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Overview of Thesis 

The work presented here was part a large longitudinal project. The overall aim of this 

research was to better understand the development of movement skill in children and the 

nexus between action systems and cognition. This thesis presents my contribution to the 

broader project. Using experimental and longitudinal methods, I examined the motor and 

cognitive trajectories of a large group of children, a proportion of whom had poor motor 

skills (termed Developmental Coordination Disorder—DCD). In doing so, I gained a firm 

impression of those motor control processes that might explain both typical and atypical 

motor development and the unfolding relationship between motor and cognitive systems, 

specifically that between executive systems and networks supporting online motor control. 

This thesis is comprised of three sections. Section 1 provides a literature review of 

research of rapid online control (ROC) and its development in children, and a methodology 

chapter that describes the main paradigm and measures for examining ROC—the double 

jump reaching task. Section 2 presents three studies that examined how children’s motor and 

executive systems interact with each other across normative and atypical development. To 

conclude, Section 3 reviews the data from the three studies with focus on implications for 

theory and clinical practice. Figure A illustrates the progression of the thesis chapters. 
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ABSTRACT 

The online control of manual actions is critical for the development of functional 

skills in children, not the least because demands on behaviour and complexity of the 

environment increase with age. When unexpected changes occur during the course of action, 

rapid online corrections are necessary to ensure that movement parameters (like force and 

timing) can be quickly updated. Developmentally, the motor network supporting online 

control is thought to mature rapidly over childhood; however, cross-sectional research 

suggests that the trajectory of change is not linear because the mode of control undergoes 

reorganisation during middle childhood. At the same time, development of frontal executive 

systems (particularly inhibition) may influence the way children enlist motor functions like 

online (predictive) control. Maturational theories that once considered these systems to be 

unitary in their development are now being challenged by a more parsimonious neuro-

behavioural hypothesis—interactive specialization; this suggests behaviour can be 

strengthened and supported by the interaction of separate but overlapping neural networks. 

A growing body of research indicates that online control processes may be disrupted 

for children with motor coordination problems (aka Developmental Coordination Disorder; 

DCD). As well, it has been widely reported that these children show problems related to 

executive function including tasks that involve response inhibition. It is argued here that 

deficits in predictive online control may be exacerbated under task conditions that require 

concurrent inhibitory control as when one is required to withhold a response to a compelling 

cue and move to an alternate location. However, there is not a clear picture of developmental 

change in the ability to couple motor and executive systems, nor of differences in growth 

patterns between typically developing children (TDC) and children with DCD. The purpose 

of my research was to address this knowledge gap by conducting cross-sectional and 

longitudinal studies of development to examine the unfolding interaction between online and 
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executive systems in healthy and atypically developing children. Specifically, I examined 

how TDC and DCD groups corrected their arm movement mid-flight during a step-

perturbation paradigm, and how a concurrent inhibitory load constrained their responses to a 

target shift. 

A total of 196 primary children aged between 6 and 12 years were recruited for a two-

year longitudinal study. Children were assessed as either TDC or DCD using research criteria 

at the commencement of testing. Motor ability was assessed using the McCarron Assessment 

of Neuromuscular Developmental (MAND), while online motor control was tested on a 

double-jump reaching task (DJRT). To assess the ability to couple online and inhibitory 

control, a modified ‘anti-reach’ version of the DJRT was used where children were instructed 

to touch a location contralateral to that of a cued target. 

In Study 1, the coupling of online and inhibitory systems was assessed in a cross-

sectional analysis of TDC. Children were allocated into three age bands: younger (6-7 years), 

mid-aged (8-9 years), and older (10-12 years) while online control was compared between 

groups as a function of trial type (non-jump, jump, anti-jump). It was predicted that online 

control would be implemented efficiently in TDC by 9 years of age, but adding an inhibitory 

load to the DJRT would constrain performance, particularly around middle childhood. 

Results showed that there were similar movement times across all age groups when trial 

constraints where low (non-jump). However, when a target perturbation was applied at 

movement onset (jump condition), children in the younger group showed disproportionately 

slower movement time compared with both mid-aged and older children, as well as slower 

corrections of reach trajectory. On anti-jump trials which enlist the use of inhibitory control, 

younger children continued to show delayed changes in trajectory and slower movement 

times compared with older children. Importantly, the performance of mid-aged children on 

anti-jump trials deviated from that of older children; the effect of the added inhibitory load 
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was between that of younger and older children. Taken together, these results indicate that by 

middle childhood, online adjustments to jump trials can be implemented efficiently and to a 

level as that seen in older children. However, when demands were imposed on executive 

systems (as per anti-jump trials), performance of the mid-aged children was compromised 

relative to older children. This pattern of performance suggests that maturational changes in 

the development of executive networks during middle childhood may constrain the flexibility 

with which online control can be implemented, particularly when inhibitory demands are 

imposed on a reaching task. 

The coupling of online control and inhibitory systems was then compared cross-

sectionally between DCD and TDC groups in Study 2. Children were divided into the same 

age three groups (young, mid-age, older) as per Study 1 and classified also according to 

motor ability (TDC or DCD). It was predicted that children with DCD would be slower to 

adjust online corrections than TDC and that adding an inhibitory load to the DJRT would 

further constrain an already compromised online motor control system. It was found that 

movement times were similar between skill groups under simple task constraints (non-jump); 

however, on perturbation (jump) trials the DCD group were significantly slower than controls 

and corrected their reach trajectories later. Critically, the DCD group was further 

disadvantaged by anti-jump trials where inhibitory control was required, particularly for 

younger and mid-age children; movement and correction times were further delayed. This 

was also shown on measures of the difference in movement time between jump and anti-jump 

trials (AJMTdiff), and the interval between the first (automatic) corrective movement and the 

second (inhibitory) correction for anti-jump trials (i.e. ToCdiff). However, the effect of group 

appeared to dissipate with age such that older children with DCD were less disadvantaged 

than mid-aged, and did not differ significantly from older TDC. Taken together, the anti-

reach data indicates that the coupling of online control and inhibitory systems may not be 
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well developed in younger and mid-aged children with DCD, but show signs of improvement 

in older children (10-12 years) with DCD, indeed to a level similar to that of their age-

matched peers. Whether these intriguing cross-sectional results would be mirrored in 

longitudinal modelling was the motivation for Study 3. 

In Study 3 I modelled the coupling of inhibitory and online motor control coupled in 

TDC and DCD groups using a longitudinal design—specifically, a cohort sequential design.  

A group of 196 children (111 girls and 85 boys) aged between 6 and 12 years participated in 

the study. Children were classified as TDC/DCD according to research criteria and 

performance on the MAND. Using a cohort sequential design, both TDC and DCD groups 

were divided into 13 age cohorts, each separated by 6 months, and assessed at 6-month 

intervals over two years (5 time points in total). The critical measures of coupling on the 

DJRT were AJMTdiff and ToCdiff. Results showed that performance on the DJRT was slower 

in children with DCD relative to TDC. Furthermore, for the TDC group, model comparison 

using growth curve analysis revealed that a quadratic trend was the most appropriate fit with 

evidence of rapid improvement in anti-reach performance up until middle childhood (around 

8-9 years), followed by a more gradual rate of improvement into late childhood and early 

adolescence. In contrast, for the DCD group, a linear function provided the best to fit on the 

key metrics, with a slower rate of improvement than controls. Under the framework of 

interactive specialization, these data suggest that while dorsal motor streams that support 

rapid online control are functioning well by mid-childhood in TDC, the ability to integrate 

fronto-inhibitory and predictive control require a period of re-organisation during middle 

childhood, followed by a steady but more gradual progression into older childhood.  For 

children with DCD, this process of coupling is more gradual and protracted from younger 

childhood, with little evidence of a critical re-organisation during middle childhood; this 

pattern fits with the hypothesis of a maturational lag in the development of motor-cognitive 
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networks in DCD. Combined cognitive and motor control issues in children appear to be an 

important risk factor in the development of goal-directed action and skill. These results have 

important implications for therapists and health professionals when designing treatment 

systems for DCD. 
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1.1. Overview 

 In this first chapter, I provide a review of research investigating Developmental 

Coordination Disorder (DCD) from a cognitive neuroscience perspective. First, I discuss 

DCD as a diagnostic entity and highlight key symptoms that health professionals assess when 

making clinical judgements or recommendations for treatment. Competing theoretical 

accounts of DCD are then discussed, with particular focus on the cognitive neuroscience 

approach which offers a principled way to understand the developmental precursors and 

neurocognitive underpinnings of DCD. In particular, converging evidence supports the view 

that deficits in both motor control (particularly predictive modelling) and executive function 

are present in children with DCD. This is evident from studies using paradigms that assess 

motor imagery, covert orienting of attention, force control, online control during reaching, 

response inhibition, executive attention, working memory, and others (Wilson, Ruddock, 

Smits-Engelsman, Polatajko, & Blank, 2013). Understanding the neuro-cognitive 

mechanisms that govern motor behaviour in typically and atypically developing children is 

critical in formulating a theory of DCD, which ultimately informs the design of effective 

interventions. 

 One aspect of motor control/performance that may be critical in models of DCD is 

rapid online control (ROC). Online control is integral to fast and efficient action. A useful 

and well-validated paradigm for assessing ROC is the double-jump reaching task (DJRT) 

where a growing body of research evidence (e.g., Hyde & Wilson, 2011a, 2011b, 2013) 

suggests compromise in children with DCD, and perhaps delay in maturation of fronto-

parietal networks (Wilson et al., 2013). However, as external demands on action and 

behaviour increase with age and with brain maturation, action systems fall increasingly under 

top-down control and must therefore be integrated with other control systems, particularly 

executive function. When placed in context of neuro-development, cognitive control needs to 
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be coupled with more posterior perceptual-motor systems (those that process and respond to 

sensory information), to help orchestrate progressively more complex actions and motor 

routines. For example, a basic reaching movement within peripersonal space extends to open 

environments where the action space is shared with other children and objects. 

 Currently, we know little about the time course over which cognitive and motor 

control systems are coupled in child development. To help bridge this knowledge gap, I draw 

on a contemporary neuro-behavioural theory of development, interactive specialization 

(Johnson, 2005, 2011). This theory views brain-behaviour relationships as more dynamic and 

intrinsically interactive, rather than modular. That is, emerging behaviour can be supported 

by several cortical regions, each with their own developmental timescales. The literature 

review concludes with a critique of the cognitive neuroscience framework for investigating 

the control of goal-directed reaching in healthy and atypically developing children, and how 

executive control processes influence and interact with online motor control systems at 

different stages of child development. These matters are taken up in the empirical studies 

presented in Chapters 3, 4 and 5. 

1.2 An Introduction to Developmental Coordination Disorder 

 For the vast majority of children, learning to move and interact with their environment 

becomes a very seamless and adaptive process, requiring little conscious effort (Dewey, 

Kaplan, Crawford, & Wilson, 2002). During development, children acquire a vast array of 

motor abilities (e.g. reaching, grasping, graphomotor, walking, balancing, etc.) which require 

varying degree of gross and/or fine motor coordination (Geuze, Jongmans, Schoemaker, & 

Smits-Engelsman, 2001). However, for some children, skills are not readily learned, even 

with substantial practice, which can have a detrimental impact upon not only on activities of 

daily living but also on their psychosocial development and engagement in community 
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activities (Angulo-Barroso & Tiernan, 2008; Engel-Yeger, Hanna-Kassis, & Rosenblum, 

2015). 

 Even though motor clumsiness has been examined in the developmental literature 

since near the turn of the 20
th

 century (Orton, 1937), only recently (in the last 40 years) has 

research and science begun to highlight the impact of motor difficulties on the broader 

development of children. The presence of physical awkwardness or clumsiness in children is 

commonly referred to as Developmental Coordination Disorder, or DCD (American 

Psychiatric Association, 2013), and in 1987 was included as a distinct entity in the Diagnostic 

and Statistical Manual of Mental Disorders III-R (American Psychiatric Association, 1987). 

A brief sojourn into the history of the condition reveals that poor motor skill in children has 

been labelled variously as clumsy child syndrome (Gubbay, 1975; Henderson & Hall, 1982; 

Losse et al., 1991), developmental dyspraxia (Dewey, 1995), minimal brain damage 

(Forsstrom & Von Hofsten, 1982), physically awkward (Marchiori, Wall, & Bedingfield, 

1987), perceptuo-motor dysfunction (Laszlo, Bairstow, Bartrip, & Rolfe, 1988) and deficits in 

attention, motor control, and perception (DAMP; Gillberg, 2003). The wide range of terms 

has tended to confuse efforts to conceptualise disorders of motor learning under the one 

umbrella and comparison between studies. However, an increasing focus on motor 

development in recent decades has seen consensus around the choice of label (DCD), with 

concomitant advances in the development of theory and treatment (Polatajko, Fox, & 

Missiuna, 1995). The way DCD is identified and diagnosed is taken up for discussion next. 

1.2.1 Diagnostic Criteria for DCD 

 Two prominent systems exist for identifying motor clumsiness in children:  the more 

frequently used Diagnostic and Statistical Manual IV enlisting the DCD classification (DSM-

IV; American Psychiatric Association, 2000), and the World Health Organization’s 

International Classification System enlisting the SDDMF label or specific developmental 
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disorder of motor function (ICD-10; World Health Organization, 2001). While there are some 

qualitative differences between the two classification systems, it is generally agreed that both 

systems are more similar than different (Sugden & Wade, 2013). 

 The Diagnostic and Statistical Manual IV (DSM-IV; American Psychiatric 

Association, 2000) classifies DCD as a failure to meet adequate motor milestones in the 

absence of any physical or neurological structural abnormalities, developmental delays, or 

intellectual deficiencies. Importantly, the motor problems are severe enough to interfere with 

activities of daily living and/or academic achievement. Only very recently has DSM-IV 

criteria been superseded by the DSM-5 (American Psychiatric Association, 2013). In both the 

DSM-IV and DSM-5, four categories (as listed in Table 1.1) should be addressed for a 

diagnosis of DCD to be offered.  
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Table 1.1 

Comparison of Diagnostic Criteria between the Diagnostic and Statistical Manual-IV and the 

Diagnostic and Statistical Manual 5 

Criterion DSM-IV DSM 5 

A Performance in daily activities that 

require motor coordination is 

substantially below that expected given 

the person’s chronological age and 

measured intelligence. This may be 

manifested by marked delays in 

achieving motor milestones (e.g., 

walking, crawling, sitting), dropping 

things, “clumsiness,” poor performance 

in sports, or poor handwriting. 

The acquisition and execution of 

coordinated motor skills is substantially 

below that expected given the 

individual’s chronological age and 

opportunity for skill learning and use. 

Difficulties are manifested as 

clumsiness (e.g., dropping or bumping 

into objects) as well as slowness and 

inaccuracy of performance of motor 

skills (e.g., catching an object, using 

scissors or cutlery, handwriting, riding 

a bike, or participating in sports). 

 

B The disturbance in Criterion A 

significantly interferes with academic 

achievement or activities of daily 

living. 

The motor skills deficit in Criterion A 

significantly and persistently interferes 

with activities of daily living 

appropriate to chronological age (e.g., 

self-care and self-maintenance) and 

impacts academic/school productivity, 

prevocational and vocational activities, 

leisure, and play. 

 

C The disturbance is not due to a general 

medical condition (e.g., cerebral palsy, 

hemiplegia, or muscular dystrophy) and 

does not meet criteria for a Pervasive 

Developmental Disorder. 

 

Onset of symptoms is in the early 

developmental period. 

 

D If Mental Retardation is present, the 

motor difficulties are in excess of those 

usually associated with it. 

The motor skills deficits are not better 

explained by intellectual disability 

(intellectual developmental disorder) or 

visual impairment and are not 

attributable to a neurological condition 

affecting movement (e.g., cerebral 

palsy, muscular dystrophy, 

degenerative disorder). 

Note. DMS = Diagnostic and Statistical Manual 
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 A criticism of DSM-IV criteria has been that the description of some of features listed 

in Criterion A and B are difficult to operationalise (Geuze et al., 2001). Terms such as ‘daily 

activities’ and ‘marked delays’ may be interpreted in a number of different ways (Henderson 

& Barnett, 1998), potentially leading to arbitrary research classifications of motor 

impairment. In addition, Criterion C from DSM-IV, which excludes children from a 

diagnosis of DCD if they suffer from a medical condition or pervasive developmental 

disorder, now does not automatically exclude such children under DSM 5 criteria. 

The DCD research community has addressed issues of diagnosis through the Leeds 

Consensus Meetings which produced guidelines (i.e. Sugden, Chambers, & Utley, 2006) that 

reinforced reference to DSM criteria. More recently, a comprehensive set of clinical and 

intervention guidelines (Blank, Smith‐Engelsman, Polatajko, & Wilson, 2012) was developed 

based on systematic and meta-analytic research (Wilson et al., 2013). These guidelines, in 

addition to DSM-5 criteria, are sourced when assessing children for DCD (e.g., Caravale, 

Baldi, Gasparini, & Wilson, 2014; Parmar, Kwan, Rodriguez, Missiuna, & Cairney, 2014). 

While diagnostic revisions and associated guidelines continue to shape our knowledge around 

DCD, one of the major problems with diagnosis based on any criteria is that it often fails to 

capture the range of difficulties children with DCD endure (Cairney, 2015). In the following 

section, I describe the expression of DCD and associated features. 

1.2.2 Prevalence, Symptoms and Presentation of DCD 

 Generally, DCD is identified when age approximate skills are not achieved, detected 

both at home and, more often, in the school environment where tasks involving motor 

activities (e.g. physical education) are visible against a backdrop of peer performance (Kirby, 

Sugden, & Edwards, 2010; Sugden & Wade, 2013). Prevalence rates do vary between 

countries, often a function of the motor screening measure used and the particular normative 

sample (Niemeijer, van Waelvelde, & Smits-Engelsman, 2015), and there tends to be twice 
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the number of boys diagnosed than girls (Henderson & Hall, 1982; Kadesjo & Gillberg, 

1999). However, there is general consensus that approximately 6% of school-aged children 

suffer from coordination problems (Gibbs, Appleton, & Appleton, 2007; Lingam, Hunt, 

Golding, Jongmans, & Emond, 2009; Mandich & Polatajko, 2003; Zwicker, Missiuna, Harris, 

& Boyd, 2012b). This is not to imply that coordination difficulties somehow begin and end 

within this age bracket; recent research into adults with DCD (Tal-Saban, Ornoy, & Parush, 

2014a, 2014b; Tal-Saban, Zarka, Grotto, Ornoy, & Parush, 2012) highlight the persistence of 

the disorder and associated social and emotional problems, reinforcing earlier views that 

children and adolescents do not necessarily grow out of DCD. 

 In terms of symptom expression, children often display motor skill problems across a 

number of activities or domains. Motor performance issues extend to different activities and 

may include problems dressing (Chambers, Sugden, & Sinani, 2005), an inability to catch a 

ball, poor penmanship (Smits-Engelsman, Niemeijer, & van Galen, 2001), unsteadiness in 

their posture and gait (Chen, Tsai, & Wu, 2014; Geuze, 2005; Hamilton, 2002), and so on. 

Children with DCD have also been found to be more obese than typically developing children 

(Zhu et al., 2014) and less physically fit (Hiraga, Rocha, de Castro Ferracioli, Gama, & 

Pellegrini, 2014; Lifshitz et al., 2014). 

 Due to the heterogeneous nature of presenting symptoms, diagnosis of DCD is a 

constant challenge in both research and clinical settings; however, what seems to be apparent 

is that the motor learning difficulties are also associated with difficulties in other areas of a 

child’s life. 

1.2.3 Psychosocial Consequences of the Disorder 

 The problems of DCD are not just confined to observable motor difficulties but to a 

range of negative consequences in the social, psychological and academic domains. For 

instance, participation in social activities may be adversely affected (Chen & Cohn, 2003; 
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Sylvestre, Nadeau, Charron, Larose, & Lepage, 2013), there is an increased risk for children 

to show motor clumsiness if they come from a family with a low socio-economic background 

(Lingam et al., 2009), there are problems linked to psychosocial functioning (Cummins, Piek, 

& Dyck, 2005), while language and emotional difficulties may also be present (Green, Baird, 

& Sugden, 2006; King-Dowling, Missiuna, Rodriguez, Greenway, & Cairney, 2015). 

 Additionally, they may also exhibit more symptoms from a mental illness such as 

depression (Campbell, Missiuna, & Vaillancourt, 2012) and anxiety (Missiuna et al., 2014); 

however, the link between DCD and some of the consequences mentioned above is often 

mediated by other factors. For example,Wagner, Bös, Jascenoka, Jekauc, and Petermann 

(2012) report that the relationship between DCD and internalising and externalising 

behaviours may be due to problems from friendship networks. 

 In the school environment, children with coordination problems have demonstrated 

lower academic ability than age-matched peers (Watson & Knott, 2006), particularly in 

reading (Dewey et al., 2002), writing (Cheng, Chen, Tsai, Shen, & Cherng, 2011) and 

arithmetic (Pieters, Desoete, Van Waelvelde, Vanderswalmen, & Roeyers, 2012). 

Additionally, teacher (Faught et al., 2008) and parent (Bodnarchuk & Eaton, 2004) appraisals 

of children’s motor abilities further suggest that problems linked to DCD can be just as 

debilitating as the disorder’s primary features. In short, the wider implications of DCD are 

reported across a range of studies. 

1.3 Categories of DCD Research 

 The number of studies conducted on DCD has grown considerably over the last 15-20 

years. By way of illustration, the meta-analytic review of Wilson and McKenzie (1998) 

which spanned 22 years included 50 performance based studies whereas the most recent 

meta-analysis spanning 14 contained over 129 (see Wilson et al., 2013). DCD research can be 

divided into three distinct categories: (i) descriptive studies that examine key characteristics 
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and presentation of the disorder; (ii) studies which assess the efficacy of intervention 

programs and (iii) aetiological accounts that aim to identify causal/underlying factors of 

motor deficits. My main focus is the latter. However, a brief overview of each category is 

needed to place modern research in context and to highlight current directions.  

1.3.1 Descriptive Research 

 As the name suggests, descriptive research attempts to define the core characteristics, 

presentation and associated features of DCD. Unlike aetiological research, it is not focused 

on identification of the underlying mechanisms that explain motor clumsiness. The range of 

studies included in this category is quite broad, based on simple correlational and longitudinal 

research and/or group comparisons. For instance, some research investigates prevalence 

estimates (dos Santos & Vieira, 2013; Lingam et al., 2009; Tsiotra et al., 2006) and prognosis 

(Missiuna, Moll, King, King, & Law, 2007). Other research reviews current issues of 

terminology, classification, and intervention (Zwicker et al., 2012b), while some work focus 

on a specific area such as psychosocial implications (Piek, Dworcan, Barrett, & Coleman, 

2000; Skinner & Piek, 2001) or levels of participation in physical activity (Green et al., 

2011). 

 Researchers have also examined co-occurring developmental disorders that are 

frequently diagnosed with DCD such as attention deficit hyperactivity disorder (ADHD; 

Gillberg et al., 2004; Kaiser, Schoemaker, Albaret, & Geuze, 2015; McLeod, Langevin, 

Goodyear, & Dewey, 2014; Missiuna et al., 2014), or language and learning difficulties 

(Cheng et al., 2011; Flapper & Schoemaker, 2013); the weight of evidence across studies 

suggests that co-occurring features are the norm rather than the exception (Sugden & Wade, 

2013). Furthermore, there is research which suggests that there are sub-groups that exist 

within DCD (Tsai, Wilson, & Wu, 2008; Vaivre-Douret et al., 2011; Visser, 2003). Taken 

together, the above studies are just some that provide health professionals with valuable 
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information to help advance interventions and offer support to children who suffer from 

motor difficulties; even though it may not be entirely clear which direction remediation 

should follow. This knowledge forms a base for continued research that explores the 

aetiology of clumsy behaviour and can help shape intervention programmes. 

1.3.2 Intervention Research 

 The areas of focus for intervention studies is somewhat diverse, possibly due to the 

heterogeneity of symptoms noted within DCD groups, the sub-types that may exist or the 

guiding assumptions made about the aetiology of the disorder (Wilson, 2005), all potentially 

resulting in a lack of consensus about how to structure remediation. That said, the methods 

used in treatment programmes can be divided into two broad categories: task-oriented 

approaches and process-oriented approaches (Ferguson, Jelsma, Jelsma, & Smits-Engelsman, 

2013; Smits-Engelsman et al., 2013; Sugden, 2007). 

 Process-oriented interventions are based on the premise that motor problems can be 

addressed by targeting the underlying process or function required for action (Smits-

Engelsman et al., 2013), like kinaesthesis, for example. The assumption underlying therapy is 

that, by addressing putative processes, remediation will extend to the associated behaviour 

and lead to an improvement in skill performance. Examples of this approach include 

kinaesthetic training, sensory integration therapy and perceptuo-motor approaches. 

 By comparison, task-oriented interventions are informed by current motor learning 

principles and the notion of performance specificity (Smits-Engelsman et al., 2013). Drawing 

on an ecological framework that suggests movement is a function of the interaction between 

child, task, and environment, emphasis is placed on learning specific tasks (e.g. ball catching, 

handwriting), often through use of or problem-solving strategies. Programs that show 

promise in this area include the cognitive orientation to daily occupational performance (CO-

OP; Banks, Rodger, & Polatajko, 2008; Taylor, Fayed, & Mandich, 2007) and neuro-motor 
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training tasks (Ferguson et al., 2013; Niemeijer, Smits-Engelsman, & Schoemaker, 2007). 

The systematic review from Smits-Engelsman and colleagues (2013) showed that task-

oriented interventions yielded much stronger effects (dw=0.89) than process-oriented 

program effects (dw=0.12) for DCD. They conclude that process-oriented have limited 

efficacy, over and above incidental learning. However, by the authors’ own admission, only a 

small number of studies in the review conducted follow-up assessments and most others did 

not adequately describe the precise nature of the intervention design. These are critical factors 

that convey important information to clinicians wishing to integrate empirical evidence into 

best possible practice methods. 

  Even though there is a growing body of research in DCD that showcases the range of 

interventions that exist, there appears to be no gold standard that clinicians can turn to for 

effective remediation. That said, it is generally agreed that engaging children in any type of 

intervention is a more desirable option than leaving symptoms untreated, particularly when 

children’s coordination problems can persist into adolescence and adulthood (Cousins & 

Smyth, 2003; Kirby, Edwards, & Sugden, 2011; Kirby, Sugden, Beveridge, Edwards, & 

Edwards, 2008). As more knowledge is gained about the varied expression and prognosis of 

DCD, clinicians and researchers are better able to identify movement difficulties in children 

and create empirically validated treatment programs. However, without a detailed 

understanding of the aetiology of DCD, such programs may not be well targeted to those 

children who need treatment. Several cogent theories have developed to explain the causal 

mechanisms associated with DCD, which directs the focus of experimental research on DCD 

and typically developing children. The main theoretical accounts are evaluated in the 

following section. 

1.3.3 Recent Aetiological Perspectives of DCD 
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 1.3.3.1 Information processing. One key argument about the aetiology of DCD 

is that no single theory of motor control can explain comprehensively all the deficits 

associated with the disorder (Shumway-Cook & Woollacott, 2011; Zoia, Barnett, Wilson, & 

Hill, 2006). From a historical perspective, the information processing (IP) account tended to 

dominate DCD research between 1980 to the mid-1990’s (Wilson, 2005). Using a computer 

metaphor for motor action, the IP approach assumes incoming sensory information is 

processed through a number of sequential stages (or levels of processing), culminating in the 

programming and execution of a motor response. That is, information is processed in a serial 

fashion via sensori-perceptual operations, response planning, and motor execution functions 

(Savelsbergh, Davids, Van der Kamp, & Bennett, 2003). The main goal is to isolate 

disruptions to particular perceptual (e.g., visuospatial processing) and/or cognitive processes 

(e.g. attention, memory, and executive function) that might underlie the issues in overt 

performance that define DCD (Hill & Barnett, 2011; Rostoft & Sigmundsson, 2004). 

 Reference to the IP approach has remained attractive to researchers for pragmatic 

reasons in that it provides a framework for investigating specific mechanisms (e.g. working 

memory, inhibitory control, and processing speed) using an experimental approach. Based on 

the factor-addition logic of Sternberg, Sergeant and others, this approach lends itself to 

detailed chronometric and kinematic methods, which have dominated the research landscape 

until recently. For example, using a method of differential loading, Alloway and Temple 

(2007) showed that children with DCD were more impaired on verbal and visuospatial 

memory tests, suggesting a link between memory and motor learning in DCD. 

 As a way of synthesising the research, a comprehensive meta-analytic paper by 

Wilson and McKenzie (1998) examined 50 IP-based studies between 1963 and 1996. The 

authors identified 374 effect sizes based on 983 DCD and 987 control children, and found 

that the greatest deficit to be in visual-spatial processing, regardless of whether a motor 
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component was involved. Other deficits were also noted in kinaesthetic and cross-modal 

processing. While the results of the study strongly suggested perceptual processes are 

associated with motor control difficulties, the investigators cautioned that the presence of 

such deficits could not be taken as evidence of causation. For example, deficits in 

kinaesthetic processing may arise as a negative consequence of low participation in sport and 

physical activity since children with DCD tend to avoid learning new motor skills (Engel-

Yeger, Hanna-Kassis, & Rosenblum, 2012). Notwithstanding this cautionary tale, aspects of 

visuospatial processing have been linked causally to DCD in experimental work (Wilson et 

al., 2013). 

 Since the Wilson and McKenzie (1998) review, the IP perspective has been 

challenged on a number of fronts. First, the approach overemphasises the linear nature of 

information processing from stimulus to response and ignores evidence for parallel 

processing under tight temporal and spatial task demands (Wade, Johnson, & Mally, 2005). 

Parallel processing is necessary to negotiate multiple objects and events in the environment 

while orchestrating a movement or sequence of movements in real time, otherwise adaptive 

and flexible movement is not possible. In addition, output signals to the effector systems do 

not always emanate top down (Magill, 2010). Instead, control can be exerted on the system as 

a direct consequence of environmental signals or cues, rather than from a control centre. For 

instance, a fast looming object may trigger postural and other adjustments to avoid collision.  

This (bottom up) example shows how an automatic reaction, directed by low level sensori-

perceptual processes, can influence motor behaviour.  

Taken together, these challenges have weakened the strength of the IP account. Over time, 

such criticisms have led to a paradigm shift of sorts toward ecological and cognitive 

neuroscience perspectives on motor behaviour. 
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 1.3.3.2 Beyond information processing: Insights into cognitive neuroscience.

 More recently, motor control and learning has been influenced considerably by two 

pivotal approaches: cognitive neuroscience (CN) and dynamical systems. Cognitive 

neuroscience is a multi-disciplinary approach that models thought and behaviour in terms of 

the interplay between underlying neurocognitive systems (Miyashita & Farah, 2001). In the 

case of motor behaviour, control is implemented by multiple, interactive networks rather than 

a serial flow of information codes through different processing stages (Roy, 2008; Shumway-

Cook & Woollacott, 2011; Wilson et al., 2013). Wilson and Butson (2007) suggest that the 

CN approach is an integrative one, drawing on a range of methodologies such as 

neuropsychological case studies, neuroimaging techniques (e.g. fMRI, MRI, and PET), 

neurophysiological techniques like EEG, brain lesion studies and animal models. The use of 

these techniques, coupled with experimental methods drawn from cognitive psychology, form 

a modern approach to examine the underlying mechanisms of motor clumsiness. 

 A criticism aimed at the use of neuroimaging studies suggests that actions performed 

in a recreated magnetic environment does little to simulate real-world constraints that impact 

upon the movement under investigation (Sanes & Donoghue, 2000). In response, Fuchs and 

colleagues (2000) argue that the scientific pursuit should focus on knowing which 

experimental paradigms “...afford the best entry point for understanding brain-behaviour 

relations” (p. 375). Comments like this reflect a desire to understand atypical motor 

development by using converging methodologies. At a functional level, paradigms that 

examine the interaction of action and the CNS between DCD and control children will add 

more to the current body of DCD knowledge. From a CN perspective, several promising new 

hypotheses have emerged to explain DCD. Perhaps the two leading accounts are the internal 

modelling deficit (IMD) hypothesis, focusing mainly on predictive motor control, and the 

motor timing (or cerebellar) hypotheses.  
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 1.3.3.2.1 Internal modelling and the IMD hypothesis. One theory that has 

gained converging support concerns the way children learn to create an internal (or 

feedforward) representation of an intended movement. Modern computational accounts of 

motor control suggest that two processes are crucial for goal-directed action: forward (or 

predictive) modelling and inverse modelling (Desmurget & Grafton, 2003). Predictive 

models use a copy of the motor command (i.e., efference copy) to the plant to estimate the 

state of the moving limb, while inverse models produce the motor command necessary for the 

desired goal state (Desmurget & Grafton, 2003; Miall & Wolpert, 1996; Wolpert, 1997; 

Wolpert, Diedrichsen, & Flanagan, 2011). The process of predictive modelling generates 

forward estimates of limb positioning based on the expected consequences of action 

(Shadmehr, Smith, & Krakauer, 2010). In this way, the motor system is afforded advantage 

by quickly and accurately accounting for changes in target-limb relationships should 

discrepancy arise. The ability to adjust movement in this way avoids delay associated with 

slower feedback corrections, which have been found to take up to 250 ms (Frith, Blakemore, 

& Wolpert, 2000). 

 This process is subserved by fronto-parietal and parieto-cerebellar loops. It has been 

observed, for example, that patients suffering lesions of the posterior parietal cortex (PPC) 

perform poorly on motor imagery tasks, that require the generation of internal motor 

representations (Sirigu et al., 1995; Sirigu et al., 2004), and rapid online control (Pisella et al., 

2000). Pisella and colleagues (2000), for example, showed that the performance of patients 

was exceedingly slow and deliberate when implementing online adjustments to sudden 

changes in target position, unlike the fast automatic corrections of control subjects. Results 

were consistent with a deficit in predictive online control. 

 More specifically, it has been hypothesised that the motor problems shown by 

children with DCD are due to a deficit generating internal (predictive) models of action 
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(Wilson et al., 2013). Evidence is drawn from studies using paradigms that assess motor 

imagery (Williams, Thomas, Maruff, & Wilson, 2008; Williams, Wilson, Thomas, Maruff, & 

Butson, 2006; Wilson et al., 2004), covert orienting of attention (Wilson & Maruff, 1999; 

Wilson, 1997), force control (Pereira, Landgren, Gillberg, & Forssberg, 2001; Przysucha, 

Taylor, & Weber, 2008), response inhibition (Mandich, Buckolz, & Polatajko, 2002), and 

others. More recently, online control during reaching has been used to assess the integrity of 

predictive modelling and is described more fully in a section below. 

 1.3.3.2.1.1 Motor imagery. For children with DCD, there is converging evidence to 

support the IMD hypothesis (Wilson et al., 2013). This account provides a parsimonious 

framework for explaining the difficulty that these children have learning new skills and 

refining performance, even in the face of repeated practice. The first line of evidence comes 

from studies of motor imagery (Lewis, Vance, Maruff, Wilson, & Cairney, 2008; Noten, 

Wilson, Ruddock, & Steenbergen, 2014; Williams, Omizzolo, Galea, & Vance, 2013). Motor 

imagery, defined here as the internal simulation of motor action without overt movement 

(Hyde, Wilmut, Fuelscher, & Williams, 2013), is taken to reflect the internal representation 

of action and a marker for internal modelling, specifically. This view is based on 

experimental data showing that the same physiological and neural processes are activated in 

actual movement (Jeannerod, 1995; Jeannerod, 2001; Williams et al., 2013; Wilson, Maruff, 

Ives, & Currie, 2001). Investigations of the relationship between real and imagined 

movements have led researchers to hypothesise that motor imagery is the efference copy of 

an intended movement (Wilson et al., 2001). 

 In an earlier study using the visually guided pointing task (VGPT), results have 

revealed atypical performance in children with DCD when compared to age-matched control 

children and adults (Wilson et al., 2001). On the VGPT, participants must move their hand 

either physically or mentally between targets of varying size. Wilson and colleagues (2001) 
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found that the movement time of the DCD group did not conform to Fitts' Law (Fitts, 1954) 

unlike the control group, and also to that of adults shown from previous research (Decety & 

Jeannerod, 1995). In addition, the imagined movement of children with DCD did not increase 

with the addition of weight, as it did for control children suggesting an impaired ability to 

generate predictive (forward) models of movement. 

 Later, Williams and colleagues (2006) compared DCD and healthy controls children 

on four imagery conditions: a single-hand rotation task with and without explicit imagery 

instructions, a whole-body imagery task, and an alphanumeric rotation task. For each 

condition, stimuli were presented a computer screen for 10 seconds and rotated in increments 

of 45
0 

between 0
0
 and 360

0
. For example, in the single-hand rotation tasks participants 

decided if a hand presented was either a ‘right’ or ‘left’ hand. Overall, results across the four 

tasks suggested that children with DCD had difficulty utilising specific motor imagery 

instructions and performing egocentric transformations, supporting earlier work (Maruff, 

Wilson, Trebilcock, & Currie, 1999; Wilson et al., 2001) and the IMD hypothesis. 

Interestingly, the pattern of performance in DCD resembles that seen in patients suffering 

lesions to the PPC (Sirigu, Duhamel, Cohen, & Pillon, 1996). Taken together, this body of 

research indicates that children with DCD show impairment in generating forward (or 

predictive) models of motor control.  

 Of the main limitations of this work on motor imagery are the fact that studies adopt 

quite different task methodologies (e.g. distance estimation, size comparison, simulating 

actions) and the possibility that children adopt visual imagery strategies to solve mental 

rotation and imagined timing tasks. Stevens (2005) suggests two different neural modalities 

operate concurrently: (i) visual imagery mechanisms (subserved by the right hemisphere of 

the brain) interprets the location and size of an object in space, and (ii) motor imagery (left 

hemisphere) reconstructs elements of biomechanical processes such as muscle control and 
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joint movement. The issue for many studies is that without access to brain imaging 

techniques, it is difficult to verify that motor cortical or other regions are being activated in 

DCD. 

 1.3.3.2.1.2 Postural control.  Deficits of postural control have been reported 

in children with DCD (Chen et al., 2014; Inder & Sullivan, 2005; Jover, Schmitz, Centelles, 

Chabrol, & Assaiante, 2010; Kane & Barden, 2012). In a study by Przysucha and colleagues 

(2008), postural sway was measured in two phases of movement (according to dual-

component theories of motor control): feedforward and feedback stages based on the time to 

reach peak velocity. Briefly, dual-component models propose that sensory feedback is 

precluded from the initial stages of movement (i.e., until peak velocity), assumed to be under 

direction of the motor command. The second phase engages predictive feedback-based 

control by using sensory feedback to adjust the moving limb and improve target accuracy 

(Sarlegna & Mutha, 2014). Przysucha and colleagues found that leaning sway was poorer in 

children with DCD than controls. That is, analysis of time taken in the corrective movement 

phase showed that the DCD group spent 54% of time under feedback control compared with 

controls who took 78%. The feedback phase is a more efficient online strategy to adjust 

postural leaning as it integrates incoming signals into the nervous system with respect to body 

and limb position. Problems with this mode of control suggest that children with DCD may 

experience difficulty using predictive-based systems to maintain steady posture. 

