability, Tractability and
Nonrepudiation and Smart Contracts.

3. Use of explainable AI in credit assessment

In this section, we first describe the overall XAI techniques. Fol-

lowing this, we present an overview of XAI methods and describe
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their characteristics for the explainable credit assessment. Finally, we
describe the integration of the blockchain and XAI.

3.1. Background of XAI

Machine learning (ML) models are predominantly black boxes. The
model-agnostic techniques have been developed to explain the pre-
dictions of any classifier in an interpretable form. Among this area’s
best known contributions is the Locally Interpretable Model-Agnostic
Explanations (LIME) [48]. LIME constructs locally linear models around
the predictions of a model to explain it by approximating it locally
with an interpretable model. These contributions fall under model
agnostic (MA) and local (L) explanations. Notably, the authors pro-
pose algorithms for individual predictions to solve the ‘‘trusting a
prediction’’ problem known as the LIME algorithm by approximating it
locally with an interpretable mode. Furthermore, the authors proposed
a Submodular Pick SP-LIME algorithm to select a set of predictions (and
explanations) to solve the ‘‘trusting the model’’ problem via submodule
optimisation.

The LIME explanation is obtained by minimising the following
objective function:

𝜉(𝑥) = argmin
𝑔∈𝐺

𝐿(𝑓, 𝑔, 𝜋𝑧) +𝛺(𝑔) (1)

where 𝐿(𝑓, 𝑔, 𝜋𝑧) measures faithfulness of explanation model 𝑔, in ap-
proximating original model 𝑓 in the locality defined by 𝜋𝑧. 𝐺 represents
the class of the of potentially interpretable models, while 𝜋𝑧(𝑥) is prox-
imity measure between an instance 𝑧 to 𝑥, knows as locality around 𝑥.
𝛺(𝑔) penalizes the complexity of the explanation 𝑔.

SHAP (Shapley Additive exPlanations) value is proposed by Lund-
berg and Lee [49] for interpreting and understanding the predictions
made by the machine learning models. The proposed SHAP values
measure the contribution of each feature to a model prediction. The
feature importance explanation technique is a form of ranking the
importance of each feature in the prediction output by the model to be
explained. The SHAP method calculates an additive feature attribution
measures that satisfies the set of required properties (local accuracy,
missingness and consistency). The first property local accuracy requires
explanation model 𝑔 to at least match the original model 𝑓 output for
a simplified input. The second property missingness requires features
missing in the original input to have no attributed impact. The third
property consistency requires that if a model changes such that some
simplified input’s contribution increases or stays the same regardless
of the other inputs, the input’s attribution should be consistent. The
Shapley value for each feature can be calculated using the following
formula:

𝜙𝑖(𝑓, 𝑥) =
∑

𝑧′⊆𝑥′

|𝑧′|!(𝑀 − |𝑧′| − 1)!
𝑀!

[𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′∖𝑖)] (2)

where 𝑀 denotes a number of all features, 𝑓 is a model. |𝑧′| is the
number of non-zero entries in 𝑧′, and 𝑧′ ⊆ 𝑥′ represents all 𝑧′ vectors
where the non-zero entries are a subset of non-zero entries of 𝑥′, while
𝑧′∖𝑖 denotes 𝑧′ = 0.

A comprehensive taxonomy of the XAI method is presented in [50–
55]. The XAI is a subsection of AI that focuses on the transparency
of the AI systems’ decision-making. Integrating XAI into cybersecu-
rity intends to improve the AI security system’s trustworthiness, in-
terpretability and resilience. The XAI methods to tackle cybersecu-
rity issues have been presented in different areas, such as industrial
IoT [56], advanced persistent threats [57], intrusion detection [58] and
autonomous driving [59].

The survey of resampling techniques on feature importance in im-
balanced blockchain data is presented in [60]. Rajbahadur et al. [61]
explored the impact of feature importance measures on the inter-
pretability and stability of the classifiers. The Neural-Backed Decision
Trees (NBDT) model [62] trains a decision tree to represent a (deep)
neural network and maintains a high level of model interpretabil-
ity. The authors Hara and Hayashi [63] proposed a Bayesian model
selection to improve the model interpretability of tree ensembles.
5

Fig. 4. Overall taxonomy of XAI.

3.2. XAI and credit assessment

The surveyed work on XAI and CA is presented in Fig. 4 and Table 1.
Fig. 4 presents the different aspects of classifying XAI methods based on
their characteristics. As a result, according to the proposed taxonomy,
three main categories for the XAI are identified: form, scope and applica-
bility. Another important aspect is the form of the XAI method: numeric
or rule-based. Numerical expansion in the form of the importance
of a specific feature to the overall performance of a model is called
feature importance [64]. The explainability produced by rule-based
explanations by exploiting several rule-extraction techniques, such as
automated reasoning-based models [65–67], is known as approximate
model. Based on the scope of interpretation, if the method explains a
specific instance, it is known as local, and if the method explains the
whole model, then it is global. An important aspect of separating XAI
methods is the type of algorithms that could be applied. If the technique
has restricted application to a specific family of algorithms, it is called
model-specific. The method used for any possible algorithms is model
agnostic. The recent work by Wan et al. [62] presents a Neural backed
Decision Tree (NBDT), which explores the combination of neural nets
and decision trees. Such an intersection would preserve high-level
interpretability while neural networks provide high accuracy. Recent
work by de Lange et al. [68] presents the combination of the LightGBM
model with SHAP, which enables the interpretation of explanatory
variables affecting credit predictions.

Table 1 presents the XAI characteristics and broader applications.
XAI in credit risk applications is presented in [6,28,40,68–70].

3.3. Blockchain, federated learning and XAI

Federated Learning trains machine learning models on multiple
datasets distributed across different clients without data sharing [46].
FL enables multiple clients to solve machine learning problems un-
der the coordination of the central aggregator, which ensures data
privacy [73].