 Recently, Jover and colleagues (2010) assessed anticipatory postural control on a load 

lifting task between children with DCD and matched controls. Participants extended their 

arms out to a horizontal position with a load (i.e. weight) attached to the forearm. Arm 

position was held following weight unloading during two conditions: imposed or voluntary 

load removal. Maintaining a stable posture in the latter condition is dependent on the ability 

of the nervous system to anticipate and adjust for the motor consequences of load removal. 
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This process is inferred from decreased elbow flexion and reduced EMG activity in the flexor 

muscles (prior to load removal). Even though children with DCD were able to compensate 

for weight unloading, they showed poorer arm stabilisation after voluntary load removal 

which suggested problems with anticipatory (predictive) control. Furthermore, the DCD 

group showed delayed inhibition of flexor muscles while no relationship was found between 

their inhibition and arm stabilisation. For control children however, earlier flexor inhibition 

was correlated with improved arm stabilisation suggesting more efficient use of predictive 

control strategies to maintain arm stability. 

 1.3.3.2.1.3 Grip force.  Some researchers have inferred deficits of predictive 

control in DCD on the basis of problems using grip force modulation (e.g., Hill & Wing, 

1999; Pereira, Eliasson, & Forssberg, 2000; Pereira et al., 2001). Pereira and colleagues 

(2001) compared 20 boys with DCD with age-matched control children on a lifting task 

which involved repetitive grasp and lift movements of a small object. This was to ensure that 

appropriate force was used to grasp the object while preventing excessive force being used. 

Success on the task is underscored by the ability of the nervous system to estimate the 

variable force and load associated with the speed and duration of movement according to the 

object’s weight. In other words, faster movements performed with a heavier object require 

additional grip force to hold the object in place. Pereira and colleagues found that the DCD 

group had higher grip forces and safety margins than the control group and suggested 

disruption generating the predictive model to accurately anticipate the impending movement. 

 To conclude, while there is good evidence across paradigms to support the IMD 

hypothesis, it is recognised that not all children with DCD show deficits in motor imagery, 

postural control, and grip force. Other plausible theories of DCD and its underlying 

mechanisms exist. 
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 1.3.3.2.2 The cerebellar-motor timing account. Deficits of motor timing have 

been widely observed in DCD (Wilson et al., 2013) and have been linked to some disruption 

at the level of the cerebellum, and its reciprocal connections to motor and sensory cortex.  

The role of the cerebellum is seen to act as part of a larger distributed system for both motor 

and non-motor control processes within the central nervous system (Cantin, Polatajko, Thach, 

& Jaglal, 2007; Mariën, Van Dun, & Verhoeven, 2014; Salman, 2002). More specifically, the 

cerebellum is involved in the coordination of muscle movements in the execution of action 

and postural balance by acting as an adaptive controller (Barlow, 2002; Herzfeld & 

Shadmehr, 2013; Shadmehr & Krakauer, 2008; Wolpert, Miall, & Kawato, 1998). In 

response to environmental signals, this adaptive controller is a means for implementing rapid 

changes based on discrepancies between planned and actual movement (ala internal 

modelling). More specifically, the cerebellum is thought to be a ‘somatic discrepancy 

detector’ (Blakemore & Sirigu, 2003). That is, unexpected mechanical perturbations and 

other unusual somatic events during the course of a movement are identified and corrected by 

cerebellar structures (e.g., climbing fibres), in association with the PPC (Mariën et al., 2014). 

Deficits associated with the neural networks within this system often impact rhythmic motor 

behaviours, which has become a focal point for experimental researchers. 

 One paradigm that has been adopted widely to test atypical motor control involving 

the cerebellum is synchronised tapping to a metronomic beat; problems maintaining rhythm 

on tasks is suggestive of cerebellar impairment (Ivry & Keele, 1989). Typically, participants 

are required to maintain a steady rhythm by tapping their finger in unison with a stimulus 

beat and continue tapping for a period of time after the stimulus beat is removed. Studies 

have repeatedly shown that children with DCD have problems maintaining stable rhythm 

patterns across motor tasks (De Castro Ferracioli, Hiraga, & Pellegrini, 2014; Lundy-Ekman, 

Ivry, Keele, & Woollocott, 1991; Mackenzie et al., 2008; Piek & Skinner, 1999). For 
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example, using Wing-Kristofferson (1973) timekeeper model, Williams and colleagues 

(1992) showed that that timing control in a ‘clumsy’ group of children was more variable 

than controls on a uni-manual continuous tapping task, suggesting that a difference in rhythm 

control was due to dysfunction of a central time-keeping mechanism. 

 In another study, Lundy-Ekman and colleagues (1991) assessed clumsy children, who 

showed soft neurological signs of cerebellar dysfunction and soft neurological signs of basal 

ganglia damage, with age-matched controls. When children performed a continuous tapping 

task, a double-dissociation between the clumsy groups was found. Children in the cerebellar 

group displayed increased inter-tap interval and force variability, unlike the children in the 

basal ganglia group who demonstrated performance within normal range. Conversely, the 

basal ganglia group displayed increased force variance when compared to the cerebellar 

group. This double-dissociation led Lundy-Ekman and colleagues to infer that central timing 

and force control are regulated by different neural systems, and that deficits in the cerebellar 

group are due to an impaired central timing mechanism. In sum, these deficits in timing 

suggest that the cerebellum is implicated in DCD. Specifically, regulation of the relationship 

between agonist and antagonist bursts of muscle activation may be compromised. 

 Not all studies show clear evidence of a timing deficit in DCD, however. Cantin and 

colleagues (2007) used a Prism Adaptation Test (PAT; Martin, Keating, Goodkin, Bastian, & 

Thach, 1996) to assess cerebellar function in TDC and children with DCD. A PAT requires 

participants to perform goal directed movements (e.g., throwing a ball at a target), first with 

normal vision (an initial stage) and then with an undetectable visual displacement to a 

peripheral location by wearing prism glasses. Vision is then restored to normal conditions (a 

recovery phase) to complete the assessment. In the first stage of the PAT, participants 

generate an internal (predictive) model representing the relationship between visuo-motor and 

proprioceptive-motor frames of reference (Redding, Rossetti, & Wallace, 2005; Redding & 
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Wallace, 2004). Undetected visual displacement results in conflict between the expected 

consequences of the motor plan (according to the predictive model) and that indicated by 

sensory consequences of the action. In other words, wearing prism glasses shifts the frames 

of reference, necessitating a change to the internal model over repeated learning trials. 

Following visual displacement, initial trials tend to be less accurate but become successively 

better as the error signal is used to update the predictive and inverse models to account for the 

change in limb-target relationship. This process is inferred by comparing accuracy levels in 

the prism stage to those prior to wearing the glasses. Similarly, successful integration of the 

predictive and inverse models is seen from ‘after-effects’ once prism glasses are removed and 

vision returns to normal. Throwing a ball during this final phase of the assessment also shows 

poorer initial accuracy, this time toward the opposite direction of the prism displacement. 

Results from Cantin and colleagues showed that overall, the DCD group were more variable 

and less accurate than the control group throwing a ball at a target, but found that some 

children with DCD obtained normal scores on the PAT by adapting to the visual 

displacement. The behavioural data here neither confirm nor refute a cerebellar deficit in 

children with DCD but some researchers have questioned whether such paradigms can in fact 

isolate a specific cerebellar (or other) deficit (Wade et al., 2005). Importantly however, 

cerebellar patients show either impaired or absent motor adaptation during PATs (Martin et 

al., 1996; Morton & Bastian, 2004), providing evidence that the cerebellum may in fact play 

an important role in predictive models. 

 1.3.3.2.3 Summary. From converging approaches representative of the CN 

perspective, deficits in the internal (predictive) modelling of movement and timing control 

are two pivotal theories that help explain atypical motor development or DCD. Notably, 

evidence of dissociation in the pattern of performance between object-based and motor 

imagery tasks provides strong support for the IMD account. On balance, there is good support 
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for cerebellar dysfunction in DCD, evident from motor timing and PAT deficits. Combined, 

the CN approach is a principled method to the investigation of underlying mechanisms 

associated with DCD. Increased used of neuroimaging and related methods has already 

refined our understanding, however studies to date have been limited in sample size and the 

fidelity of task design. With a focus on regions-of-interest and graph theoretic approaches, 

future neuroimaging studies will strengthen theory development in DCD research. 

 1.3.3.4 Dynamical systems approach to understanding DCD. Dynamical 

systems (DS) emerged as a reaction against the logic and assumptions of IP theories. Drawn 

from an ecological model (Gibson, 1976), DS emphasises the dynamic interplay between 

biological systems and their environment. The impetus to move is not top-down, but rather 

emerges from the interaction between the individual performer, the environment, and the 

nature of the task at hand. A key argument is that motor control is not prescribed from within 

the brain in pre-planned form. Rather, movement is an emergent property of the (individual) 

physical system itself in its interaction with the immediate environment (Geuze et al., 2001).  

Visual and other sensory inputs from the outside world are intrinsically meaningful to the 

mobile performer who utilises this information directly when organising a motor response. 

This is encapsulated by the notion of affordance and the process of perceptual-motor 

coupling (Gibson, 1976). 

 Dynamical systems contends that a plan created by a central command centre cannot 

account for the potentially infinite number of combinations (or degrees of freedom) that exist 

in the control of muscles units, tendons, and joints, even for the most simple action 

(Bernstein, 1967) like reaching for a book. The IP approach would assume a single, unique 

stored representation for every possible movement, which according to DS theory creates an 

unmanageable load on memory and response selection. The DS approach is particularly 

concerned with the system’s ability to extract information on invariant features of the 



Chapter One    Literature Review 

30 
 

environment and the movement space as a direct consequence of self-motion, as well as the 

ability to form movement synergies that reduce the degrees of freedom problem to a 

manageable set of kinematic and kinetic rules (Kelso, 1984; Savelsbergh et al., 2003). For 

example, in a seminal study of infants, Thelen, Fisher, and Ridley-Johnson (1984) found that 

the stepping reflex (which declines after two months of age) returns when infants are 

immersed upright in water. This showed that the stepping pattern was influenced by factors 

other than neural maturation, but rather environmental constraints. This example underlines 

the point that changes to observed movement patterns may potentially be too complex to be 

explained by brain-related mechanisms alone. 

 From a DS perspective, researchers have examined the control parameters associated 

with shifts in movement patterns or coordination dynamics in children with DCD. For 

example, changes seen in phase transitions, particularly those associated with the 

development of stable movement patterns, has been a focal point of research. Volman and 

Geuze (1998b) tested the stability of rhythmic (in-phase and anti-phase) finger movements in 

children with DCD using a perturbation paradigm. Here, a mechanical break attached to the 

index finger was applied during rhythmic flexion-extension movements. Volman and Geuze 

found deficits in children with DCD in the ability to produce rhythmic finger coordination 

patterns compared with controls, and noted that they required more time to restore their initial 

tapping rhythm after perturbation. In a related study, Volman and Geuze (1998a) measured 

visuo-motor coupling of finger flexions-extensions performed under in-phase and anti-phase 

conditions. Again, children with DCD were shown to have significantly less stable index 

finger coordination patterns for the anti-phase coordination patterns than matched controls. 

The researchers suggested that results could not be explained by a central timing mechanism 

as such a model was unable to account for complex coordination properties such as stability 

loss or phase transitions, and that these processes are not subserved by corresponding neural 
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networks or structures. Ironically, it is likely that this deficit has some basis in the function of 

cerebellum (Mariën et al., 2014; Miall & King, 2008). 

 Inter-limb coupling has also been examined in DCD from a DS perspective. Whitall 

and colleagues (2006) measured the stability and coordination of hand-foot patterns of 10 

children with DCD and matched controls. The task involved marching and clapping at the 

same time to an auditory beat, presented at four different frequencies (0.8, 1.2, 1.6 and 2.0 

Hz). To assess participant’s ability to coordinate their limbs, the researchers measured the 

time interval between a participant’s foot strike-hand clap and the beat. By calculating the 

mean relative phase and variability of relative phase of the movement, they found that 

children with DCD had significantly greater trouble controlling coordinated hand and foot 

patterns in response to auditory changes. 

 In another study of inter-limb coupling, Volman, Laroy, and Jongmans (2006) tested 

10 children with DCD across three in-phase and anti-phase tapping conditions: hand to hand, 

hand to foot (same body side), and hand to foot (opposite body side). Stability of coordinated 

movements was measured by the variability of the relative phase between the limbs under a 

condition performed at a preferred rate (steady state), and the point where a loss of pattern 

stability was observed. The researchers observed difficulties in rhythmic hand-foot patterns in 

DCD, shown from less stable patterns across all three limb combinations and in hand-foot 

combinations more than hand-hand combinations Coordination and control of inter-limb 

dynamics has also been strongly implicated in DCD in a recent meta-analytic review (Wilson 

et al., 2013), and is relevant to activities of daily living (e.g. running, locomotor transitions, 

intercepting objects while moving) - tasks which children with DCD frequently find difficult 

(e.g. Zoia et al., 2006). 

 While the DS approach has provided a more ecological and holistic perspective on 

motor coordination in DCD, the approach is not without its critics. Dynamical systems theory 
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does tend to neglect the role of the nervous system in directing action (Shumway-Cook & 

Woollacott, 2011). In addition, most task paradigms (e.g., rhythmic finger tapping) have low 

ecological validity, ironically. In general, the research focus and outcomes are very 

descriptive, providing mathematical models to fit the dynamic relationship between physical 

units (the limbs) and external events, and inter-joint/limb coordination. As such, the 

underlying mechanisms of DCD are often bypassed in attempts to merely describe the 

dynamics of the motor action itself. 

 1.3.3.5 Integrative approaches. The reality now is that many researchers use a 

hybrid or integrative approach when framing research hypotheses and imposing 

methodologies to answer their questions (Elders et al., 2009; Smits-Engelman, Westenberg, 

& Duysens, 2008). What unites researchers here is the quest to understand atypical motor 

development by examining control processes, their neural bases, and factoring in the learning 

and developmental history of the child. This broad-based approach has informed the study of 

graphomotor control (Rosenblum & Livneh-Zirinski, 2008), force control during lifting 

(Law, Lo, Chow, & Cheing, 2011; Pereira et al., 2001), the effect of task constraints on 

target-directed reaching (Huh, Williams, & Burke, 1998), and measures of postural control 

under external perturbation (Geuze, 2005; Jover et al., 2010), all of which can provide unique 

windows into the development of movement skill in children with DCD. A broad theory that 

reflects the contemporary approach to child development, and is relevant to the main research 

aims of my thesis, is interactive specialization. 

 1.3.3.5.1 Interactive specialization: An integrative model of neuro-behavioural 

development. Recent modelling in the cognitive neurosciences has challenged traditional 

conceptualisations of neural development. Maturational approaches, dominant for many 

decades, posit that when a given region or structure matures within the central nervous 

system, the cognitive function or behaviours seated in that region become operational 
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(Johnson, 2005). Hence, maturation is often considered in dichotomous terms: a region is 

either immature or mature, ergo a cognitive function is either operational or not. In its most 

traditional form, this process of development is thought to be driven predominantly by 

endogenous factors, genetic and biochemical (Casey, Getz, & Galvan, 2008). Consequently, 

researchers have been able to predict the stage in development that a behaviour or cognitive 

mechanism will be expressed based largely on an individual’s age. In the case of online 

control, for example, adult-like performance should emerge at around 8-9 years of age as 

fronto-parietal cortices reach a more advanced level of maturity (Wilson & Hyde, 2013) - this 

interaction between neural systems in relation to online control and executive systems is 

taken up for discussion later in this review. 

 Whilst the maturational approach provides an intuitively appealing and parsimonious 

account of development, it fails to account for a number of empirical and clinical 

observations (for a comprehensive review see Johnson, 2011). Critically, a purely 

maturational approach is incompatible with evidence which shows that brain development is 

experience-dependent, interactive, and mediated by endogenous factors, all of which shape 

the structure and function of the central nervous system, particularly in the first three decades 

of life (Barnea-Goraly et al., 2005; Casey, Tottenham, Liston, & Durston, 2005; Durston et 

al., 2006). In particular, the idea of interactive specialization helps link different lines of 

evidence together under the one theoretical umbrella. The broad hypothesis of interactive 

specialization posits that some regions of the cortex, while unfolding at a relatively slow rate, 

can still modulate the activity of other areas, influencing the tenor of cognitive processing. In 

other words, the emergence of a new behaviour is the result of weighted activity from several 

brain regions whose modular architecture and rate of maturation may differ in complexity 

and timescale (Johnson, 2011). New cognitive processes and behaviours thus arise as a result 

of changes to multiple regions rather than site-specific effects. This interaction (or coupling) 
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between brain regions offers a general framework of interactive specialization and has 

provided researchers with a new focus on development.  

 1.3.3.5 Conclusion. Discussion of the above approaches has shed light on some of 

the different aetiological accounts of DCD. Accounts of IP, CN, and DS all offer some 

insight to the way DCD problems are expressed. Yet at the same time, there are also 

limitations associated with each account which highlight the need for a more unified 

aetiology of DCD, assessed through the use of carefully designed experimental work. 

 While there are many approaches to understanding the causes of DCD, the cognitive 

neuroscience account provided is the most promising for a number of reasons. First, more 

broadly, this approach has been successfully adopted for understanding the mechanisms that 

subserve motor development and disorder. Second, in the context of DCD, there is strong 

data in support of the view that delays in a variety of neuro-cognitive systems might be 

impaired in DCD. Last, and most importantly, it lends itself well to the development of 

intervention programs. Of the neuro-computational accounts that may explain DCD, 

predictive modelling offers the most promising account by virtue of the fact that it has 

received supportive evidence across a variety of tasks - most recently those of online control. 

 With this in mind, Wilson and colleagues (2013) conducted a meta-analysis of DCD 

research that examined experimental data of motor control and performance mechanisms. 

The researchers identified 1785 effect sizes across 129 studies and found that across all 

measures, there was a moderate-to-large effect size suggestive of a generalised performance 

deficit in DCD. Notably however, several areas were more noticeable. These included 

predictive control, coordination and timing movements, posture, gait, ball catching and 

executive function. Importantly, predictive control appears to be a fundamentally disrupted 

process and suggests that children with DCD struggle to form internal models (Wilson et al., 

2013). What was unclear from the meta-analysis was how pronounced deficits across other 
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systems such as executive function might influence the predictive control. 

As a means to unravel the motor control and learning issues in DCD, I provide next 

an overview of ROC and evidence used to assess online motor control, drawn from double-

step paradigms. Using a neuro-computational framework, I highlight the promise ROC holds 

in helping to clarify the nature of one of the more sturdy aetiology accounts of DCD: a deficit 

in predictive control (aka internal modelling deficit; IMD) and its integration with developing 

executive systems. 

1.4 Predictive Online Control is Vital to the Acquisition of Movement Skill in Children 

1.4.1 What is Rapid Online Control? 

The ability to fluently adapt an on-going movement following unexpected 

environmental events requires a well-tuned and functional neuro-motor system. Accordingly, 

in recent decades the integrity of this process has been used as an important indicator of the 

maturation and cohesion of the broader control systems. Online control is a fundamental 

process involved with functional motors skills. It involves the ability to correct or update 

movement parameters in response to unexpected environmental consequences, requiring 

continuous integration of feedforward and feedback processing (Shadmehr et al., 2010), 

particularly in the case of upper-limb re-direction. Current neuro-computational models 

consider fluid reaching as being controlled by a broader, more integrative system of which 

ROC is part of. 

Rapid online control is viable to the extent that neural signals can estimate the future 

location of a moving limb. It is supported through an internal (forward) model which 

incorporates information from the spatial estimates of body position and compares incoming 

sensory information prior to and during the course of action (Jeannerod, 1997; Wolpert, 

1997). Once visual and proprioceptive signals become available to the nervous system they 

are compared with those predicted by the forward model. In cases where there is mismatch 
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between expected and actual consequences of action, an error signal is generated and fed 

back to the controller with the on-going motor command, thus allowing for rapid updating of 

limb position (Desmurget & Grafton, 2000). Interestingly, the speed at which such 

corrections occur are often within 100 ms (Castiello, Paulignan, & Jeannerod, 1991), much 

faster than sensory feedback. Hence, predictive models are considered crucial to the 

development of online motor control by anticipating the sensory consequences of movement 

and engaging rapid corrective actions with minimal processing delay to ensure stability 

within the motor system (Gaveau et al., 2014). 

 Importantly, visual perturbation studies (discussed below) show that older children 

implement earlier changes in reach trajectory in response to visual displacements than 

younger children, suggestive of an ability to generate a more refined forward (internal) 

model. As the developing child learns the relationship between their own motor output and 

the resulting effects on their moving limbs, they become better at predicting the consequences 

of their movement. However, for some children with DCD, the ability to generate predictive 

estimates (viz internal models) may be impaired, evident from performance on a double-step 

paradigm. 

1.4.2 Use of Double-Jump Paradigms to Assess Online Control 

 One of the key methods used in experimental research to assess ROC has been 

through target displacement paradigms, specifically a double-jump reaching task (DJRT). In 

this paradigm, the task commences with a reaching movement from a home base position 

toward a one of three central targets, located at the coordinates of -20
0
, 0

0
, 20

0
 in a straight 

line from home base. For most trials, the centre target is stationary but on a small number of 

trials, it moves laterally at movement onset. Here, participants are required to correct their 

reach unexpectedly from the initially cued target to the new target. The DJRT assesses online 

control by engaging the participant to change their reach trajectory in flight to a perturbed 
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target based on forward modelling. A dynamic movement error signal is computed by 

comparing the updated location of the target with a predicted estimate of the movement 

endpoint, thought to be subserved by PPC (Desmurget & Grafton, 2003; Desmurget & Sirigu, 

2009). Where vision of the moving limb is reduced, the participant updates their movement 

as it occurs, based on the predictive estimate of limb position (Desmurget & Grafton, 2000; 

Wolpert et al., 2011). An error signal (efference copy) is generated and compared with the 

existing motor command to incorporate the target shift and new spatial coordinates into the 

system (Izawa & Shadmehr, 2011). Using chronometric and kinematic markers, the integrity 

of ROC is inferred from the ability of the participant to compensate for the target 

displacement by adjusting their arm reach mid-flight. 

 1.4.2.1 Online control in typically developing children. To date, there have been a 

limited number of studies investigating ROC in healthy children, although early research (e.g. 

Bard, Hay, & Fleury, 1990; Chicoine, Lassonde, & Proteau, 1992) has suggested non-linear 

developments in reaching ability occurs after approximately 5-6 years of age. To better 

understand how ROC develops over childhood, Wilson and Hyde (2013) conducted a cross-

sectional study of children aged between 6-12 years on a DJRT, comparing the performance 

of younger (6-7 years), mid-age (8-9 years), and older children (10-12 years) to that of 

healthy adults. Movement time and time to correction (i.e., the point in the movement cycle 

where a change in reach is initiated toward a new location) were used as key metrics of 

online control performance. As predicted, results showed that adults were more efficient at 

implementing online control than children. Importantly, younger children were disadvantaged 

by perturbed trials, evidenced by slower movement and correction times in comparison with 

mid-age and older children, who were comparable with their performance on the DJRT. 

These findings suggest that the capacity to use predictive models of limb position during 
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online corrections develops quickly in a non-linear manner during younger childhood, with 

steady improvements continuing through middle and late childhood. 

 1.4.2.2 Research investigating online control in children with DCD. The 

importance of online control to motor behaviour is not only supported by studies showing 

rapid improvement through the primary school period (e.g., Wilson & Hyde, 2013), but also 

from evidence of atypical motor development. In children with DCD, performance on tasks 

of online control has been found to be generally slower and less accurate than TDC (see next 

section). The underlying processes associated with this pattern of behaviour (i.e., a deficit 

with predictive control) are becoming clearer due to the focus of research using double-jump 

paradigms. However, prior to the relative recent introduction of the double-step paradigms to 

the investigation of online control in DCD, other experimental work has highlighted a 

possible deficit in the ability to account for unexpected changes in the environment. 

 An early study that examined oculomotor control in children with DCD was carried 

out using a double-step saccade task (DSST) (Katschmarsky, Cairney, Maruff, Wilson, & 

Currie, 2001). For the DSST, two targets were presented: one target for 140 ms immediately 

followed by a second for 100 ms. Children were required to generate sequential saccades, 

shifting eye movement from the first to the second target; however, the presentation of the 

second target was extinguished before the first saccade creating dissonance between the 

location of the second target and the necessary oculomotor program to reach it. To 

successfully complete the task, a forward (internal) model is required to estimate the point of 

the second saccadic shift from the first. For the DCD group, results showed that dysmetria 

occurred on the second saccade. Interpreted using a computational framework, this deficit 

was suggested to reflect a decreased ability to engage a forward model to program saccade 

sequences. However, the study did not involve a motor component where mechanisms for 
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correcting online movement are required; hence, inferences about the integrity of predictive 

modelling is restricted to the domain of oculomotor planning rather than limb movement. 

 A more recent visual perturbation study that assessed performance on a sequential 

reaching task was conducted by Wilmut, Wann, and Brown (2006). They examined the 

ability of children with DCD and healthy control children to couple hand-eye movements on 

a pointing task. Here, participants were required to reach for targets in three conditions: (i) a 

reach to a target location; (ii) a ‘double touch’ reach for two targets presented in sequential 

order; and (iii) a ‘double off’ reach where participants again reached sequentially for two 

targets but were extinguished shortly after movement onset. Results showed no group 

differences on single-target movements. Similarly, no differences were found on single-target 

movements on the double-step tasks, however the DCD group were slower moving to the 

second target. Based on this pattern it was suggested that children with DCD over-utilised a 

‘look-then-move’ strategy when making sequential movements by waiting longer for the eye 

to meet the target and then initiate movement. Increased foveation prior to movement onset in 

children with DCD was thought to interfere with use of the efference copy (a copy of the 

motor command) which was said to become less accurate when foveation time increased, 

suggestive of a problem engaging a feedforward mode of control (Adams, Lust, Wilson, & 

Steenbergen, 2014). However, the task of Wilmut and colleagues (2006) did not directly 

assess the ability of children with DCD to make online corrections. As participants were 

required to first touch the initial target and then the second target on sequential trials, they 

were able to complete the first motor command then generate a subsequent one rather than 

updating the ongoing motor command as would be required for online control. 

 Taken together, these earlier studies provided some empirical support for the oft noted 

research finding that children with DCD are less able to account for unexpected 

environmental changes. However, as noted, neither the studies from Katschmarsky and 
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colleagues (2001) or Wilmut and colleagues (2006) sought to directly measure online control 

per se. Hence, we must be circumspect when inferring the integrity of this important system. 

In acknowledging these limitations (and that from the DSST), with the view of specifically  

clarifying the nature of ROC in DCD by using a traditional double-jump paradigm, Hyde and 

Wilson recently investigated the ability of children with DCD to engage in online control of 

reaching across a series of studies (Hyde & Wilson, 2011a, 2011b, 2013). This body of 

research, and its implications, is discussed next. 

 1.4.2.3 Children with DCD show problems with ROC adjusting reaching 

movements in response to visual perturbations. The first study to specifically investigate 

online control of reaching in DCD using a double jump task was Plumb and colleagues 

(2008). Interestingly, this study actually reported that online control was preserved in 

children with DCD. However, due to task complexity, the DCD and control groups 

performed reaching movements under vastly different constraints, limiting the validity of 

group comparisons. Specifically, healthy children were required to complete the task while 

standing and with the use of a hand-held stylus to reach for and press targets. However, on 

account that the DCD group had difficulty standing and holding the apparatus, they 

completed the task sitting down. 

Since this initial investigation, Hyde and Wilson conducted a series of  controlled 

studies of online control in DCD using the DJRT, each suggesting that the ability to fluently 

correct reaching movements mid-flight may be compromised in school aged children with 

DCD. Initially, Hyde and Wilson (2011a) adopted a chronometric approach to investigate the 

performance of children with DCD on the DJRT. In their study, TDC and DCD groups were 

compared on reaction time (RT), movement time (MT), and response errors when children 

were instructed to reach for one of 3 possible targets on a screen (as described earlier). For 

80% of trials, movement occurred from the home base target to the centre target (non-jump 
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trial). On the remaining 20% of trials, the centre target jumped at movement onset from home 

base to either left or right target location (jump trial). Importantly, this study showed that MT 

was longer for the DCD group on jump trials relative to non-jump. Critically, non-jump 

reaching is thought to place limited demands on the online control (and hence predictive 

modelling systems) since the target remains stationary. Alternatively, on jump trials, demands 

on online control systems are greater since the unexpected target perturbation results in 

mismatch between the expected and actual sensory consequences of action. Accordingly, the 

observed increase in MT select to jump trials shown by the DCD group was suggested to 

indicate a problem with online control. This deficit was interpreted to occur due to a problem 

generating the error signal which would ordinarily arise when the discrepancy between the 

predicted and actual location of the hand has been detected. In short, the researchers 

suggested that compromised speed performing online corrections was the result of a reduced 

ability to update predictive (internal) models during a corrective movement. 

 While the use of chronometric data in Hyde and Wilson’s (2011a) initial study 

provided broad evidence that a deficit in online control was present in children with DCD, in 

the absence of kinematic data, they were unable to further examine the control processes that 

underpinned this deficit. While they were able to determine that children with DCD 

experienced difficulties completing jump trials, they were unable to determine whether these 

occurred up to the point of trajectory correction (i.e. when predictive control is greatest) or 

after (where predictive demands are reduced). To address this, Hyde and Wilson (2011b) 

conducted a follow-up study using the same DJRT paradigm as their first study with the 

inclusion of kinematic analysis. Most importantly, they measured the point in the movement 

cycle where the reaching limb deviated from the central cue to a peripheral target on ‘jump’ 

trials. This ‘time of correction (ToC)’ value is often used to indicate the point in reaching 

where information about target perturbation (i.e. the error signal) has been successfully 
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integrated with the on-going motor command (Shadmehr & Krakauer, 2008). While the 

authors replicated their earlier chronometric data, which showed that MT was greater, the 

researchers also found that children with DCD were significantly slower to adjust their reach 

trajectory on jump trials. This data was taken as evidence that the deficit in jump trials 

performance was indeed likely to arise due to difficulties engaging the predictive modelling 

system. Notably, the performance from the DCD group was similar to that of patients with 

lesions to the parietal cortex (Gréa et al., 2002) which the authors suggest is evidence of 

developmental delay, particularly of parieto-cerebellar axis. Taken together, these data 

suggested that the issue of jump trial performance within the DCD group was due to a 

reduced ability to correct their online reach trajectory where demands on predictive control 

are high. This confirmed that poor reaching (and hence online control) as shown in the earlier 

study was indeed likely to reflect impairment with predictive modelling. 

 Finally, to clarify whether the poor online control shown by children with DCD was 

likely to reflect a developmental delay or neurological deficit (from typical neuro-cognitive 

development), Hyde and Wilson (2013) compared DJRT performance between three groups: 

(i) children with DCD (8-12 year olds); (ii) age-matched controls; and (iii) a younger control 

group (5-7 year olds). Performance of the DCD group was found to be comparable to the 

younger, typically developing group, evident from similar ToC values and MT difference 

scores (the time between non-jump and jump trials – larger difference scores suggest a 

reduced ability to complete online corrections). Hyde and Wilson suggested that the pattern 

of reaching between the DCD and younger control group is characteristic of immature 

predictive modelling systems where neural transmission between the PPC and the cerebellum 

is undeveloped. 

 1.4.2.4 Summary. Research using visual perturbation paradigms has provided 

converging evidence that suggests online control is impaired in DCD. Additionally, there also 
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appear to be differences in the expression of ROC in TDC and children with DCD. Across 

normative development, there is rapid improvement during younger childhood years (6-7 

years) on online control studies, (where predictive modelling systems become better at 

estimating unexpected changes), followed by more progressive refinements into adolescence. 

Importantly, for children with poor motor skills (i.e., DCD), evidence from double-jump 

perturbation studies suggests a reduced ability to engage in ROC. From a computational 

perspective these have been interpreted as reflecting an impaired ability to implement 

forward (internal) models. In the case of the DJRT, increased movement and correction times 

on target displacement trials indicates a problem adjusting limb position relative to target 

shift. Interpreted using computational modelling, the ability to perform online corrections is 

viable only to the extent that changes in spatial coordinates during movement can be 

efficiently integrated (using a dynamic error signal) into the on-going motor command 

(Desmurget & Grafton, 2000). 

 In sum, as a window into the predictive modelling system, evidence from DJRT 

provides compelling evidence that predictive modelling may be compromised in children 

with DCD. However, as interactive specialization theory would propose we need to consider 

the expression of motor systems in the context of the development of other cognitive systems. 

In the case of DCD, a putative deficit in predictive modelling is best understood in the 

context of the development of other systems. As I discuss below, motor systems and 

executive control are correlated in typical development and children with poor motor skills 

show deficits in executive processes. Taken together, this suggests that the expression of 

control systems, such as predictive modelling, may be constrained or influenced by executive 

systems in typically and atypically developing children. 

1.5 Executive Function in Children with and without DCD: Implications for Adaptive 

Motor Control and Skill Learning 
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The development of executive function (EF) enables children to expand the temporal 

limits over which behaviour can be organised. Current models posit that EF comprise a set of 

separable yet overlapping processes including attention, working memory, and inhibition 

(Best & Miller, 2010; Diamond, 2013). Constituents of EF serve to bias information 

processing efficiency, enabling the user to respond more flexibility to new situations 

(Diamond, 2013). In the case of inhibitory control, the ability to suppress a dominant, 

habitual or pre-potent response is generally seen to mature within the first 8 years of life 

(Best & Miller, 2010). Indications of developing inhibitory control involve improvement in 

reaction time and reduction of inattention and perseveration errors on Stoop measures, for 

example (Gerstadt, Hong, & Diamond, 1994). These changes correspond to neural 

maturation; increased myelination followed by synaptic pruning in PFC regions contribute to 

better cognitive control during the early stages of childhood (between 5-8 years old) (Bunge 

& Wright, 2007; Casey et al., 2005; Johnson, 2005). By middle childhood, there emerges a 

more fine-tuned ability to retain information in working memory, for example, and to 

withhold a compelling (inhibitory) response (Bunge & Wright, 2007). The consolidation of 

EF during a critical time of development appears to coincide with the changes seen in 

behavioural measure of online motor control where rapid improvements are seen during 

younger and middle childhood (Wilson & Hyde, 2013). Evidence of changes to children’s EF 

systems is shown in diffusion imaging tensor MRI measurements of white matter networks 

(WMNs) which show that areas of the prefrontal cortex, corpus callosum, basal ganglia and 

ventral-visual pathways are correlated with age (Barnea-Goraly et al., 2005). That is, 

connectivity between key motor and cognitive systems increased across childhood; these 

same regions which interact and support behaviour for more voluntary control over action 

(Johnson, 2005). Impairment of executive function in atypical development, as may be the 
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case for children with DCD (discussed below), would reciprocally constrain online motor 

control. 

In typical development, studies investigating the relationship between motor ability 

and inhibitory control (e.g., Stroop task performance) show strong associations in both 

younger and older children (Livesey, Keen, Rouse, & White, 2006; Piek, Dyck, Francis, & 

Conwell, 2007). In atypical motor development (DCD), problems of inhibitory control have 

been reported across studies. Early evidence comes from visuospatial attention studies using 

a covert orienting of visual-spatial attention (COVAT) paradigm (Wilson & Maruff, 1999; 

Wilson, Maruff, & McKenzie, 1997). During this task, participants provide a response to 

stimuli in one of two possible locations; spatial cues were shown prior that directed attention 

to the stimulus location (valid cue) or away from it (invalid cue). When an invalid cue was 

presented, participants were required to shift (or disengage) their attention away from the 

invalid location and toward the correct target, as measured using an increase in reaction time. 

By presenting two types of spatial cues: (i) endogenous which automatically direct attention 

and (ii) exogenous which engage voluntary attentional shifts, results from both studies 

showed that children with DCD were significantly slower to direct their attention after invalid 

endogenous cues (but not exogenous cues) than matched controls. These results were 

suggested by the authors that a deficit of shifting attention may be present in children with 

DCD. 

A later study from Mandich, Buckolz, and Polatajko (2003) found similar results on a 

COVAT task but offered an alternate explanation suggesting that the behaviour may 

represent a reduced ability to inhibit attention from an invalidly cued location. This level of 

impairment in children with DCD been subsequently shown from further COVAT paradigms 

(Tsai, 2009; C.-L. Tsai, Y.-K. Yu, Y.-C. Chen, & S.-K. Wu, 2009), while data from adult 

studies have implicated this dysfunction in frontal-parietal regions (Posner, Rothbart, & 
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Sheese, 2007) indicating that this network may underlie problems preventing voluntary 

attention from an invalid location in children with DCD. 

To further corroborate a deficit of inhibitory control, deficits have also been shown on 

tasks where a motor response is required to be suppressed. For example, on the ‘Simon Task’, 

children with DCD were found to have more trouble preventing a manual response when 

presented with a visual stimulus, relative to TDC (Mandich et al., 2002). This pattern of 

impairment has been observed in basal ganglia and frontal networks (Bari & Robbins, 2013) 

Accordingly, it is likely that the development of executive functions places demands 

on the expression of motor systems, such as predictive modelling. However to date, no 

studies have investigated this important principle in typical or atypical development. In the 

case of DCD, understanding how cognitive systems, such as executive control, might 

constrain predictive modelling is particularly important if we are to better understand how a 

deficit in predictive model might contribute to poor motor control in DCD. The nature of this 

dynamic relationship can be explained by interactive specialization which suggests that 

unfolding neural systems interact and support each other during critical periods of child 

development. 

1.5.1 Interactive Specialization Offers a Parsimonious Way to Explain the Interaction 

between ROC and Executive Systems 

 The hypothesis of interactive specialization can explain how developing executive 

systems may influence online control in children. Briefly, IS theory emphasises the role of 

interacting neuro-cognitive systems on development; separable neural networks (whose 

activity becomes more coordinated with time and experience) combine to support flexible 

and efficient behaviour (Johnson, 2005). That is, frontal systems that play an important role 

in motor sequencing, planning and control (Diamond, 2013) may also support many of the 

executive processes crucial for flexible online control. For example, increases in task 
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requirements that occur when an individual is forced to unexpectedly and rapidly adjust their 

reaching places greater demand on limited capacity visuo-spatial working memory stores 

(Wilson et al., 2013). The implication here is that when ROC and EF need to be reciprocally 

adopted for complex movement, we might see problems with coupling of these two processes 

as the nervous system learns and adapts to the emerging behaviour. 

 At an experimental level, a way to assess executive and online motor systems together 

would be to introduce an inhibitory load on double-jump paradigms. By modifying a 

traditional DJRT where online corrections are needed, an ‘anti-reach’ task could be 

administered that requires the individual to reach to a hemi-space opposite that of a 

compelling (displaced) visual target. Successful completion of the task would rely on the 

ability to suppress an automatic correction drawn toward the visual (yet invalid) cue and 

purposefully redirect the hand to a contralateral target location. By imposing a load on 

executive stores, the time taken to engage the hand would assess the ability to engage frontal 

modulation during online corrections. At a broader level, an understanding of how online 

control and executive systems are coupled would provide important information about the 

causal basis of motor dysfunction in DCD, particularly when deficits have been found across 

both systems separately. 

1.5.2 Conclusion 

 Interactive specialization is a useful framework to explain the degree that executive 

control might constrain the development of motor systems, using online control as an 

excellent marker of predictive modelling. Not only should the hypothesis of IS clarify the 

nature of ROC in children with DCD, but it may also inform existing cognitive 

neuroscientific accounts of DCD; specifically a deficit in predictive modelling. While I have 

presented a case based on current neurodevelopmental theory and data that the development 

of ROC is likely constrained by fronto-executive control systems - and to varying degrees in 
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TDC and children with DCD - the theory is yet to be validated empirically. Accordingly, the 

focus of research in this thesis was to understand how emerging executive systems impact 

online control across the primary school years. This matter of investigation comprised the 

broad focus of the studies presented in Chapters 3, 4 and 5. 

1.6 Summary of Chapter 1 

 Developmental Coordination Disorder a serious childhood learning disorder that is 

characterised by deficits across a range of fine and gross motor skills. Children with motor 

control problems frequently show below average performance in scholastic ability and/or 

everyday activities, which tend to persist into adulthood. With a prevalence rate of 

approximately 6%, research to understand the developmental precursors of DCD is important 

in an effort to avoid some of its negative consequences, as well as providing empirically 

validated theory for health professionals to develop appropriate interventions. This chapter 

reviewed broad categories of DCD research (and motor control in general), followed by key 

aetiological accounts of information processing, cognitive neuroscientific and dynamical 

systems. 

 In particular, theories based on a cognitive neuroscience framework lead the way to 

identify the underlying mechanisms of DCD. Notably, impaired predictive control (viz IMD 

hypothesis) is drawn from evidence of motor imagery, force control and visual perturbation 

studies, although a deficit in cerebellar motor-timing may also explain problems linked to 

DCD. While each account offers a relative degree of empirical validity, there are limitations 

to the research in terms of explaining the aetiology of motor control problems seen in DCD 

and hence, suggest a need for further experimental work. Importantly, I argued that a 

computational modelling account of ROC was useful to clarify the nature of predictive 

control in children, tested through carefully designed double-jump studies. 

 While ROC appears to be crucial to fluid movement in motor development, and may 



Chapter One    Literature Review 

49 
 

be compromised in children with DCD, its development is best understood within the context 

of other neuro-cognitive systems, namely executive function. Importantly, there is a need to 

assess how motor and cognitive systems interact across development, particularly when 

deficits of ROC and EF have been reported in children with DCD. By presenting a neuro-

behavioural account of interactive specialization, I argue that this parsimonious framework 

will help extend previous ROC research and explain two main lines of investigation in this 

thesis: (i) how executive systems influence the expression of online motor control in 

children’s typical and atypical motor development; and (ii) how these two systems develop 

over childhood. At an experimental level, the use of a double-jump paradigm will provide 

valuable data about the interaction of these co-occurring systems. The matters of how ROC 

and EF are operationalised and assessed are presented in Chapter 2. 
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2.1 Overview 

 In Chapter 1 I provided a review of research that has been central in building 

knowledge of rapid online control and its development in children. In this chapter, I first 

outline the general cognitive neuroscience approach to the study of motor control in children 

and present the pivotal research hypotheses that are the focus of this thesis. From this 

theoretical framework, I then describe the main research paradigm for examining online 

control—the double jump reaching paradigm—including the operationally defined 

behavioural measures of ROC. Finally, I describe the cross-sectional experimental designs 

used for Studies 1 and 2, with multi-factorial analysis, and the longitudinal design for Study 3 

that incorporates statistical modelling using growth curve analysis.  

2.1.1 Cognitive Neuroscience Approach to the Investigation of Motor Control 

 From a neurocomputational perspective, the notion of internal modelling has become 

a critical concept in explaining the process of motor control and learning. As described in 

Chapter 1, internal modelling comprises two complementary processes: forward (or 

predictive) modelling and inverse modelling. The process of predictive modelling involves 

the generation of forward estimates of limb and body position based on the expected sensory 

consequences of movement. To the extent that the consequences of movement can be 

predicted accurately in real time or online, the motor system is afforded a significant 

advantage, especially under dynamic conditions. The ability to model movements in this way 

reduces the load on slower feedback-based corrections which can take up to 250 ms (Frith et 

al., 2000). One method for understanding the integrity of online control (viz predictive 

control) is the double-jump reaching paradigm. Work using this paradigm has revealed that 

an interactive neural network underpins the ability to implement rapid online corrections. 

2.1.2 The Double-jump Paradigm is a Valid and Reliable Method to Assess Online 

Motor Control in Children 
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Visual perturbation paradigms have been shown to be a valid and reliable method for 

investigating rapid online control and the integrity of predictive modelling, whether using 

behavioural, neurophysiological or a combination of outcome data (e.g. Hyde & Wilson, 

2011a; Katchmarsky et al., 2001). At the level of behavioural analysis, performance on the 

double-jump reaching task (DJRT) can be analysed using chronometric and kinematic 

outcome measures. For this task, visual targets presented on a touchscreen or similar device 

are displaced at or shortly after lift off from a home target position. Under conditions where 

vision of the moving limb is prevented or greatly reduced, the participant must change their 

reach trajectory ‘mid-flight’. Critically, the speed and efficiency of this correction is based on 

a predictive (or forward) estimate of limb motion and its changing position with respect to the 

target (Desmurget & Grafton, 2000). A dynamic movement error signal is computed by 

comparing the updated location of the target with a predicted estimate of the effector 

endpoint, a process thought to be subserved by the PPC and its network connections (Gaveau 

et al., 2014; Gréa et al., 2002). Motion analysis technologies now provide highly accurate 

measures of limb kinematics that describe the processes by which this online control occurs. 

Using this paradigm, it has been shown that online control develops gradually over 

childhood, and that for children with DCD, this mode of control is delayed in development.  

However, the model of typical and atypical motor development in limited to the extent that 

we do not understand how online control is coupled to cognitive systems developing in 

parallel, and what best describes the pattern of change with age, based on longitudinal data.  

These gaps in our understanding informed several hypotheses that were the focus of this 

thesis. 

2.2 Main Rapid Online Control Hypotheses 

 The broad hypotheses for each completed study are listed below.  

2.2.1 Hypotheses for Study 1 
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1. Rapid online control (assessed by chronometric and kinematic measures described below) 

would be implemented efficiently in most children from 9 years of age. 

2. The ability of online control in younger (6-7 years) and mid-age children (8-9 years) would 

be reduced when tasks demand higher levels of executive (inhibitory) control; flexible 

performance under these same demands (i.e., successful and time efficient anti-reaching) 

would manifest in most children by 10-12 years of age. 

2.2.2 Hypotheses for Study 2 

3. The integrity of internal modelling (viz rapid online control) would be: (a) significantly 

lower in children with DCD compared with age-matched children with typical levels of 

movement skill, and (b) children with DCD would show further impairments when an 

inhibitory constraint is added by way of an anti-reach movement.  

2.2.3 Hypotheses for Study 3 

4. Longitudinal data from a two year project would confirm that (a) a quadratic trend 

provides the best fit to growth curve models of ROC over childhood, interpreted via an 

interactive specialization framework, and (b) children with DCD would display a generalised 

maturational delay on key metrics that measure the ability to couple online motor and 

executive systems. 

2.3 The Double Jump Reaching Task: Conditions, Key Metrics, Power Analysis and 

Justification of Sample Size 

To test the hypotheses listed above, a double-jump reaching paradigm was used. The 

DJRT was programmed using Virtools
TM

 software (3DVIA, 2010) and run on a quad-core 

Dell Precision laptop computer. The computer was connected to a 42-inch touchscreen 

display, mounted in portrait view at 10 degrees from the horizontal plane on a height 

adjustable table. Children stood in front of the screen with their hand resting next to the 

monitor. The stimulus display consisted of a green home base and three possible yellow 
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target locations, presented against a black background. The home base consisted of circular 

target, 2.5cm in diameter, positioned at the midline of the screen, and 5cm from the nearest 

edge. The three target locations were positioned in a semi-circular formation near the middle 

of the screen, located at the coordinates of -20º, 0º, 20º with respect to the home base target 

(see Figure 2.1). Each target location was positioned within peripersonal space as their 

distance from the home base was scaled to arm length based on age norms: young children, 

25cm; mid-age children, 28cm; and older children, 30cm (Gerver, Drayer, & Schaafsma, 

1989). Each trial began with the finger held stationary on the home target. The imperative 

stimulus consisted of a doubling in luminance of the central target, and simultaneous 

extinction of the home base.   
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Condition A (standard jump trials) 

 

Non-jump trial 

 

 
 

The central target remains lit until 

touchdown. 

Jump trial 

 

 
 

Target displacement occurs to 

either peripheral location at finger 

lift off  
 

 

 

 

Condition B (with anti-jump trials) 

 

Non-jump trial 
 

 
The centre target remains 

illuminated until finger touchdown. 

Anti-jump trial 

 

 
Reach to the contralateral location 

is required.  
 

 

 

Figure 2.1. Schematic overview of the double jump reaching task showing trial types across 

jump and anti-jump conditions.
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For the standard DJRT used to assess online control, participants were instructed to 

reach and touch the illuminated target as quickly and as accurately as possible with their 

dominant hand index finger. On 80% of trials the centre target remained lit (non-jump trial). 

For the remaining trials (20%), the centre target was first illuminated, but at the point of lift 

off from the home base, it was extinguished and a lateral target was presented (jump trial). A 

ratio of 80-20 trials was used to prevent participants from anticipating the frequency of 

perturbed trials. Practice trials were offered to participants prior to the task to ensure all 

children were able to perform the task with a relative degree of proficiency. 

For the inhibitory DJRT used to assess coupling between online and inhibitory control 

(Day & Lyon, 2000), the same stimulus display and event sequences were used. However, 

when target jumps occurred, participants were instructed to reach and touch the target 

location on the opposite side to that of the illuminated target (anti-jump trial). Both 

conditions comprised two blocks of 40 trials administered with 32 non-jump trials and 8 

perturbed trials per block, yielding 80 trials in total. Each peripheral target was programmed 

to ‘jump’ pseudo randomly for a total of 16 times per task condition (or 8 times per block). 

Randomisation of jump and non-jump trials prevented anticipatory responses. The order of 

presentation of jump and anti-jump conditions was counterbalanced over participants to 

prevent possible order effects. Motion was tracked in real time using the ultrasonic Zebris
TM

 

CMS system (Noraxon, 2010), sampling at 200 Hz. The system was clamped to the table and 

positioned at a height of 1 meter above the middle of the screen. The acoustic sensor (which 

weighed less than 5 grams) was placed on the back of the child’s index finger to record 

kinematic movement and did not impede task performance. 

2.3.1 Measurement Variables on the DJRT 

 Performance was measured both chronometrically [Response Time (RT) and 

Movement Time (MT)] and kinematically [Time of Correction (ToC) and Post Correction 
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Time (PCT)]. RT was measured as the latency between stimulus presentation and finger lift 

off from the home base. MT was measured as the time interval between lift off to the 

successful touch of one of the three target locations. For the standard jump condition, the 

efficiency of rapid online control was measured as the difference in MT between jump and 

non-jump trials (MTdiff). With respect to kinematic variables, efficiency of online control was 

measured by two independent raters who identified the first corrective movement toward the 

cued location (or time of correction - ToC); using visual plots of movement trajectory, this 

was determined by finding the point at which the hand deviated from a direct path from the 

central target (i.e. ToC) toward a peripheral location. Agreement of ToC ratings occurred 

within 2 frames (i.e., less than 10ms); any values that occurred outside of this range (less than 

1%) were deferred to a third rater for consensus. The time of the deceleration phase of the 

movement (PCT) was defined as the point where movement correction on perturbed trials 

occurred to successful finger touchdown on the touchscreen. 

For the anti-jump condition, the coupling between executive (inhibitory) function and 

online control was defined operationally using three metrics: the first was the difference in 

MT between jump and anti-jump trials (AJMTdiff); second, the ability to rapidly initiate a 

second, more purposive, corrective movement (on anti-jump trials) toward the side of visual 

space opposite that of the cued location (Time of Correction 2 - ToC2); third, the time 

difference between ToC and ToC2 (ToCdiff). The latter two kinematic measures reflect 

conscious inhibitory control after the initial (automatic) hand deviation occurred toward the 

cued target. 

Performance was examined as a function of age, condition, and motor ability using a 

combination of experimental, cross-sectional, and cross-sequential longitudinal designs. 

These enabled tracking of developmental trends in online motor control and how emerging 

executive systems might modulate these control systems with age. 
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2.3.2 Power Analysis and Justification of Sample Size 

The number of participants recruited for the three studies is based on several factors: 

(i) optimising statistical power to detect group differences, (ii) the increased probability of a 

Type-I error given the repeated number of analyses that were conducted in Studies 1 and 2, 

(iii) the possibility of an attrition rate between 15-20% during data collection, and (iv) 

experience in identifying and recruiting children who met research criteria and guidelines for 

DCD (Blank et al., 2012; Geuze et al., 2001). 

In recent research investigating online control, effect sizes (Cohen’s d) of between 0.6 

and 0.9 have been reported for children with DCD (Hyde & Wilson, 2011a, 2011b). In 

addition, earlier cross-sectional research has revealed similar effect sizes when younger, mid-

aged and older children were compared on measures of predictive control (e.g. 

Caeyenberghs, Tsoupas, Wilson, & Smits-Engelsman, 2009). With Type I error at p < 0.01, it 

has been found that at least 10-12 participants per group provided sufficient power (≥ .80) to 

detect differences on performance measures that operationally define the internal modelling 

of movement or online control, more specifically (e.g. Katchmarsky et al., 2001). 

2.4 Test Instruments, Procedure and Data Analytic Approach 

2.4.1 Test Instruments 

 Movement skill was assessed in all children using the MAND. The MAND is a well 

validated motor test and has been found to have a strong relationship with other commonly 

used motor tests in the area of DCD research: the Movement Assessment Battery for Children  

(rs = .86) and the Bruininks-Oseretsky Test of Motor Proficiency (rs = .83) (Tan, Parker, & 

Larkin, 2001). The MAND has good norms for both children and adolescents (Hands, Larkin, 

& Rose, 2013; Piek, Baynam, & Barrett, 2006), and is suited to repeated assessment. A score 

below the 15
th

 percentile was selected as a criterion to identify children with DCD. This was 

based on recommendations that identify this cut-point to detect movement difficulties on a 
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standardised motor test (Blank et al., 2012; Geuze et al., 2001). Measures of dispersion of 

MAND NDI scores (taken at baseline) for the total sample are as follows: M = 91.97, SD = 

15.72; minimum: 40 maximum; 131; range: 91; quartile 1: 83; quartile 2: 92; quartile 3: 

102.75; inter-quartile range: 19.75. Online control was assessed using the DJRT paradigm as 

described above. 

2.4.2 Procedural Notes 

 The DJRT experiment was easy to comprehend by children, quick to administer (15 

minutes in total), and enjoyable to perform. Pilot work showed that while younger children 

(6-7 years) found the task challenging, they understood it and were able to repeat back task 

instructions. Motor screening was administered during the same session as the DJRT. In total, 

testing and screening time took approximately 45 minutes per child. Rest breaks were 

provided at appropriate intervals to reduce fatigue and boredom. For Study 3 (longitudinal 

investigation), all children assessed in Study 1 were re-assessed at 6-monthly intervals over 

the course of two years and were measured on the DJRT and MAND at each time point. 

2.4.3 Data Analytic Approach 

 2.4.3.1 Use of ANOVA. The use of within subjects repeated measures ANOVA 

(RMANOVA) analyses holds a number of advantages. For example, the same participants are 

used for each of the experimental conditions. This is in contrast to independent groups 

design, in which there are separate groups of participants for different experimental 

conditions – each participant is often exposed to just one of the conditions (Field, 2013). This 

means that experiments can be conducted with fewer participants. In addition, a source of 

between-subjects variability is removed from the error term when generating and testing the 

significance of F. In other words, using the same participants across all trial conditions 

minimises the influence of individual differences that could occur when different people are 
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tested within levels of each factor, for example; variables like age and IQ can be held 

constant (Field, 2013). 

 2.4.3.2 Limitations of repeated-measures designs.  While there are numerous 

advantages to RMANOVA, it does require a balanced design where there is no missing data 

across experimental conditions (Field, 2013). Where data is missing for a given participant, 

all their contributions to data across cells are removed from the analysis, leading to a loss of 

statistical power. One assumption that is particularly difficult to meet is that for sphericity (or 

homogeneity of variance-covariance matrices); use of multivariate tests like Wilks lambda 

can circumvent this issue. A common threat to internal validity is practice/order effects; 

however, counter-balancing task presentation can circumvent this possibility, as was the case 

in my study. Fatigue can be an issue during performance under repeated assessments or 

conditions. However, adoption of adequate rest intervals and spacing of tests, as used in the 

current project, can prevent this issue. 

2.5 Participants, Design and Data Analyses for Studies 1, 2, and 3 

2.5.1 Study 1: Cross-sectional Investigation of Rapid Online Control in TDC 

(Hypothesis 1 and 2) 

 2.5.1.1 Participants. A total of 196 children aged between 6 and 12 years were 

recruited from mainstream state, catholic and private schools for the duration of the two year 

research project. For Study 1, 129 children, who represented a broad cross-section of 

movement skill, were included. There were 56 boys and 73 girls divided into three age-

groups: young (6-7 years), mid-aged (8-9 years), and older (10-12 years) children. All 

children included in the sample were assessed for motor proficiency using the McCarron 

Assessment of Neuromuscular Development (MAND; McCarron, 1997). Children who 

scored below the 20
th

 percentile (Hyde & Wilson, 2013) were excluded from Study 1. Parents 

and teachers also completed a brief developmental questionnaire (see Appendix H). 
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Exclusion criteria were a current or past history of neurological disease (including head 

injury), serious medical condition (e.g., asthma, visual impairment, epilepsy, etc.), 

intellectual disability, or other major developmental disorder (i.e., Autism Spectrum 

Disorder, Dyslexia, Specific Language Impairment). 

 2.5.1.2 Analyses for study 1.  Prior to running each analysis, data was 

inspected for outliers and removed if greater or less than three standard deviations from mean 

values. Tests of assumptions (i.e. homogeneity, normality) were conducted for each analysis. 

To minimise the chance of Type 1 errors given inflated family-wise error rates, alpha 

adjustments were made on a notional basis. However, it is important to reach a stable 

compromise between power and Type 1 error; for this reason, alpha levels were never set 

below the 0.01 level (Howell, 2011). For 2-way ANOVA, tests of simple effects were used to 

isolate the locus of (predicted) interactions. For all analyses, an estimate of effect size (i.e., 

partial eta square) was used to temper the interpretation of significance tests, consistent with 

recent recommendations by the APA (American Psychiatric Association, 2013). 

 2.5.1.2.1 1-Way ANOVA. To isolate the difference within the 3 levels of the age 

group factor, RT, MTdiff, AJMTdiff, ToC2, and error variables [i.e. touch-down error (TDE), 

anticipation error (AE), centre touch error (CTE), anti-jump error)] were submitted to 1-way 

RMANOVA. Post-hoc testing with an alpha-adjusted correction rate was conducted to clarify 

the locus of group differences. 

 2.5.1.2.2 2-Way ANOVA. Analyses that involved 2 factors (i.e., Age and Trial 

Type) were assessed using 2-way RMANOVA. Mean MT [Age Group (young, mid-age, 

older) x Trial Type (jump, anti-jump)] assessed the interaction between groups on trials 

where inhibitory control was required or not. Time of correction (ToC) and PCT were 

assessed using 2-way RMANOVA [Age Group (3) x Trial Type (2)] to highlight kinematic 

changes to movement planning and online control. 
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2.5.2 Study 2: Cross-sectional Investigation of the Coupling between Online and 

Executive Control in Children with DCD (Hypothesis 3a and 3b) 

 2.5.2.1 Participants. Participants in Study 2 were selected from the same pool of 

children as those recruited for Study 1. Four additional participants joined the program at 

Time 2. They represented three age bands (young, mid-age, older) but were also classified 

according to their motor ability status (DCD or typically developing children; TDC). Overall, 

there were 87 TDC and 42 who were considered at risk for DCD. For inclusion in the TDC 

group, children scored above the 20
th

 percentile on the MAND (Hyde & Wilson, 2013) and 

reported no intellectual, physical or developmental disability. Children in the DCD group met 

DSM-5 criteria (American Psychiatric Association, 2013) and research guidelines for the 

disorder as outlined by Geuze et al. (2001) and Hyde and Wilson (2011b): all demonstrated a 

level of movement skill below the 15
th

 percentile on the MAND (Criterion A) (Piek et al., 

2006), showed that their motor problems interfered with activities of daily living/educational 

performance (Criterion B), whose movement difficulties were evident by school age 

(Criterion C) and had no previous developmental or physical diagnosis (Criterion D). 

Importantly, the 15
th

 percentile was used to maximise the chance of identifying children who 

were at risk for DCD within the context of a research setting. 

 2.5.2.2 Analyses for study 2.  As per study 1, data inspection and assumption 

testing was first carried out. Simple main effects were used to tease out interactions. Effect 

sizes were added to place significance tests in better context. For the key analyses, MT was 

compared using 3-way RMANOVA [3(Age: young, mid-age, older) x 2(Skill Group: 

Control/DCD) x 3 (Trial Type: non-jump, jump, anti-jump). Two-way RMANOVA [3(Age) 

x 2(Skill Group)] was used on AJMTdiff and ToC to assess the impact of inhibitory load on 

online corrections. 
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2.5.3 Study 3: Growth Curve Modelling Provides a Flexible and Efficient Means of 

Testing Developmental Trajectories (Hypotheses 4a and 4b) 

 2.5.3.1 Participants. Study 3 followed two groups of children (TDC and DCD), as 

assessed at Time 1 and for whom sufficient data was available over the duration of the project 

(see below for further detail). There was a total of 109 TDC and 62 children with DCD at 

Time 1, with a 17% attrition rate by Time 5. Both TDC and children with DCD were placed 

in their respective age cohort (13 in total separated by increments of six-month intervals 

which together spanned a 6-year period from 6- to 12-years of age) at the time of 

commencement in the study. During recruitment, the ratio of girls to boys was higher for girls 

(60:40). When participants exited the study, usually when a child graduated from primary to 

secondary school, more boys left the study than girls. There was a higher number of children 

classified to the DCD group than expected, possibly due to (a) the 15
th

 percentile on the 

MAND used to identify children with DCD and (b) several schools were randomly selected 

from lower socioeconomic areas; research has linked children from low socioeconomic 

families with coordination difficulties, although this relationship may be moderated by risk 

factors such as poor diet (Montgomery, 2010) and limited access to facilities required for 

participation in physical activity. 

 2.5.3.2 Data analysis.  Growth curve modelling (GCM) offers a number of 

major advantages over traditional methods of analysing longitudinal data (like ANOVA 

mentioned above): (i) measurement of change in ROC over time at both a population and 

individual level, consistent with developmental theory; (ii) flexibility in treatment of the time 

variable (i.e., each child does not have to contribute measures over the entire age range of 

interest); (iii) effective in handling missing/incomplete data; (iv) modelling can be 

generalised to non-normal data distributions; (v) suited to overlapping longitudinal designs; 

(iv) does not require equal spacing between test points; and (iiv) is robust to homogeneity of 
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variance assumption (a requirement of ANOVA). Accelerated growth curve modelling, in 

particular, permits analysis of (predicted) non-linear developmental trajectories and possible 

sub-groups (Adolph & Robinson, 2011; Bryk & Raudenbush, 1992; Gaveau et al., 2014; 

Grammer, Coffman, Ornstein, & Morrison, 2013; Singer & Willett, 2003). 

By using two waves of measurement per year, the statistical modelling provided a 

more robust representation of development over childhood. In general, multiple points of 

assessment over relatively brief time periods is recommended for developmental analyses, 

with accelerated designs preferred for modelling over wider age periods (Holmbeck, Bruno, 

& Jandasek, 2006; Watt, O'Connor, Stewart, Moon, & Terry, 2008). Each age cohort was 

measured five times over a two year period; hence, there was a one-year overlap between 

adjacent cohorts. The age spanned by the modelling was between 6 to 12 years; the oldest 

cohort was not re-tested upon entering secondary school at age 13. Online control metrics 

were assessed using accelerated growth curve modelling. 

Growth curves were analysed at two main levels: Level 1 examined within-person (or 

individual) change using age as a predictor variable. This yields individual estimates for 

intercept and slope for the main outcome measures. All individual estimates were then 

combined for each age cohort. Cohort-specific trajectories were also plotted and inspected for 

overlap at relevant age points. Possible cohort interactions with different change trends were 

tested using convergence estimates. A common model was then tested under the assumption 

that members of all cohorts follow a single underlying developmental trajectory (Duncan, 

Duncan, & Strycker, 2006). Each outcome measure (i.e. AJMTdiff and ToCdiff) was tested for 

linear, quadratic, and cubic growth patterns in typically developing and DCD samples. Model 

parameters (i.e., age, cohort, age*cohort) were assessed in an unstructured covariance matrix, 

using a random effects approach to protect the model from high correlations that can arise 

from repeated measurements (Anderson, Oti, Lord, & Welch, 2009), and tested for their 
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sequential effect to determine the most appropriate growth curve solution using -2log 

likelihood statistic. Fit and comparison between models was assessed using goodness of fit 

indices, specifically the Bayesian Information Criterion (BIC). This index is useful for 

making comparisons between models; smaller values on this index indicate a more 

parsimonious model, irrespective of the magnitude of the actual score. 

2.6 Conclusion 

 This chapter presented a brief overview of the neuro-cognitive method to assess ROC 

using visual perturbation paradigms, and the hypotheses I proposed to test the development of 

ROC and executive function. More specifically, I described a DJRT and how it could be 

adapted to assess the coupling behaviour of ROC and inhibitory systems. This included key 

performance variables and their operational definition. Power and sample size were discussed 

which justified the minimum number of participants required for each of my studies. To 

conclude, this chapter outlined cross-sectional and longitudinal designs for each of my 

studies; benefits and limitations of using traditional statistical techniques (such as ANOVA) 

were presented and advanced growth curve modelling was proposed as an innovative way to 

assess developmental trajectories of control systems in longitudinal data. Accordingly, the 

first study of this thesis is presented in Chapter 3, aimed to clarify how online control is 

performed across the crucial primary school years of children (aged 6-12) and how adding an 

inhibitory load, by way of an anti-jump task, impacts the performance of online corrections. 
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CHAPTER 3 

STUDY 1. EXECUTIVE SYSTEMS CONSTRAIN THE FLEXIBILITY OF ONLINE 

CONTROL IN CHILDREN DURING GOAL-DIRECTED REACHING 
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3.1 Introduction 

3.1.1 Online Control is part of a broader Cognitive System that underlies Action 

Systems and is subject to changing constraints with Childhood Development 

The ability to rapidly and seamlessly adjust arm movements in response to sudden or 

unexpected changes in the environment (i.e. online control) is crucial to flexible and efficient 

action. Current neuro-computational modelling holds that this form of control is dependent 

on an individual’s ability to generate a predictive (forward) model of an intended movement 

and integrate it ‘on the fly’ with sensory feedback throughout the movement cycle 

(Desmurget & Grafton, 2000; Izawa & Shadmehr, 2011; Wolpert et al., 2011). In essence, 

this mechanism allows the nervous system to circumvent delays associated with basic sensory 

feedback processing. That is, if incongruence between the estimated (according to the 

predictive model) and actual consequences of movement is detected, rapid corrective 

mechanisms can be implemented within 100ms (Castiello, Bennett, & Chambers, 1998; 

Paulignan, MacKenzie, Marteniuk, & Jeannerod, 1991), far too quickly to be accommodated 

by sensory processing alone. Thus, a system of predictive control, also referred to as an 

internal feedback loop, is critical for movement stability under dynamic conditions. From a 

neural perspective, these systems appear to be supported by finely tuned reciprocal 

connections between parieto-cerebellar cortices and upstream motor areas (Shadmehr & 

Krakauer, 2008). Surprisingly, little is known of its development. 

 Efficient online correction of reaching is a key indicator of a functional and mature 

motor system. Developmentally, the motor system matures rapidly over childhood; however, 

the trajectory does not appear to be linear (for a review see Elliott, Chua, & Helsen, 2001). 

Earlier work using a double-jump perturbation suggests a somewhat different trajectory with 

rapid development of online control after early childhood (6-7 years) , and then similar levels 

of proficiency when mid-aged (8-9 years) and older (10-12 years) children are compared 
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(Wilson & Hyde, 2013)  Results showed that 5-7 year olds were significantly slower to adjust 

their reaching to visual perturbation than either mid-aged or older children while the latter 

two groups did not differ. Interestingly, online corrections occurred somewhat earlier in 

adults, manifest by a more efficient trajectory on jump trials, a pattern not seen in children of 

any age. Hence, the fast internal feedback loops that support very early and rapid changes in 

trajectory may not fully mature until adolescence or early adulthood (Farnè et al., 2003). 

To date, there is little direct neurophysiological data on rapid online control (and 

predictive modelling) in children. However, adult data suggests a pivotal role for the parietal 

cortex, especially the posterior parietal cortex (PPC), in the ongoing representation of body 

schema, the dynamic mapping of limb-to-target relations, and the real-time integration of 

feedforward commands with sensory feedback. For visually-guided reaching, the PPC is 

thought to play a crucial role in state estimation, continuously integrating dynamic visual 

inflow with predictive estimates of limb position (Wolpert, Ghahramani, & Flanagan, 2001) 

and is also involved in processing the resultant error signal; for example, a spike in PPC 

activity occurs immediately after unexpected target displacement and is tuned to its direction 

(Reichenbach, Bresciani, Peer, Bulthoff, & Thielscher, 2011). This signal would be 

transferred to frontal motor centres, modulating the motor command as it unfolds and 

modifies the flight path of the hand, so to speak, with minimal lag. 

 Importantly, recent morphological evidence indicates that the cortical structures 

involved in goal-directed action and predictive control (principally the fronto-parietal axis), 

follow a protracted period of development (Johnson, 2005). Motor and perceptual centres do 

mature earlier than higher-cortical areas associated with cognitive control, and the pattern of 

activation tends to shift from diffuse to more focal with age across childhood (Casey et al., 

2005). Importantly, the rapid improvement in online control we see after early childhood 

occurs after a period of rapid growth in white matter volume in parietal and frontal cortices. 
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This is followed by a period of neural sculpting during middle and later childhood; a 

combination of factors, both progressive (i.e. myelination) and regressive (e.g. synaptic 

pruning and/or grey matter loss) contribute to this, mediated by experience (Casey et al., 

2005). A switch from diffuse to localised neural firing throughout this period plays an 

important role in neuro-cognitive development broadly. This process is underpinned by 

continued white matter maturation but also experience driven synaptic pruning through 

childhood (and into adolescence), contributing to improvements in cognitive and motor skills 

(e.g. Barnea-Goraly et al., 2005). These changes to pre-frontal cortices and their connectivity 

to other neo- and sub-cortical structures (e.g. visual pathways and cortico-thalamic and 

cortico-spinal tracts) support greater cognitive flexibility in children, and top-down 

modulation of what were previously more automatic processes in infants and young children. 

The ability to enlist inhibitory control in the face of compelling environmental cues is a case 

in point (Casey et al., 2005). I argue that prefrontal motor control processes that are supported 

by parieto-cerebellar pathways (e.g., rapid online control and motor adaptation) enable more 

behavioural flexibility under changing external conditions (Posner et al., 2007). 

3.1.2 Interactive Specialization: Implications for the interplay between Online Control 

and Executive Function 

The notion of interactive specialization posits that some regions of the cortex, while 

unfolding at a relatively slow rate, can still modulate the activity of other areas, influencing 

the tenor of cognitive processing (Johnson, 2005). In other words, the emergence of a new 

behaviour is the result of weighted activity from several brain regions whose modular 

architecture and rate of maturation may differ in complexity and timescale. Neuronal regions 

are initially ill-defined and are enlisted in response to a broad range of stimuli. With time and 

experience, cortical regions become more specialised, and shift from diffuse to more focal 

activation for a given class of stimuli (Durston et al., 2006). Importantly, functional activity 
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of a given cortical region is determined by how it is coupled to other regions and their 

modulating effect. New cognitive processes and behaviours thus arise as a result of changes 

to multiple regions rather than site-specific effects. 

In the context of action, frontal systems play an increasingly important role in the 

control of movement throughout development as environmental constraints become more 

complex or variable and demands on top-down control increase (Brocki & Bohlin, 2004). For 

example, increases in task complexity that occur when an individual is required to 

unexpectedly and rapidly adjust their reaching place demands on limited capacity working 

memory systems, subserved by a functional loop between the dorso-lateral prefrontal cortex 

and parietal cortex (Suchy, 2009). Moreover, the degree of coupling between anterior and 

posterior regions increases over childhood (Casey et al., 2008). Taken together, it is possible 

that the ability to enlist online control of movement under more complex task constraints (e.g. 

when executive control demands are higher) may be limited in younger children to the extent 

that the modulating effect of frontal executive functions is less well coupled to posterior 

visual-motor centres.   

Perhaps the most significant transition in the development of executive function 

occurs between 4 and 8 years where cognitive flexibility expands concomitant to continued 

myelination and synaptic pruning of the prefrontal cortex (PFC) and its reciprocal 

connections downstream (Casey et al., 2008; Johnson, 2005). What is particularly interesting 

is the fact that at a time when specialised frontal functions are unfolding during middle 

childhood (but not necessarily consolidated) we also see evidence of different solutions to 

online control; for example, greater reliance on feedback control under some circumstances 

(e.g. Chicoine et al., 1992). That said, there is little direct evidence to test the hypothesis that 

children of middle childhood perform goal-directed reaching much like older children under 
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simple task constraints, but may struggle when these constraints are heightened, enlisting 

greater frontal modulation. 

Nonetheless, correlational data suggest a link between executive control and the 

development of movement skill, more generally. We know from behavioural studies that  

levels of inhibitory control (e.g., Stroop performance and initiation of anti-saccades) are 

correlated with movement skill in both younger (Livesey et al., 2006) and older (Piek et al., 

2007) children. Similarly, we see that problems of inhibition are common in children with 

poor motor skills (Mandich et al., 2002; Wilmut, Brown, & Wann, 2007). 

 I suggest that the development of online control is likely to be constrained by the 

unfolding of fronto-executive systems. Hence, the aim of this study was to understand how 

executive control is enlisted in the context of movement that requires rapid online 

adjustments. Using a double-jump reaching task, I predicted that because mid-aged children 

are still developing a workable coupling between frontal and posterior (motor control) 

systems, they would show performance decrements under conditions of inhibitory load; this 

would result in slower online corrections, and a pattern of behaviour more akin to that 

observed in younger children. 

3.2 Method 

3.2.1 Participants 

The sample was taken from a larger study in a longitudinal project. The sub-sample 

consisted of 129 children (56 boys and 73 girls) between the ages of 6 and 12 years. Children 

were divided into three age bands: young (6-7 years); mid-age (8-9 years); and older (10-12 

years). Table 3.1 displays the descriptive data for age, gender, and handedness of each group. 

Parents completed a questionnaire to indicate if their child suffers from a previously 

diagnosed intellectual/developmental/learning disorder or serious medical condition (e.g. 

asthma, visual impairment, epilepsy, etc…), which was then corroborated by the child’s 
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classroom teacher. Five children were excluded from the study based on a previously 

diagnosed developmental disorder: one child reported motor control difficulties; one reported 

Autism Spectrum Disorder; one reported Dyslexia; and two reported Specific Language 

Impairment. No child reported intellectual disability; accordingly, since all children were 

recruited from mainstream primary schools, it was assumed that children included in the 

study were within normal IQ range (Hyde & Wilson, 2011a). 

 

Table 3.1 

Descriptive Statistics of Age Groups in the Double Jump Reaching Task 

 Age Gender Handedness 

 M SD Male Female Right Left 

6-7 years (n = 38) 7.1 0.6 14 24 33 5 

8-9 years (n = 50) 8.9 0.6 26 24 48 2 

10-12 years (n = 41) 10.6 0.5 16 25 38 3 

Note. N = 129. 

 

3.2.2 Materials 

The Double-Jump Reaching Task (DJRT) paradigm was used to assess online motor 

control. The VIRTOOLS Software Package (3DVIA, 2010) was used to develop the 

computer interactive display on a black Samsung 40” touch screen television (refer to Figure 

3.3 for experimental set-up). The television was placed on top of a table with its screen facing 

up and was raised at a 10
0
 angle from horizontal and positioned in portrait view when a child 

performed the task. The background of the monitor screen was black to match the frame of 

the TV and reduce contrast while the participant performed the task. The display consisted of 

a green ‘home base’ circle 2.5cm in diameter and positioned 5cm from the edge of the 

display. Three yellow targets were situated above the home base in the middle of the screen. 
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Target locations were positioned at -20
0
, 0

0
, 20

0
 from the direction of the home base target. 

To account for age-related differences in arm reaching, the distance to the yellow targets 

were scaled according to arm length (taken from Gerver et al., 1989) across the three groups: 

young children, 25cm; mid-age children, 28cm; and older children, 30cm. Arm movement 

was captured using the Zebris CMS10 (Noraxon, 2010)  system for 3D-motion analysis 

which sampled at 200Hz. It was placed one meter directly above the centre-point of the 

television. A small ultrasonic marker (7mm in diameter) was used to track arm movement. 

The marker was connected by cord from the Zebris to the child’s dominant index finger and 

held in place by an adhesive pad that was stuck to the tip of the index finger nail. 

3.2.3 Procedure 

Principals from six randomly selected primary schools were contacted and invited to 

participate in the study. Information about the study was sent home via letter with children at 

each school, outlining the nature of the research to parents. The study was approved by 

relevant ethics committees. Informed consent was provided by each school principal and 

children were eligible to participate if their parent/guardian completed and returned an 

informed consent statement to the head researcher. 

Hand preference was assessed using a two-step procedure: (i) children were asked 

which hand they liked to write with and (ii) children were handed a pen to write their name 

and observed which hand they used. All trials were performed using the dominant hand. To 

ensure the cord attached to the kinematic sensor on the child’s index finger did not obscure 

hand movement and interfere with movement trajectory, the researcher secured cord slack 

away from the child. Before the commencement of the experiment, children were explained 

the nature of the task. The DJRT was performed in a quiet school classroom with low light to 

prevent visual feedback from the moving limb (Farnè et al., 2003). Children stood in front of 

the monitor and used their index finger to reach and touch the targets. 
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Two versions of the DJRT were administered during the testing session: a typical 

DJRT and an anti-jump DJRT. For the typical DJRT, the green ‘home base’ was first 

illuminated at the start of each trial. Children held their index finger stationary on this target 

until the ‘home base’ light was extinguished and a yellow target was simultaneously 

illuminated: a random delay of 500-1500ms minimised anticipatory effects. To direct visual 

attention to the same place on each trial, children were instructed to reach and touch in the 

middle of the target as quickly and accurately as possible until the light was extinguished. A 

successful trial was indicated with an auditory tone when the centre of the correct newly 

acquired target was pressed. For the majority of trials (80%), the initially illuminated target 

remained stationary until it was pressed (non-jump trial). However, for a small percentage of 

trials (i.e. remaining 20% of trials) the target jumped to either of the peripheral target location 

after finger lift-off (jump trial) from the home base. During these ‘jump’ trials, children were 

instructed to also follow and press the middle of the target as quickly and accurately as 

possible. Upon completion of each trial, children were instructed to return their finger to 

home base ready to repeat the next trial. 

During the anti-jump DJRT, children performed a modified version of the first DJRT: 

similarly to the earlier version, for most trials (80%) the target remained stationary for the 

duration of movement, yet for a small percentage of trials (20%) the target ‘jumped’ laterally 

at movement onset. During the latter condition, children were instructed to reach to the target 

on the opposite side of the illuminated target (see Figure 3.3). 

The order in which the two conditions were presented to children was randomised to 

account for potential learning effects. Within each condition, children were administered two 

blocks with each block containing 40 trials: 32 non-jump trials and 8 jump/anti-jump trials 

(four trials to the left and four to the right peripheral location). The sequence of trials was 

programed into the task so that non-jump, jump, and anti-jump trials occurred pseudo-
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randomly. At the end of each testing block, children were permitted a two minute interval to 

rest. 

 Before the task commenced, a researcher demonstrated the action required for the 3 

trials; non-jump, jump, and anti-jump. Children were then given 10 practice trials (8 non-

jump trials and 2 jump/anti-jump trials) to become familiar with the task. Where necessary, 

the researcher provided additional practice trials until he was satisfied that children 

understood the task. 