Regarding communication delays, the global model in FL involves
multiple iterative rounds of model updates from users, engendering
significant communication overhead and incurring additional storage
costs during network transmission, [74]. The FL is contingent upon
the seamless communication between clients and servers. This com-
munication involves the transmission of local learning models and
multiple training iterations for model updates, making communication

and training efficiency critical for FL performance [75]. To manage
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Table 1
Related work on XAI and credit assessment and their characteristics. Yes (✓), No (×), Partial details on explainability (*).
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Credit application

Moscato et al. [69], Walambe
et al. [40] and Bücker et al. [6]

LIME ✓ ✓ ✓ * ✓ × XAI for credit score

Moscato et al. [69] Anchors ✓ ✓ ✓ * ✓ × XAI for credit score

Moscato et al. [69] and de Lange
et al. [68]

SHAP ✓ × ✓ ✓ ✓ × XAI for credit score

Moscato et al. [69] BEEF ✓ × × ✓ ✓ × XAI for credit score
Moscato et al. [69] LORE ✓ * ✓ * ✓ × XAI for credit score
Ma et al. [71] MUC ✓ ✓ ✓ ✓ × ✓ Loan application improvements
Srinivasan et al. [70] ARAEGAN+GM × × ✓ × × ✓ Credit loan denials
Sachan et al. [28] MAKER × × × × ✓ × Loan underwriting
Fahner [72] TGAMT × × × ✓ × ✓ Explainability by design credit score
Bride et al. [66] Silas ✓ ✓ × ✓ × ✓ XAI via logical reasoning on credit data
Zhang et al. [67] OptExplain × ✓ × ✓ × ✓ XAI via logical reasoning on credit data
upstream communication delay, a Sparse Ternary Compression (STC)
framework is proposed by Sattler et al. [76] extends gradient spar-
sification with downstream compression, surpassing federated aver-
aging in various scenarios and advocating for a transformative shift
towards high-frequency, low-bandwidth communication in bandwidth-
constrained learning environments. Hieu et al. [77] introduced the
application of deep reinforcement learning in optimising system param-
eters for minimising delay, energy consumption and maximising total
rewards.

A comprehensive and systematic Privacy-Preserving FL (PPFL) re-
view is presented in [78]. The overview of the main characteristics of
the Blockchain-Based Federated Learning (BCFL) framework, architec-
tural design, deployed platforms and feasible applications for BCFL is
presented in [79]. Li et al. [80] proposed a systematic study on privacy
and security in blockchain-based FL methodologies and discussed the
integration of blockchain with FL in various human-centric applications
in IoT and intelligent environments.

Blockchain design that enables recording and secure incentives for
distributed FL model training via Smart Contracts with Class-Sampled
Validation ErrorScheme (CSVES) to validate the quality of gradients to
determine reward is proposed in [81]. The advantages of this approach
encompass increased trust in the FL process and enhanced incentives for
participants during gradient validation. However, potential limitations
may arise from centralised model aggregation, lack of explainability of
the trained models, and the impact of new data on the training process.

The overview of FL and blockchain integration, called FLchain, can
potentially transform intelligent mobile edge computing (MEC) net-
works into a decentralised, secure, and privacy-enhancing system [82].
The article presents four use cases that demonstrate the potential
applications of FLchain in edge networks, including edge data sharing,
edge content caching, and edge crowdsensing. However, research lacks
a comprehensive evaluation of experiments to assess their effectiveness
and limitations in a practical setting fully.

The proposed serverless function for training FL FedLess is detailed
in [83], which utilised serverless technologies, AWS Lambda, Azure
functions and Openwhisk to enable FL while providing authentification,
authorisation and differential privacy. FedLess supports Local Differ-
ential Privacy, a technique that adds noise to the data before sharing
it. The paper introduces a novel approach that leverages serverless
computing to address the challenges of scalability, infrastructure man-
agement, and inactive client computing resources in FL. However, it is
important to consider the limitations of FedLess in the specific context
of the target domain and requirements. Further research and evaluation
are needed to fully understand the effectiveness and limitations of
FedLess in other areas, such as credit score modelling.
6

The behaviour attestation method is used to verify the consistency
of the behaviour of each participating client during the training process
for detecting poisoning attacks in FL [84]. The authors presented the
AttestedFL algorithm for defence against untargeted model poison-
ing attacks in FL with contributions to reducing attack effectiveness,
increasing accuracy, pattern-based detection, and flexibility in deploy-
ment. However, further research and optimisations are required to
explore its efficacy under different scenarios.

Al Mallah and López [85] proposed techniques to address the la-
tency challenges by decoupling the monitoring phase from the de-
tection phase in decentralised FL approaches defences that protect
against poisoning attacks in FL. The blockchain replaced the centralised
aggregation of the traditional FL. It divided the blockchain network
into two types of miners: minersFL responsible for FL, and minersMON,
responsible for monitoring. Workers perform the FL and send their
local model updates to minersMON, responsible for monitoring. The
blockchain minersFL nodes randomly select a set of reliable workers
to continue the FL process and calculate the average model using
the updated model from the workers and minersMON. The proposed
design does not store the model updates on the blockchain. Instead, the
hash value is written on the blockchain and points towards the model
updates. The blockchain stores the commitments of all workers on the
model updates they worked on. A Merkle tree is used to authenticate
the model updates submitted by the workers. The proposed approach is
designed for resource-contained nodes like mobiles and the Internet of
Things (IoT).

Walambe et al. [40] proposed a system that leverages blockchain’s
secure and immutable nature to store machine learning model expla-
nations for credit scoring. The proposed system aims to enable local in-
terpretations of the global model to be publicly available for customers
to access securely. The authors demonstrated the trustworthiness of an
explained model prediction, with the security, reproducibility, trace-
ability and transparency of blockchain, providing the end-user with
a way to securely request an explanation for the credit-scoring deci-
sion. However, the proposed solution considers only a single AI and
XAI method: Random Forest (RF) and Locally Interpretable Model-
Agnostic (LIME). FL may be regarded as preserving privacy in credit
assessments. FL trains machine learning models on multiple datasets
distributed across different institutions without data sharing. However,
the system’s efficiency proposed in [40] depends on the quality of the
machine learning model used for credit scoring. Hence, if the model is
unreliable, the explanation stored on the blockchain may be inaccurate,
leading to incorrect credit scoring decisions. The limitation of the
proposed system in [40] is that it does not ensure that the model is
reliable and the performance of the model is validated.
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Table 2
A comparison of properties of blockchain, AI and integration mechanisms, Yes (✓), No (×), Insufficient details (*).
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Salah et al. [27] ✓ × × × × × * ✓ * ✓ ✓ ✓ ×
Hossain et al. [87] × ✓ ✓ × × ✓ DL ✓ LIMA ✓ ✓ × ✓

Walambe et al. [40] × ✓ × ✓ × ✓ RF ✓ LIME ✓ × ✓ ✓

Patel et al. [43] ✓ × ✓ ✓ × ✓ LSTM × * ✓ × ✓ ✓

Nassar et al. [47] ✓ ✓ ✓ ✓ × ✓ * ✓ * ✓ ✓ × ×
Zhang et al. [37] ✓ × × × × ✓ Logit × * ✓ ✓ ✓ ✓

Polyviou et al. [36] ✓ × × ✓ × × * × * × ✓ ✓ ×
Calvaresi et al. [21] × × ✓ × × × * ✓ * × ✓ × ×
Hassija et al. [7] ✓ × × × × × * × * PoV ✓ ✓ ✓

Malhotra et al. [86] ✓ ✓ ✓ ✓ × ✓ SVM ✓ LIME ✓ ✓ ✓ ✓

Verma et al. [13] ✓ * ✓ ✓ * * * * * * ✓ ✓ ×
Bellagarda and Abu-Mahfouz [88] * * * ✓ ✓ ✓ * ✓ * * * ✓ ×
Yin et al. [78] × × × × × ✓ * × * × ✓ ✓ ×
Chen et al. [89] × × × × × ✓ ESB-FL × * PoS ✓ ✓

Zhang et al. [73] × × × × × ✓ * × * × ✓ ✓ ×
Cheng et al. [10] × × × × × ✓ RL-SecureBoost × * × × ✓ ✓

Srinivasan et al. [70] × × × × × ✓ SVM, Naive Bayes ✓ ARAEGAN +GM × × × ✓

Bride et al. [66] × × × × × ✓ Silas ✓ Logical Reasoning × × × ✓

Sachan et al. [28] × × × × × ✓ BRB ✓ MAKER × × × ✓

Davis et al. [90] × × × × × ✓ Optimal Tree, NN, RF ✓ LIME, SHAP, DiCE × × × ✓
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Recent research has presented uses of blockchain as a distributed
ata structure with major features summarised as immutability, trans-
arency and encryption. The integration of blockchain and XAI is
resented in Table 2. Integration of the blockchain and XAI can be
chieved through decentralised data storage, smart contracts and de-
entralised model learning [30,31,33]. The primary use of blockchain
or AI is for secure data storage [27,37,40,43] and audit trailing of XAI
ecisions [86].

. Technologies for integrated credit assessment

In this section, we first describe the overall concepts of credit
ssessment. Following this, we present an overview of the related work
n using XAI and blockchain for credit assessment.

.1. Credit assessment fundamentals

Credit evaluation assesses a borrower’s capacity to become eligible
or a loan and the ability to repay. Credit evaluation is the process that
ssures the development of credit scorecards to assess the creditwor-
hiness of the customers and loan applications following the policy of
he lending institution. The banks are looking at making the process
fficient, transparent and sustainable to reduce the model risk and
rovide adequate governance. The increasing competition and growing
ressure for revenue generation are requiring banks to explore further
ffective integration that will result in quicker turnaround time while
anaging the authenticity of the data and privacy protection.

The book by Thomas et al. [91] has been recognised as a bible of
redit scoring and reviews statistical and operational research meth-
ds used in building the scorecard. One of the first credit scoring
pproaches was developed to predict companies’ bankruptcy risk [92].

Credit scoring is one of the earliest financial risk management
ools [91] and is a method that is used to predict the probability that
borrower will default or become delinquent and to measure the prof-

tability of granting loans. Traditional credit evaluation methods consist
f judgmental models, statistical methods, regression analysis [93],
iscriminant analysis [92,93], logistic models and probit models. Re-
ently, alternative machine learning methods such as artificial neural
etworks (ANNs) [94], neural networks (NN) [93,95], bayesian net-
7

orks [93], support vector machines (SVMs) [96], decision trees [93, t
95,97,98], XGBoost [99] and other methods have been introduced to
build credit scoring models. The fairness of AI techniques in the context
of the credit scoring model has been analysed by Hurlin et al. [5].

Credit scoring systems are based on the past performance of cus-
tomers, similar to those who will be assessed under the scheme. When
the customer applies for a loan, the financial institutions collect the
customer details, known as application data. Fig. 5 presents an illus-
trative view of the data flow for the credit assessment process. The
application data consists of variables such as the applicant’s age, time
at current/previous residence, time at current/previous job, housing
status, occupation group, income, number of dependents, banking rela-
tionship, debt ratio, and credit references. Credit references or bureau
information consist of the previous defaults, arrears and the customer’s
current status on other loans, including the number of enquiries, hard-
ship information and repayment history information. The major credit
bureau providers are Equifax, Illion and Experian. The comprehensive
credit score is the number that models the data held in the credit
bureau and indicates the likelihood of repaying the money to the credit
applicant’s credit bureau. The bureau has its method for modelling the
comprehensive credit score. The customer application data is used to
perform the calculations related to the serviceability of the customer,
and that information is used in the scorecard model.

The credit scoring model uses any characteristic of the customers
hat aids prediction in the scoring system. The variables are mainly
ssociated with default risks, such as previous defaults or arrears or
he customer’s current status on other loans and comprehensive credit
core. Other variables present the stability of the consumer, such as
ime at address and time at present employment. A different group of
ariables gives a view of the consumer’s residential status, spouse’s em-
loyment, number of children, and number of dependents. A separate
et of variables shows the consumer’s serviceability, such as the Debt
o Income ratio.

The good/bad flag is created based on the loan repayment history
f the accepted population for the scorecard development. Borrowers
ho have missed payments or gone past a certain number of days,
sually 90 days, are categorised as ‘‘bad’’ borrowers, while those who
ave not are classified as ‘‘good’’ borrowers. The good and bad flags
re then used to develop a scorecard model. The Kolmogorov–Smirnov
tatistic determines the cut-off score and measures the distance between

he cumulative distribution of goods and bads. The cut-off score is the
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Fig. 5. Overview of the credit assessment process.
maximum distance between the distribution of good/bad and is used
to predict the good/bad [100]. If the score of a customer is above or
equal to the cut-off score, then the customer is predicted as a good
borrower otherwise, a bad borrower. Subsequently, the scorecard is
applied to the rejected population to predict good/bad, known as reject
inference [101].