3.2.4 Data Analysis 

 Chronometric measures taken were reaction time (RT), measured as the time between 

illumination of the central target and finger lift-off from ‘home base’, and movement time 

(MT), defined as the time taken between finger lift off from ‘home base’ to the moment the 

index finger successfully touched inside the yellow target. Only valid non-jump, jump and 

anti-jump trials (i.e. where a child successfully touched the centre of a yellow target) were 

included. Outliers were removed, defined as those values > +/- 2.5 SDs from the mean. An 

average of 19 (24%) non-jump trials and 2 (25%) jump/anti-jump trials were removed from 

the younger group, 18 (23%) and 2 (25%) respectively from the mid-age group, and 18 (23%) 

non-jump and 2 (25%) jump/anti-jump trials respectively from the older group. Jump- and 

anti-jump trials were collapsed over left and right target locations. Trials that incurred an 

error were removed from the data set. An error was defined by a trial where a child touched 

outside the boundary of the cued target (indicated by the target light remaining illuminated). 

Out of a possible 16 perturbed trials, a criterion of 8 successful jump/anti-jump trials per 

block was set as a minimum requirement to include the data in the analysis. Mean RT and 

MT were then calculated for each child. Mean RTs were compared between age groups using 

1-way ANOVA. The pattern of mean MT was compared between groups using 2-way 

repeated measures ANOVA (3[Group] x 2 [Trial Type:  Jump & Anti-Jump]). Movement 
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time difference scores were also calculated between the average MT for non-jump and jump 

trials (MTdiff) and then between non-jump and anti-jump trials (AMTdiff). Each difference 

score was compared between age groups using 1-way ANOVA.  

 In addition, three kinematic variables were recorded. Kinematic data (i.e. ToC, ToC2, 

and PCT) were filtered post-task using a fourth order Butterworth filter with a cut off of 

10Hz. For jump- and anti-jump trials, time of correction (ToC) represented the first detectable 

point at which the finger deviated from its straight movement path toward the centre yellow 

target when it changed direction toward a peripheral target (Hyde & Wilson, 2011b; Pisella et 

al., 2000; Van Braeckel, Butcher, Geuze, Stremmelaar, & Bouma, 2007). Similar to healthy 

adults who perform tasks that require inhibition of a prepotent response toward a cued 

stimulus, participants showed a tendency for the hand’s ‘automatic pilot’ to initially reach 

toward the illuminated target on displacement trials of the ‘anti-jump’ DJRT, prior to re-

directing their reach trajectory toward the opposite target location (Cameron, Cressman, 

Franks, & Chua, 2009). Hence, for anti-jump trials two ToC values (ToC and ToC2) were 

measured: the first trajectory correction away from the initial target to the illuminated target, 

and a second re-direction of the reach trajectory towards the opposite target location. 

Movement trajectories were plotted on a 2D Cartesian plane using MATLAB (Mathworks, 

2010) computer software where ToC and ToC2 values were independently determined by 

two researchers to ensure reliability. ToC was analysed using a 2-way repeated measures 

ANOVA (3[Group: younger x mid-age x older children] x 2 [Trial Type:  Jump & Anti-

Jump]) to assess for an interaction effect between groups on trials where an inhibitory load is 

present or not while ToC2 was analysed using 1-way ANOVA. In addition, post-correction 

time (PCT) was recorded from the initial point of movement correction on both jump and 

anti-jump trials to successful finger touchdown on the touchscreen. This was analysed using 

2-way repeated measures ANOVA. Kinematic data (i.e. ToC/ ToC2 and PCT) were filtered 
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post-task using a fourth order Butterworth filter with a cut off of 10Hz. For each dependent 

variable outliers were removed if they were deemed -2.5 < or > 2.5+ SD from the mean score. 

 Four types of response errors were recorded for the DJRT: touch down error (TDE) 

occurred when children touched outside the boundaries of a yellow target; anticipatory error 

(AE) was recorded when lift-off from ‘home base’ occurred before the yellow central target 

was illuminated and/or when RT was less than 150ms (Wilson et al., 1997); centre touch 

error (CTE) was defined as a touch to the central target instead of a peripheral target during a 

jump trial; and anti-jump error (AJE) occurred when children pressed the incorrect (or cued 

target) during an anti-jump trial. 1-way ANOVA was also used to assess the mean difference 

between groups on each error variable (TDE, AE, CTE, & AJE). Preliminary analyses 

showed that site location and gender were not systematically related to performance on any 

measure. Measures of effect size (partial 2
) were used to interpret the magnitude of the 

effect.  

3.3 Results 

Table 3.2 displays the means and standard deviations of all outcome measures listed below.
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Table 3.2 

Descriptive Statistics for the Double Jump Reaching Task on Chronometric and Kinematic Variables 

Age Group Trial Type RT (ms) MT (ms) ToC (ms) ToC 2 (ms) PCT (ms) AE TDE CTE AJE 

  M SD M SD M SD M SD M SD M SD M SD M SD M SD 

 

6-7 Years 

Non-jump 554 75 469 74 _ _ _ _ _ _ 2.85 2.07 5.21 3.36 _ _ _ _ 

Jump 580 95 837 158 309 46 _ _ 468 62 0.81 0.85 6.10 2.74 1.90 2.08 _ _ 

Anti-jump 590 114 1236 238 319 39 619 99 549 112 0.54 0.71 5.14 2.96 0.60 1.58 1.36 2.01 

 

8-9 Years 

Non-jump 488 71 476 82 _ _ _ _ _ _ 2.00 2.14 4.53 2.95 _ _ _ _ 

Jump 511 87 727 92 292 45 _ _ 433 63 0.44 0.60 3.89 2.53 0.81 1.17 _ _ 

Anti-jump 480 85 1080 160 303 41 571 83 516 96 0.38 0.78 3.66 2.25 0.25 1.00 0.63 1.20 

 

10-12 Years 

Non-jump 455 60 434 79 _ _ _ _ _ _ 2.26 2.36 4.11 2.93 _ _ _ _ 

Jump 458 80 681 80 269 26 _ _ 408 65 0.57 0.95 4.11 2.47 1.00 1.37 _ _ 

Anti-jump 472 70 984 152 273 26 499 82 477 91 0.63 0.94 3.92 2.76 0.18 0.53 0.82 1.38 

Note. RT = Reaction Time, MT = Movement Time, ToC = Time of Correction, ToC2 = Second Time of Correction, PCT = Post Correction Time, AE = Anticipatory Error, TDE = Touch Down Error, CTE = Centre 

Touch Error, AJE = Anti-Jump Error, ms = Milliseconds.



Chapter Three    Study 1 

79 
 

3.3.1 Reaction Time 

Overall, there was a significant age effect, F(2,92) = 24.29, p < .001, partial 2
 = .35: 

RTs for older children (462 ms) were faster than 8-9 year-olds (508 ms) who, in turn, were 

faster than 6-7 year-olds (575 ms).  

3.3.2 Movement Time 

The mean MT (+/- SE) for each group is displayed in Figure 3.1. The 2-way ANOVA 

on mean MT showed a significant main effect for trial type, Wilks’  = .08, F(2,99) = 

609.76, p < .001, partial 2
 = .93, and age group, F(2,100) = 18.52, p < .001, partial 2

 = .27.  

The interaction between age group and trial type was also significant, Wilks’  = .77, 

F(4,198) = 6.91, p < .001, partial 2
 = .12.  

Tests of simple effects showed no differences between the three age groups on non-

jump trials. For jump trials, 6-7 year olds (837 ms) were significantly slower than both 8-9 

year-olds (727 ms), p < .001, partial 2
 = .15, and 10-12 year-olds (681 ms), p < .001, partial 

2
 = .28, while the two older groups were not shown to differ, p = .23, partial 2

 = .07. On 

anti-jump trials, younger children (1235 ms) were significantly slower than 8-9  (1080 ms), p 

= .003, partial 2
 = .13 and 10-12 year olds (984 ms), p < .001, partial 2

 = .28. The 

difference between the two older groups was not significant, p = .079, partial 2
 = .10.
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Figure 3.1. Mean movement time (MT +/- SE) values for age groups on the double-jump 

reaching task. 

 

3.3.3 Movement Time Difference 

The average MTdiff score between non-jump trials and jump trials was calculated and 

compared between the groups. One-way ANOVA revealed a significant effect for age group, 

F(2,116) = 10.54, p < .001, partial 2
 = .15. Post-hoc tests revealed that the MTdiff score for 

the youngest children (393 ms)  was significantly longer than that for 8-9 year-olds (286 ms), 

p = .002, and 10-12 year-olds (253 ms), p < .001. The comparison between the two older 

groups was not significant, p = .49. 

For the AMTdiff score between non-jump and anti-jump trials, 1-way ANOVA 

revealed a significant age group effect, F(2,110) = 19.30, p < .001, partial 2
 = .26. Follow-

up tests revealed that the AMTdiff score of the youngest children (750 ms) was significantly 
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greater than the 8-9 year-olds (611 ms), whose score, in turn, was greater than the 10-12 year-

olds (524 ms), with each p < .05. 

3.3.4 Time of Correction (ToC and ToC2) 

The average ToC (+/- SE) for each group is displayed in Figure 3.2. The 2-way 

ANOVA on the mean ToC found no significant interaction between group and trial type, 

Wilks’  = .99, F(2,98) = 0.34, p = .71, partial 2
 = .007. Overall, children were faster to 

correct initial trajectory on standard jump trials (290 ms) than anti-jump trials (298 ms), 

Wilks’  = .95, F(1,98) = 5.47, p = .021, partial 2
 = .05. The main effect for age group was 

also significant, F(2,98) = 12.75, p < .001, partial 2
 = .21. Averaged over jump and anti-

jump trials, older children (272 ms) were significantly faster to correct than 8-9 year-olds 

(298 ms) who, in turn, were faster than 6-7 year-olds (314 ms).  

 One-way ANOVA on the mean ToC2 showed an overall age effect, F(2, 113) = 

14.33, p < .001, partial 2
 = .20. Post-hoc tests using Tukey’s HSD indicated that older 

children (506 ms) were significantly faster than mid-aged (571 ms; p = 005, 2
 = .12) and 

younger children (618 ms; p < .001 2
 = .26); the latter two groups were not shown to differ 

(p = .06, 2
 = .06).  
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Figure 3.2. Mean time of correction on jump trial and second time of correction on anti-jump 

trial (ToC and ToC2 +/- SE) values for age groups on the double-jump reaching task. 

 

3.3.5 Post Correction Time 

A 2-way ANOVA showed no significant interaction between group and jump/anti-

jump trials on PCT, Wilks’  = 1.00, F(2,94) = 0.22, p = .80, partial 2
 = .005. PCTs were 

faster on jump trials (431 ms) than anti-jump (509 ms), Wilks’  = .60, F(1,94) = 62.78, p < 

.001, partial 2
 = .40. The main effect for age group was significant, F(2,94) = 6.73, p = .002, 

partial 2
 = .13. Averaged over jump and anti-jump trials, 10-12 year-olds (443 ms) and 8-9 

year-olds (475) did not differ significantly, while the former were faster than 6-7 year-olds 

(509 ms).  

3.3.6 Errors 

Overall, there was no difference between age groups on the mean number of AEs, p = 

.19:  6-7 year-olds (1.4), 8-9 year-olds (0.9), and 10-12 year-olds (1.2).   For TDEs, there was 
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a significant age effect: younger children committed more errors (5.5) than 8-9 year-olds 

(4.0) and 10-12 year-olds (4.0), F(2,101) = 4.94, p = .009, partial 2
 = .09. There was no 

difference between age groups on the number of CTEs, p = .25, partial 2
 = .07:  6-7 year-

olds (1.3), 8-9 year-olds (0.5), and older children (0.6).  Finally, a 1-way ANOVA on AJEs 

revealed no difference between age groups, p = .45, partial 2
 = .04: 6-7 year-olds (1.4), 8-9 

year-olds (0.6), and older children (0.8). 

3.4 Discussion 

This study investigated how online control develops across childhood and the extent 

to which it is constrained by demands on (inhibitory) executive control in three different age-

groups: 6-7 year olds (younger), 8-9 year olds (mid-age) and 10- 12 year olds (older).  

Consistent with my predictions, I found that the pattern of performance on non-jump trials 

was similar between age groups. However, when a target perturbation was applied at 

movement onset, children in the younger group showed disproportionately slower movement 

time compared to both mid-aged and older children, as well as slower reaching trajectory 

corrections. Furthermore, when I imposed the inhibitory demand (instructing children to 

move their arm to the side opposite the target perturbation, i.e., anti-jump trials), I found that 

younger children continued to show delayed changes in trajectory and slower movement 

times compared with older children; indeed, the group difference on MT increased from 

around 150 ms for jump trials to around 250 ms for anti-jump trials. Interestingly, the 

performance of mid-aged children was compromised relative to the older group on anti-jump 

trials, but regressed away from older children on anti-jump trials. This was evident on both 

movement time and a delay in the reaching trajectory away from the illuminated target 

towards the correct target. This pattern is broadly consistent with the hypothesis that the 

ability to enlist online control is not linear in development, but depends on the nature of the 

task constraints and associated load on executive control systems. I argue that the ability to 
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utilise predictive control as a means of reducing the latency of online corrections is well 

developed by 8-9 years of age. However, in cases where rapid online control must be 

implemented under conditions of real-time inhibitory load (viz anti-jump conditions), then the 

performance of mid-aged children is somewhat constrained.By 10-12 years, children are 

better able to integrate the demands of both online and executive systems in the service of a 

goal-directed action. These findings are discussed in further detail below. 

3.4.1 Non-jump Trials 

As predicted, an age-effect on RT was observed. Specifically, older children tended to 

initiate movement more quickly than mid-age children and younger children. This finding 

accords with earlier developmental research where performance of typically developing 

primary-school aged children was compared on the double-step reaching task (Hyde & 

Wilson, 2013). Since the time taken to initiate reaching towards a prepotent visual target 

likely reflects information/neural processing efficiency (Wilson & McKenzie, 1998), this 

pattern of results supports developmental literature suggesting increased processing 

efficiency between the ages of 5 and 12 years, linked to white matter maturation among other 

factors (Barnea-Goraly et al., 2005; Luna, Garver, Urban, Lazar, & Sweeney, 2004). 

 The mean MT of each group was similar on non-jump. Simple, stimulus-driven 

movements of this type place minimal demands on online control (and hence predictive 

modelling). Computationally, since the target remains stationary throughout the movement; 

discrepancy, or error, between the expected (according to the predictive model) and actual 

consequences of action is minimal, assuming that the initial motor command is accurate 

(Desmurget & Grafton, 2000). Accordingly, in light of current accounts of motor control (i.e. 

Shadmehr et al., 2010), my results suggest that the ability to complete rudimentary 

movements within peri-personal space is well developed by 5 years of age (e.g. Chicoine et 

al., 1992). Importantly, the similar movement times observed across age-groups here on non-
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jumps highlights that the developmental differences I observed for jump and anti-jump 

reaching cannot be explained by general maturation of the motor system but rather by the 

unfolding of specific control systems (i.e. predictive modelling and executive functioning). 

This argument is taken up below.  

3.4.2 Jump Trials 

Like earlier studies (e.g. Castiello et al., 1998; Farnè et al., 2003; Hyde & Wilson, 

2011a; Paulignan et al., 1991), MT increased from non-jump to jump trials. This is explained 

by the added processing demands in detecting target perturbation and then implementing a 

corrective shift in movement trajectory, which itself was longer in distance as the hand 

moved to the middle target and then redirected to a peripheral location. The additional time 

taken to implement the anti-jump movement can be attributed to the demands imposed on 

inhibitory processing and the associated requirement that children withhold the prepotent 

response to the cued location and then implement a movement to the opposite side.   

Younger children were disadvantaged by target shifts relative to mid-aged and older 

children, as shown by the significant interaction between age and trial type on MT. Whereas 

there was significant difference between groups when the target remained stationary, younger 

children were slower to adjust on jump trials: MTdiff scores were significantly longer for 

younger children (393 ms) compared with both mid-aged (286 ms) and older children (253 

ms). This pattern replicates an earlier study by Hyde and Wilson (2013). The slower 

adjustments to target perturbation shown by younger children suggests that the process of 

motor prediction that supports rapid online control is less efficient in younger children but 

develops rapidly after the age of 6-7 years.  Indeed, the performance of 8-9 year-olds was not 

significantly different to that of older children on standard jump trials, suggesting a more 

gradual trend in development from middle childhood.  Analysis of kinematic variables further 

support this view: correction of the reaching trajectory occurred later for younger children 
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(309 ms) compared with both mid-aged (292 ms) and older children (269 ms), with the latter 

two groups not shown to differ significantly. Importantly, ToC reflects the stage in reaching 

where internal feedback signals are integrated with the motor command to initiate correction 

away from the initial direction of movement. Higher ToC suggest that this aspect of 

predictive control is not fully integrated into the motor system of younger children. Taken 

together, my results for jump performance supports a growing body of evidence suggesting 

that online control (i.e. predictive modelling) mechanisms undergo rapid developmental 

change between the ages of 6 and 8 years, with less marked change during the later stages of 

childhood (Casey et al., 2008; Casey et al., 2005; Johnson, 2005, 2011). Other data suggest 

that further changes occur after the age of 12 years and into early adulthood, although the 

exact trajectory is unknown (Hyde & Wilson, 2013).  

3.4.3 Anti-jump Trials 

Crucially, I observed significant group differences between mid-aged and older 

children on MT when an inhibitory load was imposed on the movement following target 

perturbation. This was shown by progressively smaller AMTdiff scores with age: the 

difference in MT between non-jump and anti-jump trials was greater in 6-7 year-olds (750 

ms) than 8-9 year olds (610 ms), whose score, in turn, was greater than the older children 

aged 10-12 years  (524 ms). In contrast, no such difference between mid-aged and older 

children was observed on MTdiff scores.   

On the kinematic data, there was a tendency for children to perform a two-step 

correctional process: first an initial correction towards the illuminated target prior to re-

directing their reach in a second stage towards the opposite target location. This pattern of 

performance is a stable characteristic of healthy adults when performing similar tasks (e.g. 

Cameron et al., 2009). The lack of condition effect when comparing this initial ToC measure 

on anti-jump trials to ToC values measured during jump trials suggests that the hand’s 
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‘automatic pilot’ is initially drawn to the illuminated target (Cameron et al., 2009; McIntosh, 

Mulroue, & Brockmole, 2010; Striemer, Yukovsky, & Goodale, 2010). Importantly, the 

second corrective movement (i.e. ToC2) indicates conscious and purposive inhibition of the 

nervous system’s tendency to reach toward a prepotent (yet incorrect) target before re-

directing the hand to the opposite (correct) target. My data confirms this pattern and showed 

that younger and mid-age children not only took longer to make the first automatic 

correction, but also took significantly longer (618 ms and 571 ms respectively) to inhibit their 

response from the cued location than older children (506 ms). In contrast on standard jump 

trials, children were merely required to correct their reaching toward the new stimulus 

location, the shifting target serving to bias trajectory in, at least, a spatially meaningful way. 

The pattern of performance for anti-jump trials supports the hypothesis that mid-aged 

children are less efficient at implementing online control when demands on inhibition are 

imposed, performing more like younger children than older. 

This suggests a crucial transition in both executive control and motor systems during 

middle childhood, an age where  motor control is thought to transition to a well-integrated 

system of feedback and feedforward mechanisms (Pellizzer & Hauert, 1996). During this 

same maturational period, frontal executive systems undergo a period of rapid growth and 

brain connectivity which sees executive systems exert more (top-down) control over 

behaviour (Durston et al., 2006). However, some theorists point to a lag period during which 

the child learns (implicitly) to harness or couple these emerging frontal networks to other 

systems (Johnson, 2011). In the case of adaptive online control, the child must learn to couple 

frontal executive systems to the more automatic online control systems of the dorsal stream. 

As such, we might expect to see a performance decrement in middle childhood when a task 

places demands on both systems; experience-dependent learning to that point in development 

is perhaps not sufficient to build an integrated network of top-down modulation.   
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Taken from the perspective of interactive specialization, maturation of different 

cortical zones can change how previously acquired cognitive functions are represented in the 

brain (Johnson, 2011). That is to say that the same behaviour could potentially be supported 

by different neural substrates at different ages during development. Developmental studies of 

children reveal that cognitive processes emerge at different points in time, each showing its 

own maturational trajectory (Anderson, 2002; Garon, Bryson, & Smith, 2008). In general, 

executive function develops rapidly during the primary school years and then continues at a 

slower pace during adolescence (Anderson, 2002). During this time, the emergence of 

complex processes such as set shifting, working memory and inhibition may take some time 

to be integrated efficiently with existing processes, perceptual-motor and other. The question 

here is to assess how inhibitory control becomes integrated into functional systems of motor 

control. 

At a neural level, behavioural improvements in inhibition appear to be parallelled by 

refinements in the underlying brain activity in the PFC and in networks that include the PFC 

(Durston et al., 2006). We know that frontal systems reach a peak in synaptogenesis during 

early childhood, and that structural MRI shows a progressive increase in myelination along 

anterior-to-posterior pathways over childhood and adolescence, including reciprocal 

connections to the PPC (Bunge & Wright, 2007; Durston et al., 2006). Indeed, diffusion 

tensor imaging research also suggests that white matter development underlies an important 

role with mechanisms that shape cognition (Barnea-Goraly et al., 2005), and subcortical 

structures may play a role in rapid adjustments to target perturbations (Day & Brown, 2001). 

While these structural changes occur rapidly over early development, the degree of functional 

coupling that occurs along these networks appears to be more protracted. The online control 

system that supports (simple) goal-directed reaching is quite functional by early childhood, 

but undergoes significant change between 5 and 8 years. However, the difficulty that mid-
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aged children had with online adjustments under an inhibitory load supports the hypothesis 

that coupling between anterior and posterior systems takes some time to fully emerge. My 

data show that the coupling unfolds rapidly between middle and later childhood, while 

experience-driven learning continues to influence the development of motor and executive 

systems  

In terms of attentional shifts to abrupt-onset cues, the consensus of opinion is that the 

process of engagement and disengagement is largely a motor preparatory process (Rizzolatti, 

Riggio, & Sheliga, 1994). More specifically, the putative disengagement process has been 

conceptualised as an aspect of inhibitory motor control (Mandich et al., 2003). As such, it 

could be argued that the effects I observed for the jump trials could involve aspects of motor 

inhibition. For anti-jump, the inhibitory demand is such that more controlled, frontal 

processing is required to counter the compelling effect of the cued target location on motor 

planning and, hence, hand trajectory. Further research is needed to disentangle these 

components of attention and motor control as a function of task complexity. 

3.4.4 Limitations 

 For repeated movements during which we experience error between the intended 

action and incoming sensory information (i.e. a target shift), it is possible that a memory 

representation builds up for the adjusted movements (Shadmehr et al., 2010). In other words, 

the repeated corrections to limb position could act as a training signal for the brain. This has 

been observed for actions involving mechanical perturbation of the moving limb: the motor 

memory associated with the effects of the perturbation may provide advance information for 

subsequent motor commands. However, when this logic is applied to the paradigm used in 

my study, it is unlikely that memory effects would accrue over repeated arm movements 

because there were only a limited number of jump/anti-jump trials within a given block, and 

those that did were interspersed randomly. Furthermore, I counterbalanced the order of jump 
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and anti-jump conditions to ensure learning effects were minimised. In future, I could vary 

the probability of jumps and also compare early and late trials on my task to resolve memory-

related effects from predictive control per se. 

3.4.5 Conclusion 

For some time now, the maturational viewpoint has been a widely adopted 

explanation of motor development in children. Maturational theories seek to interpret 

emerging sensory, motor and cognitive functions in terms of the development of particular 

regions of the brain, usually specific areas of cerebral cortex. Alternatively, under the 

assumption of interactive specialization, a new cognitive function or skill is acquired through 

the re-organisation of interactions of different brain structures and regions. My results are 

broadly consistent with this view as they show that age-related variation in the ability to 

implement rapid online is contingent on (frontal) inhibitory constraints. By middle childhood, 

online adjustments can be implemented as quickly as those seen in later childhood. However, 

when demands are imposed on executive systems (as per anti-jump trials) online corrections 

are slowed in mid-aged children relative to older. Rapid maturation of executive systems 

during this period may constrain the flexibility with which online control can be 

implemented. More precisely, the ability to modulate online control via the inhibitory system 

requires a more protracted period of development over childhood. 
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Condition A 

Non-jump trial 

 

 
 

The central target remains lit until 

touchdown. 

Jump trial 

 

 

 
 

The central target displaces to either 

peripheral location at finger lift off.  

 

 

Condition B 

Non-jump trial 
 

 
The central target remains lit until 

touchdown. 

Anti-jump trial 

 

 

 
The central target displaces to either 

peripheral location at finger lift off. Then, the 

participant reaches to the target on the 

opposite side. 

 

Figure 3.3. Experimental set-up of double jump reaching task for non-jump, jump, and anti-

jump trials.
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CHAPTER 4 

STUDY 2. COUPLING ONLINE CONTROL AND INHIBITORY SYSTEMS IN 

CHILDREN WITH DEVELOPMENTAL COORDINATION DISORDER: GOAL-

DIRECTED REACHING 
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4.1 Introduction 

Deficits in motor prediction have been implicated as one possible cause of motor 

clumsiness in children with Developmental Coordination Disorder (DCD; Hyde & Wilson, 

2013). A recent meta-analysis  has shown deficits in studies as varied as target-directed 

reaching, grip force control, dynamic balance, and eye-movement control (Wilson et al., 

2013). Also seen as part of the constellation of processing problems in DCD is poor executive 

control, evident across tasks of selection attention, working memory, and response inhibition. 

Of some importance in developmental terms is how predictive (online) control and executive 

function (EF) are coupled in the service of goal-directed action. This issue has also emerged 

as a focus in a recent developmental study (Gonzalez et al., 2014) with data showing that 

motor control and EF emerge along similar timelines and share overlapping neural networks 

(Pangelinan et al., 2011). In relation to the neurocognitive underpinnings of DCD, I enlisted a 

double-jump paradigm performed with and without inhibitory constraints. 

The ability to correct one’s movement in response to unexpected target or 

environmental changes (viz online control) is a critical part of efficient, goal-directed action. 

Recent neuro-cognitive models of human reaching propose that online control occurs by the 

action of internal feedback loops that generate forward estimates of the dynamics of limb 

position and egocentric location - a process referred to variously as (forward) internal 

modelling or predictive control (Ruddock et al., 2014). This system of rapid control is critical 

for movement stability because of processing delays associated with sensory feedback loops 

and general impedance of the motor plant (Wolpert & Flanagan, 2001). For visually-guided 

movements, adult studies have shown recruitment of reciprocal loops between premotor 

cortex, posterior parietal cortices (PPC), and cerebellum, with strong PPC-cerebellar 

activation under target perturbation (Gréa et al., 2002; Reichenbach et al., 2011; 

Reichenbach, Thielscher, Peer, Bülthoff, & Bresciani, 2014). Only recently has the nature of 
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online control in children with and without motor difficulties been studied with renewed 

focus. 

Available data suggest that the mechanisms linked to fast corrective processes 

undergo considerable change between 6 and 12 years of age (Bard et al., 1990; Van Braeckel 

et al., 2007; Wilson & Hyde, 2013).Younger children (5-7 years of age) are able to generate 

fast, ballistic movements but are slower to integrate online feedback when correcting their 

reaching mid-flight, resulting in reduced endpoint accuracy and/or inefficient timing. During 

middle childhood (around 8-9 years) there is earlier and greater use of sensory feedback (e.g. 

Chicoine et al., 1992) as both feedforward and feedback (predictive) control become better 

integrated, resulting in better online error correction. By 9 to 12 years, the system of 

predictive control is well developed, approaching adult levels (e.g. see Wilson & Hyde, 

2013). 

It is no coincidence that the developmental timescale over which online control 

unfolds coincides with periods of increased myelination and structural connectivity along 

fronto-parieto pathways (Casey et al., 2005; Lebel, Walker, Leemans, Phillips, & Beaulieu, 

2008). Predictive control in particular is underpinned by maturation of reciprocal connections 

between frontal, parietal and cerebellar cortices, pathways that are sculpted by experience 

(Gaveau et al., 2014).  In short, an interplay between external (i.e., experiential) and internal 

(e.g. neural myelination and synaptic pruning) factors support the fidelity of predictive 

control with development (Casey et al., 2008). 

A unifying hypothesis in cognitive neuroscience that can shed light on the 

development of function in DCD is the notion of interactive specialization (Johnson, 2011). 

Here it is posited that behavioural competencies unfold through the interaction of several 

brain regions whose individual growth trajectories may differ in developmental time. For 

example, (automatic) online control is supported by fast dorsal motor systems (Pisella et al., 
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2000) that forge reciprocal connections with frontal executive systems over the course of 

childhood, bestowing a degree of flexibility in action (i.e. Ruddock et al., 2014). However, 

this coupling between motor and executive systems is not well refined until later childhood. 

Using a target perturbation paradigm, I found that under an inhibitory load (or anti-reach 

condition), the ability to adjust movement trajectory was reduced in mid-aged children (8-9 

years) relative to older children (10-12 years), despite the fact that online control per se was 

well developed by 9 years of age (Wilson & Hyde, 2013). I observed that the time taken to 

correct reach trajectories (in this case to the hemi-space opposite the target jump) increased in 

mid-aged children to an extent similar to that seen in younger children (6-7 years). I argued 

that while frontal systems are unfolding rapidly during the middle childhood period, there is 

lag in the coupling of these systems to more posterior perceptual-motor systems. Only by 

later childhood do we see evidence of more seamless integration of fronto-parietal systems, 

manifest as smooth and efficient reach trajectories and greater endpoint accuracy under not 

only double jump constraints but also anti-reach conditions (Wilson & Hyde, 2013). 

4.1.1 The link between Executive Function and Online Control in Children with 

Developmental Coordination Disorder  

Importantly, deficits in both executive and motor control systems are widely reported 

in children (Livesey et al., 2006; Michel, Roethlisberger, Neuenschwander, & Roebers, 2011; 

Piek et al., 2007) and adolescents (Rigoli, Piek, Kane, & Oosterlaan, 2012) with atypical 

motor development (or DCD), suggesting that the process of coupling between systems may 

be particularly problematic with development. A recent studies of goal-directed reaching has 

shown that children with DCD aged 8-12 years are disadvantaged by target perturbation, 

taking longer to correct movements on jump trials  (Hyde & Wilson, 2011a). This pattern of 

performance is thought to reflect an underlying difficulty using predictive models of action. 

Additionally, Hyde and Wilson (2013) showed that the performance of children with DCD 
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aged 8-12 years was not qualitatively different to younger typically developing children 

suggesting a neurodevelopmental delay in structures that underpin predictive control, 

particularly fronto-parietal and parieto-cerebellar loops. Other work using fMRI suggests 

possible disruption of top-down (or anterior) modulation of posterior networks for tasks 

requiring inhibition (Querne et al., 2008). Converging evidence of reduced executive function 

in DCD (Piek et al., 2007; Wilson et al., 2013) suggest a more generalised level of delay in 

these children.  

Problems of inhibitory control are particularly common in DCD (Livesey et al., 2006; 

Michel et al., 2011). On the Simon Task, for example, a well-known neuropsychological 

choice reaction time test, children with DCD show difficulty inhibiting a manual response to 

a visual stimulus relative to controls (Mandich et al., 2002). On tasks of voluntary 

visuospatial attention, poor inhibitory control has also been identified (Mandich et al., 2003; 

C. L. Tsai, Y. K. Yu, Y. J. Chen, & S. K. Wu, 2009; Wilson & Maruff, 1999), inferred from a 

reduced ability to disengage visual attention from invalidly-cued locations (Mandich et al., 

2003). This raises the possibility that children with DCD may be particularly disadvantaged 

when called to enlist inhibitory control in the context of a motor task requiring motor 

prediction. 

Therefore, my main hypothesis here is that impaired coupling between frontal 

executive and more posterior visuo-motor regions associated with predictive control (and 

spatial updating) may be an important factor in DCD. Hence, the broad aim of my study was 

to examine whether poor online control in DCD is exacerbated when tasks demand higher 

levels of executive control, specifically response inhibition. Addressing this issue will also 

clarify the often cited observation that motor skill deficits in DCD are more pronounced 

under conditions of high cognitive load (Wilson et al., 2013). Specifically, children’s ability 

to implement rapid online corrections was assessed on a double-jump perturbation paradigm 
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under three task conditions: non-jump, jump, and anti-jump. In line with earlier studies of 

online control (Hyde & Wilson, 2011a, 2011b, 2013) I predicted that, overall, children with 

DCD would be slower to correct their reach trajectory mid-flight following an unexpected 

target shift than typically developing children. Moreover, I also predicted that their 

performance would be further compromised by the addition of an inhibitory load (viz anti-

reach condition), manifest as slower movement time and delayed time to correction, but that 

the deficit would be less pronounced in older children in lieu of the developmental delay 

suggested by earlier work (Hyde & Wilson, 2013). 

4.2 Method 

4.2.1 Participants 

The sample was drawn from a large longitudinal project and consisted of 129 

children: 42 in the DCD group and 87 in the control group (refer to Table 4.1 for descriptive 

data). 

 

Table 4.1 

Descriptive Statistics of Developmental Coordination Disorder Group and Control Group 

Groups for the Double Jump Reaching Task 

 Control DCD 

 n Sex Age (years) n Sex Age (years) 

  Girls Boys M SD  Girls Boys M SD 

6-7 26 17 9 7.20 0.46 10 5 5 7.27 0.69 

8-9 38 23 15 8.92 0.63 16 5 11 8.87 0.63 

10-12 23 13 10 10.74 0.49 16 10 6 11.07 0.38 

Note. N = 129. 
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Group selection involved a two-step process: (a) parents completed a medical and 

developmental history questionnaire and (b) children’s motor proficiency was tested using 

the McCarron Assessment of Neuromuscular Development (MAND; McCarron, 1997). On 

the MAND, children who scored less than the 15
th

 percentile (Noten et al., 2014; Piek et al., 

2006) (Criterion A), whose difficulty learning motor skills was deemed to interfere with daily 

activities (Criterion B), and whose movement difficulties were evident by school age 

(Criterion C), were included in the DCD group. Children scoring above the 20
th

 percentile 

were placed into the control group (Hyde & Wilson, 2011a). Additionally, selection for the 

DCD group adhered to research criteria specified from the Diagnostic and Statistical Manual 

5 (American Psychiatric Association, 2013). Children were excluded from the study if they 

reported a developmental, neurological and/or physical condition (Criterion D), which was 

confirmed by the child’s school health officer. As children were recruited from mainstream 

primary schools and attending standard classes, intelligence was assumed to within the 

normal range (Geuze et al., 2001). 

All children and parents gave their informed consent to participate in the study which 

was approved by institutional and government research ethics committees.  

4.2.2 Instrumentation 

A modified version of the Double-Jump Reaching Task (DJRT) was used to assess 

online motor control. VIRTOOLS Software Package (3DVIA, 2010) was presented on a 

black Samsung 40-inch touchscreen. The touchscreen was in portrait orientation on a table 

and elevated at 10
0
 from horizontal. The background of the display was black to match the 

bezel of the TV, reducing contrast interference. The computerised display consisted of a 

circular ‘home base’, 2.5cm in diameter, positioned centrally 5cm from the near edge of the 

bezel. Three yellow targets were positioned at -20
0
, 0

0
, 20

0
 from a vertical line, extending 
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upward from the home base. All target distances were scaled according to three age groups: 

young children, 25cm; mid-age children, 28cm; and older children, 30cm (Gerver et al., 

1989). Arm movement was recorded using the Zebris CMS10 (Noraxon, 2010) system for 

3D-motion analysis with 200Hz sample rate. The motion tracking system was secured to the 

table and positioned at a height of one meter above the centre of the screen. A 7mm 

ultrasonic sensor/marker was attached by adhesive pad to the child’s dominant index finger 

tip and tethered with adhesive tape along the arm and then to the Zebris receiver. 

4.2.3 Procedure 

Hand preference was assessed by asking each child which hand children he/she wrote 

with, and then observing them as they wrote their name. The DJRT was performed in a quiet 

classroom under low lighting conditions to prevent visual feedback from the hand (Farnè et 

al., 2003) and the imposition of environmental distractors. At the beginning of the DJRT, the 

nature of the task was explained and the child was then directed to stand in front of the screen 

while the kinematic sensor was attached to the index finger of their dominant hand. 

Testing was conducted in two blocks, with the order of conditions randomised: a 

typical ‘jump’ DJRT and modified ‘anti-jump’ DJRT. For the jump condition, children were 

instructed to place their index finger on the green home base at the beginning of each trial. 

The three possible target locations were indicated at the start of each trial, while individual 

targets per se were triggered on a trial-by-trial basis by a doubling in luminance. The finger 

was held stationary until the home base was extinguished and the middle yellow target 

doubled in luminance at the same time. A random delay of 500-1500 ms was programed 

across trials to ensure participants did not anticipate the change in target illumination. 

Children were instructed to follow the target and touch its centre as quickly and accurately as 

possible. A successful trial resulted in the newly acquired target light being extinguished 

while an auditory tone was emitted to reinforce to children that the trial was complete. On 
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80% of trials the middle target remained lit until touched (non-jump trial) while on 20% of 

trials the location of the target jumped at movement onset either to the left or right position 

(jump trial). At the end of each trial, children repositioned their finger back on home base in 

readiness for the next trial. The anti-jump condition was administered using the same 

procedure described for the jump condition. However, children were instructed to reach and 

touch the opposite side (anti-jump trial) when the target shifted to a peripheral location (refer 

to Figure 4.1). 
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Block A 

Non-jump trial 

 

 
 

The central target remains lit until 

touchdown. 

Jump trial 

 

 

 
 

The central target jumps either left or right at 

finger lift off.  

 

 

Block B 

Non-jump trial 
 

 
The central target remains lit until 

touchdown. 

Anti-jump trial 

 

 

 
The central cue jumps either left or right at 

lift off, while the child is instructed to reach 

and touch the opposite locations. 

 

Figure 4.1. Experimental set-up for the double jump reaching task showing trial types over 

two blocks of trials

  

 
 

  



Chapter Four    Study 2 

102 
 

At the commencement of the first condition, the researcher modelled the action 

necessary for non-jump, jump, and anti-jump trials. Children were then given 10 practice 

trials to familiarise themselves with the nature of the task and permitted additional practice 

trials if task requirements were not met. Children performed two blocks within each 

condition; each block was of 40 trials (32 non-jump and 8 jump/anti-jump) which were 

interspersed pseudo-randomly across left and right target locations. At the end of the first 

condition, children were permitted a two minute rest before commencing the second 

condition. Total administration time of the task was 15 minutes. 

4.2.4 Data Analysis 

 For each child, reaction time (RT) and movement time (MT) of the DJRT were 

recorded. Only successfully completed trials were included and outliers for all chromomeric 

and kinematic variables were excluded from analysis; outliers were defined as values > +/- 

2.5 SDs from the mean (Ruddock et al., 2014). An average of 20 (14%) non-jump trials and 4 

(25%) jump/anti-jump trials were removed from the DCD group, and 18 (13%) and 3 (19%) 

respectively from the control group. Jump- and anti-reach trials were aggregated over left 

and right target locations and eight successful jump/anti-jump trials per block was a minimum 

requirement for valid data inclusion (Ruddock et al., 2014). MT was compared between 

groups using 3-way repeated measures ANOVA (3 [Age] x 2 [Skill Group] x 3 [Trial]). RT 

was compared between groups using 2-way repeated measures ANOVA (3 [Age] x 2 [Skill 

Group]). I measured the impact of the inhibitory load on online control by calculating the 

difference in MT between anti-jump and jump trials (AJMTdiff ). Specifically, using a 2-way 

ANOVA, I tested whether the effect of inhibitory load (as measured by AJMTdiff ) varied as a 

function of the interaction between group and age.    