A loan underwriting process or Underwriting Policy Rules evaluates
the information in a loan application following the scorecard cut-off
score outcome and the policy of the lending institution as shown in
Fig. 5.

A loan underwriting system containing coded underwriter guide-
lines decides acceptance or rejection when specific default rules in
the rule base are triggered. The loan underwriting could be manual
or automated. Manual underwriting refers to processing non-standard
(higher risk) loans. The underwriting system consists of a codified set
of rules based on the policy of the lending institution to assist in a
final lending decision. The key limitation in the existing literature is
that the credit scoring and underwriting process have been considered
in isolation, while the automated intelligent credit evaluation should
consider both.

Sachan et al. [28] proposed an XAI decision-support system to
automate loan underwriting by a belief-rule-base (BRB) system. The
solution proposed by the authors aims to enhance the efficiency and
accuracy of the underwriting process while preserving transparency
and fairness.

An intelligent credit risk scorecard approach based on statistical
principles is needed for specific business objectives like predicting
losses better [102]. A deeper view of creating, evaluating, and mon-
itoring scorecards is presented in [101].

Credit scoring is a supervised learning problem. Specifically, it is
a binary classification problem aiming to classify good and bad bor-
rowers [100]. A systematic literature survey approach to statistical and
8

machine learning models in credit scoring, identifying literature limi-
tations, proposing a guiding machine learning framework and pointing
to emerging directions have been proposed by Dastile et al. [100].
However, the LIME method covers the explainability of credit scoring
methods to a limited extent.

The most popular technique in credit scoring modelling is Logistic
Regression Eq. (3). The Logistic Regression assumes a linear rela-
tionship between the log of probability odds and inputs [103]. The
logistic regression is sensitive to the correlation between the predicted
variables. Thus, it should be ensured that no correlated variables are in
the regression set. Logistic regression is the log of the probability odds
by a linear combination of the input variables.

𝑙𝑜𝑔(
𝑝

1 − 𝑝
) = 𝑤0 +

𝑚
∑

𝑖=1
𝑤𝑖𝑋𝑖 (3)

where 𝑝 represents the proportional response, 𝑤0 is the intercept, when
𝑋 = 0 intercept is the log of the odds of having the outcome. 𝑿𝑖
are application characteristics and weights 𝒘𝑖 are the score of the
characteristics.

Eq. (3) is considered a linear regression of the non-linear function
of the probability of being a good customer. The score 𝑠(𝑥) of the
scorecard presented in Eq. (3) is the following Equation:

𝑠(𝑥) = 𝑤0 +
𝑚
∑

𝑖=1
𝑤𝑖𝑋𝑖 (4)

Another important technique in credit scoring modelling is non-
linear regression, known as a probit analysis. The probit model 𝑵(𝑥)
is given as the cumulative normal (standard Gaussian) distribution
function defined below:

𝑁(𝑥) = 1
√ ∫

𝑥
𝑒−

𝑦2
2 𝑑𝑦 (5)
2𝜋 −∞
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Table 3
A comparative analysis of the use of XAI and Blockchain (BC) for credit assessment: Yes (✓), No (×), Minor advancement (*).

Reference XAI for CA BC for CA XAI and BC for CA Key technologies Considerations

Qiao et al. [38,107] × ✓ * PHE, SMPC algorithm BC for privacy and data security
Hassija et al. [7] × ✓ * Prospect theory for risk vs. return BC for secure lending
Walambe et al. [40] ✓ ✓ ✓ RF method, LIME XAI with BC to store explanation in block
Patel et al. [43] × ✓ * LSTM BC to update the credit score
Zhang et al. [1] × ✓ * PBFT consensus Consortium BC for CA
Yang et al. [39] × ✓ * BACS BC and AutoML for CA
Yang et al. [46] × ✓ * IPFS to store encrypted data BC and FL for data sharing in CA
The goal is to estimate 𝑵−1(𝑝𝑖) as a linear function of the characteristics
f the applicant, as follows:

−1(𝑝𝑖) = 𝑤0 +
𝑚
∑

𝑖=1
𝑤𝑖𝑋𝑖 (6)

The value of 𝑵−1 indicates that the customer is good if the score is
above a certain level. Linear programming is used as a classification
approach for scorecard modelling.

The popular machine-learning techniques in credit scoring are Ran-
dom Forest, Artificial Neural Networks, and Convolution Neural Net-
works. Random Forest (RF) is an ensemble of decision trees [104], such
that K decision trees are built on different bootstrap samples of the data.

The traditional credit risk assessment process utilises the application
data, while dynamic transactional data has recently been used to eval-
uate the credit application [105]. The authors proposed cost-sensitive
multiple-instance learning (CSMIL) to build a credit scoring model in-
corporating customers’ dynamic transactional data and static/personal
information. This study is the first to apply a CSMIL model to credit
risk assessment and considers the impact of dynamic transactional data
and time-series information. The work presented in [105] is limited
as it does not include explainability techniques in the credit scoring
model while utilising dynamic transactional data. Furthermore, the
model performance may deviate due to the data update; identifying
those deviations may require model recalibration.

P2P lending is a business model involving borrowers, lenders, and
a P2P platform. A P2P platform generally has a large number of users
and frequent transactions. A benchmarking study of some of the most
used credit risk scoring models to predict if a loan will be repaid
in a P2P platform has been analysed by Moscato et al. [69]. The
authors compared the obtained outcomes concerning the state-of-the-
art approaches and also evaluated them in terms of their explainability
through different XAI tools. Zhang et al. [106] proposed a new online
integrated credit scoring model (OICSM) for P2P lending that integrates
gradient-boosting decision trees and the neural network to make the
credit scoring model handle two types of features (numerical and
categorical) more effectively and update the model online. This is one
of the first experiments considering the problem of the credit scoring
model online update to avoid prediction deviation. The limitation of
the OICSM scoring model is that it does not include XAI techniques
to ensure transparency in the credit scoring model. Furthermore, the
traceability of model updates is not considered.

4.2. Blockchain and XAI for credit assessment

Credit assessment requires an efficient, transparent, traceable, se-
cure, and sustainable process to reduce the model risk and provide
adequate governance. The surveyed work on integrating CA, blockchain
and XAI is presented in Table 3. Table 3 presents limited work that has
been done to examine the integration of blockchain and XAI for the
credit assessment process. As discussed previously, the system proposed
in [40] relies on the quality of the machine learning model used for
credit scoring. If the model is unreliable, the explanation stored on
the blockchain may be inaccurate, resulting in incorrect credit scoring
decisions. The proposed mechanism lacks a technique to ensure that
the model is reliable and its performance is validated, thus limiting its
9

effectiveness.
The efficiency of the Credit evaluation has been addressed in the
BACS scheme by Yang et al. [39]. The BACS scheme consists of credit
data storage to the blockchain to ensure traceability. The random forest
model effectively integrated the critical steps of credit data feature
extraction, feature selection, credit model construction, and model
evaluation. Blockchain technology as discussed in this article requires
a consensus mechanism to determine whether credit data is stored and
used within predefined rules. The consensus process is divided into the
sorting service and the synchronised ledger. This work by Yang et al.
[39] has a few limitations. Firstly, the paper does not explore alter-
native blockchain platforms beyond Fabric Hyper-ledger for ensuring
consensus on updates to the model. Additionally, it does not consider
XAI methods other than consensus for improving transparency in credit
decision outcomes. Finally, the study relies solely on historical credit
data and does not explore the potential benefits of using transaction
data to identify early delinquent behaviour. Thus, identifying changes
in data, model input assumptions, or scorecard model performance may
also have limitations that have not yet been explored.

4.2.1. Case studies
Authors in [8] introduced an explainable federated learning and

blockchain-based credit scoring system to address credit model sharing
challenges and ensure data privacy. Their approach explains the FL
mechanism, proposing a Decentralized Byzantine fault-tolerant
Stochastic Gradient Descent algorithm (D-SGD). Mathematically, the
study combines the Shapley value with Delegated Proof of Stake
(DPOS) for a consensus protocol. The algorithm calculates the con-
tribution values of the parties in the execution of the federated algo-
rithm. Evaluation of the proposed Explainable Federated learning and
blockchain-based Credit scoring System (EFCS) includes simulations
and experiments using the ‘‘Give Me Some Credit’’ dataset from Kaggle.
The dataset contains 150,000 credit card payments and income-related
data, with 10,026 default customers. The performance assessment
encompasses accuracy, precision, recall, F1 score, and AUC. The mod-
elling process involves the coordinating party calculating contributions
and recording them in the current block of transactions. Training results
reflect aggregated data source outcomes, with each participant iterating
locally 20 times before sending the gradient. Increased participants lead
to longer training times due to heightened communication overhead
and computational intensity in FL. The EFCS is evaluated using six
credit datasets from traditional financial institutions and peer-to-peer
lending platforms. The datasets from Germany, Taiwan, and Australia
are available through the UCI machine learning repository. Addition-
ally, P2P lending datasets and credit card datasets are employed for
further validation. Specifically, two P2P datasets are collected from
China’s pioneering P2P lending platforms. This diverse set of datasets
from various sources enhances the applicability of the evaluation
process for EFCS.

Table 3 presents case studies of use cases of the XAI and blockchain
for credit assessment.

5. Proposed conceptual framework

This section presents a conceptual framework based on decen-
tralised blockchain as a solution to induce model verification, be-

havioural reliability and explainability for intelligent credit assessment.
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This framework uses a blockchain-based FL solution to enable AI
machine model learning and verification of the methods, and it is
a machine-learning model built on distributed datasets. FL benefits
blockchain with aspects of privacy-preserving data exchange. Our pro-
posed conceptual framework considers blockchain-based FL through
the consortium or private blockchain platform.

Robust integration of technologies can be defined as facilitating
decentralised model learning, verification, and model aggregation on
distributed multisource datasets. This involves fostering collaboration
among different sources while preserving data privacy and enhancing
the overall reliability and transparency of the credit scoring system.
This definition effectively captures the essence of robust integration
in the proposed conceptual framework, highlighting key aspects such
as decentralised learning, verification, collaboration, data privacy, re-
liability, and transparency, leading to a trustworthy credit scoring
decision-making process.

Blockchain enables FL to enhance the process of the global model
aggregation such that model aggregation is to be computed by the
nodes and miners, leaving the central aggregation unneeded.

Fig. 6 illustrates the architecture of the proposed intelligent auto-
mated credit assessment that enables AI model learning and blockchain
miner verification of the model while ensuring privacy is protected. The
architecture consists of the following roles:

• Scorecard Clients
• Federated Learning Local Model Miners
• Blockchain Miners verify the models and generate XAI models
• Serverless Aggregation Node(s) for the Global Model
• Distributed ledger for the Global Model, Local Model Updates,

Re-train model

Our conceptual framework considers the architecture of Flexible
Couple Blockchain-based Federated Learning (FIC-BCFL), presented in
[32]. The architecture of the FIC-BCFL indicates the clients are re-
sponsible for collecting and training local models. The miners of the
blockchain perform the verification of the local model updates. The FL
can ensure the parameters of the models are stored on the blockchain,
and the blockchain miners perform the aggregation of the global model.

Our conceptual proposal considers the Predefine Nodes performing
he model training for FL. Those nodes are authorised to perform
he model learning and are equipped with computational powers and
torage to receive the data and train local models. Furthermore, our
ramework is an extension to FIC-BCFL as it incorporates XAI as well.

Specifically, future implementation will consider (1) IPFS for dis-
ributed storage of data, the global AI and XAI models’ parameters, (2)
onsortium blockchain for the system’s logic and state, and (3) FL for
he AI model learning.

.1. Scorecard clients

Banks use various channels to gather data for credit scoring, such as
redit reports from bureaus, loan applications, and income verification.
hey may also analyse bank account transactions, review public records
or legal information, and take behavioural data into consideration
hen assessing creditworthiness. Some banks even explore social media
nd online presence. Credit scoring models weigh factors differently to
alculate credit scores, incorporating information on payment history,
utstanding debts, and financial behaviours. It is important for banks to
omply with privacy regulations throughout the data collection process
o ensure the protection of individuals’ sensitive information.