Kinematic variables were time of correction (ToC) and time of correction 2 (ToC2; 

for anti-reach trials only which was the interval between the first movement correction and 
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the point at which spatial trajectory changed toward the location opposite that of the target), 

and were filtered post-task using a fourth order Butterworth filter with a cut off of 10Hz. For 

jump trials, time of correction (ToC) was defined as the point at which the hand initiated a 

change in direction away from the centre target toward the left or right peripheral target 

(Hyde & Wilson, 2011b). On anti-jump trials, the critical deviation in trajectory occurs after 

an initial deviation toward the cued location (Cameron et al., 2009); this second correction 

(ToC2) reflects the implementation of inhibitory control as part of the corrected movement 

plan toward the location opposite the cued side. All participants demonstrated a tendency for 

the hand to be drawn first toward the illuminated target before (purposefully) redirecting 

movement to the opposite target location (Cameron et al., 2009). Finally, post correction time 

for anti-jump trials (PCT-AJ) was defined as the time taken after TOC2 to touch the location 

contralateral to the cue. 

Movement trajectories were plotted on a 2D Cartesian plane using MATLAB 

(Mathworks, 2010) computer software and ToC and ToC2 values were determined by two 

independent raters (Ruddock et al., 2014). Time of correction was analysed using 2-way 

repeated measures ANOVA (2 [Age] x 2 [Skill Group]). 

 Error responses were also recorded on the DJRT. A touch down error (TDE) occurred 

when a participant touched outside of the yellow target boundary. Anticipation error (AE) 

was recorded when finger lift-off from ‘home base’ occurred before the yellow central target 

illuminated. Logically, this cannot vary as a function of cue type as there is no probability 

information available to predict this with any certainty. Centre touch error (CTE) was defined 

as a touch to the centre target instead of a peripheral target during a jump/anti-jump trial. 

Finally, an anti-jump error (AJE) occurred when the incorrect (i.e., cued target) was touched 

on anti-jump trials. 
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Initial analyses showed that both gender and site locations were not systematically 

related to performance on any measure. Partial 2
 was used to interpret the magnitude of the 

effect size. 

4.3 Results 

Table 4.2 displays the values for each variable across skill group and age.
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Table 4.2 

Descriptive Statistics of Variables on the Double Jump Reaching Task 

Skill Age Trial RT (ms) MT (ms) AJMTdiff (ms) ToC (ms) ToC2 (ms) PCT-AJ (ms) TDE AE CTE AJE 

   M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD 

Control 6-7 N-J 572 93 504 88         7.96 7.28 3.58 2.73     

  J 583 84 855 157   307 51     5.32 3.19 1.08 1.26 2.73 2.97   

  A-J 573 94 1220 215 352 170 304 41 625 115 594 115 3.31 2.15 1.00 1.20 0.38 1.02 0.96 1.40 

 8-9 N-J 473 100 497 93         5.00 5.16 1.66 1.73     

  J 470 71 733 95   286 36     3.26 2.67 0.76 1.60 1.55 2.29   

  A-J 486 76 989 140 248 102 272 40 497 81 488 75 3.08 2.16 0.53 0.65 0.53 0.95 0.79 1.23 

 10-12 N-J 430 74 445 68         3.43 3.38 1.35 1.53     

  J 420 80 630 67   252 36     1.78 2.07 0.48 0.66 0.29 0.55   

  A-J 425 63 840 116 210 91 242 27 421 70 417 53 2.43 1.56 0.52 0.79 0.17 0.48 0.50 1.17 

DCD 6-7 N-J 633 121 620 140         11.00 8.31 4.30 3.74     

  J 649 115 894 114   375 70     4.60 3.10 1.60 1.51 1.10 1.73   

  A-J 634 110 1393 139 499 166 361 38 691 94 707 117 3.80 2.10 1.70 1.16 0.50 0.85 1.00 1.49 

 8-9 N-J 523 95 482 80         7.06 5.97 5.00 5.37     

  J 525 87 792 141   320 51     4.50 2.83 0.81 0.66 2.06 3.70   

  A-J 518 91 1135 175 359 128 309 53 566 87 564 108 3.25 1.65 0.88 1.03 0.24 0.44 1.29 1.40 

 10-12 N-J 461 79 468 91         3.31 2.91 2.00 2.00     

  J 456 82 685 114   272 39     1.94 1.95 0.56 0.89 0.25 0.68   

  A-J 459 64 892 134 207 99 269 40 442 70 450 74 2.13 1.86 0.69 1.20 0.31 0.48 0.38 0.89 

Note. MT = Movement Time, AJMTdiff = Movement Time Difference between Anti-jump and Jump Trials, ToC = Time of Correction (jump trials), ToC2 = Time of Correction for Anti-Jump Trials, PCT-AJ = Post 

Correction Time Anti-Jump Trials, TDE = Touch Down Error, AE = Anticipation Error, CTE = Centre Touch Error, AJE = Anti-Jump Error, N-J = Non jump, J = Jump, A-J = Anti-Jump.
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4.3.1 Reaction Time 

As there were no significant effects involving trial type, mean RT was averaged over 

this factor. Two-way ANOVA showed a significant main effect for age, F(2, 127) = 33.58, p 

< .001, partial 2
 = .35, with younger children (607 ms) slower than mid-aged (499 ms) who 

were in turn slower than older (442 ms), p < .05. The main effect of group was also 

significant with controls (498 ms) faster than DCD (540 ms), F(1, 127) = 10.39, p =.002,  

partial 2
 = .08. The interaction between age and group was not significant, F(2, 127) = 2.40, 

p = .10, partial 2
 = .04. 

4.3.2 Movement time 

Mean MT (+/- SE) for age groups within DCD and control group are displayed in 

Figure 4.2. Three-way ANOVA on MT showed significant main effects for age, F(2,123) = 

54.63, p < .001, partial 2
 = .47, skill group, F(1,123) = 14.42, p < .001, partial 2

 = .11, and 

trial, Wilks’  = .08, F(2,122) = 754.88, p < .001, partial 2
 = .93.  The higher order 3-way 

interaction between these factors was also significant, Wilks’  = .91, F(4,244) = 2.92, p = 

.022, partial 2
 = .05. Simple interaction effects were therefore explored within each skill 

group.
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Figure 4.2. Mean movement time (MT +/- SE) values of young (6-7), mid-age (8-9) and older (10-12) children for DCD and control groups on 

the double-jump reaching task.
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 For the control group, there was a significant simple interaction between age group 

and trial, F(4,166) = 12.80, p < .001, partial 2
 = .24. Follow-up tests of the simple effect of 

age revealed the following: for non-jump trials, there was no significant difference between 

mid-aged and younger children, whereas both these groups were slower than the older 

children. For jump trials, younger children were slower than mid-aged who, in turn, were 

slower than older children (by around 105 ms).  For anti-jump trials, younger children were 

slower than mid-aged (by around 230 ms) who, in turn, were slower than older children (by 

around 150 ms).  

For the DCD group, the simple interaction between age and trial type was also 

significant, F(4,76) = 8.67, p < .001, partial 2
 = .31. For non-jump trials, mid-aged and older 

children with DCD were not shown to differ, unlike controls; both these groups were, in turn, 

faster than younger children. For jump and anti-jump trials, the pattern of differences 

between age groups was similar to that shown for controls; however, the mean difference 

between mid-aged and older children on anti-jump trials was very large at around 245 ms.  

Importantly, for older children on anti-jump trials there was no significant difference between 

skill groups whereas the same comparisons for mid-aged and younger children showed faster 

performance in controls. 

 I also examined the magnitude of group differences within each trial condition. For 

non-jump trials, the effect of group varied with age: there was no difference between mid-

aged DCD and control children (partial 2
 = .00), and between older DCD and controls 

(0.05). However, younger children with DCD (630 ms) were significantly slower than 

younger controls (501 ms), partial 2
 = .27. For jump trials, the significant difference 

between DCD and controls (partial 2
 = .05) did not vary as a function of age: the simple 

interaction of group by age was not significant, F (2, 132) < 1. Finally, for anti-jump trials, 
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the difference between DCD and control groups varied as a function of age: for younger 

children, partial 2
 = .20, for mid-age (0.17), and for older children (0.04).   

4.3.3 Anti-Jump Movement Time Difference 

The mean AJMTdiff for DCD and control group is displayed in Figure 4.3. 

 

 
 

Figure 4.3. Mean anti-jump movement time difference (AJMTdiff +/- SE) values of young 

(6-7), mid-age (8-9) and older (10-12) children for DCD and control groups on the double-

jump reaching task.
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children (209 ms). The difference between mid-aged and older children was also significant. 

Overall, the DCD group (334 ms) were significantly higher than controls (269 ms), however 

the main effects were moderated by a significant interaction between age and group, F(2,120) 

= 3.40, p = .037, partial 2
 = .05. The simple effect for skill group was significant for 

younger children, F(1, 35) = 6.89, p = .013, partial 2
 = .17, mid-aged children, F(1, 54) = 

11.69, p = .001, partial 2
 = .18, but not older, F(1, 41) < 1, partial 2

 = .00.    

4.3.4 Time of Correction 

4.3.4.1 ToC for jump trials.  The average ToC (+/- SE) for DCD and control 

group is displayed in Figure 4.4. 
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Figure 4.4. Mean time of correction (+/- SE) showing initial correction (ToC) and second correction (ToC2) on anti-jump trials for DCD and 

control group on the double-jump reaching task.
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2-way ANOVA on mean ToC showed no significant interaction between skill group 

and age, F(2,127) = 1.21, partial 2
 = .02. The was a main effect for age group, F(2,127) = 

32.27, p < .001, partial 2
 = .34 and skill group, F(1,127) = 28.85, p < .001, partial 2

 = .19. 

Younger children (321 ms) were slower to correct trajectory than mid-aged (283 ms), who in 

turn were slower than older (253 ms). Overall, children with DCD (307 ms) were slower than 

controls (274 ms).   

4.3.4.2 ToC2 for anti-jump trials. For ToC2 on anti-jump trials, 2-way ANOVA 

showed no significant interaction between age and skill group, F(2,124) < 1, partial 2
 = .01. 

There was a main effect for age group, F(2,124) = 53.51, p < .001, partial 2
 = .46, and skill 

group, F(1,124) = 9.31, p = .003, partial 2
 = .07. Younger children (644 ms) were slower to 

make the second correction on anti-jump trials than mid-aged (519 ms), who in turn were 

slower than older (431 ms).  Overall, children with DCD (550 ms) were slower than controls 

(516 ms). 

4.3.5 Post Correction Time for Anti-Jump Trials 

Two-way ANOVA revealed a significant effect for group, F(1,129) = 19.64, p < .001, 

partial 2
 = .13, and age, F(2,129) = 50.42, p < .001, partial 2

 = .44, while the interaction 

was not significant, p = .18. Older children (432 ms) had faster PCTs than mid-aged (514 

ms), who were in turn faster than younger (628 ms). Children with DCD (555 ms) were 

slower to finish the post-correction phase than controls (502 ms). 

4.3.6 Response Errors 

 Initial analyses on TDEs and AEs showed no effects involving trial type; hence, error 

variables were examined as a function of age and group. 

4.3.6.1 Touch down errors.  Two-way ANOVA showed no significant 

interaction between age and skill group, F(2,124) <1, partial 2
 = .006. A main effect for age 
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was significant, F(2,124) = 3.92, p = .022, partial 2
 = .06; younger children (3.44) made 

significantly more TDE than older children (2.31) but not mid-age (3.15). There was no 

difference between mid-age and older children. There was no effect for group as DCD and 

control groups made 2.98 errors respectively, F(1,124) < 1, partial 2
 = .001. 

4.3.6.2 Anticipation errors.  Two-way ANOVA revealed no interaction 

between age and group, F(2,124) <1, partial 2
 = .01. There was a main effect for age, 

F(2,124) = 5.23, p = .005, partial 2
 = .08, and skill group, F(1,124) = 5.33, p = .023, partial 

2
 = .04. On average, younger children (1.19) made significantly more AE than mid-age 

(0.65) and older children (0.59). There was no difference between mid-age and older 

children. The DCD group (1.02) made significantly more errors than controls (0.67). 

4.3.6.3 Centre touch errors.  For CTE, there was no 2-way interaction 

between age and group, F(2,125)< 1, partial 2
 = .02. There was no main effect for age, 

F(2,125)< 1, partial 2
 = .01: younger (0.42), mid-age (0.44) and older (0.23) children; and 

no effect for group: DCD (0.33) and controls (0.29), F(2,125)< 1, partial 2
 = .001. 

4.3.6.4 Anti-jump errors.  On AJE, there was no interaction between age 

and skill groups, F(2,125) < 1, partial 2
 = .01. There was a main effect for age, F(2,125) = 

3.04, p = .05, partial 2
 = .05; younger children (mean of 0.97 out of 8 anti-jump trials) had 

significantly more AJE than older children (0.45) but not mid-age (0.95). The difference 

between mid-age and older children was also significant. There was no significant difference 

between DCD (0.88) and controls (0.76), F(2,125)< 1, partial 2
 = .003. 

4.4 Discussion 

 The aim of the study was to examine the ability of children with DCD to implement 

online control when inhibitory constraints are superimposed on a reaching task. Using a 

double-jump paradigm, I confirmed that these children were significantly slower than non-
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DCD to adjust their arm reaching movement on jump trials, evident by longer movement 

time and delayed time to initiate a corrective movement. Importantly, on anti-jump trials, 

children with DCD were further disadvantaged relative to controls, evident by larger AJMTdiff 

scores and longer duration to implement a second corrective movement (i.e. ToC2) after their 

hand was first drawn to the cued location. However, this effect was moderated by age such 

that the anti-reach performance of older children with DCD approached that of their age-

matched peers. These results support the hypothesis that children with DCD have particular 

difficulty coupling executive control (i.e., response inhibition) to online control during goal-

directed action, particularly during younger and middle childhood.  This deficit might explain 

the particular difficulty these children have with more complex tasks, both cognitively and 

from a motor control perspective. The implications of these findings are discussed below. 

4.4.1 Chronometric Performance Measures 

 For reaction time, the non-significant effect for trial type (non-jump vs jump vs anti-

jump) and its interactions were expected since the stimulus display up to the point of finger 

lift-off was identical for each condition. The DCD group was slower to initiate reaching than 

controls which is in line with recent studies of online control (Hyde & Wilson, 2011a, 2013) 

and is consistent with a recent meta-analysis (Wilson et al., 2013) that shows longer latencies 

when responding to externally cued stimuli. Reduced neural transmission times when 

responding to external events may underlie this issue. 

 For non-jump trials, only the younger children with DCD differed from their age-

matched controls. This accords with earlier research showing that mid-aged and older 

children with DCD can complete simple goal-directed reaching within a comparable 

timeframe as typically developing children of the same age, at least where the need for online 

adjustments is minimal (Wilmut et al., 2006; Wilson & Hyde, 2013). What my data suggests 

is that younger children with DCD may be slower to implement even simple movements 
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within peripersonal space. For control children, unlike Study 1 (Chapter 3) where MT was 

similar between age groups, mid-age and younger control children demonstrated significantly 

longer MTs than the older group. 

For both DCD and control groups, movement time increased significantly from non-

jump to jump trials. This accords with previous work (Castiello et al., 1998; Hyde & Wilson, 

2011a) and reflects the added computation and implementation time involved when 

modulating movements in-flight to perceptible changes in target location. In a recent review 

of online control, Gaveau and colleagues (2014) have commented that increased MT is 

generally observed when target jumps are of sufficient extent to enlist more voluntary aspects 

of online control. By comparison, under conditions of saccadic suppression, fast online 

corrections to relatively small target jumps are performed automatically, without conscious 

awareness, and with no significant increase in MT relative to non-jump trials. In line with 

previous studies (e.g. Querne et al., 2008; Rigoli et al., 2012) performance deficits were 

manifest by longer movement times while group differences were not found on touch down, 

centre touch or anti-jump errors. The added (temporal) costs associated with using feedback-

based control are likely to explain this effect, perhaps a function of reduced efficiency in 

processing visual information through fast dorsal stream channels (Wilson et al., 2013).  

Overall, children with DCD were slower to correct movements in response to jump 

trials (TOC). Indeed, this effect was not moderated by age suggesting some residual deficit in 

online control per se over childhood. What is intriguing, however, is the differential effect 

between groups of the added inhibitory load, measured both chronometrically and 

kinematically. This finding is described in detail below and is the central focus for the 

remainder of the discussion. 

4.4.2 Deficits in the Online Control of Reaching are Exacerbated with increased 

Inhibitory Demands 
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Movement times increased between jump- and anti-jump trials for both groups. For 

anti-jump trials, I saw two corrective movements in response to the (perceptible) shift in 

target location which account for the increase in MT over what is a longer trajectory length. 

The first correction occurs toward the compelling lateral cue and the second inhibiting 

movement away from the cued location and toward the contralateral target, equidistance from 

the midline. This bi-phasic correction has also been noted in studies of healthy adults (Pisella 

et al., 2000) and in my recent developmental work assessing children aged 7 to 12 years 

(Ruddock et al., 2014). The first correction is considered automatic in that the initial 

deviation is very difficult to withhold under task instructions that emphasise both speed and 

accuracy (Gaveau et al., 2014). The second correction is voluntary for what is an unfamiliar 

task. Results for AJMTdiff suggest a specific impairment in younger children with DCD that 

may subside with age. Overall, the AJMTdiff score (i.e., between jump and anti-jump trials) 

was larger for the DCD group compared with controls, but importantly its magnitude varied 

as a function of age. Only for younger and mid-aged children was the comparison between 

skill groups significant. Similar scores for older TDC and DCD groups indicate that they are 

taking a similar amount of additional time to complete anti-jump trials compared with jump 

trials. 

This suggests a reduced capacity in DCD over this age period to integrate inhibitory 

and online control during the brief time course of goal-directed reaching. However, by older 

childhood this capacity in DCD may approach levels of typically developing children. 

Interestingly, while TOC and TOC2 were delayed in DCD as a whole, there was no 

moderation of this effect with age. Measures of MT appear to be more sensitive than 

kinematic measures to change with age and as a function of motor skill. 

Finally, children with DCD as a whole were also slower to complete the post-

correction phase on anti-jump trials. However, this effect did not decline as a function of age.  
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This suggests two possibilities: first, it could be taken as evidence that the early stages of 

online control (up to TOC) are not fully developed in younger and mid-aged children with 

DCD, or second, it may suggest that the process of implementing trajectory changes remains 

problematic in DCD over childhood. In lieu of the compelling results for AJMTdiff, I suggest 

that the former hypothesis is more likely. 

Taken together, my results suggest that the online motor control difficulties of 

children with DCD are exacerbated when an inhibitory load is superimposed on a dynamic 

reaching task. Importantly, however, my cross-sectional data shows that by older childhood 

the level of efficiency in controlling anti-reach movements approaches that seen in typically 

developing children. I argue that in younger and mid-aged children with DCD, their slower 

anti-reach performance reflects an immature coupling between frontal and posterior control 

systems (likely PPC), delaying the voluntary adjustment of movement trajectories in real 

time. Evidence for improved coupling in older children can be attributed to a combination of 

neural maturation and experience-dependent plasticity in these same networks (Casey et al., 

2008; Johnson, 2005). For example, Balsters, Whelan, Robertson, and Ramnani (2013) found 

that cerebellum Crus I and II are strongly connected with the prefrontal cortex (PFC) which 

may support the cognitive control of action systems. What remains to be seen is how 

particular forms of practice or intervention can alter these couplings over short and long 

timescales. 

From a neural perspective, changes to EF appear to be mirrored by an increase in 

(sub)cortical structures tied closely to the PFC (Durston et al., 2006). When emerging 

networks come ‘online’ there is often a period of adjustment as new skills are adopted and 

refined (Johnson, 2011). With regards to performance on step-perturbation tasks, non-linear 

changes (i.e. more variability in performance) become apparent as the child learns to refine 

their motor skills in the pursuit of goal-directed action. The problems the younger- and mid-
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age DCD groups showed, in particular, when making online adjustments under an inhibitory 

load might be either the result of executive systems further containing an already impaired 

ability to redirect movement, or problems coupling multiple systems to more demanding 

action. Certainly, neuroimaging studies could help clarify the specific structures and regions 

at play here and shed light on how the two proposed systems interact. 

4.4.3 Implications and Limitations 

Comparison of the results from the current study to previous online control research 

may be limited due to several reasons. First, it may be difficult to directly assess data from 

mid-age children as the age groups defined here (i.e., 6-7, 8-9, and 10-12) are different from 

the criteria used in the study from Hyde and Wilson (2013) where younger children were 

grouped between 5-7 years. In addition, I used the 15
th

 percentile as a cut point to define the 

DCD group compared with the 10
th

 percentile used by Hyde and Wilson. The online deficit 

on jump trials was somewhat more pronounced in the earlier study, underlining the issue of 

severity in causal accounts of DCD. Finally, to provide a stronger test of the hypothesis that 

children with DCD have difficulty coupling online control and executive systems I suggest 

the use of a longitudinal design (c.f. the cross-sectional data presented here). This may 

provide a more comprehensive understanding into the developmental trajectory of these 

control systems, and their pattern of interaction over childhood.   

4.4.4 Conclusion 

Overall, results extend earlier work by showing that children with DCD have 

difficulty performing online adjustments and that this is compounded when inhibitory 

constraints are imposed on a reaching task. Importantly, however, the latter effect was 

reduced as a function of age. Whereas younger and mid-aged children with DCD were 

disadvantaged by anti-jump trials – as shown by MT and AJMTdiff scores – older children 

were not relative to age-matched controls. This intriguing finding suggests that whatever is 
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driving the poor motor skill performance of older children with DCD, it is not the ability to 

couple inhibitory function with online control. Before this age, however, immature coupling 

may compound the performance issues in DCD, particularly when motor tasks make 

demands on executive function. That is, the coupling between these systems may require a 

more protracted period of development in DCD before being functionally integrated. 

Longitudinal data is needed to unravel the changing pattern of interaction between these 

systems with age and their relationship to other aspects of executive function.
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STUDY 3. COUPLING OF ONLINE CONTROL AND INHIBITORY SYSTEMS IN 

CHILDREN WITH ATYPICAL MOTOR DEVELOPMENT: A GROWTH CURVE 

MODELLING STUDY 
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5.1 Introduction 

Everyday tasks such as selecting a book from a shelf, dressing, or simply walking 

through a busy room are acquired easily by most children but certainly not all. Typically 

developing children (TDC) acquire motor skills quite seamlessly over the course of 

development, mainly by a process of visual modelling but also through verbal instruction and 

hands-on manipulation by a skilled adult or caregiver (Wilson et al., 2013). Changes in 

performance are shown by greater synergy between joints and muscle activations, and 

enhanced perceptual-motor coupling, measured on kinematic and kinetic markers. In general, 

there is a gradual transition from initial freezing of degrees of freedom to a more 

unconstrained exploration of movement space (Asmussen, Przysucha, & Dounskaia, 2014). 

With this transition, there is an enhanced ability to adapt movements to variability or 

complexity in the environment. For example, a basic running or catching action in a closed 

environment is translated to open conditions where the action space is shared with other 

children or objects. 

One of the hallmarks of a healthy motor system in children is the ability to quickly 

update movement plans in the face of sudden changes (or perturbations) in the environment, 

like a moving object in the field of view or a physical force as when one’s arm is knocked in 

the act of reaching (Shadmehr et al., 2010). Neuro-computational models of human reaching 

posit that online motor control is critical for fluent and efficient movement. Underpinning 

online control are fast internal feedback loops which utilise predictive (or forward) estimates 

of limb position based on the expected sensory consequences of self-motion (Desmurget & 

Grafton, 2003). Once (actual) visual and proprioceptive signals become available to the 

nervous system at movement onset, they are compared with those predicted by a ‘forward’ 

model in real-time. Where discrepancies arise, error signals are generated and relayed back to 

the controller to be integrated with the unfolding motor command, allowing for rapid 
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adjustments to limb dynamics should they be necessary (Desmurget & Grafton, 2000). 

Impressively, these corrections can occur within 100 milliseconds (ms) (Castiello et al., 

1991) and support the stability of the motor system with minimal processing delay. 

While the nature of rapid online control during reaching and its neurocognitive bases 

have been well studied in adult populations (e.g. Gaveau et al., 2014; Pisella et al., 2000), 

only recently has it been addressed in children. While this work is in its formative stage, it is 

becoming clear that mechanisms linked to fast corrective processes undergo considerable 

changes between the ages of 6 and 12 years (Bard et al., 1990; Van Braeckel et al., 2007). By 

7 years of age, children are able to generate fast and accurate ballistic movements but are 

slower to integrate online feedback than older children, resulting in some inefficiency for 

more complex movements (Wilson & Hyde, 2013). At around 8-9 years of age, children are 

able to make earlier and greater use of sensory feedback (e.g. Chicoine et al., 1992) as both 

feedforward and feedback (predictive) control become better integrated, resulting in a steep 

improvement in their capacity to implement corrective actions. By 9-12 years, the nervous 

system is able to integrate predictive and sensory systems more smoothly, resulting in an 

adult-like ability to correct simple movements online (e.g. see Wilson & Hyde, 2013) while 

movement skills continue to develop into adolescence. 

Research on the development of brain morphology provides important insights into 

the timescales over which perceptual-motor systems unfold. At a neural level, studies in 

healthy adults have implicated the posterior parietal cortices (PPC) in corrective hand 

movement during the course of goal-directed action (Gréa et al., 2002; Reichenbach et al., 

2011; Reichenbach et al., 2014). In typically developing children, improvement in online 

control appears to coincide with patterns of neural maturation that include synaptogenesis, 

myelination, and formation of white matter networks (WMNs) (for reviews see Casey et al., 

2005; Chen, Liu, Gross, & Beaulieu, 2013; Collin & Van Den Heuvel, 2013; Spreng, 
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Sepulcre, Turner, Stevens, & Schacter, 2013; Sripada, Kessler, & Angstadt, 2014; Ve´rtes & 

Bullmore, 2014). Of the various cortical and sub-cortical networks, peak periods of 

myelination and synaptic pruning are observed to occur last in frontal and parietal zones, 

shaped by both external (i.e., experiential learning) and internal/maturational growth factors 

(Casey et al., 2008). Similarly, development of dorsal attention and fronto-parietal WMNs is 

maximal during older childhood (10-13 years of age) (Sripada et al., 2014). This same fronto-

parietal circuitry is critical to the control of goal-directed and target-directed motion (Gréa et 

al., 2002; Reichenbach et al., 2014). 

The broad theory of interactive specialization provides a parsimonious explanation of 

how different neural systems unfold and interact over time (Johnson, 2011; Johnson, 2013). 

Traditional models of brain-behaviour posit a number of separable brain systems that support 

a narrow range of behaviours, each unfolding under specific maturational timelines. In the 

case of motor control, for instance, this implies that specific processes/behaviours develop 

according to localised neural regions. However, neural networks are far more dynamic in 

their interaction than this model would suggest. A more parsimonious account is that separate 

systems (with individual growth trajectories) can impact the development of each system 

through a process of interactive specialization (Johnson, 2005, 2011; Johnson, 2013). To this 

end, recent behavioural and neurophysiological evidence indicates that the emergence of 

new, or more refined behaviour, is often the result of several brain regions/networks whose 

growth trajectories may differ, but yet support each other (Johnson, 2011). This theory has 

been applied quite persuasively in describing the development of behaviours as varied as 

linguistic processing, social cognition, and face perception (Johnson, 2011). I argue that co-

development of online motor control and executive function (EF) is another important case in 

point.  
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In typically developing children, I have shown that the expression of rapid online 

control – supported by dorsal stream and parieto-cerebellar networks – appears to be 

constrained by concurrent demands on frontal executive systems (i.e. Ruddock et al., 2014). 

For relatively simple movements to visual perturbation (without an executive load), the 

capacity to enlist online control improves rapidly between 6 and 9 years of age, followed by 

steady but more modest growth into older childhood (Wilson & Hyde, 2013). Importantly, 

online control is based on predictive estimates of limb position. As such, predictive control 

for simple movements is a landmark achievement of development over early and middle 

childhood, an ability subserved by posterior visuomotor networks including posterior parietal 

cortex (Shadmehr et al., 2010)
1
. In contrast, the pattern of development differs when online 

corrections must be implemented under an executive (inhibitory) load. For anti-reach 

movements, the performance of mid-age children reduced relative to that of older children 

aged 10-12 years (Ruddock et al., 2014) and was more similar to the performance of younger 

children (aged 6-7 years). 

The importance of EF to motor control is further supported by evidence that children 

with atypical motor development (i.e. Developmental Coordination Disorder; DCD) show 

deficits on tasks that involve the joint action of frontal executive and (dorsal) visuomotor 

systems. For example, in the case of the online control of reaching, recent research has shown 

that children with DCD are able to reach to stationary targets as efficiently as age-matched 

peers, but they take longer to correct arm reaching following unexpected target displacement 

mid-movement (Hyde & Wilson, 2011a). From a neuro-computational perspective, 

corrections of this type are predicated by the integrity of predictive control, an argument 

formalised as the internal modelling deficit (IMD) hypothesis of DCD (Adams et al., 2014; 
                                                           
1
 The dorsal visuomotor network comprises the posterior parietal cortex (PPC) and its reciprocal connections to 

frontal and cerebellar cortices (Shadmehr et al., 2010). PPC is a prime site for processing forward internal 

models; these neurons are capable of re-mapping their receptive fields in anticipation of the sensory effects of an 

impending eye movement or goal-directed reach, for example (Shadmehr et al., 2010). 
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Wilson et al., 2013). Hyde and Wilson (2013) also showed that for older children with DCD, 

the time taken to implement changes in movement trajectory mid-flight was similar to 

younger typically developing children (5-7 years old). This pattern suggested that poor 

predictive control in DCD may reflect a developmental delay of fronto-parietal systems rather 

than an abnormality.   

In a recent cross-sectional study (Ruddock et al., 2015), I compared the ability of 

children with and without DCD to enlist inhibitory control while implementing online 

corrections. Using an anti-jump reaching task, children were instructed to reach and touch a 

target location in the hemispace opposite a cued location. While replicating earlier results for 

the double-jump reaching task (DJRT), it was also shown that children with DCD were 

further disadvantaged by the inhibitory load of the anti-jump condition. Importantly, this 

effect was moderated by age: younger (6-7 years) and mid-age (8-9 years) children with DCD 

showed substantial difficulties coupling online and inhibitory demands on anti-reach trials, 

whereas older children with DCD (10-12 years) showed a similar pattern of performance to 

age-matched TDC. This pattern suggests that immature coupling of cognitive (i.e., inhibitory) 

and motor control systems is linked to the movement skill problems of younger and mid-age 

children, while a different mechanism may explain the persistence of clumsiness in older 

children. However, my ability to make strong causal statements about the interaction of these 

systems was limited by the cross-sectional design. This was the motivation for the present 

modelling of the development of cognitive and motor control functions using a sophisticated 

longitudinal design. 

5.1.1 Growth Curve Modelling of Typical and Atypical Motor Development 

Examining the motor performance of children longitudinally can be complicated by a 

range of factors including the amount of time needed to measure a suitable age, the cost of 

repeated testing, and attrition. However, recent innovations in statistical (multilevel) 
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modelling, particularly the use of growth curve modelling (GCM), has afforded a number of 

flexible longitudinal research designs in the area of child development. The influence of 

GCM is most apparent in the field of neural and cognitive development (e.g. Sansavini et al., 

2014; Wiebe, Sheffield, & Espy, 2012). This technique is well suited for a range of 

longitudinal designs and is known for its flexibility in modelling non-linear changes. For 

example, cohort-sequential (or accelerated) designs provide an extremely efficient means of 

modelling developmental processes over extended age periods, and are amenable to GCM 

techniques where growth functions are readily resolved. To my knowledge, GCM has yet to 

be applied to the development of motor control in children.  

The broad aim of my study was to model age-related change in the ability to couple 

online and executive control using a large sample of children. To capture developmental 

progression over the ages of 6-12 years, while limiting data collection to a 2-year period, I 

enlisted a cohort sequential design (CSD), and examined the growth patterns of TDC and 

DCD groups using model comparison techniques. CSDs enlist a set of adjacent age cohorts 

that are each tracked longitudinally over a limited time period, but in combination provide an 

extended age profile that can be analysed to reveal a common developmental trend (or growth 

function/curve). As such the combination of CSD and GCM is an extremely powerful and 

efficient means of examining developmental processes at various levels of function (neural, 

cognitive, and behavioural). Cohort sequential designs maximise the use of incomplete 

participant data and permit modelling of non-linear data distributions. In light of the 

suggestion that TDC experience rapid improvement in coupling online motor and executive 

systems during early and middle childhood, I predicted that a quadratic growth function 

would best capture developmental change. By comparison, I expected that the typical re-

organisation in the coupling mechanism around middle childhood would be disrupted in 
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children with DCD which would manifest as a linear trend on key chronometric and 

kinematic indices. 

5.2 Method 

5.2.1 Participants 

A group of 196 children was recruited for the study. Children from preparatory to 

sixth grade (or 6 to 12 years) were randomly selected from primary schools across two 

metropolitan cities. Figure 5.1 summarises the number of children assessed at each of five 

occasions of testing. 

 

 

Figure 5.1. Flow chart of participants available for testing at each time point across the study 

lifespan. 

 

The overall attrition rate between the first and last time of testing (2 years later) was 

34 children (17%); among those were 28 children who transitioned into secondary school 

after graduating from grade six. After screening assessments, the final sample size comprised 

109 TDC and 62 with DCD. Demographics for DCD and TDC groups are provided in Table 

5.1. 

  

Time 1 

•190 
children 

Time 2 

•177 
children 

Time 3 

•175 
children 

Time 4 

•170 
children 

Time 5 

•162 
children 
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Table 5.1 

Descriptive Statistics for Typically Developing Children (TDC) and Developmental 

Coordination Disorder (DCD) Groups at Time 1 

 Gender Age (years) Handedness 

 Girls Boys M SD Right Left 

TDC       

  Age 6 19 9 6.44 0.37 26 2 

  Age 7 14 7 7.47 0.31 18 3 

  Age 8 11 10 8.39 0.31 21 0 

  Age 9 6 12 9.45 0.27 18 0 

  Age 10 8 7 10.33 0.26 15 0 

  Age 11 3 2 11.35 0.17 4 1 

  Age 12 0 1 12.25 0.00 1 0 

DCD 
      

  Age 6 4 3 6.43 0.61 6 1 

  Age 7 4 9 7.53 0.31 13 0 

  Age 8 2 9 8.56 0.35 10 1 

  Age 9 4 7 9.50 0.32 11 0 

  Age 10 9 6 10.55 0.26 13 2 

  Age 11 4 1 11.28 0.17 4 1 

Note. TDC = Typically Developing Children; DCD = Developmental Coordination Disorder. 

 

Motor proficiency was assessed using the McCarron Assessment of Neuromuscular 

Development (MAND; McCarron, 1997). Consistent with the recommendations of the 

Diagnostic and Statistical Manual 5
th

 Edition (American Psychiatric Association, 2013) and 

meeting research criteria (Blank et al., 2012), children were classified as DCD if their level of 

movement skill was below expectations for age and they scored less than the 15
th

 percentile 

on a standardised test of motor proficiency (the MAND) at Time 1 (Noten et al., 2014; Piek 
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et al., 2006; Ruddock et al., 2015) (Criterion A), had motor skill deficits that interfered with 

daily home and/or school curriculum activities (Criterion B), and an onset of difficulties 

before school age (Criterion C) as indicated on a parent/teacher pre-screening questionnaire. 

Children were excluded if the pre-screening questionnaire showed evidence of a previous or 

current developmental disorder (ADHD, autism), physical disability or health impairment 

(i.e. asthma, visual impairment, epilepsy, etc…), and/or neurological condition; this met 

Criterion D, notionally. Typically developing children were identified by a score above the 

20
th

 percentile (Hyde & Wilson, 2013). Since children were recruited from mainstream 

primary schools and were not attending remedial classes for academic skills, it was assumed 

that IQ scores were within normal range. Informed consent was obtained from all 

participants, parents and principals involved in the study and relevant ethics clearances were 

granted from government and tertiary institutions. 

5.2.2 Apparatus 

A Double-Jump Reaching Task (DJRT) paradigm was used to assess online control. 

The task was developed using VIRTOOLS Software (3DVIA, 2010) on a PC laptop running 

Windows XP and projected on a black Samsung 40-inch touch screen with black bezel. The 

screen was placed on a height-adjustable table and positioned in portrait orientation, raised 

10° from the horizontal plane. 

Stimuli were presented on a dark background in order to minimise contrast 

interference. The display consisted of a round green ‘home base’ (2.5cm in diameter), placed 

5cm from the near edge of the screen and centred on a sagittal plane. Three yellow cue targets 

were positioned at -20°, 0°, 20° from a vertical line drawn directly from home base. To 

accommodate age-related differences in reach, the distance to each possible target location 

was scaled to 60% of average arm length based on age norms for young children (25cm; 6-7 
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years), mid-age children (28cm; 8-9 years), and older children (30cm; 10-12 years) (Gerver et 

al., 1989). 

The Zebris CMS10 (Noraxon, 2010) system was used to record arm reach and 

sampled at 200Hz. The device was clamped to the table and positioned at a height of 1 meter 

above the middle of the screen. A thin (1mm) cord, 2m in length, extended from the Zebris 

receiver to a small ultrasonic sensor (7mm in diameter) which was attached via an adhesive 

strip to the child’s dominant index finger; the cord was also tethered to the wrist using an 

elastic band.  

5.2.3 Procedure 

The study was conducted over a two year period, with five occasions of testing each 

separated by six months. Data from Study 1 and 2 (Chapters 3 and 4) were included in the 

growth curve modelling. At each school, a quiet office was used for assessments, free from 

environmental distraction. Each room was darkened to minimise use of visual feedback from 

the moving hand during performance of the DJRT (Farnè et al., 2003). Hand preference was 

determined using the manual dexterity items of the MAND, and corroborated by both the 

child and by observation of hand use during writing. Each child was positioned directly in 

front of the screen as the kinematic sensor was attached to the dominant hand index finger 

and task instructions were explained. 

Administration of the DJRT occurred across two sessions with the order of 

administration randomised: a standard ‘jump’ condition and a modified ‘anti-jump’ condition 

(see Figure 5.2 for a schematic of the conditions and trial types). 

  



Chapter Five    Study 3 

131 
 
 

Condition A (standard jump trials) 

 

Non-jump trial 

 

 
 

The central target remains lit until 

touchdown. 

Jump trial 

 

 
 

Target jumps  to either peripheral 

location at finger lift off  
 

 

 

 

 

Condition B (with anti-jump trials) 

 

Non-jump trial 
 

 
The central target remains lit until 

touchdown. 

Anti-jump trial 

 

 
Reach to the contralateral location 

is required.  
 

 

 

Figure 5.2. Schematic overview of the double jump reaching task showing trial types across 

two conditions. 
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On the jump condition, children held their index finger on home base prior to 

commencing each trial. The imperative stimulus was a doubling in luminance of one of the 

two peripheral target locations, with simultaneous extinction of the home base. Each trial was 

programed with a random delay of 500-1500 ms to prevent children from anticipating change 

in target illumination. Children were also instructed to follow the target and touch its centre 

as quickly and accurately as possible. A successful trial occurred when the cued target 

location was touched within its circular boundary which extinguished the light, accompanied 

by an auditory tone to indicate trial completion. For the jump condition, on 80% of all trials, 

the middle target remained lit until touched (non-jump trial) while on 20% of all trials the 

location of the target shifted (or jumped) at movement onset to either the left or right 

peripheral location (jump trial). At the completion of each trial, children returned their finger 

to the home base, ready for the next trial. The anti-jump condition was administered as a 

separate task but used the same method described for the jump condition; however, when 

target displacement occurred to a lateral location, children were instructed to reach and touch 

the circle on the opposite side (anti-jump trial). 