A good credit assessment consists of multisource data, such as
anks’, bureaus’ and enterprises’ data. Multi-party data enables a
roader platform to provide a comprehensive model learning founda-
ion for a good credit evaluation system. The technology we consider
s the consortium blockchain, which ensures a strict access mechanism.
he participating nodes from banks, bureaus and enterprises are re-
10

uired to obtain a user’s certificate for access to data. Specifically, i
scorecard clients are the distinct client functions that will collaborate in
FL. Specifically, Hyperledger Fabric incorporates the ciphertext-policy
attribute-based encryption (CP-ABE) access control scheme avoiding
unauthorised access, [108]. All nodes in the Hyperledger Fabric net-
work are generally assumed to be credible. As a result, the consensus
mechanism employed by Fabric mainly focuses on ordering transaction
proposals rather than validating them, [108].

In [109] presented ZeroTrustBlock, a comprehensive blockchain
framework for secure and private health information exchange using
the Hyperledger Fabric. The architecture and consensus protocols are
designed to comply with security and confidentiality regulations.

Our proposed system uses FL and blockchain to enable the ag-
gregation of information about customers without compromising cus-
tomer privacy. To ensure privacy-preserving features in credit score
modelling, our proposed framework utilises federated model learning,
incorporating credit application data, customer transaction data, and
credit bureau information. The original data associated with providers,
banks, credit bureaus and enterprises are hashed, and the associated
hash will be stored on the blockchain. Privacy protection will be
achieved using the SHA256 hash algorithm. Our framework process
considers the data is stored off-chain, and the hash of the data is stored
on the blockchain to form a unique index to identify the corresponding
off-chain data. Raw data is not shared in our proposed framework. Only
the model, model parameters, accuracy, and updates will be shared.
Data sharing is a common use case for IPFS due to its high availability
and good performance, [110], hence supporting the idea of using IPFS
in our proposed framework.

5.2. Role of Local Model Miners

Our proposed conceptual framework considers the Predefine Nodes
erforming the model training for FL. Those nodes are authorised
o perform the model learning and are equipped with computational
owers and storage to train to receive the data and to train local
odels. The nodes associated with the clients are randomly selected to
erform the model training. The clients define the initial models. The
odes train the models on the local data and upload hash local model
arameters in the on-chain blockchain. The client node updates the
odel parameters in off-chain IPFS for the same on-chain hashed local
odel parameters. The hash data and hash model generated locally will

e stored on the blockchain and maintained on-chain.
To ensure the privacy of the training model is achieved, we will

se Paillie’s Cryptosystem, which is homomorphic encryption used in
istributed machine learning.

.3. Generation and verification of XAI models

The miners validate the local models by invoking the Smart Contract
hrough an oracle to access the model parameters value in the table
ff-chain. The smart contact queries IPFS for the model parameters
ith the same on-chain hashed model parameters. The local model’s
uthenticity is confirmed by training the selected model on its local
ata. Miners use the smart contract to invoke a pair of the local hash
ata and local hash model to obtain data and model parameters from
ff-chain IPFS. Off-chain data is used to train and compare the model
ith the authentic model. A range of different AI and XAI models will
e considered, such as Logistic Regression (LR), Random Forest (RF),
idgeClassifier, GaussianNB, and SGDClassifier.

Most of the learning techniques in machine learning belong to
on-convex Training. Training neural networks can pose challenges,
articularly due to factors like sensitivity to initialisation, step sizes,
ini-batching, and optimiser selection. As a result, close monitoring

nd interpretation of the model’s learning process are crucial due to its

ntricate black-box nature. To have model parameters representing the
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Fig. 6. Proposed conceptual framework.
global solution, it is necessary to use Convex optimisation, similar to the
study presented in [111].

min
𝒖
𝐶(𝒖) s.t. 𝜑𝑖(𝒖) ≤ 0,

𝜓𝑗 (𝒖) = 0, 𝑖 = 1,… , 𝑙, 𝑗 = 1,… , 𝑚
(7)

where 𝐶 is the cost function and 𝒖∈R𝐻 is the optimisation (control)
variable. The functions 𝐶,𝜑1,… , 𝜑𝑙 are convex while the functions
𝜓1,… , 𝜓𝑚 are affine [112].

Selected miners will generate the XAI for the respected models.
Our work will consider the proposed framework presented in [85].
This decoupled the monitoring phase from the detection phase in
defence against poisoning attacks and replaced the centralised Federated
Learning - chief with the workers that collaborate to train the global
model. Al Mallah and López [85] proposed techniques to address
the latency challenges by decoupling the monitoring phase from the
detection phase in decentralised FL approaches defences that protect
against poisoning attacks in FL. The blockchain replaced the centralised
aggregation of the traditional FL. It divided the blockchain network
into two types of miners: minersFL responsible for FL, and minersMON,
responsible for monitoring. Workers perform the FL and send their
local model updates to minersMON, responsible for monitoring. The
blockchain minersFL nodes randomly select a set of reliable workers
to continue the FL process and calculate the average model using
the updated model from the workers, and minersMON. The proposed
design does not store the model updates on the blockchain. Instead, the
hash value is written on the blockchain and points towards the model
updates. The blockchain stores the commitments of all workers on the
11
model updates they worked on. A Merkle tree is used to authenticate
the model updates submitted by the workers.

Hence, in our conceptual framework, we will consider decoupling
the miners performing the model verification minerVER from those min-
ers responsible for generating model explanation named minerXAI. This
improvement will enable reliability, transparency and explainability of
the credit assessment model. The minerVER validates models using a k-
fold cross-validation technique. Regarding model reliability, each local
model obtains its own set of metric functions after being trained. These
metric functions are used to evaluate a model’s performance based on
specific objectives, and they play a critical role in assessing prediction
errors. The SHAP model for explainability is used.

5.4. Functions of serverless aggregation nodes

We will use serverless FL and blockchain to enhance the process
of the global model aggregation without a centralised aggregator. The
serverless aggregation utilises the cloud provider to ensure the scala-
bility of the proposed solution. Our approach will employ serverless
computing, FL, and blockchain to enable privacy-preserving, decen-
tralised machine learning. In this approach, each client runs a local
machine learning model using serverless computing, and the updates
from each client are securely aggregated using blockchain. This ap-
proach will enable a decentralised and secure model training process
without needing a central server or data aggregator.