Prior to each condition, the researcher demonstrated the action required for non-jump, 

jump, and anti-jump trials. Children were permitted 10 practice trials to familiarise 

themselves with the task; in rare cases children were given extra trials, if needed. Each 

condition comprised 80 trials administered in two blocks of 40 trials each (32 non-jump and 8 

jump/anti-jump), programmed in a pseudo-random order across left and right target locations. 

Between conditions, children were provided with a two minute rest. Total administration time 

of the task was approximately 15-20 minutes per child. 

5.2.4 Measures 

For all trials, movement time (MT) was recorded on the DJRT and only successfully 

completed trials were included in the analyses. Across the five test points, an average of 9 
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(14%) non-jump trials and 3 (18%) jump/anti-jump trials were removed from the DCD group, 

and 7 (11%) and 2 (13%) respectively from the control group. The effect of inhibitory load 

on online control was assessed using the difference in MT between anti-jump and jump trials 

(AJMTdiff). For anti-jump trials, there are two time points at which trajectory corrections 

occur. The first, automatic correction (ToC) was defined as the point at which the hand 

deviates from its dominant trajectory to the central target location and toward the peripheral 

cue (Hyde & Wilson, 2011b). A second correction (ToC2) then occurs when the hand is 

directed away from the cued location and toward the contralateral target location (Cameron et 

al., 2009). ToC2 reflects the integration of inhibitory control as part of the corrected 

movement plan as the hand is redirected toward the hemispace opposite the original cue. 

Both AJMTdiff and the interval between the first (automatic) corrective movement and the 

second (inhibitory) correction of hand movement (i.e., ToCdiff) reflect the ability to enlist 

inhibitory control in the context of an online motor correction. All data were filtered through 

a fourth order Butterworth filter with a cut off of 10Hz. Movement trajectories were plotted 

on a 2D Cartesian plane using MATLAB software (Mathworks, 2010) and ToC and ToC2 

values were determined by two independent raters (Ruddock et al., 2014). 

5.2.5 Design and Analytic Approach 

I combined a cohort-sequential (longitudinal) design (CSD) and growth curve 

modelling (GCM) to examine developmental trends in the ability to couple inhibitory and 

online control systems over the course of child development. A CSD – or accelerated design 

– enlists separate but overlapping age cohorts to test an overarching developmental trend 

(Duncan et al., 2006). In my study, children were allocated to one of the 13 age cohorts 

(separated by 6-month increments), which together spanned a 6-year period from 6- to 12-

years of age. CSDs maximise the use of incomplete participant data and has been shown to be 

more powerful and efficient than single-cohort designs in generating developmental data on 
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specific age groups (Grammer et al., 2013). As well, GCM offers a number of major 

advantages over traditional methods of analysing longitudinal data (such as repeated-

measures ANOVA): (i) change in motor and cognitive functions over time is analysed at both 

a population and individual level which is consistent with theories of developmental 

psychology; (ii) flexibility is afforded in the treatment of the time variable (i.e., each child 

does not have to contribute measures over the entire age range of interest); (iii) missing data 

are accommodated readily under the assumption that they occur randomly; and (iv) modelling 

can be generalised to non-normal data. Growth curve modelling, in particular, enabled us to 

examine (predicted) non-linear developmental trajectories and differences between TDC and 

DCD groups (Bryk & Raudenbush, 1992; Singer & Willett, 2003). 

Growth curves were analysed at two main levels: Level 1 examined within-person (or 

individual) change using ‘age’ as a predictor variable. This yields individual estimates for 

intercept and slope on the main outcome measures. All individual estimates are then 

combined for each age cohort. Cohort-specific trajectories are also plotted and 95% 

confidence intervals were inspected for overlap at relevant age points. Possible cohort 

interactions with different change trends were tested using convergence estimates. A common 

model was then tested under the assumption that members of all 13 age cohorts follow a 

single underlying developmental trajectory (Duncan et al., 2006). For each dependent 

variable on the DJRT, linear, quadratic, and cubic growth patterns in the TDC and DCD 

samples were tested.  

While there is some debate on the minimum number of observations per participant 

that are required to maintain adequate levels of model fit (Curran, Obeidat, & Losardo, 2010), 

I included all available data in order to ensure the most valid representation of my participant 

groups (Miers, Blöte, De Rooij, Bokhorst, & Westenberg, 2013). A minimum of three 
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observations per cohort was set so as to prevent over- or under-inflation of mean values at 

each test point. 

Outliers were analysed using a combination of standard regression diagnostics and 

influence statistics, which is designed to optimise the model fit (Schabenberger, 2004). 

Because extreme values can influence different parameters within the multi-level model 

(including estimates of fixed effects, covariance parameters, and fitted and predicted values), 

removal of data points based on standardised residuals alone can compromise model fit. As 

such, outliers were removed when two conditions were met: (i) standardised residual value > 

+/- 3.0 and (ii) analysis of individual and multiple data points revealed large values on 

influence statistics (e.g., restricted likelihood distance) (Schabenberger, 2004). 

Data analysis was conducted using the PROC MIXED procedure of SAS version 9.3 

software (SAS Institute, 2008), running on a Windows 7 platform. This procedure estimates 

for each child, individual curve functions (i.e., slope and intercept) and, using a random 

effects approach, models the effect of cohort, age and their interaction, guarding against 

potentially high correlations from repeated measures of the same individuals over time 

(Anderson et al., 2009). Fit and comparison between models was assessed using goodness of 

fit indices, specifically the Bayesian Information Criterion (BIC). This index is useful for 

comparing different models, with smaller values indicating better fit and a more 

parsimonious model, regardless of the absolute value. For each group (TDC and DCD), the 

trajectory of each outcome variable (AJMTdiff and ToCdiff) was tested using polynomial 

analyses that assessed linear, quadratic and cubic trends in an unstructured covariance matrix. 

In this analysis, model parameters (i.e. age, cohort, and age*cohort) were tested for their 

sequential effect to determine the most appropriate growth curve solution (i.e. linear, 

quadratic, or cubic) using -2log likelihood statistic. 

5.3 Results 
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5.3.1 Anti-jump Movement Time Difference  

5.3.1.1 Descriptive overview. Plots of cohort values of AJMTdiff for control 

and DCD are presented in Figure 5.3. Mean values for age (collapsed across cohorts) are 

presented in Table 5.2. 

 

Table 5.2 

Mean Values for AJMTdiff at each Age for TDC, DCD and Total Group 

 TDC DCD Total Group TDC vs DCD 

Age Group M (SD) M (SD) M (SD) d 

Age 6 407 (200) 444 (175) 412 (194) .30 

Age 7 334 (168) 441 (184) 360 (177) .63 

Age 8 278 (136) 326 (149) 295 (142) .65 

Age 9 273 (131) 293 (151) 281 (139) .14 

Age 10 215 (93) 285 (126) 241 (112) .66 

Age 11 164 (92) 203 (137) 182 (116) .34 

Age 12 117 (72) 119 (71) 117 (69) .03 

Note. All values are in milliseconds. AJMTdiff = Anti-jump Movement Time Difference 

Score; TDC = Typically Developing Children; DCD = Developmental Coordination Disorder. 

 

Three children from the DCD group (one each from cohorts 1, 2, 3) were identified as 

outliers and removed from subsequent analyses. The plots show that difference scores for 

both groups decreased monotonically across the age, reflecting quicker response times across 

childhood on the difference between jump- and anti-jump trials. 
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(a) TDC 

 
(b) DCD 

 
Figure 5.3. Mean AJMTdiff values for each age cohort for (a) TDC and (b) DCD groups on 

the double-jump reaching task. Individual lines represent age cohorts. 
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 5.3.1.2 Model fitting analysis. For the TDC group, the best fitting growth curve 

included quadratic growth terms, indicating that TDC showed quick improvement in online 

corrections under tight inhibitory constraints with development, but growth decelerated over 

time into later childhood (−2LL = 4808.2, BIC = 4839.8). Adding a cubic term to the model 

did not result in a better fit (refer to Appendix A for -2log likelihood values generated for 

linear, quadratic and cubic trends of AJMTdiff and ToCdiff analyses). 

In contrast, for the DCD group, the best fitting growth curve was linear, suggesting 

that there was only generalised improvement across childhood (−2LL = 2921.1, BIC = 

2929.9). Adding quadratic and cubic terms to the model showed no improvement to the 

model fit. 

5.3.2 Time of Correction Difference 

5.3.2.1 Descriptive overview. Plots of cohort values of ToCdiff for control and 

DCD are presented in Figure 5.4. Mean values for ToCdiff at each age are presented in Table 

5.3. 
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Table 5.3 

Mean Values (SD) for ToCdiff at each Age for TDC, DCD and Total Group 

 TDC DCD Total Group TDC vs DCD 

Age Group M (SD) M (SD) M (SD) d 

Age 6 326 (78) 354 (16) 329 (73) .38 

Age 7 279 (85) 296 (64) 283 (80) .21 

Age 8 221 (67) 240 (63) 227 (66) .29 

Age 9 202 (66) 215 (62) 207 (65) .20 

Age 10 166 (49) 194 (64) 177 (57) .49 

Age 11 139 (48) 157 (49) 148 (49) .37 

Age 12 106 (26) 129 (31) 121 (31) .25 

Note. All values are in milliseconds. ToCdiff = Time of correction difference score; TDC = 

Typically Developing Children; DCD = Developmental Coordination Disorder. 

 

The plots show that time difference between ToC and ToC2 for both groups 

decreased across age, resulting in faster response times on anti-jump trials to engage a second 

(more deliberate) corrective movement. 
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(a) TDC 

 
(b) DCD 

 
Figure 5.4. Mean ToCdiff values for each age cohort for (a) TDC and (b) DCD groups on the 

double-jump reaching task. Individual lines represent age cohorts. 
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(a) AJMTdiff 

 
(b) ToCdiff 

 
Figure 5.5. Aggregated plots comparing TDC and DCD groups on (a) AJMTdiff and (b) 

ToCdiff 
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 5.3.2.2 Model fitting analysis. The pattern of results for ToCdiff was similar to 

AJMTdiff. For the TDC group, the best fitting growth curve also included quadratic growth 

terms, indicating a steady rate of improvement on this measure of coupling up to middle 

childhood, followed by a shallower rate of improvement into later childhood (−2LL = 4374.6, 

BIC = 4400.7). The addition of a cubic term to the model did not result in a better fit. 

For the DCG group, the best fitting curve solution was linear, indicating a shallow but 

consistent rate of improvement across childhood (−2LL = 2635.5, BIC = 2934.0). Adding 

quadratic and cubic terms to the model did not improve model fit. 

5.3.3 Summary of Trend Analyses 

Overall, both TDC and DCD groups showed an improvement in performance across 

childhood on key chronometric and kinematic measurements. For TDC, a curve with 

quadratic terms was found to be the best fit for AJMTdiff and ToCdiff, indicating that 

performance improves rapidly up until middle childhood followed by a more gradual but 

consistent improvement after this period. For the DCD group, a linear function provided the 

best fit on both AJMTdiff and ToCdiff; however, the rate of improvement was more gradual in 

comparison to the TDC group. On AJMTdiff, the level of performance of 12 year old children 

with DCD was within 2 ms of TDC (p > .10) while on ToCdiff, the difference was 23 ms (p > 

.10). 

5.4 Discussion 

 The aim of this study was to model age-related changes in the coupling of online and 

executive control. Using a CSD that spanned the 6-12 year-old developmental period, I 

examined the ability of TDC and DCD groups to perform online corrections under inhibitory 

constraints (i.e., anti-reach performance) using a double-jump paradigm. Overall, the pattern 

of performance for both groups showed improvement on key metrics across childhood. 

However, analysis of growth trajectories using GCM highlighted distinct fit solutions for 
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TDC and DCD groups. For TDC on both AJMTdiff and ToCdiff, a quadratic trend was the 

most appropriate fit with evidence of rapid improvement in anti-reach performance up until 

middle childhood (around 8-9 years of age), followed by a more gradual level of 

improvement into late childhood and early adolescence. Both measures indicate the level of 

proficiency when enlisting inhibitory control to re-direct (online) a reaching movement away 

from a compelling visual cue. By comparison, for the DCD group, linear growth curves were 

found on both AJMTdiff and ToCdiff variables. A more moderate slope/linear function in 

DCD relative to TDC indicates a developmental delay (or more gradual unfolding) of the 

coupling between inhibitory and rapid online control systems. The implications of these 

results are taken up for discussion below. 

5.4.1 Performance of Typically Developing Children 

 For TDC, developmental trajectories using GCM were similar on each of the two key 

performance metrics. Polynomial analysis on AJMTdiff revealed that a quadratic growth 

curve was the most optimal fit. Here relative fit statistics (i.e., -2log likelihood and BIC) 

showed that adding a quadratic term to the model produced lower fit metrics and improved 

the model estimate. This method of model comparison is a valid means for comparing growth 

profiles (Zhang & Wang, 2009), and provides confidence in the pattern of results. Likewise, 

for ToCdiff – also measuring the efficiency of the two-step correctional process for anti-jump 

trials – a quadratic trend was shown. In response to visual perturbations performed under an 

executive load, growth curves on these chronometric and kinematic indices show a greater 

reduction of AJMTdiff (134 ms) and ToCdiff (124 ms) in TDC between 6 and around 9 years 

of age, after which improvement continues, but at a reduced rate, for children 10-12 years of 

age (98 ms and 60 ms respectively). This pattern is suggestive of an important transition in 

the coupling of executive (inhibition) and motor systems, particularly during middle 

childhood; it represents a time when predictive (online) control is being re-organised to better 
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accommodate and support movement complexity and adaptability (Desmurget & Grafton, 

2003; Hyde & Wilson, 2011b). 

 It is no coincidence that the coupling between online and inhibitory control systems 

emerges on a similar timescale to that of core executive processes per se (i.e., task switching, 

executive attention, and inhibition). With development, executive control exerts more ‘top-

down’ influence on the goal-directed behaviour of children, enabling the organisation of 

more flexible and complex responses in novel situations (Diamond, 2013). This progression 

is highlighted by mainstream research into children’s cognitive development showing fast 

improvement of EF across primary school years, with some variation in the timescales of 

development between different aspects of EF (Anderson, 2002; Garon et al., 2008). These 

trajectories of change with age are also mirrored in recent morphological analyses of 

structural brain networks, also using growth curve modelling (Chen et al., 2013). 

 The modelling of longitudinal data here for the TDC group are also consistent with 

and extends on a recent cross-sectional study (Ruddock et al., 2014). In the first 

developmental study of its type investigating the coupling of inhibitory and online control, I 

showed that while children aged 8-9 years were able to implement standard online 

corrections on a DJRT with a level of efficiency comparable to that of older children (10-12 

years), their performance on anti-jump trials was compromised and resembled that of 

younger children (6-7 years). The implication here was that predictive control shows rapid 

improvement up to middle childhood for simple online corrections but when inhibitory 

demands are superimposed on the task, performance is compromised, suggesting poor 

coupling. My modelling work here is remarkably consistent with this pattern in showing a 

quadratic fit to be optimal in describing change with age. This hypothesis is consistent with 

other work showing reasonable levels of response inhibition per se by middle childhood, but 

only for simple tasks (Diamond, 2013; Iani, Stella, & Rubichi, 2014; Luna et al., 2004). 
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 In terms of neuro-maturational development, levels of synaptic proliferation are 

particularly high during early and middle childhood, while rates of development in WMNs 

are maximal during later childhood—these changes underpin the emerging capacity for 

frontal executive control (Johnson, 2013). Similarly, recent advances in brain network 

mapping, particularly ‘growth connectomics’ (Ve´rtes & Bullmore, 2014), indicate 

significant changes in brain architecture over childhood and associated graph metrics. 

Throughout childhood and adolescence, brain networks mature gradually from local, 

proximity-based connectivity patterns, to a more spatially distributed and topological 

integrative organisation supporting higher cognitive functioning. In other words, WMNs are 

reshaped from early childhood to adolescence with increased global integration and 

decreased segregation. The connections between major modules of the connectome increase 

with age as long fibre pathways link the modules together. For example, Chen and colleagues 

(2013) showed that most changes in WMNs occur during late childhood (10-13 years); that 

is, specific modular hubs responsible for visual processing, EF, multisensory integration, and 

a so called default module are established during childhood, but are refined into 

adolescence. These changes would support greater functional coupling between fronto-

parietal systems, for example, consistent with the pattern of changes I observed for older 

children on the anti-jump task. 

 In the case of flexible online control, the younger child must learn to couple 

(emerging) frontal executive systems to the more automatic online control systems of the 

dorsal stream, e.g., the fast response visuomotor channels of the premotor-parietal axis 

(Pisella, Binkofski, Lasek, Toni, & Rossetti, 2006). Hence, I expected to see slower 

performance around this period of development. The growth pattern on the kinematic 

measure of anti-jump performance (ToCdiff) also supports the hypothesis that younger and 

mid-aged children are less efficient at implementing online control when demands on 
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inhibition are imposed. After a period of re-organisation during middle childhood, there was 

continued and progressive maturation of this coupling into older childhood, providing a 

critical test of the patterns I observed when age groups were compared cross-sectionally 

(Ruddock et al., 2015).  

5.4.2 Coupling of Online Control and Inhibitory Systems in Children with DCD shows 

atypical Growth Patterns 

 In general, the DCD group performed less efficiently than TDC as reflected by their 

scores on both AJMTdiff and ToCdiff. Inspection of the cohort plots indicates slower and more 

variable performance in younger and mid-age children with DCD compared with TDC up to 

around 10 years of age, a pattern confirmed by significance tests (Tables 7 and 8). Consistent 

with a visual inspection of trends on the chronometric (AJMTdiff) and kinematic (ToCdiff) 

measure of coupling – i.e., steady reduction on difference scores with age – a model 

comparison of polynomial trends showed that the best fitting growth curve was linear as 

indicated by -2log likelihood and BIC fit metrics. By late childhood, performance metrics for 

the DCD group were within the range observed for the TDC group. In particular, by 12 years 

of age, the time between TDC and DCD groups for AJMTdiff (2 ms) was much closer than 

those seen in ToCdiff values (23 ms difference). These data support, in part, my interpretation 

that children with DCD require a more extended period of development to effectively couple 

online motor control and executive systems when completing anti-reach movements. 

 In terms of neural development, network connections between frontal and parietal 

systems that are necessary to support predictive and executive control and their coupling 

appears to require additional time to develop in DCD. This is consistent with some recent 

fMRI data showing hypoactivation along dorsal stream routes in children with DCD 

(Kashiwagi, Iwaki, Narumi, Tamai, & Suzuki, 2009). Using a visually-guided tracking task 

that required high levels of predictive control, these authors showed under-activation in PPC 
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and IPL in DCD as compared with controls. Structural MRI studies in ADHD (Sripada et al., 

2014) and autism spectrum disorders (Travers et al., 2015) also show growth patterns that 

suggest developmental lags on cognitive and behavioural functions. For example, individuals 

with autism display a negative correlation between age and integrity of their white matter 

connections (for reviews see Dennis & Thompson, 2014; Travers et al., 2012). It is possible 

that similar lags in neural development may underpin the difficulties that younger and mid-

aged children with DCD have in coupling online and executive control systems. By 

comparison, it appears that the motor difficulties experienced by the older children may not 

be a function of the ability to couple online motor and inhibitory control but rather something 

else related to this mechanism. 

 This raises the issue of what exactly does explain the persistence of clumsiness in 

older children with DCD. It may be the case that patterns of physical participation learned 

during earlier childhood are particularly hard to change; without adequate participation (viz 

learning experiences) there are obvious limits on the acquisition of skill. However, if the 

underlying control systems for motor prediction and coupling are emergent by older 

childhood, then one could argue that the motor system would be responsive to various forms 

of intensive training during this period. In the current study, the fact that older children with 

DCD showed similar difference scores to TDC does not suggest that ubiquitous functional 

coupling exists within this age group. In cases where older children with DCD do show poor 

coupling of control systems, a recent systematic review suggests that improving motor 

performance may be best addressed from task-oriented approaches (Smits-Engelsman et al., 

2013). 

5.4.3 Interactive Specialization is a Parsimonious Account of Behavioural Development 

 The pattern of performance on both key metrics for TDC reflects the time course over 

which different cortical zones unfold during child development. Developmental research 
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shows that cognitive processes emerge over different time intervals, each with their own 

growth trajectory (Johnson, 2005). However, each emerging process may take some time to 

be integrated efficiently with existing processes, whether they are perceptual-motor or other. 

In the case of EF, behavioural changes are associated with an increase in density of the 

cortical structures tied closely to the prefrontal cortex (PFC). When the raw architecture of 

neural networks first emerge there tends to be an adjustment (or re-organisation) phase in 

which new skills are incorporated by the performer (Johnson, 2013). In the case of coupling 

motor and cognitive processes, efficiency is the result of a combination of neural growth and 

experience-dependent plasticity along fronto-parietal and other associated networks (Casey et 

al., 2008; Johnson, 2011). My growth curve modelling suggests that only by late childhood a 

high degree of efficiency is achieved in TDC, and that a period of re-organisation is needed 

during middle childhood. Diffusion tensor imaging studies (Collin & Van Den Heuvel, 2013; 

Tymofiyeva et al., 2013) also highlight the shift neural networks make from supporting 

proximally based regions to more expanded, distributed networks that are involved with 

specialised cognitive control. My work here shows that this broad model of neuro-

behavioural development (i.e., interactive specialization) can be applied to cognitive-motor 

systems and their coupling, and points to its applications in other areas of behaviour where 

multiple systems are involved to enact increasingly complex skills. For example, examining 

patterns of development in kinematic markers necessary for fluid handwriting (Jolly & 

Gentaz, 2014; Jolly, Huron, & Gentaz, 2014). It is not surprising, then, to see non-linear 

changes in TDC with regards to performance on step-perturbation tasks; novel skills (i.e. 

engaging inhibitory control when online corrections are performed) are learned and 

incorporated into the motor system. 

 In terms of atypical development, the linear trends from the DCD group lend support 

to a delay in general growth patterns (Hyde & Wilson, 2013). A naive assumption here would 
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be that children with online motor control deficits should eventually show age appropriate 

skills once the underlying systems emerge. However, simply leaving poor motor coordination 

untreated, certainly in the case of younger and mid-age children with DCD, should not 

suggest spontaneous acquisition of motor skills and the absence of intervention; research 

shows that untreated problems persist into adulthood (Cousins & Smyth, 2003; Kirby et al., 

2011; Missiuna et al., 2007). The question here is what type of intervention (e.g., a 

combination of motor-cognitive approaches) is best suited when multiple systems may not be 

interacting as expected. 

5.4.4 Limitations 

 No longitudinal study is immune from the threat of attrition. I acknowledge that using 

any type of value estimation (e.g. multiple imputations) may be advantageous in certain 

circumstances where missing data occur randomly, and in minimal proportions, to the overall 

date set (Graham, 2009). However, using such techniques on a large data set, particularly for 

developmental data where even simple behavioural measures can show large variance 

(Wilson et al., 2013), would likely provide estimated values that are inaccurate and could 

seriously undermine the validity of individual scores. In addition, a common threat to the 

internal validity of any study with recurring measurements is practice effects which have the 

potential to influence results As tracking maturational changes requires repeated assessment, 

it is possible participants become familiarised with assessment materials and procedures (i.e., 

items on the MAND and conditions of DJRT), thus improving their performance over 

successive measurement points. However, to minimise this threat, I counterbalanced 

conditions on the DJRT. While this may not completely resolve the issue of assessment 

familiarisation, future studies could use parallel versions of the test. 

 Finally, one of the assumptions about EF and its role to ROC is that other EF 

processes are sufficiently mature enough to support other behaviours. In future, it may be 
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worth modelling other measures of EF (e.g., switching, update), while also testing for IQ 

levels (as I assumed all children were within normal range based on the school they were 

recruited from), and try to co-vary online control metrics in an effort to identify risk factors in 

children who have deficits across cognitive domains and help streamline interventions in 

goal-directed action and skill. 

5.4.5 Conclusion 

 Modelling of this longitudinal dataset has extended my cross-sectional research and 

confirmed that the real-time coupling between online control and inhibitory systems follows 

an atypical pattern in DCD. For children without motor impairment, the pattern of 

performance on AJMTdiff and ToCdiff variables conformed to a quadratic growth curve, with 

evidence of re-organisation of the coupling around middle childhood. Conversely, children 

with DCD displayed a more protracted period of development across both measures, as noted 

from the linear trajectories. Interpreted from the perspective of interactive specialization, 

multiple networks appear to support the fine tuning of anti-jump performance across 

childhood for TDC while more time is required to integrate the function of control systems in 

children with DCD. 
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6.1 General Discussion 

6.1.1 Overview 

 The aim of this thesis was to clarify how the expression of rapid online motor control 

(ROC) throughout the primary school period (6-12 years) was constrained by developing 

executive (inhibitory) systems, in both TDC and children with DCD. A double-jump reaching 

paradigm was used to examine the development of online motor control and the supporting 

process of predictive (internal) modelling. This account of motor behaviour is based on the 

assumption that a functional ROC system uses a predictive estimate of limb positon to correct 

movements as they unfold in real time. To achieve this aim, I conducted three studies: Study 

1 (Chapter 3) used a cross-sectional approach to investigate the degree to which executive 

systems constrain the online control of reaching in typically developing children aged 

between 6 and 12 years. A key finding from this study was that middle childhood (around 8-9 

years) marks a period of re-organisation in the coupling of control systems to perform more 

complex reaching movements (i.e., online corrections coupled with an inhibitory load). 

 In light of previous research which has shown that both online control and executive 

systems may be compromised in children with atypical motor skills (i.e., DCD), Study 2 

(Chapter 4) implemented a cross-sectional comparison between TDC and children with DCD. 

The results of this study suggested that the ability to couple these two systems follows 

different developmental trajectories. Specifically, children with DCD were disadvantaged 

performing online corrections, and showed further problems with performance when an 

inhibitory load (viz anti-jump trials) was imposed. Importantly, this effect appeared to wane 

into older childhood. A key limitation of Study 1 and 2 was that both were cross-sectional, 

which placed limits on causal inferences that could made from the data. To address this 

limitation, a longitudinal investigation was conducted in Study 3 (Chapter 5) to assess how 
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online and inhibitory control systems interact together over the course of child development. 

Using growth curve modelling techniques, longitudinal data showed a generalised delay in 

the growth trajectory describing the coupling of online and inhibitory control in children with 

DCD, unlike that of TDC who showed evidence of improvement during early childhood (6-9 

years), followed by more refined performance into older childhood (10-12 years). 

 In this final chapter, I begin with a review of the three studies that investigated the 

development in children of coupling between ROC and inhibitory systems. I discuss the 

results of these studies in relation to recent empirical work in motor development and map 

the important theoretical contributions of this thesis to our understanding of how online and 

executive control systems interact in TDC and children with DCD. These findings are 

interpreted using a neuro-developmental framework and the theory of interactive 

specialization (IS; Johnson, 2011) which discusses the neuro-behavioural underpinnings of 

online control, EF and their coupling over the course of child development. I then consider 

the clinical implications of the findings of this thesis for children with impaired motor 

function (or DCD), who also manifest underlying issues of impaired predictive control, 

executive dysfunction, and their coupling. I conclude by discussing the limitations of this 

research and possible avenues for future research. 

6.1.2 Summary of Studies 

 6.1.2.1 Study 1 - Cross-sectional investigation of rapid online control and 

inhibitory systems across typical child development. The primary school years are a 

time of marked improvement in a child’s ability to correct their reaching online. Current 

neuro-behavioural frameworks and the theory of interactive specialization (Johnson, 2005, 

2011) highlight the role of co-occurring neuro-cognitive systems on behavioural 

development. The main tenet of this theory is that behaviour can be supported by a number of 
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(initially) separable neural networks whose activity becomes more coordinated with time and 

experience. From this perspective, I was interested in determining how online control is 

constrained by the development of executive systems which is also known to undergo 

considerable maturation throughout childhood. Age-related differences in performance, 

across the 6-12 year span, were assessed on a DJRT. The main aims of Study 1 (Chapter 3) 

were to examine how children corrected their arm movement mid-flight during a step-

perturbation paradigm (viz online control), and how increasing executive load might further 

constrain their response to a target shift. 

 Children were split into three age bands: younger (6-7 years), mid-age (8-9 years), or 

older (10-12 years) to investigate how the changing nature of online control is impacted by 

developing executive systems. Performance was compared as a function of trial type on the 

DJRT: non-jump, jump, and anti-jump trials. Experimentally, anti-jump trials represented the 

ability to inhibit an arm reach to an invalidly-cued yet compelling target while implementing 

a corrective movement mid-flight. I found that when demands for online control were low 

(non-jump), all children were able to perform simple aiming movements with good control. 

That is, similar movement times were found across the three age-groups and suggest that the 

ability to execute direct aiming movements is well developed by 6 years of age (Chicoine et 

al., 1992; Fuelscher, Williams, Enticott, & Hyde, 2015; Fuelscher, Williams, & Hyde, 2015). 

However, when online corrections were required for perturbation (jump) trials, younger 

children were notably slower to complete the movement and correct their reach compared 

with mid-age and older children; the latter two groups were not shown to differ. Importantly, 

when an inhibitory load was superimposed onto corrective actions (as per anti-jump trials), it 

was found that the performance of mid-aged children was compromised relative to the older 

group and, indeed, conformed to a pattern similar to that of younger children. 
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 Results for the jump condition replicate previous work showing that the ability to 

correct movements online is inefficient during early childhood, yet improves substantially by 

middle childhood (Fuelscher, Williams, & Hyde, 2015; Wilson & Hyde, 2013). The fact that 

mid-aged children were able to implement online adjustments to jump trials as quickly as 

older children is evidence of a well-developing predictive control system by the age of 9 

years. However, my research extends these earlier findings by showing that when an 

inhibitory (executive) load was superimposed on the act of completing online corrections (as 

per anti jump), the efficiency of corrective reaching in middle childhood was comparable to 

that of younger children. This suggests a non-linear pattern in the coupling of online control 

and inhibitory systems over childhood. The performance of children at middle childhood was 

affected to a greater extent than that of older children on anti-jump trials. This anti-jump 

reaching profile suggests that despite the rapid unfolding of executive systems during middle 

childhood, coupling between online and inhibitory control is poorly developed, and that the 

ability to integrate fronto-inhibitory and predictive control during action may require an 

extended period of development for more fluid and adaptive reaching. This study was one of 

the first to show age-related change in the relationship between motor control and executive 

systems in TDC. Study 2 extended this work to the examination of motor-cognitive relations 

in children with atypically developing motor skills where impaired ROC and inhibitory 

control have been shown independently in studies of DCD (e.g., Hyde & Wilson, 2011a, 

2011b; Hyde & Wilson, 2013). Next, I used a cross-sectional study to assess online control in 

DCD on the DJRT and the conjoint effect of an added inhibitory load on their performance. 

 6.1.2.2 Study 2 - Performance of online corrections with inhibitory constraints in 

atypically developing children.  This study (i.e., Chapter 4) used the same paradigm and 

method as Study 1 (Chapter 3). The focus, however, was to assess how children with DCD 

performed online corrections when an inhibitory load was superimposed on a double-jump 
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paradigm. Based on previous research that has highlighted a deficit in predictive modelling 

(e.g., Hyde & Wilson, 2013), and a reduced ability to use inhibitory control across a range of 

tasks (e.g., Mandich et al., 2002), I expected to see a pronounced slowing of movement time 

and later corrections to reach trajectories on anti-jump trials, compounding the control issues 

seen on standard jump trials. The underlying theory supporting these predictions was that a 

reduced capacity to correct movements online (previously reported as poorer performance on 

jump trials) would be exacerbated when children with DCD were required to couple an 

already inefficient motor system with inhibitory control subserved by frontal networks. In 

other words, the ability to inhibit corrective movements towards a pre-potent stimulus and 

move to an alternate (uncued) target location (as per anti-jump trials) would be further 

compromised. Deficits in performance were predicted to manifest as larger MT difference 

scores between jump and anti-jump trials (AJMTdiff), and delayed time to correction. 

Children were classified according to skill group based on their motor proficiency on 

the clinical motor test battery (i.e. MAND): either TDC or DCD. Additionally, children were 

included in the DCD group if their deficit of motor skills interfered with daily activities, were 

evidence by school age, and reported no previous neurological, developmental or physical 

condition. As per Study 1 (Chapter 3), children were also divided into three age bands 

(younger, mid-age, or older) to see how ROC and inhibitory control coupled across age. 

 Overall, results showed that movement times were similar between skill groups under 

simple task conditions (non-jump). For perturbation (jump) trials, the DCD group were 

significantly slower than controls and corrected reach trajectories later in the movement 

cycle. As expected, on anti-jump trials, the DCD group’s performance was even more 

impaired when required to impose inhibitory control during online corrections. On AJMTdiff 

(a key measure of coupling), the younger and mid-age DCD groups were significantly slower 
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than healthy age-matched control children. Interestingly, however, the performance of the 

older DCD group was found to be similar to that of older control children. 

 These results replicate and extend earlier research comparing DCD and TDC on the 

double-jump paradigm (Hyde & Wilson, 2011a, 2011b). For children with DCD (specifically 

during younger and middle childhood) internal modelling deficits are suggested; problems 

exist in generating forward estimates of limb position and then using these estimates to 

update movement parameters in response to target shifts. Moreover, the requirement that 

inhibitory control be coupled to predictive online control exacerbates problems in goal-

directed reaching. Intriguingly, this deficit appeared to dissipate with age as older children 

showed age-appropriate coupling performance on anti-jump trials. This result is in line with 

recent research that suggests that there may be developmental delay in the way children with 

DCD couple online control and inhibition (Hyde & Wilson, 2013). Like Study 1 (Chapter 3), 

Study 2 (Chapter 4) was limited by addressing indicative hypotheses; the cross-sectional 

design only provided general evidence of this relationship in TDC and DCD. Longitudinal 

data was required to better understand the coupling of these two systems and to provide a 

strong test of causal hypotheses about maturational trajectories in TDC and children with 

DCD. 

 6.1.2.3 Study 3 – Growth trajectories of online control and inhibitory systems. 

 Study 3 (Chapter 5) used a cohort sequential (longitudinal) design to model the 

coupling of inhibitory and online motor control over childhood. Based on age trends reported 

in Study 1 (Chapter 3), the growth pattern of TDC was predicted to show two distinct phases 

of development: rapid improvement up to 9 years, and following re-organisation around 

middle childhood, with more modest gains into later childhood. Conversely, for children with 

DCD, based on evidence that the coupling of online and executive systems is delayed (as per 

Study 2/Chapter 4), it was predicted that there would be a more protracted period of 
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development as evidenced by a shallow, linear growth function over the 6 to 12 year-old 

period. Interpreted within the framework of IS, the working assumption for atypical 

development was that poor anti-jump performance of younger and mid-age children with 

DCD would reflect a maturational delay in coupling control systems. Using a cohort 

sequential design, TDC and DCD groups were divided into 13 age cohorts, each separated by 

six months. The DJRT was assessed at 6-month intervals over two years (five time points in 

total). The main measures of coupling inhibitory and online control were difference scores on 

key chronometric (anti-jump movement time difference; AJMTdiff) and kinematic (difference 

between ToC and ToC2; ToCdiff) variables. 

 Study 3 (Chapter 5) confirmed the predicted patterns of growth in Study 2: the 

coupling of online control and inhibitory systems follow different rates of development in 

TDC and children with DCD. Results showed that performance on the DJRT was slower in 

children with DCD relative to TDC. For the TDC group, model comparison using growth 

curve analysis revealed that a quadratic curve was the most appropriate fit. In other words, 

there was evidence of rapid improvement on anti-reach trials up until middle childhood 

(around 9-10 years of age), followed by a more gradual rate of development into late 

childhood and early adolescence. In contrast, for children with DCD, a linear function 

provided the best fit on the key metrics, with a slower rate of improvement than controls. 

From the perspective of IS, my data suggests that for TDC, the dorsal motor stream that 

support rapid online control is functioning well by middle childhood (8-9 years) but that its 

coupling to frontal inhibitory systems undergoes a period of re-organisation during this 

period. For children with DCD, the ability to integrate fronto-inhibitory and predictive 

control during action is less well developed generally, and appears to require a more extended 

period of growth. These group differences in growth curves are likely to reflect a 
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maturational delay in the development of motor-cognitive networks in children with DCD 

which has important implications for diagnostics, prognosis and treatment. 

6.1.3 Summary of Results from Studies 1, 2, and 3 

 In review of my three studies, it appears that the ability to couple online motor control 

with executive (inhibitory) systems on an anti-jump task develops differently for children 

with DCD compared with TDC. For TDC, this rate of improvement is rapid from early to 

middle childhood but appears to undergo re-organisation during middle childhood, followed 

by a continued but more gradual rate of improvement thereafter into older childhood. For 

children with DCD, there appears to be a developmental delay coupling motor systems with 

executive control; the re-organisation evident in TDC is not readily observed during middle 

childhood. However by late childhood, performance metrics (particularly AJMTdiff scores) for 

the DCD group were within the range for the TDC group, suggesting that the timescale over 

which the coupling occurs may be longer in DCD, and not approach levels of TDC until quite 

late in childhood. Put another way, deficits in the predictive (internal) modelling of 

movement are compounded in DCD when inhibitory demands are imposed on task 

performance; adequate solutions to this control problem are not apparent until late childhood, 

despite lingering issues in motor skill development per se. From a neuro-computational 

perspective, the problems that children with DCD showed on the anti-jump condition of the 

DJRT may be caused by maturational delays in neural networks connecting frontal and 

posterior parietal regions and parieto-cerebellar circuits. In the forthcoming section, I discuss 

my findings in relation to existing research on motor control in children with DCD, and the 

broader implications for goal-directed action and skill. 

6.2 Theoretical Implications for Coupling Behaviour of Online Control and Inhibition 

 My set of studies is part a larger program of work designed to better understand the 

development of motor control and cognition in children with and without DCD. Results from 
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this thesis offer important insights for understanding the development of ROC and EF across 

typical development and in DCD. The framework of interactive specialization (Johnson, 

2005, 2011; Johnson, 2013) provides a parsimonious way to explain the performance patterns 

observed in normative and atypical motor development, which are discussed in turn in the 

following section. 

6.2.1 Rapid Online Control and Executive Function in Typical Development 

 The results from my studies have suggested key transitions occur in the coupling of 

motor control and inhibitory systems across childhood. This conclusion is drawn from several 

lines of evidence. First, in Study 1 (Chapter 3), younger children were disadvantaged by jump 

trials, with slower MT and ToC than mid-age and older children, while no difference was 

found between the two latter groups. This age-related trend is in line with a recent 

developmental study of ROC (Wilson & Hyde, 2013) The reduced ability of the younger 

group to move and correct their reach when a visual target was displaced at movement onset 

(i.e., jump trials) suggests that the predictive modelling system is still emerging at this age. 

My data is also consistent with previous research suggesting that the efficiency and flexibility 

of reaching movements improves rapidly after approximately 8 years of age (Bard et al., 

1990; Chicoine et al., 1992; Ferrell, Bard, & Fleury, 2001; Hay, 1979; Pellizzer & Hauert, 

1996). The reduced ability of the younger group to move and correct their reach when a 

visual target was displaced at movement onset (i.e., jump trials) suggests that the predictive 

modelling system is still emerging at this age. A predictive (forward) model uses a copy of 

the motor command to predict the sensory consequences of an action. Fast internal feedback 

loops process discrepancies between the intended movement plan and real-time sensory 

information, generating online corrections (Wilson & Hyde, 2013). The performance of mid-

age and older children suggests that predictive modelling is quite well developed, while 
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refinement of the coupling of online and inhibitory control was a more complex proposition 

for mid-age and younger children. 