Grafberger et al. [83] presented the workflow for training multiple
clients using FedLess in a single FL round. The FL admin selects the
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model, registered client functions, and hyperparameters. The FedLess
controller requests a new invocation token from the Auth Server and
uses it along with the credentials to access the parameter server to
invoke the clients randomly selected for this round. The clients validate
the signature and authorisation of the token and load the latest global
model from the parameter server before performing local training,
optionally using Local Differential Privacy (LDP). Once training is
finished, the clients upload their parameters to the parameter server.
The FedLess controller waits until all clients have completed training
and starts the model aggregation by invoking the aggregator function.
The aggregator loads the client results, aggregates the parameters,
and stores the new global model. Finally, the controller starts the
evaluation, either using the global test set or invoking a new selec-
tion of clients to evaluate their test set. It aggregates the returned
metrics to resume the training process. Specifically, we will consider
the FedLess [83] framework and extend its average model aggrega-
tion Federated Averaging (FedAvg) with optimisation. The serverless
computing platform to be used is AWS Lambda [113]. The hash of
the global model is to be stored on the blockchain. The miners who
performed the verification were randomly selected for the global model
aggregation and assembly. Federated Averaging (FedAvg) is the most
common model aggregation technique in FL proposed by McMahan
et al. [114], based on averaging the model weights across all clients.

Credit assessment requires an efficient, transparent, traceable, se-
cure, and sustainable process to reduce the model risk and provide
adequate governan

Convex optimisation is a branch of mathematical optimisation fo-
cused on problems where both the objective function and the con-
straints are convex. It deals with finding a convex function’s minimum
(or maximum) over a convex set. A set 𝛺 ∈ R𝑛 is convex if, for all x
nd y in 𝛺 and for all 𝜆 in [0, 1] it holds 𝜆x + (1 − 𝜆)y.

A convex function has the property that the line segment between
ny two points on the function lie above the function itself. Formally,
t is defined by the following theorem.

emma 1 ([112]). A function f ∶ R𝑛 → R is convex if, for all x and y in
he domain of f and for all 𝜆 in the interval [0, 1], the following holds

(𝜆x + (1 − 𝜆)y) ≤ 𝜆f(x) + (1 − 𝜆)f(y) (8)

The main property of convex optimisation is its ability to guarantee
global minimum, meaning it is possible to find the best solution to a

he problem rather than just a local minimum.

ax
𝒘

𝒑𝑇𝒘 − 1
2𝒘

𝑇𝑄𝒘

.t. 𝐺𝒘 ≤ 𝒉, 𝐴𝒘 = 𝒃
(9)

here, 𝒑 is the mean accuracy of all accuracy types for each local
odel 𝑛-dimensional vector. 𝑄 is 𝑛×𝑛 covariance matrix of local model

ccuracies that consists of the accuracy classification score metrics used
o measure the classification performance of considered classification
odels. 𝐴 is 𝑚 × 𝑛 real matrix, 𝐺 is 𝑚 × 𝑛 real matrix, 𝒃 is a real-

valued 𝑚-dimensional vector. Quadratic programming aims to find an
n-dimensional vector 𝒘 to meet the imposed constraints. The variable
𝒘 in our framework symbolises the weights allocated to each model,
reflecting their significance derived from the accuracy of local data.
The weights assigned to each model emphasise their performance, con-
tributing to a compelling ensemble that enhances the overall predictive
power of the system. The Algorithm 1 presents local model training.
The assembling of the global model is formalised in Algorithm 2.

Regarding the practical implementation of the Algorithm 2, time
complexity is critical. The time complexity 𝑇 (𝑛) of our proposed Algo-
rithm 2 is linear to the training time of ML models. For example, if the
chosen model is Random Forest, then the time complexity would be
𝑂(𝑁 ⋅ 𝑚 ⋅ 𝑙𝑜𝑔 𝑚 ⋅ 𝑑 ⋅ 𝑘), where 𝑚 is the number of training samples, 𝑑
is the dimension (number of features), 𝑘 is the number of trees, and
12

𝑁 is the number of local models. We assume that the input to the
Algorithm 1 Local Model Training Algorithm
procedure Train local model 𝛬𝑖(𝐷𝑖)

Load data set 𝐷𝑖 that includes local features and labels
Validate data
Select type of classification model 𝛬𝑖
Tuning the hyper-parameters of a model 𝛬𝑖
Train a local model 𝛬𝑖
Evaluate a vector of model accuracy metric 𝜇𝑖
Evaluate a mean value 𝜇𝑖 of a vector 𝜇𝑖
return 𝛬𝑖, 𝜇𝑖, 𝜇𝑖

end procedure

Algorithm 2 Global Model Aggregation Algorithm
procedure Aggregate global model 𝛤

Request 𝑁 local models
for 𝑖← 1, 𝑁 do

𝛬𝑖, 𝜇𝑖, 𝜇𝑖 ← Train local model 𝛬𝑖
end for
Concatenate accuracy vectors into matrix 𝑋
for 𝑖← 1, 𝑁 do

𝑋 ← 𝑐𝑜𝑛𝑐𝑎𝑡(𝑋, 𝜇𝑖)
end for
Create matrix 𝑄 ← 𝑋𝑇𝑋
Create vector 𝑝 ← [𝜇1,… , ̄𝜇𝑁 ]𝑇

Calculate consensus weights 𝒘

max
𝒘

𝒑𝑇𝒘 − 1
2𝒘

𝑇𝑄𝒘
s.t. 𝐺𝒘 ≤ 𝒉, 𝐴𝒘 = 𝒃

Compose a global model 𝛤 ← 𝑤1𝛬1 +…+𝑤𝑁𝛬𝑁
return 𝛤

end procedure

convex quadratic programming problem is much smaller than the size
of the dataset, so its complexity is subsumed by the training time. The
algorithm for assembling the global model based on the optimisation
will follow specifications defined in the smart contract.

The uniqueness of our proposed approach lies in its non-iterative
and parallel nature, suggesting potential efficiency gains over tradi-
tional iterative methods. An extension to our framework incorporates
an integrated evaluation process, wherein local model prediction ac-
curacy directly contributes to the assembly of the global model. To
augment overall model accuracy, we propose an additional enhance-
ment involving utilising XAI model input impact measures and an
accuracy matrix during the global model assembly. This extension
aims to provide a more comprehensive and accurate credit assessment
mechanism.

5.5. Model distribution and retraining

The assembly of the global model will occur as an off-chain pro-
cess. The hash global model parameters and weights will be stored
on the blockchain. Similar to Li et al. [33], we consider the Com-
mittee Consensus Mechanism blocks to store the global model and
local updates. Communication-based generated mechanisms reach an
agreement before appending blocks. Selected nodes will validate the
updates.