 The ability to couple online motor and inhibitory control on anti-jump trials was 

operationalised using chronometric (MT, AJMTdiff) and kinematic (ToC) variables. For 

kinematic markers, there were two corrective phases: (1) a fast automatic correction that 

draws the hand (Cameron et al., 2009) toward the visual cue yet incorrect target (ToC) 

followed by a deliberate re-direction of the hand to a contralateral location. The second 

correction (ToC2) measures the ability of children to purposefully engage (frontal) inhibitory 

control to prevent the hand touching the compelling but invalid stimulus—effectively frontal 

inhibitory systems putting the brakes on the auto-pilot of the fast dorsal stream. In 

computational terms, ToC represents the point in reaching where feedforward and feedback 

signals (viz internal modelling) are received by the plant to update the motor command in 

order to correct the reach trajectory (Desmurget & Grafton, 2003; Sarlegna & Mutha, 2014), 

while ToC2 signals the successful integration and implementation of (top down) inhibitory 

control, over-riding the auto-pilot. 

As per jump trials, younger children were further disadvantaged by the added 

inhibitory load when completing anti-jump trials; MT, ToC, ToC2, and AMTdiff (the 

movement time difference going from non-jump and anti-jump trials) were all found to be 

significantly larger in younger children compared with the mid-age and older groups. In turn, 

however, AMTdiff was significantly longer for mid-age children compared with the older 

group. Additionally, inspection of MT plots (presented in Chapter 3) confirmed that 

movement times of the mid-age group were slower than older children and approached those 

of younger children. In sum, data from Study 1 (Chapter 3) suggests that the change in 

performance of mid-age children on anti-jump trials represents inefficiencies implementing 

online control when inhibitory constraints are imposed. That is, while predictive control 
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mechanisms enable a reasonable degree of proficiency on standard jump trials (where 

demands on EF are minimal), an increase in inhibitory load may reduce the capacity of 

predictive control. This indicates that coupling of motor and executive control processes 

undergo a period of re-organisation during middle childhood, ultimately supporting the 

ability to learn more complex movements. 

 The third line of evidence supporting non-linear changes in coupling of motor and 

executive development in TDC is taken from Study 3 (Chapter 5). The longitudinal design 

provided repeated data points (5 time points over 2 years) to examine the development of 

online control and its coupling to inhibitory function. Key measures of coupling (AJMTdiff 

and ToCdiff) were analysed using advanced growth curve modelling techniques. Results 

showed that the best fitting curve solution (on both metrics) for TDC was a quadratic trend. A 

comparison of fit statistics (i.e., BIC and -2log likelihood) revealed the lowest estimates for 

quadratic functions compared with linear and cubic. Inspection of the cohort plots showed 

greater variability in the anti-jump performance of children in the 6 to 10 year range, 

followed by tighter clustering after this period. The (quadratic) curve trends from Study 3 

shows consistency with the pattern of results from Study 1: anti-reach performance improved 

rapidly up until approximately 9 years of age followed by more gradual improvement 

thereafter into later childhood. Taken together, the imposition of an inhibitory load 

precipitated a decline in the anti-reach performance of mid-aged children relative to older 

children. For tasks of higher planning complexity, greater integration between control 

systems is required; to achieve this, children need a longer period of maturation and 

development than that required for simple goal-directed action. 

 6.2.1.1 Neural networks of control systems. The neuro-developmental 

literature suggests that better efficiency of information transfer (e.g., quicker reaction time, 

reduced errors) occurs between the ages of 6 and 12 years; the same developmental time 
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whereby cognitive control becomes more refined (Diamond, 2013). For instance, Barnea-

Goraly and colleagues (2005) used diffusion tensor imaging magnetic resonance imaging 

(MRI) to measure white matter organisation (indexed by fractional anisotropy; FA) in a 

sample of 34 children aged 6-19 years. The results showed that FA values of the PFC, ventral 

visual pathways, and corpus callosum, were positively correlated with age. This study 

revealed that white matter network (WMN) changes occurred in regions which play an 

important role in motor and cognitive behaviour. In particular, throughout the course of early 

and middle childhood, the development of the PFC is unfolding rapidly. And, we know that 

successful performance on more difficult tasks that also require a degree of self-monitoring is 

dependent on the integrity of frontal networks and the EF processes they support (Johnson, 

2013). That is, proficiency is reached according to level of skill and cognitive maturity. When 

combined, they enable more complex goal-directed sequences (like anti-jump reaching 

movements) (Luciana, Conklin, Hooper, & Yarger, 2005; Luciana & Nelson, 1998). 

 The emerging field of Growth Connectomics (GC) provides some important 

theoretical and empirical insights into the nature of motor and cognitive development, which 

informs the interpretation of results presented here. Growth connectomics provides a 

framework for a range of neuro-imaging techniques that investigate relationships between 

emerging neural networks and associated behaviours: cognitive, motor, affective and other 

(Ve´rtes & Bullmore, 2014). The theory of GC has only recently been applied to children’s 

brain development and is akin to that of IS: they both seek to understand brain-function 

relationships by exploring interconnected neural systems rather than focus on isolated brain 

regions (Fornito & Bullmore, 2014). Across childhood, neural networks operate within the 

general confines of their respective local regions, but begin to shift outward from centralised 

hubs with maturation. With time and experience WMNs graduate from site specific regions to 

a distributed topology of networks, primed to support more adaptive cognitive control (e.g., 
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inhibition, attention, working memory). During this time, WMNs are subjected to increased 

production and selective pruning of synaptic connections (Durston et al., 2006), linking the 

modules of the connectome together as they begin to support other neural regions. Key 

changes to the structure and organisation of WMNs are seen to take root during late 

childhood, with more refined shaping of these areas during early adolescence (Chen et al., 

2013). More specifically, fronto-parietal WMNs have been linked to improvements in 

efficiency of EF during later childhood (Chen et al., 2013) and, likely, the coupling of 

cognitive and motor systems. 

 In terms of the growth patterns that I observed for TDC in Study 3 (Chapter 5), a 

likely hypothesis is that coupling between action and cognitive systems is an important 

developmental achievement during later childhood. We also know that premotor and primary 

motor cortices reach peak rates of synaptic proliferation and density in early childhood, 

before later maturation of association cortices (especially parietal and frontal areas) (Casey et 

al., 2005). Efficient coupling of online control to EF is underpinned by emerging connections 

between fast (visuomotor) dorsal stream channels and the PFC-parietal network (Pisella et al., 

2006). The different timescales of emerging networks (e.g., basic visuomotor channels and 

EF networks) may explain some of the variability in coupling that was observed on the DJRT 

in my studies. This argument is explored further in the following section which also posits a 

unifying theory of neuro-behavioural development in TDC with respect to the control of 

action. 

 6.2.1.2 Interactive specialization can account for non-linear behavioural growth.

 As argued in Chapters 1, 3, 4, and 5, classical maturational theories of development 

have suggested a modular account of brain-behaviour relationships. Such theories are being 

superseded by more interactive models of brain function and behavioural development. An 

alternative neuro-developmental framework known as interactive specialization (Johnson, 
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2011) can readily account for emerging cognitive systems and their influence on the 

expression of ROC across childhood. The IS framework is being adopted more widely to 

explain developmental changes in reading (Dekker, Mareschal, Johnson, & Sereno, 2014), 

creative thinking (Stevenson, Kleibeuker, de Dreu, & Crone, 2014), and social interaction 

(Moriguchi, 2014), amongst others. To recap, the main premise of IS suggests that specific 

neural regions, each with its own maturational timeline, can influence and support the rise of 

behaviour attributed to other cortical regions. Development of cognitive control and adaptive 

behaviour more generally is seen as the result of multiple, interactive neural networks that 

emerge in overlapping timescales (Johnson, 2013). This interaction across the central nervous 

system serves to support thinking and action, particularly in critical times of child neuro-

development (Johnson, 2011) 

 Data from this thesis, showing non-linear profiles of reaching behaviour on the DJRT 

(i.e., for jump and anti-jump trials), can be interpreted using the IS framework. Recent 

developmental research (Wilson & Hyde, 2013) suggests that simple online corrections 

during reaching can be performed by younger and (6-7 years) and mid-age children (8-9 

years), but the more sophisticated and flexible control required of complex task performance 

under higher cognitive demands require a more mature motor system, as seen in older 

children. Processes of EF (e.g., working memory, inhibition, executive attention) tend to 

emerge and develop in a comparable manner to ROC, albeit on slightly adjacent growth 

timescales. For example, the ability to inhibit the Simon effect is difficult for young children 

(4-6 years), matures rapidly over childhood, and approaches adult levels of functioning 

around 12-13 years (Davidson, Amso, Anderson, & Diamond, 2006). 

 Behavioural changes to EF are mirrored by rapid growth of structures and networks 

associated with the PFC (Pangelinan et al., 2011). However, maturing control systems may 

take time before they can support each other in flexible behaviour. The quadratic growth 
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trends found on key coupling metrics (from Chapter 5 data) of the DJRT suggest that a key 

transition appears to occur around 9-10 years with the integration of two emerging processes, 

one (ROC) more primitive than the other (EF) but still overlapping in developmental time. 

The integration of these two systems sees a change in growth curve and it is not until late 

childhood that we find a higher degree of coupling efficiency is achieved in TDC. 

Maturational processes supporting this transition can be seen in imaging studies that show 

neural networks extend beyond their initial proximal based regions to wider, topological 

systems involved with refined cognitive control (Collin & Van Den Heuvel, 2013; 

Tymofiyeva et al., 2013). Thus, the broad model of interactive specialization can be used to 

explain the non-linear coupling trends seen in TDC on the DJRT; more complex skills (i.e., 

anti-jump movements) may require a period of learning and consolidation before they can be 

performed with a reasonable degree of efficiency. 

 6.2.1.3 Summary. The unfolding of ROC over childhood and its relationship to 

executive control is a new line of investigation in children’s motor development. Cross-

sectional and longitudinal data presented in this thesis have shown age-related differences on 

the DJRT. For simple target-directed reaches, all children showed a similar degree of 

proficiency. For reaching performed under visual perturbation, there is rapid improvement in 

online corrections between 6 and 9 years of age. However, when an inhibitory component is 

added to the perturbation task, the performance of mid-aged children was reduced relative to 

the older group and became more like that of younger children. 

Online control during double-jump reaching can be enlisted efficiently in children as 

young as 9 years, and is believed to be subserved by fast visuomotor channels of the dorsal 

stream comprising motor and parietal cortices (Reichenbach et al., 2014). For mid-age 

children, reaching performance was compromised on anti-jump trials relative to older 

children (as per Study 1/Chapter 3 results), while non-linear (i.e., quadratic) growth trends 
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observed in Study 3 (Chapter 5) suggest re-organisation in the coupling over middle 

childhood. However for children with DCD, results suggest that the expression of online 

control and its integration with inhibitory control is delayed. This issue is the focus of 

discussion in the section below. 

6.2.2 Online Control, Executive Function and their Coupling are Delayed in Children 

with Developmental Coordination Disorder 

 In Chapter 1 I described the diagnosis, presentation and associated problems of 

children with DCD. Dysfunction in the process of predictive internal modelling (or IMD 

hypothesis) was shown to be a viable model to account for the motor coordination problems 

of these children (Hyde & Wilson, 2011b; Wilson et al., 2013). A key argument under this 

hypothesis is that children with DCD have difficulty generating or using internal models of 

action as a basis for motor control and learning—e.g., enlisting forward estimates of limb 

position as a means of online motor control in the face of unexpected or sudden perturbations 

(Wilson & Butson, 2007). Evidence to support the IMD hypothesis is drawn from a range of 

experimental paradigms. Covert orienting of visuospatial attention, motor imagery, and 

anticipatory postural control, and coupling of grip and load force are examples of research 

that have implicated impaired predictive control as an underlying cause of DCD (either 

directly or indirectly) (Adams et al., 2014). In addition, the development of co-occurring 

problems in executive functions (like inhibition) may further constrain the expression of ROC 

in DCD. I theorised that deficit of EF in DCD would exacerbate the online control 

difficulties—i.e., coupling these mechanisms to achieve higher levels of action control would 

be compromised. In the following section, I discuss evidence from my thesis that supports 

this broad hypothesis. 

 Results from Study 2 (Chapter 4) are consistent with recent research on ROC from 

Hyde and Wilson (2011a, 2011b, 2013). This body of works suggests that the ability to use 
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predictive models to update online corrective movements is impaired in DCD. A consistent 

finding across these studies is that children with DCD take longer to complete perturbation 

trials and show delayed corrections to reach when a visual target is displaced to a lateral 

location.  Using a neurocomputational approach and the theory of interactive specialization, I 

designed a series of studies that extend this line of enquiry by examining how ROC is 

constrained by a concurrent load on EF (or frontal executive systems). 

 To recap, internal modelling theory posits that prior to the initiation of goal-directed 

reaching, visual and proprioceptive signals are used to estimate the initial state of the limb 

while visual coordinates estimate the prospective target location (Desmurget & Grafton, 

2000). The central nervous system uses this information to generate a motor command to 

achieve the desired end-state. At movement onset, a corollary burst encodes an (efference) 

copy of this command which is used by the predictive model to anticipate how the movement 

will unfold in relation to the target location and its expected sensory consequences 

(Desmurget & Grafton, 2003). A functional loop between the parietal lobe and cerebellum is 

suggested to be involved in monitoring and comparing these forward estimates of limb 

position with the real-time sensory outcomes of movement (Herzfeld & Shadmehr, 2013; 

Shadmehr et al., 2010). In the case of discrepancy, an error signal is generated and used to 

update the on-going motor command. Online corrections to movement are implemented by 

comparing a dynamic error signal onto the ongoing feedforward motor command. This 

process is vital to maintain the integrity of the unfolding movement since the position of the 

moving limb can change considerably by the time sensory signals have been encoded and 

used to correct the ongoing motor command (Adams et al., 2014; Sarlegna & Mutha, 2014). 

 In the case of performance on a double-jump task, a forward (predictive) model of the 

limb-target relationship is compared to the sensory consequences throughout the reaching 

cycle. The unexpected target displacement results in dissonance between the expected and 
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actual outcome of movement. Successful online correction of reaching trajectory towards the 

newly defined target is dependent on the resultant error signal being integrated effectively 

with the unfolding feedforward motor command (Hyde & Wilson, 2011a). Disruptions to this 

process manifest as slower movements and inefficient correction of reaching trajectory 

towards the updated target. When inhibitory control is added to online corrective movements 

(as per anti-jump trials), the performer must purposefully interrupt the action (which shows as 

an automatic correction toward the salient cue on the DJRT) and exert top-down control to 

redirect movement towards the hemi-space contralateral to that of the cued target. Any pre-

existing deficits (as found in DCD research) associated with either the ability to engage 

predictive control or utilise executive function (or both) would compound the problem of 

control, expressed as even slower movements and reach trajectories than what would be 

expected on traditional perturbation trials. 

 In Study 2 (Chapter 4), when children with DCD were assessed on a standard jump 

condition on the DJRT, results showed the DCD group to be slower to correct reach 

trajectory and complete movements. This supports the weight of evidence that shows that 

children with DCD have difficulties using predictive estimates of limb position to update 

corrective movements to reaching patterns (Hyde & Wilson, 2011a, 2011b, 2013). 

Superimposing an inhibitory constraint on the modified reaching task exacerbated the deficits 

seen in online control among children with DCD; however, this deficit appeared to reduce 

with age. The cross-sectional data showed that younger and mid-age children with DCD were 

compromised on anti-jump trials relative to age-matched control counterparts. This was 

reflected in larger AJMTdiff scores which showed significant differences between the younger 

and mid-age groups. However, the performance of older children with DCD was within the 

95% CI of older TDC (with small effect size). 
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 The modelling results of Study 3 (Chapter 5) extended those of Study 2 (Chapter 4). 

Unlike TDC who showed fast, non-linear growth between 6-9 years on anti-jump trials, 

growth curve trends confirmed cross-sectional developmental patterns from Study 2: it is 

likely that a developmental delay is present coupling of motor-cognitive systems in children 

with DCD. This is consistent with other cross-sectional comparisons in DCD where older 

children were compared to younger controls and shown not to differ for online motor 

performance (e.g., Hyde & Wilson, 2013), and in cognate disorders (i.e., ADHD) where 

morphological evidence shows a ‘maturational lag’ in connectivity of fronto-parietal and 

ventral attention networks (Sripada et al., 2014), regions that are implicated with motor and 

cognitive control respectively (Vossel, Geng, & Fink, 2014). Additionally, fit metrics showed 

that the growth trajectory on measures of coupling (between online and inhibitory systems) 

was linear, and that these children performed slower than TDC at every point across the 6-12 

year age span, even though the difference between groups by 12 years of age was negligible. 

The reason for this comparable performance between TDC and DCD groups by older 

childhood is not fully clear; however, the neural structures and function that have been 

implicated in atypical motor development offer important insights for theory in DCD, which 

are explored next. 

 6.2.2.1 Neural correlates of impaired motor performance in children with DCD.

 At present, there are only a limited number of neuroimaging and neurophysiological 

investigations of neural substrates of DCD. A recent experiment relevant to predictive 

modelling used task-related fMRI to map brain activation. The team of  Kashiwagi and 

colleagues (2009) tested children with and without DCD on a visuomotor task where children 

followed a target on a computerised screen using a joystick. To complete the task with a 

reasonable degree of accuracy (i.e., low number of errors), a level of predictive control was 

required to estimate the direction of the target which travelled along a repeating path. 
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Comparison of the activation maps showed that the DCD group displayed less activity in the 

left PPC and left post central gyrus than control children. Kashiwagi and colleagues (2009) 

interpreted this pattern in DCD as reflecting poor internal modelling. The PPC is suggested to 

be a critical site associated with predictive motor control (Desmurget & Sirigu, 2009; 

Shadmehr & Krakauer, 2008) and is strongly activated during target-directed reaching 

movements (Reichenbach et al., 2011; Reichenbach et al., 2014). 

 In another fMRI study, Zwicker, Missiuna, Harris, and Boyd (2011) compared motor 

learning performance between a small group of DCD and control children using a line tracing 

task. With reduction in number of errors that occurred over the learning cycle (from the first 

learning block to retention), reduced activation in cerebellar–parietal and cerebellar–

prefrontal axes was observed in the DCD group. However, the task assessed visuo-spatial 

learning rather than predictive modelling directly; hence, inferences made about neural 

regions of impaired predictive control are limited. 

 More recently, the structure of WMNs was investigated by Zwicker, Missiuna, Harris, 

and Boyd (2012a) using diffusion tensor imaging (DTI). Structural connectivity within 

motor, sensory and cerebellar networks was compared between a group of seven children 

with DCD and nine TDC. Results showed that fractional anisotropy values (a measure of 

connectivity in the brain) in regions such as the corticospinal tract and posterior thalamic 

radiation were significantly lower in children with DCD. Moreover, axial diffusivity in these 

regions correlated with motor severity on the MABC. In other words, children who showed 

greater impairment on a standardised motor test also demonstrated reduced axial diffusivity 

in the sensorimotor tracts. 

 While Zwicker and associates did not examine directly the neural underpinnings of 

predictive control, Zwicker and Holfelder (2013) pose three key assertions that should be 

considered when conducting further neuro-behavioural studies of children with DCD: (1) 
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different brain regions are activated during motor task performance in children with DCD; (2) 

there may be under activation in neural regions linked to motor learning; and (3) children 

with DCD demonstrate microstructural differences of key motor and sensory pathways. That 

said, abnormal neural growth in children with DCD alone may not be the most valid nor 

parsimonious explanation of age-related differences of anti-jump performance, especially 

when older children with DCD may demonstrate age-appropriate coupling behaviour. As 

well, it remains unclear whether reduced exposure to motor activities and opportunities for 

skill learning explains the reported differences in microstructure. 

 Without use of comparable and valid tasks to assess predictive control, we are left 

with the question of what mechanism best explains the poor performance of younger and 

mid-age children with DCD on the anti-jump task. One possibility is that a generalised delay 

exists in the coupling of frontal and posterior networks. Evidence can be drawn from the field 

of growth connectomics where a growing body of research suggests that the physiology of the 

brain is organised by large neural networks, and that connections between these regions 

display specific growth patterns (Ve´rtes & Bullmore, 2014). Reference to related 

neurodevelopmental conditions offers some insight into the delay hypothesis. For example, 

resting state scans of children with ADHD reveal a generalised delay in the connections of 

the large-scale brain networks (e.g., cerebellum) between fronto-parietal systems (Sripada et 

al., 2014), the same regions that I argue subserve motor and cognitive processes used for the 

DJRT. In longitudinal research of children with autism spectrum disorders, evidence 

indicates that WMNs – regions that support cognition and motor behaviour – also show 

delayed growth development in children 10 years and younger (Travers et al., 2015). 

Furthermore, it has been found that posterior brain structures such as the cerebellum project 

to the PFC (Balsters et al., 2013). Again, these neural networks are considered important to 
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cognitive control of motor flexibility (Johnson, 2005) and may subserve the processes 

required for efficient coupling performance. 

 6.2.2.2 Summary. Data from Study 3 (Chapter 5) showed that linear trends were 

the best fitting growth curves of key measures of coupling behaviour in children with DCD. 

These results are best interpreted in terms of a generalised neurodevelopmental delay, 

possibly linked to immaturities of WMNs along fronto-parietal and parietal-cerebellar 

channels (Casey et al., 2008; Chen et al., 2013). This is consistent with the hypothesis 

proposed from Hyde and Wilson (2013) who inferred growth delay (in predictive control 

mechanisms) by comparing the performance of children with DCD with that of TDC and 

healthy adults. Adults were assessed to provide a model or reference point for mature 

predictive control. However, they made no specific inferences about the interaction of brain 

systems that support predictive online control. A strength of my thesis has been use of a 

supporting theoretical framework (i.e., interactive specialization) that posits dynamic 

relationships between brain systems. This is supported by recent morphological evidence 

from other developmental disorders (e.g. ADHD and autism) that has shown connectivity of 

WMNs of key motor and cognitive cortices occurs later in childhood. In conjunction with 

longitudinal data (from Study 3/Chapter 5), which has permitted stronger casual inferences to 

be made, it seems that that a maturational delay may underlie a vast number of children who 

have motor control problems. This conclusion has important implications for treatment which 

is discussed next. 

6.3 Clinical Implications for Treating Deficits of Multiple Control Systems 

 The hypothesis for a maturational delay in coupling of motor and cognitive systems 

has implications for remediation; these are considered in the forthcoming section. As 

previously argued, children with DCD have deficits of predictive control and EF. A pertinent 

issue is how to treat these problems of these systems when they are both enlisted for complex 
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action. In the discussion of intervention research below, I examine the efficacy of a method 

that may be useful to treat predictive modelling (i.e., motor imagery). I also examine how 

several cognitive intervention programmes (e.g., Neuromotor Training Tasks and Cognitive 

Orientation to daily Occupation Performance) may alleviate motor difficulties in children 

with DCD. These approaches focus on goal orientation and problem solving (or top-down 

control) where there is a strong need for EF (Smits-Engelsman et al., 2013). The linear trends 

from the DCD group reflect a delay in growth patterns which suggests that approximately 

half of children with atypical motor development should eventually show age appropriate 

skills (although at what point exactly is unclear), while remaining children do not unless 

treated (Sugden & Wade, 2013; Wilson, 2005). However, this rests on an assumption that 

children with motor impairments belong to a homogenous group, which is at odds with the 

general consensus of the DCD research community (Blank et al., 2012; Cairney, 2015; 

Green, Chambers, & Sugden, 2008; Pieters, Roeyers, Rosseel, Van Waelvelde, & Desoete, 

2015; Vaivre-Douret, 2014; Wilson, 2005; Zhu et al., 2014). 

 Simply leaving children’s atypical motor development to unfold (and hopefully 

‘course correct’) without remediation may do little to remedy the motor difficulties that often 

continue into adolescence and adulthood (Kirby et al., 2011; Missiuna et al., 2007). Indeed, 

some of the motor control issues observed in children have also been shown to be present in 

adults with DCD. By way of illustration, Wilmut and Byrne (2014) tested performance on a 

grip-selection task that measured end-state-comfort: an effect where a starting uncomfortable 

body position is chosen if the final state is more comfortable (Noten et al., 2014). For the 

task, participants rotated a disc with pointer attached to it in order to execute a sequence of 

turns across a number of targets. Not only did children with DCD begin with more 

comfortable grips, despite leading to awkward end state positions, adults with DCD displayed 

a similar pattern for more difficult movement sequences. 



Chapter Six    General Discussion 

175 
 
 

When considering these results together with other research that suggests children 

with DCD tend to adopt sedentary lifestyles (Poulsen, Ziviani, Cuskelly, & Smith, 2007; 

Poulsen, Ziviani, Johnson, & Cuskelly, 2008), it could be that the lack of physical activity 

and opportunity to engage in new motor behaviour places limits on the acquisition of 

appropriate motor control mechanisms as well as the attendant movement skills. 

Consequently, there is a strong case to intervene and treat the immature (or undeveloped) 

motor system. But how can we streamline remediation when multiple systems may be 

compromised? To address this, I first review evidence for treating predictive modelling. I 

pose intervention that treats EF and consider the integration of motor and cognitive 

approaches together is an appropriate way forward for future intervention strategies. 

6.3.1 Intervention for Impaired Predictive Control 

 Presently, there is limited intervention research aimed at addressing poor predictive 

modelling systems in children with DCD, but what evidence is available suggests a role for 

strategies that train motor planning and prediction. Use of motor imagery (MI) training, 

administered via interactive DVDs, has shown to be as effective as a traditional physical 

therapy method (Wilson, Thomas, & Maruff, 2002). The goal of the study was to test 

proposed deficits with forward modelling using MI as a general therapeutic framework. 

Motor impairment was defined rather loosely by a score under the 50
th

 percentile on a 

standardised motor test (i.e., MABC), a criterion that is well above the minimum cut-point of 

15
th

 percentile that research guidelines recommend (Blank et al., 2012; Geuze et al., 2001; 

Williams, 2006). Results showed that both intervention groups (i.e., MI and physical therapy) 

improved their level of coordination. Importantly, it was observed that children with more 

severe DCD improved the most as a result of the MI training. We also know that motor 

severity plays an important role in response to cognitive intervention (Green et al., 2008), and 

may also relevant to MI. For example, Williams and colleagues (2008) found that children 
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who scored below the 5
th

 percentile on the MABC were less responsive to verbal MI 

instruction. Given that the mode of delivery from Wilson and colleagues (2002) relied more 

of visuo-motor channels of processing, the reduced response to verbal instruction in Williams 

and colleague’s (2008) study suggests that there may be sub-groups within DCD that respond 

differently to a certain form of instruction. 

 This is a reminder of the need to subject interventions to further rigorous scientific 

validation; individual variability within clinical populations can highlight the need for 

qualitative differences in the structure of a programme. In the case of MI training, there are 

other therapeutic issues that should be considered. Adult and patient MI data shows that the 

effect of improved motor skills performance from intervention is heightened when alternate 

forms of therapy (e.g., physical activity) are performed along with MI training (Malouin & 

Richards, 2010; Schack, Essig, Frank, & Koester, 2014). For example, a group study of 

adults with Parkinson’s disease showed that patients who received one hour of combined 

physical and mental practice performing balance tasks over 12 weeks improved more than a 

group who received only physical therapy (Tamir, Dickstein, & Huberman, 2007). Thus, for 

impaired predicate control in children with DCD, MI training should be an adjunct with 

traditional physical therapies. 

 The design and implementation of an intervention is important on a number of fronts. 

As with actual motor rehabilitation, learning should unfold in a staged manner, beginning 

with simple MI tasks before progressing to more complex ones (Kalicinski, Kempe, & Bock, 

2015). This is relevant for children with DCD where more difficult motor behaviour is related 

to increased MI complexity. As per the younger and mid-age DCD group anti-jump profiles 

(from Study 2 and 3/Chapters 4 and 5), motor performance also declined with the imposition 

of higher EF demands. Breaking down learning tasks into its constituent parts is one way to 

reduce demands on memory, attention, inhibition, etc. 
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 Another possibility is to integrate observational learning with imagery, whether it be 

use of video models (similar to the DVD intervention mentioned above), performer 

demonstration or otherwise, and stimulate the mirror system which appears to be a critical 

network of predictive modelling (Hyde et al., 2013; Wilson et al., 2002). However, as 

discussed earlier in this chapter and chapter 1, an impairment of predictive modelling is likely 

to have an impact on a child with DCD, affecting their ability to utilise traditional 

observational learning techniques. For instance, an individual generates an internal 

representation of an observed action so that it can be projected to their own motor system 

(Calvo-Merino, Glaser, Grèzes, Passingham, & Haggard, 2005). A deficit in the ability to 

represent movements internally may likely limit the benefits of observational learning. This is 

certainly relevant to children with DCD as it has been suggested that these children do not 

learn through observation in the way that a typically developing child would (Cairney, 2015; 

Larkin & Hoare, 1991). How then, can we remediate the learning experience of children with 

DCD? 

 One way would be to modify aspects of observational learning; scaffold tasks so that 

a movement is shown from different perspectives. For example, demonstration of a throwing 

action could be shown from certain angles, and from first and/or third person perspectives, 

similar to the approach used by Wilson and colleagues (2002). In their intervention study, 

Wilson and colleagues (2002) used videotapes to train balance and ball skills of children with 

motor difficulties by displaying videos of an internal and external frame of reference of the 

action. These observational models, when combined with mental rehearsal, were as 

successful at reinforcing motor learning as traditional perceptuo-motor training. Another 

alternative might be for health professionals to adopt a kinaesthetic approach to teaching 

motor skills; children with DCD might need to be guided in their movements, initially by 

somebody standing close to them. For example, when learning to reach for an object from a 
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table, the clinician might hold the child’s hand and guide them through the action. In this 

way, the therapist can shape the movement for the child, reinforcing the kinaesthetic 

components of the movement, instead of relying on inaccurate internal representation. In 

addition to skills acquisition, the interval between sessions should be short enough to prevent 

participants from forgetting tasks. For children with DCD, repeated performance over small 

intervals (and more frequent trials) can lead to a greater acquisition of a skilled task (like 

catching a ball) (Utley & Astill, 2007). Some researchers also recommend between 15-20 

minutes per session is optimal time for learning and practice to consolidate and to avoid 

problems with fatigue (Dickstein & Deutsch, 2007). Conversely, intervals between training 

sessions should be long enough to allow for skills to consolidate but not too long that 

excessive task repetition may leave individuals feeling disengaged and/or fatigued. Research 

has shown that adequate rest periods between sessions can facilitate improved learning 

(Magill, 2010). For example, recent DCD intervention studies that were conducted on a 

weekly basis over a 6-8 week period have shown positive outcomes in balance control (De 

Milander, Du Plessis, & Du Randt, 2014; Jelsma, Geuze, Mombarg, & Smits-Engelsman, 

2014). However, variation within motor severity may require researchers to adjust session 

duration and frequency so that they meet the needs of the child more directly. 

 Accordingly, preliminary evidence supports the use of MI training as an effective 

intervention tool for deficits of predictive modeling (and motor skill more broadly) in 

children with DCD. Certainly, further research is needed to focus on procedural aspects of MI 

training so that treatment outcomes can be maximised and tailored to sub-types that may 

respond differently according to the mode of task instructions (like visual or verbal). 

Differences in motor severity may also be a factor in the way children with DCD respond to 

intervention. Delivery, length and frequency of content are all issues that should be 

considered as a ‘one size fits all’ approach may not accommodate the range of motor deficits 
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seen in DCD. Furthermore, the heterogeneous expression of DCD symptoms suggests that 

some children may not experience behavioural problems of predictive control. This raises the 

possibility of pre-screening for deficits in prediction, and tailoring intervention accordingly. 

Certainly, data from Study 2 and 3 (Chapters 4 and 5) data suggest that there is age-

appropriate coupling in older children with DCD. It might be that intervention methods other 

than MI training are better suited to remediate poor predictive control. Continued research 

will hopefully shed light on these matters. 

6.3.2 Top-down Approaches to Therapy 

 As discussed in Chapter 1, intervention studies can be categorised into two main areas 

of research: process-oriented and task-oriented. Process-oriented (or bottom up) approaches 

intervene with motor difficulties by targeting the underlying processes required for action. 

Prior to the mid-90s, traditional process-oriented approaches to motor intervention worked 

under the assumption that remediating underlying mechanism of motor dysfunction would 

lead to an improvement in associated skills (Mandich, Polatajko, Macnab, & Miller, 2001). 

However, success of these interventions like sensory integration training and kinaesthetic 

training has been limited; evidence from reviews shows little change to functional motor 

outcomes (Forsyth, Maciver, Howden, Owen, & Shepherd, 2008; Hillier, 2007; Smits-

Engelsman et al., 2013). Alternate treatments to motor control (e.g., Thelen, 1995), 

incorporate task-oriented approaches on the acquisition of skill which also acknowledge task 

and environmental constraints involved with movement. In recent years, these approaches 

have been developed so that they are contextually based (in terms of relevance to the child), 

related to everyday activities, and specific to the needs of the individual engaged in therapy 

(Missiuna, Polatajko, & Pollock, 2015). These approaches are quite top-down in their 

orientation, but also based on key motor learning principles (Shumway-Cook & Woollacott, 

2011). When task-oriented approaches to intervention is considered in the context of my 
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research, there may be cognitive strategies that will help break down performance (e.g., on 

anti-jump trials) into simpler components so that better coupling of online and inhibitory 

control might ensue. Put another way, what might be an effective way to train executive 

function so that intervention effects translate to better coupling performance on anti-jump 

trials DJRT? 

 There is evidence to suggest that children with DCD may benefit from targeted skills 

training. One body of work that teaches basic principles of motor learning is Neuromotor 

Training Task (NTT), developed and empirically tested by Smits-Engelsman and associates 

(Ferguson et al., 2013; Niemeijer, Schoemaker, & Smits-Engelsman, 2006; Niemeijer et al., 

2007; Schoemaker, Niemeijer, Reynders, & Smits-Engelsman, 2003). In NTT the emphasis is 

put on the role that cognitions play in learning (or refining) new movement skills. Complex 

tasks are broken down into simple skills so that the child can experience success more readily 

in an environment that is primed for learning and development. Reducing complex 

movements in this way would benefit the younger and mid-age children with DCD from my 

studies who showed problems using online control on standard jump trials which were further 

compounded with the inhibitory demands of anti-jump trials. 

 In a recent study by Ferguson and colleagues (2013), efficacy of two task-oriented 

programmes was compared: NTT and a Nintendo Wii Fit Intervention. Outcome measures 

were motor performance, isometric strength and cardiorespiratory fitness. Children who fell 

below the 15
th

 percentile of the MABC-2 were allocated to NTT (n = 37) or Wii Fit training 

(n = 19) groups. The NTT was administered 2 sessions per week over 9 weeks while Wii Fit 

training was conducted for 3 sessions per week for 6 weeks. Both intervention groups 

demonstrated better motor performance over the duration of the programmes but NTT 

showed greater improvement in measurements of motor performance, functional strength and 

cardiorespiratory fitness. However, transfer tests (to see if training effects extended into other 
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areas such as home and school) were not administered. These measurements are important 

because they can inform about the success of an intervention beyond clinical environments. 

In addition, Ferguson and colleagues (2013) also recognise the importance of the structure of 

programmes (e.g., intensity, duration and frequency) as recommendations for dosage 

parameters are yet to be empirically established within the DCD literature, even though a 

greater number of sessions seems optimal provided the therapy is sufficiently intense, fun and 

appropriately scaled to the child’s needs (Wilson, 2005). 

 Another cognitive approach with good evidence of efficacy in DCD is Cognitive 

Orientation to daily Occupational Performance (CO-OP) (Missiuna, Mandich, Polatajko, & 

Malloy-Miller, 2001; Polatajko, Mandich, Miller, & Macnab, 2001; Polatajko, Mandich, 

Missiuna, et al., 2001). CO-OP is a child-centred intervention framework that helps children 

with motor difficulties to reach functional goals by encouraging the child to think about how 

to perform novel movements. It provides children with meta-cognitive strategies to solve 

problems, which is based on the assumption that children with DCD possess a limited 

cognitive capacity to develop motor skills (Jokić & Whitebread, 2011; Jokić & Whitebread, 

2014). A CO-OP program is taught over 10 sessions, teaching children to establish a goal, 

how to formulate and carry out a plan, monitor their performance, and update the plan, if 

necessary (Missiuna et al., 2001). It is thought that by engaging a child in a CO-OP 

intervention, the techniques learned will transfer to a wide range of new movement skills 

(Missiuna et al., 2001). This approach has particular relevance to my thesis where a 

collaborative approach that involves a substantial cognitive component may be best suited to 

treat combined motor deficits that involve a higher degree of executive control. 

 A large number of studies have shown that CO-OP is an effective intervention 

framework for treating motor problems in school-aged children with DCD (Albers, 2013; 

Banks et al., 2008; Hyland & Polatajko, 2012; Jokić, Polatajko, & Whitebread, 2013; Martini, 
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Mandich, & Green, 2014; Miller, Polatajko, Missiuna, Mandich, & Macnab, 2001; Missiuna 

et al., 2012; Rodger & Liu, 2008; Sangster, Beninger, Polatajko, & Mandich, 2005; Sugden, 

2007). A study from Miller and colleagues (2001) compared the use of CO-OP with 

Contemporary Treatment Approach in 27 children with DCD. Contemporary Treatment 

Approach incorporated neuromuscular, multi-sensory, and biomechanical aspects of motor 

skill acquisition. Both intervention programmes resulted in improvement of motor 

performance across sessions; however, greater improvements were found in children of the 

CO-OP group. The results suggest a CO-OP intervention may be suitable for the children 

with motor impairment from my studies as they were recruited from mainstream primary 

schools. 

 Another study to compare CO-OP with multi-sensory approaches was provided from 

Zwicker and Hadwin (2009). The researchers showed that CO-OP training for improving 

handwriting in typically developing school children showed greater treatment gains than a 

multi-sensory approach. Evidence also indicates that children with DCD do become better at 

monitoring their own motor behaviour and can apply the skills learnt from CO-OP to novel 

motor tasks (Hyland & Polatajko, 2012), and this may explain why CO-OP interventions 

have seen repeated success. This is important to consider in the context of my data; if 

children with DCD can successfully use strategies that increase their awareness and 

understanding of motor tasks, particularly those like anti-reach movements where they can be 

made cognisant of the need to withhold a reach toward a compelling cue, they may be able to 

learn and perform new motor behaviour with a better degree of flexibility. 

 However there are a number of caveats to the efficacy of CO-OP programmes. For 

instance, many studies have used small sample sizes and require further testing with larger 

group numbers. Additionally, many researchers use the 15
th

 percentile on standardised motor 

tests to classify children into a DCD group (although ancillary criteria are still used), as was 
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the case with my studies. Recent research has shown that children with more severe 

coordination problems have greater associated difficulties with activities of daily living, 

attention, reading and social cognition (Schoemaker, Lingam, Jongmans, van Heuvelen, & 

Emond, 2013). Greater variability of symptom severity within DCD groups may require more 

specialised attention to meet the needs of children of individual children (Missiuna et al., 

2015). Additionally, CO-OP has generally been conducted in educational environments (e.g., 

at school). While not a limitation per se, in keeping in line with a goal of intervention, more 

research is needed to determine if successful motor learning outcomes generalise to other 

environments. 

6.3.3 What Aspects of Interventions can Target Immature Coupling Behaviour? 

 One of the issues involved with designing intervention programmes for children with 

DCD is that the heterogeneity seen within the disorder means that some tasks may not be 

suitable for every child (Martini et al., 2014). Developing remediation for deficits across 

several systems (as per the reduced performance of younger and mid-age children with DCD 

on anti-jump trials) presents new challenges to therapists. Anti-jump performance should not 

be an intervention target in its own right – the movement is too simple to transfer to other, 

more ecologically valid tasks. Indeed, preliminary evidence of predictive modelling training 

(such as MI) shows promise (Wilson et al., 2002), as do programmes for cognitive 

approaches to motor skill learning (Ferguson et al., 2013; Jokić et al., 2013; Martini et al., 

2014). One solution might be to reduce the level of challenge associated with anti-jump trials 

(where coupling of ROC and EF was required) and implement a staged approach. Difficulties 

coupling inhibitory control to movement could be addressed by other means, such as cuing of 

attention to external objects or events or engage in video demonstrations of appropriate 

movement. By breaking down the task into simpler constituents it may reduce the load on EF 

and assist younger and mid-age children train predictive modelling before it is integrated with 
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inhibitory control. Indeed, Diamond (2013) suggests that EFs are trainable and can be 

improved with practice; hence, a reductionist approach may an optimal intervention strategy 

and even benefit older children with DCD who do not show age-appropriate coupling of 

motor and cognitive systems. 

6.4 Limitations and Directions for Future Research 

 Several caveats exist about the interpretation of results from this thesis. Limitations 

may be present at an experimental level; for example, there is potential for inadvertent motor 

learning to occur during the course of performing a repetitive movement (Shadmehr et al., 

2010). At a broader level, the severity of motor difficulties may be related to the level of 

predictive control, while co-morbid symptoms of DCD (shared with other developmental 

disorders) may provide evidence for alternate explanations of impaired motor ability. 

Additionally, deficits of other executive processes (such as working memory) may also 

influence the expression of predictive modelling systems. These limitations, and potential 

avenues for future research, are discussed below. 

6.4.1 Motor Learning may occur over Repeated Trials on the DJRT 

 From a neurocomputational perspective, internal modelling is a critical concept in 

models of motor control and learning. As described in Chapter 1, internal modelling involves 

two separate, but related processes: predictive (forward) modelling and inverse modelling 

(Desmurget & Grafton, 2003). Forward models provide estimates of limb and body position 

based on the expected sensory consequences of action learning (Wolpert et al., 2011; Wolpert 

et al., 2001). Discrepancies between the expected and actual consequences of movement are 

corrected via error signals, in real time. In the case of motor learning, these error signals also 

act as a training input for the stored internal model (Shadmehr et al., 2010). 

 During the course of movement when expected action is incongruent with the 

incoming sensory action (as per displacement trials on the DJRT), it is conceivable that a 
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representation of the perturbed movement will be stored within the motor system (Shadmehr 

et al., 2010). By performing repeated corrective actions on double-jump trials (as described in 

in Chapters 2, 3, 4 and 5), the change to motor behaviour may be sufficient enough to train 

signals for the nervous system. That is, the motor memory created from frequently displaced 

trials could provide advanced information for later motor commands (Shadmehr et al., 2010). 

In order to account for potential learning effects within the double-jump paradigm, I ensured 

that a small number of displacement trials (20% of the total number of trials) were 

programmed into each condition. Additionally, the order of these displacement trials was 

presented randomly; counterbalancing the presentation order of jump and anti-jump 

conditions also served to reduce learning effects. Furthermore, research using step-

perturbation paradigms has shown consistent patterns of performance between blocks of early 

and late trials (Cameron et al., 2013; Hyde & Wilson, 2011b) 

 To investigate how learning processes unfold in the context of motor and executive 

systems, future studies using the double-jump paradigm could vary the presentation of 

perturbed jumps. Performance would then be compared between early and late trials, both 

within the jump condition (to assess predictive modelling in isolation from other systems) 

and anti-jump condition (for the added executive load to predictive control) to examine 

whether the motor memory is the outcome of predictive control over trials. . 

6.4.2 Severity of Motor Impairment 

 An area of investigation that is important to clarify the nature of predictive modelling 

deficits in children with DCD relates to the severity of motor ability. The capacity for 

children with DCD to use predictive control may be expressed differently in a clinical sub-

group. For example, Plumb and colleagues (2008) examined online corrections on a step-

perturbation paradigm; however, children were allocated to the DCD group with a score 

below the 1
st
 percentile on the MABC (compared to the 15

th
 percentile used in my research). 
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On their task, children stood in front of a computer screen to and touched a target with a thin 

stylus wand. Not surprisingly, the children with DCD from Plumb and colleague’s study had 

problems performing this task which was subsequently modified for them: they performed it 

seated on a chair and used a thicker wand for better grip. While the study found no evidence 

for impaired online control, the fact that the task had to be changed to accommodate the 

children with severe motor difficulties limits comparison of online control performance 

between studies and suggests that the capacity for predictive modelling may vary across DCD 

groups. 

 Evidence from other research has shown that difficulties with imagined movements 

might be associated with the severity of motor impairment (Williams et al., 2008). Williams 

and colleagues (2008) found that children with severe DCD (as measured on the MABC-2) 

showed similar deficits with each other on MI tasks, while children with mild DCD 

demonstrated less MI deficits. In addition, children with severe DCD also showed a 

decreased benefit from MI instruction compared to children with mild DCD. As discussed in 

Chapter 1, the integrity of internal (predictive) modelling systems can be inferred from MI 

performance. The MI study from Williams and colleagues further suggests that the capacity 

for predictive modelling may vary across children with DCD and that motor severity may be 

a moderating factor in symptom expression and intervention success. 

 With respect to this latter point, treatment outcomes might vary according to clinical 

presentation; some symptoms of DCD may be more resistant to remedial efforts than others. 

For example, children with severe motor impairments (i.e., a score below the 5
th

 percentile on 

the MABC) measured at the commencement of a CO-OP intervention were more likely to 

experience motor difficulties by the conclusion of the program, despite engaging in 

remediation (Green et al., 2008). This highlights the need to continue research and create 

carefully designed interventions. 
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6.4.3 The Impact of Co-occurring Disorders. 

 Motor impairment often presents comorbid with other developmental disorders which 

can make research of “pure” cases of DCD difficult. This is particularly relevant for ADHD 

where studies have found shared symptoms with DCD (Gillberg et al., 2004; Kaiser et al., 

2015; McLeod et al., 2014; Missiuna et al., 2014). Recent evidence suggests that DCD 

symptoms exacerbate in co-occurring disorders (Jongmans, Smits-Engelsman, & 

Schoemaker, 2003), and that symptom severity is further affected when several co-occurring 

disorders are present (Crawford & Dewey, 2008). For example, Jongmans and colleagues 

(2003) showed that children who were diagnosed with DCD and a learning disability 

performed significantly worse than a group of children with DCD only on a standardised test 

(i.e., MABC) of perceptual-motor ability. The co-morbid group also had more difficulty 

performing balance and manual dexterity tasks, but were as competent with throwing and 

catching a ball as the DCD group. In more recent research, Jaščenoka, Korsch, Petermann, 

and Petermann (2015) found that children with DCD and ADHD showed poorer processing 

speed on the Wechsler Preschool and Primary Scale of Intelligence-III than children with 

DCD alone. Additionally, negative consequences of comorbid occurrences may extend 

beyond motor and cognitive problems. For example, research using parent reports showed 

that children with combined DCD and ADHD suffer from more psychological distress (e.g., 

symptoms of anxiety and depression) than TDC or children with only DCD (Missiuna et al., 

2014). 

 As research has reported co-morbid occurrences of DCD with other developmental 

disorders, future research should investigate whether the neuro-cognitive profile of DCD is 

different to co-occurring developmental disorders (e.g., DCD/ADHD). It may be that co-

morbid cases are underlined by different mechanisms. That is, deficits in predictive 

modelling may be the cause of some motor control problems in DCD; however, inhibitory 
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and attentional control difficulties of ADHD might account for other motor difficulties. For 

example,  Lewis and colleagues (2008) found that a DCD group showed problems generating 

imagined movements (from which impaired predictive control can be inferred), yet this 

deficit was not detected in the DCD/ADHD group, possibly due to some other control 

mechanism. Continued work is needed to clarify neuro-cognitive deficits, particularly where 

there is evidence that certain behaviours may be controlled by separate systems. 

6.4.4 Assessing other Components of EF with ROC 

 This thesis examined the constraining effect of inhibitory control on online control; 

however; there are other components of EF that might compromise ROC. In the DCD 

literature, deficits across other EF processes have been found (e.g., executive attention and 

working memory) (Wilson et al., 2013) which are also thought to play an important role in 

motor and cognitive control (Michel, 2012).  

 As I have shown across Study 2 and 3, there is good evidence to suggest that ROC is 

constrained (to varying degrees) by the development of EF in children with DCD. However, 

an underlying assumption about EF and its relationship to ROC is that other executive 

processes have sufficiently matured to a degree where they can support other cognitive 

functions. In the case of working memory (WM), for example, a body of research has shown 

that children with DCD show atypical performance on most measures, particularly on tasks 

that assess visuospatial WM (Alloway, 2007, 2011; Alloway, 2012; Alloway & Archibald, 

2008, 2011; Alloway, Rajendran, & Archibald, 2009; Tsai, Chang, Hung, Tseng, & Chen, 

2012).  

 In terms of performance on the DJRT, the change in complexity from jump to anti-

jump trials also places increased demand on visuo-spatial working memory processes 

(Wilson et al., 2013). Accordingly, impairment in WM could be used to examine its co-



Chapter Six    General Discussion 

189 
 
 

development and interaction with online control. The advanced growth curve modelling 

methodologies used in this thesis would provide a powerful way to monitor the interaction 

between WM trajectories and online control. Consequently, this may identify whether the 

coupling deficit seen with inhibitory control in children with DCD is also present in WM 

which would have implications for interventions that use cognitive strategies to remediate 

motor coordination difficulties. 

6.5 General Conclusion 

 The studies in this thesis have been one of the first to help clarify the development of 

rapid online control of reaching across childhood aged 6-12 years, and explore how emerging 

executive systems constrain it. To measure developmental changes in the online control of 

reaching, a double-jump paradigm (that included trials with an inhibitory component) was 

used to assess the integrity of predictive modelling systems in TDC and DCD. This neuro-

computational account of motor control is based on the assumption that a healthy ROC 

system uses a forward (predictive) estimate of limb positon to adjust movements as they 

occur. Interpreted using a neuro-behavioural framework of interactive specialization; results 

from this thesis suggest that the coupling of ROC and EF undergo different growth patterns 

in TDC and children with DCD. 

 For normative development, younger children are disadvantaged by sudden 

perturbations to movement, an effect that is pronounced when inhibitory control is added to 

online corrections. By middle childhood, online corrections can be implemented efficiently, 

yet are reduced (relative to older children) on trials where inhibitory demands are imposed. 

Middle childhood appears to mark a period of re-organisation in control systems to perform 

more complex goal-directed reaching. Growth curve analysis of longitudinal data confirms 

that the coupling of motor and executive systems develops rapidly up to 9-10 years 

childhood, followed by more steady improvements into older childhood as motor and 
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cognitive systems integrate for fluid action. Conversely, for children with DCD, the coupling 

of motor and executive systems shows delay in growth. Consistent with previous research, 

the cross-sectional and longitudinal data of this thesis suggest a delayed developmental 

trajectory; younger and mid-age children have substantial problems integrating using ROC 

and inhibitory systems to adjust to visual perturbations while older children show skill levels 

similar to TDC. From a neuro-computation perspective, delays in growth to fronto-parietal 

and parietal-cerebellar networks may underlie control problems in children with DCD and 

suggests a protracted period of development is needed to couple motor and cognitive systems. 

 Coupling delays of behaviour does not always imply that children with atypical motor 

skills will eventually ‘catch-up’ to typically developing children research indicates that motor 

control problems persist into adulthood. Thus, where impairment occurs across systems like 

ROC and EF that are required for complex movement, drawing strategies from different 

models of intervention may be an appropriate way to treat a delayed motor system. 

Accordingly, use of MI to treat impaired predictive control shows potential for improving 

internal models of actions. Additionally, deficits of EF respond successfully to cognitive-

based programmes where children with poor motor skills are taught to think about how to 

perform novel motor tasks. In this way, children may be better equipped to approach complex 

motor movements (such as anti-jump trials) by reducing them to simpler skills and lessen the 

load on executive systems. Certainly, continued research into this area will strengthen 

interventions for children who do not show age appropriate skills. 

 In conclusion, the development of online control of reaching across childhood 

changes according to the constraints of executive (inhibitory) systems. For typically 

developing children, the processes required for flexible movement develop rapidly during 

early and mid-age childhood years before a re-organisation of systems that leads to more 

gradual improvements into older childhood. For children with DCD, this pattern of coupling 
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appears delayed, subserved by immaturities in connections between fronto-parietal systems 

that are implicated with the cognitive control of action. 
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1152-1159. doi: 10.1016/j.ridd.2014.01.026 

Wilson, P. H., Ruddock, S., Smits-Engelsman, B., Polatajko, H., & Blank, R. (2013).  

Understanding performance deficits in developmental coordination disorder: A meta- 

analysis of recent research. Developmental Medicine and Child Neurology, 55(3), 

217-228. doi: 10.1111/j.1469-8749.2012.04436.x 

 

Peer Reviewed Conference Presentations 

Ruddock, S., Hyde, C., Piek, J., Sugden,  D., Morris, S., & Wilson, P. (2014, July). A 2-year  

longitudinal study of motor control and executive function in children with 

Developmental Coordination Disorder: Modelling patterns of change with age. Paper 

presentation at the European Academy of Childhood Disability, Vienna, Austria, 03-

05 July2014. 

Ruddock, S., Hyde, C., Piek, J., Sugden,  D., Morris, S., & Wilson, P. (2013, November)  

Executive systems modulate the way primary school children enlist online 

corrections: Assessing the consistency of performance on a double-step task. Paper 

presentation at the 11th Motor Control and Human Skill, Melbourne, Australia, 27 

November – 29 November 2013. 
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Ruddock, S., Hyde, C., Piek, J., Sugden,  D., Morris, S., & Wilson, P. (2013, June).  

Inhibitory constraints on the goal-directed reaching of children with developmental 

coordination disorder. Paper presented at the 10th International Conference on 

Developmental Coordination Disorder (DCD-X), Ouro Preto, Brazil, June 28 – July 1 

2013. 

Noten, M., Wilson, P., Ruddock, S., & Steenbergen, B. (2013, June). Mild impairments of  

motor imagery skills in children with DCD: Is motor imagery related to anticipatory 

action planning? Paper presented at the 10th International Conference on 

Developmental Coordination Disorder (DCD-X), Ouro Preto, Brazil, June 28 – July 1 

2013. 

Ruddock, S., Wilson, P., Hyde, C., Piek, J., Sugden,  D., Rigoli, D., & Morris, S. (2011,  

November). The development of online motor control in children: Variations with age 

as a function of inhibitory demands. Paper presentation at the 10th Motor Control and 

Human Skill, Mandurah, Western Australia. 

Wilson, P., Ruddock, S., Hyde, C., Piek, J., Sugden,  D., Rigoli, D., Morris, S. (2011,  

November). Inhibitory demands impede online control in children with developmental 

coordination disorder (DCD). Paper presentation at the 10th Motor Control and 

Human Skill, Mandurah, Western Australia. 

Wilson, P., Ruddock, S., Hyde, C., Piek, J., Sugden, D., Rigoli, D., & Morris, S. (2009,  

June).The relationship between the development of movement skill, online control 

and executive control in children: a longitudinal investigation. Paper presentation at 

the 9th International Conference on Children with Developmental Coordination 

Disorder, Lausanne, Switzerland, June 27-29 2011
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Appendix A Polynomial Fit Analyses for AJMTdiff and ToCdiff   

 

   TDC DCD 

 Model Sequential 

effect in 

model 

-2log 

likelihood 

p for 

sequential test 

-2log 

likelihood 

p for 

sequential test 

 

 

 

 

 

AJMTdiff 

Linear cohort 4821.00 <.001 2921.10 <.001 

 age  <.001  <.001 

 age*cohort  .48  .31 

Quadratic cohort 4808.20 <.001 2930.00 <.001 

 age  <.001  <.001 

 age*cohort  .69  .31 

 agesquare  .03*  .23 

Cubic cohort 4810.60 <.001 2928.60 <.001 

 age  <.001  <.001 

 age*cohort  .70  .30 

 agesquare  .07  .22 

  agecube  .17  .28 

 

 

 

 

 

ToCdiff 

Linear cohort 4381.90 <.001 2635.50 <.001 

 age  <.001  <.001 

 age*cohort  .10  .11 

Quadratic cohort 4374.60 <.001   

 age  <.001   

 age*cohort  0.11   

 agesquare  .016*   

Cubic cohort 4376.60 <.001 2648.30 <.001 

 age  <.001  <.001 

 age*cohort  .10  .07 

 agesquare  .02  .21 

 agecube  .14  .87 

Note. *p < .05. AJMTdiff = Anti-jump Movement Time Difference Score; ToCdiff = Time of 

correction difference score; TDC = Typically Developing Children; DCD = Developmental 

Coordination Disorder. 
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Appendix B Ethics Approval: Australian Catholic University 

From: Gabrielle Ryan [mailto:Gabrielle.Ryan@acu.edu.au] 

Sent: Thursday, 29 March 2012 10:28 AM 

To: PeterH Wilson;  

Cc: Gabrielle Ryan 

Subject: Ethics Application approved 2012 73V 

 

Dear Peter, 

 

Ethics Register Number: 2012 73V 

Project Title: The development of rapid on-line motor control in children End Date:  

30/06/2013 

 

This email is to advise that your application has been reviewed by the University Human 

Research Ethics Committee and your approval has been transferred from RMIT HREC to the 

ACU HREC. ACU HREC is now the primary HREC on this project. Please ensure that you 

have completed the relevant processes to close off this project at RMIT, if there are no 

ongoing links with researchers still at RMIT. 

 

Whilst the data collection of your project has received ethical clearance, the decision to 

commence and authority to commence may be dependent on factors beyond the remit of the 

ethics review process. For example, your research may need ethics clearance from other 

organisations or permissions from other organisations to access staff. Therefore the proposed 

data collection should not commence until you have satisfied these requirements. 

 

If you require a formal approval certificate, please respond via reply email and one will be 

issued. 

 

Decisions related to low risk ethical review are subject to ratification at the next available 

Committee meeting. You will only be contacted again in relation to this matter if the 

Committee raises any additional questions or concerns. 

 

This project has been awarded ethical clearance until 30/06/2013 and a progress report must 

be submitted at least once every twelve months. 

 

Researchers who fail to submit an appropriate progress report may have their ethical 

clearance revoked and/or the ethical clearances of other projects suspended.  When your 

project has been completed please complete and submit a progress/final report form and 

advise us by email at your earliest convenience.  The information researchers provide on the 

security of records, compliance with approval consent procedures and documentation and 

responses to special conditions is reported to the NHMRC on an annual basis.  In accordance 

with NHMRC the ACU HREC may undertake annual audits of any projects considered to be 

of more than low risk. 

 

For progress and/or final reports, please complete and submit a Progress / Final Report form: 

  http://www.acu.edu.au/about_acu/research/staff/research_ethics/ 

 

For modifications to your project, please complete and submit a Modification form: 
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  http://www.acu.edu.au/about_acu/research/staff/research_ethics/ 

 

Researchers must immediately report to HREC any matter that might affect the ethical 

acceptability of the protocol e.g.: changes to protocols or unforeseen circumstances or 

adverse effects on participants. 

 

Please do not hesitate to contact the office if you have any queries. 

 

Kind regards, 

Gabrielle Ryan  

 

Ethics Officer | Research Services 

Office of the Deputy Vice Chancellor (Research) Australian Catholic University Locked Bag 

4115, Fitzroy, VIC, 3065 

T: 03 9953 3150 F: 03 9953 3315 
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Appendix C Ethics Approval: Department of Education  
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Appendix D Ethics Approval: Catholic Education Office 

  



Appendices     

252 
 
 

  



Appendices     

253 
 
 

Appendix E Plain Language Statement for School Principals, Study 1, 2, 3  

INVITATION TO PARTICIPATE IN A RESEARCH PROJECT      
PROJECT INFORMATION STATEMENT 
 
Project Title: 
Development of rapid, online motor control in children 
 
Investigators: 
o Associate Prof. Peter Wilson (Principle Investigator: Psychology, RMIT University, 

peter.h.wilson@rmit.edu.au, (03) 9925 2906.) 
o Prof. Jan Piek (Principle Investigator, School of Psychology and Speech Pathology, Curtin 

University, J.Piek@curtin.edu.au) 
o Prof David Sugden (Principle Investigator, School of Education, Leeds University, 

d.a.sugden@education.leeds.ac.uk) 
o Mr Scott Ruddock (BSocSc (Psych), Honours Student, RMIT) 
o Miss Rhianna Mann (BSocSc (Psych), Honours Student, RMIT) 
o Mr Henry Bell (BSocSc (Psych), Honours Student, RMIT) 
o Mr Christian Hyde (BSc, Grad. Dip. Psych, PhD Candidate) 
o Ms Daniela Rigoli (BA Psychology – Honours, Curtin University) 
 
Dear <Insert Name of Principal of School>, 
 
Your school has been invited to participate in a research project being conducted by RMIT University. 
This information sheet describes the project in straightforward language, or ‘plain English’. Please 
read this sheet carefully and be confident that you understand its contents before deciding whether or 
not you wish for children from your school to be approached to participate.  If you have any questions 
about the project, please ask one of the investigators.   
 
Who is involved in this research project? Why is it being conducted? 
Our names are Scott Ruddock, Rhianna Mann, Henry Ball, Daniela Rigoli, and Christian Hyde and we 
are conducting a research project with Associate Professor Peter Wilson in the School of Psychology 
which has been funded by the Australian Research Council (ARC). This means that we will be 
preparing a research report from the results of this study. We would like to invite children from your 
school to participate in this research subject to their parent’s written consent. This project has been 
approved by the RMIT University Human Research Ethics Committee and <insert relevant 
educational body>. 
 
What is the project about? What are the questions being addressed? 
Our project examines how children learn motor skills and the strategies they use to assist them.  This 
knowledge will also help us understand why some children have more difficulty performing 
movements than others.  To do this we will assess children at different points over time, and examine 
how their performance changes with age.  
 
If I agree for my school to participate, what will those children who are involved be required to 
do? 
Children’s motor skills will first be assessed using a small set of movement tasks. These include 
manual skills like bead threading and larger skills like standing broad jump.  Children will also 
complete a set of computer-based tasks assessing thinking skills and speed. Using a small tablet PC, 
children will be asked to press keys in response to a set of playing cards displayed on the screen.  
For example, they will be asked to hit a YES key whenever they see a red card, or decide if a 
displayed card is the same as one displayed previously.  Finally, they will be asked to point and touch 
targets displayed on a larger touch screen as they appear.  We will assess their speed and accuracy 
on these tasks.  Finally, parents will also be asked to complete a short questionnaire about their 
child’s participation in physical activities and factors that may impact on this. 
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Since we are interested in changes in the strategies that people use to perform movements over time, 
children will be assessed once every 6 months for a period of 2 years (5 times in total). Each session 
will take roughly 30 to 45 minutes to complete and be conducted at school. 
 
What are the risks or disadvantages associated with participation? 
Very occasionally, people find being assessed uncomfortable or upsetting. If at any stage during the 
study your child feels uncomfortable or upset about the tasks, they are encouraged to let the 
researcher know and the assessment will cease. 
 
What are the benefits associated with participation? 
Children will find the tasks both enjoyable and challenging.  They will be aware that their participation 
will help us add to knowledge about the way children and adults learn new skills, and why some 
children find it difficult.  There will be no financial benefit or reward for participating in this study. 
 
What will happen to the information provided by the research? 
All aspects of the study, including results, will be strictly confidential and only the researchers will 
have access to information on participants. To maintain confidentiality children’s names will not 
appear on any of the data. A code number will be assigned each child’s data. The consent forms will 
not be kept in the same place as each child’s results so there will be no way to identify which results 
have been obtained of each child. 
 
Storage of the data collected will adhere to the University regulations and be kept in secure storage 
for 5 years. A report of the study may be submitted for publication, but individual participants will not 
be identifiable in such a report, as only aggregated group data will be reported. 
 
In order to assist with research examining movement development, each child’s anonymous data may 
be used for other projects in this area. All data will be completely anonymous and each child’s identity 
will not be disclosed. 
 
What are the rights of my students as participants? 
As this study is completely voluntary, children and their parents are under no obligation to consent to 
participation and children may withdraw at any stage for any reason. Further, children have the right 
to ask questions regarding the project at any time. 
 
Whom should I contact if I have any questions? 
If you, your students or their parents have any queries or would like to be informed of the aggregate 
research findings, please contact A. Prof Peter Wilson on (03) 9925 2906 or 
peter.h.wilson@rmit.edu.au. Should you, your students or their parents have any concerns about the 
conduct of this research project, please contact A. Prof Peter Wilson on the contact details above. 
 
Yours sincerely, 
 
 
A/Prof Peter Wilson   A/Prof Jan Piek   A/Prof David Sugden 
BAppSc (PE), BBSc (Hons), PhD BSc (Hons), PhD  PhD 
 
 
Scott Ruddock    Rhianna Mann   Henry Bell 
B/SocSc (Psychology)   BSocSc (Psych)  BSocSc (Psych) 
 
 
Daniela Rigoli    Christian Hyde 
BA Psychology (Honours)  Bachelor of Science, Grad. Dip. Psych. 
 
 

Any complaints about children from your school’s participation in this project may be directed to the Executive Officer, RMIT Human Research 
Ethics Committee, Research & Innovation, RMIT, GPO Box 2476V, Melbourne, 3001.    

Details of the complaints procedure are available at:  http://www.rmit.edu.au/rd/hrec_complaints  
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Appendix F Plain Language Statement and Consent Form for Parents, Study 1, 2, 3  

INVITATION TO PARTICIPATE IN A RESEARCH PROJECT      
PROJECT INFORMATION STATEMENT 
 
Project Title: 
The development of rapid online motor control in children 
 
Investigators: 
o Associate Prof. Peter Wilson (Principle Investigator: Associate Professor, Psychology, RMIT 

University, peter.h.wilson@rmit.edu.au, (03) 9925 2906. 
o Prof. Jan Piek (Principle Investigator, School of Psychology and Speech Pathology, Curtin 

University, J.Piek@curtin.edu.au) 
o Prof David Sugden (Principle Investigator, School of Education, Leeds University, 

d.a.sugden@education.leeds.ac.uk) 
o Mr Scott Ruddock (BSocSc (Psych), Honours Student, RMIT) 
o Miss Rhianna Mann (BSocSc (Psych), Honours Student, RMIT) 
o Mr Henry Bell (BSocSc (Psych), Honours Student, RMIT) 
o Mr Christian Hyde (BSc, Grad. Dip. Psych, PhD Candidate) 
o Ms Daniela Rigoli (BA Psychology – Honours, Curtin University) 
 
Dear Parent, 
 
Your child has been invited to participate in a research project being conducted by RMIT University in 
partnership with Curtin University (WA) and Leeds University (UK). This information sheet describes 
the project in straightforward language, or ‘plain English’. Please read this sheet carefully and be 
confident that you understand its contents before deciding whether or not you wish for your child to 
participate.  If you have any questions about the project, please ask one of the investigators.   
 
Who is involved in this research project? Why is it being conducted? 
Associate Prof. Peter Wilson from the Discipline of Psychology at RMIT University leads a team of 
investigators (listed above) on this project, which is funded by the Australian Research Council (ARC).  
The project is designed to add to our understanding of how children acquire motor skills and some of 
the potential barriers.  We will be preparing a number of interesting research reports from the results 
of this study.  I would like to invite your child to participate in this research. This project has been 
approved by the RMIT University Human Research Ethics Committee (HREC).   
 
Why has my child been approached? 
The Principal of your child’s school has agreed to allow us to approach students to invite them to 
participate in our project. 
 
What is the project about? What are the questions being addressed? 
Our project examines how children learn motor skills and the strategies they use to assist them.  This 
knowledge will also help us understand why some children have more difficulty performing 
movements than others.  To do this we will assess children at different points over time, and examine 
how their performance changes with age.  
 
If I agree for my child to participate, what will they be required to do? 
Your child’s motor skills will first be assessed using a small set of movement tasks. These include 
manual skills like bead threading and larger skills like standing broad jump.  Your child will also 
complete a set of computer-based tasks assessing thinking skills and speed. Using a small tablet PC, 
children will be asked to press keys in response to a set of playing cards displayed on the screen.  
For example, they will be asked to hit a YES key whenever the see a red card, or decide if a 
displayed card is the same as one displayed previously.  Finally, they will be asked to point and touch 
targets displayed on a larger touch screen as they appear.  We will assess their speed and accuracy 
on these tasks.  Finally, you will also be asked to complete a short questionnaire about your child’s 
participation in physical activities and factors that may impact on this. 
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Since we are interested in changes in the strategies that people use to perform movements over time, 
your children will be assessed once every 6 months for a period of 2 years (5 times in total). Each 
session will take roughly 30 to 45 minutes to complete and be conducted at school. 
 
What are the risks or disadvantages associated with participation? 
Very occasionally, people find being assessed uncomfortable or upsetting. If at any stage during the 
study your child feels uncomfortable or upset about the tasks, they are encouraged to let the 
researcher know and the assessment will cease. 
 
What are the benefits associated with my child’s participation? 
Your child will find the tasks both enjoyable and challenging.  Your child will be aware that their 
participation will help us add to knowledge about the way children and adults learn new skills, and 
why some children find it difficult.  There will be no financial benefit or reward for participating in this 
study. 
 
What will happen to the information that my child provides? 
All aspects of the study, including results, will be strictly confidential and only the researchers will 
have access to information on participants. To maintain confidentiality your child’s name will not 
appear on any of the data. A code number will be assigned to your child’s data. The consent forms 
which you will sign will not be kept in the same place as your child’s results so there will be no way to 
identify which results have been obtained from your child. 
 
Storage of the data collected will adhere to the University regulations and be kept in secure storage 
for 5 years. A report of the study may be submitted for publication, but individual participants will not 
be identifiable in such a report, as only aggregated group data will be reported. 
 
In order to assist with research examining movement development, your child’s anonymous data may 
be used for other projects in this area. All data will be completely anonymous and your child’s identity 
will not be disclosed. 
 
What are my child’s rights as a participant? 
As this study is completely voluntary you and your child are under no obligation to consent to 
participation and your child may withdraw at any stage for any reason. Your child has the right to ask 
questions regarding the project at any time. 
 
Whom should I contact if I have any questions? 
If you have any queries or would like to be informed of the aggregate research findings, please 
contact A/Prof. Peter Wilson on (03) 9925 2906 or peter.h.wilson@rmit.edu.au. Should you or your 
child have any concerns about the conduct of this research project, please contact A/Prof. Peter 
Wilson on the contact details above. 
 
Yours sincerely, 
 
 
A/Prof Peter Wilson   A/Prof Jan Piek  A/Prof David Sugden 
BAppSc (PE), BBSc (Hons), PhD BSc (Hons), PhD PhD 
 
 
Scott Ruddock    Rhianna Mann  Henry Bell 
B/SocSc (Psychology)   BSocSc (Psych) BSocSc (Psych) 
 
 
Daniela Rigoli    Christian Hyde 
BA Psychology (Honours)  Bachelor of Science, Grad. Dip. Psych. 

 
 

Portfolio  Science, Engineering and Health 

School of Health Sciences 
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Name of participant:  

Project Title: The development of rapid online motor control in children 

  

Name(s) of investigators(1) A/Prof Peter Wilson Phone: c/o (03) 9925 2906 

(2) Prof Jan Piek Phone: c/o (03) 9925 2906 

(3) Prof David Sugden Phone: c/o (03) 9925 2906 

(4) Scott Ruddock Phone: c/o (03) 9925 2906 

(5) Christian Hyde Phone: c/o (03) 9925 2906 

(6) Rhianna Mann Phone: c/o (03) 9925 2906 

(7) Christian Hyde Phone: c/o (03) 9925 2906 

(8) Daniela Rigoli Phone: c/o (03) 9925 2906 

  
1. I have received a statement explaining the tests/procedures involved in this project. 

 
2. I consent to my child’s participation in the above project, the particulars of which - including details of 

tests or procedures - have been explained to me. 
 

3. I authorise the investigator or his or her assistant to use with my child the tests or procedures referred to 
in 1 above. 

 
4. I acknowledge that: 

 
(a) The possible effects of the tests or procedures have been explained to me to my satisfaction. 
(b) I have been informed that my child is free to withdraw from the project at any time and to 

withdraw any unprocessed data previously supplied (unless follow-up is needed for safety). 
(c) The project is for the purpose of research and/or teaching.  It may not be of direct benefit to my 

child. 
(d) The privacy of the personal information my child provides will be safeguarded and only disclosed 

where I have consented to the disclosure or as required by law.  
(e) The security of the research data is assured during and after completion of the study.  The data 

collected during the study may be published, and a report of the project outcomes will be 
provided to Dr Peter Wilson.  Any information which will identify my child will not be used. 

 
 

I consent to the participation of      in the above 
project 
 
Signature: (1)                                             (2) Date:  

(Signatures of parents or guardians) 
 
Witness:  Date:  

(Witness to signature) 
 
 
 
 

PLEASE RETURN YOUR SIGNED CONSENT FORM BACK TO YOUR CHILD’S CLASS 
TEACHER 

 
 
 
 

Any complaints about your child’s participation in this project may be directed to the Executive Officer, RMIT Human Research Ethics Committee, 
Research & Innovation, RMIT, GPO Box 2476V, Melbourne, 3001.  The telephone number is (03) 9925 2251.   

Details of the complaints procedure are available from the above address.   
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Appendix G Consent Form for Older Children, Study 1, 2, 3  

INVITATION TO PARTICIPATE IN A RESEARCH PROJECT 
PROJECT INFORMATION SHEET- CHILD VERSION 
 
Hello, our names are Dr Jan Piek, Dr David Sugden, Scott Ruddock, Rhianna Mann, Henry 
Ball, Daniela Rigoli and Christian Hyde and we would like to invite you to participate in a 
project that we are conducting with Dr Peter Wilson from RMIT University. The aim of this 
project is to learn about how children move.  
 
What will I be doing? 
You will be asked to do some activities that most children 
really enjoy like threading beads, balancing on one leg, 
and jumping as far as you can.  We will also ask you to 
play some games on a computer.  On one game you will 
touch playing cards as quickly as you can as they appear 
on a computer screen.  On another you will try to find a 
hidden path through a maze, and remember objects that 
appear on the screen.  Last, you will touch targets as 
they jump from one place to another.    
 
What if I do NOT want to take part in the project? 
You do not have to take part in this project if you do not 
want to. Also, if you do decide to join in the project but 
change your mind at any time, you are free to stop 
whenever you want. There will be no penalty if you 
decide to stop at any time during the project. 
 
What if I do want to take part in the project? 
Please sign the sign the form below. 
 
 
 
Thank you.  ☺ 
 

 
 

 
 
 
 
 

 

 
I agree to take part in the project which has been described above. 
 
 
 
Participant’s name ..........................................................................................................................  
 
 
Signature ................................................  
Date ............... / ................... / ...................  
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Appendix H Consent Form for Younger Children, Study 1, 2, 3  

INVITATION TO PARTICIPATE IN A RESEARCH PROJECT 
PROJECT INFORMATION SHEET- CHILD VERSION 
 
What is this project about? 
o Learning about how children move  
 
Who is running this project? 
o Dr Peter Wilson from RMIT University peter.h.wilson@rmit.edu.au, tel. 9925-2906, Dr Jan 

Piek, Dr David Sugden, Scott Ruddock, Rhianna Mann, Henry Bell, Daniela Rigoli and 
Christian Hyde. 

 
What will I do?   
You have been chosen to be part of a project about how school children learn new skills like 
catching, throwing, and jumping. 
 

 

You will be asked to do some activities that most children 
really enjoy like threading beads, balancing on one leg, and 
jumping as far as you can.  We will also ask you to play some 
games on a computer.  On one game you will touch playing 
cards as quickly as you can as they appear on a computer 
screen.  On another you will try to find a hidden path through 
a maze, and remember objects that appear on the screen.  
Last, you will touch targets as they jump from one place to 
another.   

 

 
 

 

We will measure how you go.  This will help us learn more about 
how children do things and how they grow. 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Name:  ___________________________________    Date:  _______________ 

 
THANK YOU  

Would you like to            
be part of the project? 
 
     YES          NO! 

Yes, I would like to do 
the activities.  – Please 
sign the form 

 
 

No – That’s ok! 

 

 

 

OR 

mailto:peter.h.wilson@rmit.edu.au
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Appendix I Child Development Parent Questionnaire, Study 1, 2, 3 

 

Child Development Questionnaire for Parents/Guardians 

 

The following questionnaire is designed for parent/s who have agreed for their child to 

participate in the RMIT University study, ‘The development of rapid on-line control in 

children’.  Parents will be asked to answer some questions about their child’s development, 

level of physical activity, and other things associated with physical activity.  Your answers 

will be confidential so please answer them as accurately as possible.  If for any reason you 

do not wish to complete one or more question/s, just go to the next question. 

 

 

 

Identifying Information 

Your Name:          

Please provide the following details about your child: 

 Name:         

 Date of Birth:    /              / 

 Gender:    Male  Female  

 

 

Background Information and Participation 

 

Question 1 

Has your child had any difficulties learning movement skills?    Yes    No   

 

If YES, have these movement difficulties affected any of the following: 

Their ability to complete school work 

 

Yes    No  

Their ability to perform everyday activities at home (e.g., dress 

themselves, clean their teeth or cut their food) 

Yes    No  

Their ability to participate in recreational activities involving 

movement (i.e., sport, free play, music lessons, etc.) 

Yes    No  

 

   

Question 2 

Has your child ever been diagnosed with a major medical condition (e.g., asthma, epilepsy, 

etc.)? Yes    No  

If YES, please specify the condition(s):   
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Question 3 

Has your child ever been diagnosed by a health professional with one/or more of the 

following: 

Tick if Yes  

 Motor Coordination Problems        

 ADHD           

 Conduct Disorder         

 Autism Spectrum Disorder (i.e. Asperger’s Syndrome or Autism)   

 Dyslexia          

 Specific Language Impairment       

 Other Learning Disorder        

 Intellectual Disability         
 

 

Is your child receiving support for a learning disability?  Yes    No  

If YES, please specify the disability and type of support:  

            

             

  

 

Is your child receiving ongoing support for any other disability? Yes    No  

If YES, please specify the disability and type of support:  

            

             

 

 

Question 4 

This question asks you to think about all your child’s physical activities in the past 

month.  

(i) List the organised physical activities that your child has participated in during this time 

(like netball, football, dancing, lessons, etc.):  

            

             

 

How many hours a week?      hours.  

 

(ii) List the types of free play involving physical activity that your child has participated in 

during this time (like hide and seek, chasing games, climbing, etc.):  

            

             

 

How many hours a week?      hours.  
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Question 5 

Does your child participate in any seasonal physical activities that they may not have done in 

the past month? (e.g., football, skiing, swimming)   Yes    No  

Types of seasonal activity (not listed in Q.4):        

            

             

 

Hours per week:      

 

Question 6 

Please rate your child’s interest in participating in organised physical activities (like netball, 

football, dancing lessons, etc.) or free play involving movement?     

    

□ □ □ □ □ 

Very 

Disinterested 

Somewhat 

disinterested 

Neutral Somewhat 

interested 

Very interested 

 

 

Question 7 

Please rate your child’s skill level when performing physical activities (like those referred to 

in Question 4 and 5)?  

□ □ □ □ □ 

Well below 

average 

Somewhat 

below Average 

Average Somewhat 

above average 

Well above 

average 
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