All clients can download the global model parameters and weights
from the blockchain and continue to use them in the next round of
learning models.

As the client’s data changes, the models may need to be updated.

Therefore, retraining will be performed as a fit method for new data.
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At the same time, the original model parameters are to be used as a
starting point in the retraining process. Re-training of the model will
occur once a change of the statistical properties is detected, such as a
change in the Population Stability Index (PSI).

6. Discussion and analysis

Table 4 presents a comprehensive list of key characteristics required
to build reliable credit scoring modelling. Specifically, credit score
modelling requires diverse data to enable collaborative modelling while
ensuring privacy, transparency, and fairness. Our research proposes a
novel conceptual framework that integrates these elements previously
studied in isolation. Some previous research has explored the use of
the blockchain in the context of credit data sharing [1,45], credit
evaluation [37,115] and storing explanation on the blockchain [40].
However, our motivation aligns with a similar study [85], which dis-
cussed the use of the blockchain for model authentication. While our
unique research focus is on the importance of model explainability
for the specific credit score modelling application, which incorpo-
rates privacy-preserving decentralised model learning combined with
reliability, transparency, and explainability features of the blockchain
miners.

The authors in [85] used the blockchain to develop an immutable
framework for decentralised, federated model learning. The Merkle tree
was utilised to store the local model updates to verify the validity of the
model updates. However, the study does not consider the explainability
of the models and specific application of credit scoring.

The system proposed by Walambe et al. [40] relies on the quality of
the machine learning model used for credit scoring. If the model is not
verified, the explanation stored on the blockchain may be inaccurate,
resulting in incorrect credit scoring decisions. The proposed mechanism
lacks a technique to ensure diverse data is used in a decentralised FL
model, and its performance is validated, thus limiting its effectiveness.

The serverless function for training Federated Learning FedLess is
detailed in [83], which utilised serverless technologies, AWS Lambda,
Azure functions and Openwhisk to enable multisource FL while pro-
viding model aggregation. However, it is important to consider the
limitations of FedLess in the specific context of model verification
and explainability in the domain of credit scoring. Further research
and evaluation are needed to fully understand the effectiveness and
limitations of FedLess in other areas, such as credit score modelling.

The work presented in [1] explored the use of blockchain in credit
data sharing. However, this research is limited as it does not include
model learning, verification, aggregation and explainability techniques
in the credit scoring model while utilising dynamic multisource data.

A method to validate the quality of FL model gradients and to
determine reward is proposed in [81]. The advantages of the proposed
approach encompass increased trust in the FL process and enhanced
incentives for participants during gradient validation. However, poten-
tial limitations may arise from centralised model aggregation, lack of
explainability of the trained models, and the impact of new data on the
training process in the domain of credit scoring.

The proposed conceptual framework identifies the need for combin-
ing different technologies to ensure model verification, behavioural re-
liability, and model explainability for intelligent credit scoring. Specif-
ically, our framework uses a Blockchain-based Federated Learning
solution to enable decentralised model learning, verification of the
models and model aggregation on distributed multisource datasets.

Risks:. Implementing blockchain technology and FL for credit assess-
ent has vulnerabilities that require attention. Regulatory compliance

s a primary challenge that requires constant monitoring of evolving
egulations and ensuring data privacy, model explainability and relia-
ility across all parties involved. Technologies also face data privacy
ssues that demand careful management of sensitive information and
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rivacy-preserving techniques. Interoperability and scalability concerns
may arise when integrating these technologies with existing finan-
cial systems. The real-world challenge of achieving explainability and
model interpretability persists due to the decentralised and collabora-
tive nature of FL and the limited clarity of blockchain transactions. To
mitigate these risks, it is essential to focus on robust security measures,
careful technological design, and ongoing collaboration with industry
stakeholders and regulators. By doing so, we may ensure that these
technologies can be safely and securely integrated into existing systems
while maintaining data privacy, model explainability and regulatory
compliance.

7. Conclusion

Our research investigates the core features of XAI, blockchain, and
credit scoring. Specifically, we examine recent efforts to integrate XAI,
blockchain, and FL for credit scoring and identify limitations in these
approaches. While these solutions primarily focus on enhancing data
storage security and privacy, we identify the need for combining these
technologies to ensure model verification, behavioural reliability, and
model explainability for intelligent credit assessment. To address those
challenges and create a reliable and explainable credit scoring process,
we propose a novel framework that leverages the benefits of blockchain
and FL. Our framework’s distinctiveness lies in its holistic design, which
incorporates privacy-preserving decentralised model learning coupled
with the reliability, transparency, and explainability features of the
blockchain.

We have thoroughly examined the qualitative features necessary for
designing an efficient credit scoring framework. In our future work, we
will employ the framework to quantify and evaluate the effectiveness
of the proposed architecture, including communication delay in a real
environment.

Our proposed framework has certain limitations that could be ad-
dressed and improved upon in future research. The study is based
on Hyperledger Fabric, which is a suitable platform for credit scoring
applications due to its scalability and compliance features. Its modu-
lar architecture and permissioned blockchain model facilitate efficient
workload distribution and make it well-suited for scaling up to meet
the demands of growing networks. By optimising smart contracts, com-
putational overhead can be minimised to ensure effective transaction
processing and contract execution. Its features, such as private channels
and access controls, align with regulatory requirements for data privacy
and confidentiality in credit scoring. Its interoperability and auditabil-
ity features also support seamless integration with external systems
and compliance with financial regulations, making it a reliable choice
for building secure and scalable credit scoring applications. Implement
privacy-preserving techniques like zero-knowledge proofs and homo-
morphic encryption to protect sensitive data. However, improvements
related to performance, advanced cryptography, and real-world pilot
testing will be addressed in future work.
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Table 4
Comparison of credit assessment requirements among different models: Yes (✓), No (×).

Reference Multisource Model verification Model aggregation XAI model Credit application

Al Mallah and López [85] ✓ ✓ ✓ × ×
Walambe et al. [40] × × × ✓ ✓

Grafberger et al. [83] ✓ × ✓ × ×
Zhang et al. [1] ✓ × × × ✓

Martinez et al. [81] ✓ ✓ ✓ × ×
Proposed approach ✓ ✓ ✓ ✓ ✓
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