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Abstract: Deep learning—in particular, deep neural networks (DNNs)—as a mesh-free and self-
adapting method has demonstrated its great potential in the field of scientific computation. In this
work, inspired by the Deep Ritz method proposed by Weinan E et al. to solve a class of variational
problems that generally stem from partial differential equations, we present a coupled deep neural
network (CDNN) to solve the fourth-order biharmonic equation by splitting it into two well-posed
Poisson’s problems, and then design a hybrid loss function for this method that can make efficiently
the optimization of DNN easier and reduce the computer resources. In addition, a new activation
function based on Fourier theory is introduced for our CDNN method. This activation function can
reduce significantly the approximation error of the DNN. Finally, some numerical experiments are
carried out to demonstrate the feasibility and efficiency of the CDNN method for the biharmonic
equation in various cases.
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1. Introduction

In this paper, we consider the numerical solution of the biharmonic equation
∆2u(x) = f (x), in Ω,
u(x) = g(x), on ∂Ω,
∆u(x) = h(x), on ∂Ω,

(1)

where Ω is a polygonal or polyhedral domain in Euclidean space Rd (d is the dimension)
with a piecewise Lipschitz boundary that satisfies an interior cone condition, f (x) ∈ L2(Ω)
is a given function and ∆ is a standard Laplace operator. The operators ∆u(x) and ∆2u(x)
are expressed as

∆u(x) =
d

∑
i=1

∂2u
∂x2

i
and ∆2u(x) =

d

∑
i=1

∂4u
∂x4

i
+

d

∑
i=1

d

∑
j=1

∂4u
∂x2

i x2
j

,

respectively.
A biharmonic equation is a class of common high-order partial differential equations

(PDEs) that stems from the field of physics and applied mathematics, especially in elasticity
theory and Stokes flow problems; for instance, scattered data fitting with thin plate splines
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[1], fluid mechanics [2,3] and linear elasticity [4,5]. In the last few decades, many traditional
numerical methods have been proposed for dealing with (1), and they can be classified into
two categories: a direct (uncoupled) approach and coupled (splitting, mixed) approach.

In terms of the direct approach, there are the finite difference method (FDM) based on
its uncoupled scheme [6–9], finite volume method (FVM) [10–12], finite element method
(FEM) based on its variational formulation, such as non-conforming FEM [13–15], and
conforming FEM [16,17]. The idea of the coupled approach is to introduce auxiliary
variables and split the biharmonic equation into two coupled Poisson equations. Based
on this coupled scheme, the finite difference technique [9,18,19], finite element technique
and mixed element technique [20–24] are naturally used to solve the two second-order
equations. In addition, the collocation method [25–27] and radial basis functions (RBF)
method [28–30] are also approaches considered to solve (1).

However, the traditional methods will encounter the curse of an irregular domain and
high dimension. Deep learning, especially deep neural networks (DNNs), have expressed
a remarkable performance in solving mathematical problems in scientific computations
and engineering applications based on its great potential in nonlinear approximation; for
example, utilizing DNNs to solve partial differential equations [31–34], stochastic differ-
ential equations [35], inverse problems [36], molecular modeling [37], etc. Specially, the
Deep Ritz method (DRM) [32] and physical information neural network (PINN) [36] have
gained more and more attention in PDEs, and they have made wonderful grades for solving
various PDEs. Within the architectures of DRM and PINN, some DNN-based methods
have been proposed to directly deal with this biharmonic Equation (1) [38–43]. Since these
DNN-based methods need to compute the second-order or fourth-order derivative of the
solution in Ω and the second-order derivative of the solution in ∂Ω, they may consume a
large amount of time and computer resources when solving (1). In addition, the authors
in [44] proposed a deep mixed residual method (MIM) to solve PDEs with high-order
derivatives by splitting it into some first-order systems; however, the PDEs solution and its
derivatives share nearly the same DNN and boundary conditions, are not consistent with
the mechanism of PDEs and adversely affect the performance of MIM.

In this paper, we investigate addressing the high-order elliptic Equation (1) by com-
bining the Deep Ritz method and the coupled scheme of the biharmonic equation, and
then establish a coupled deep neural network architecture (CDNN). Motivated by double
triangle series and Fourier expansion, a new activation function with sine and cosine are
provided for our CDNN model; it will improve the capability of DNN for approximating a
complex target because of it being smooth and local. The application of a trigonometric
function as an activation function can also be found in [45,46]. The main contributions of
this paper are as follows:

• Based on the coupled scheme of the fourth-order biharmonic Equation (1), we con-
structed a CDNN architecture for dealing with (1) by means of the Deep Ritz method
used to solve variational problems; this architecture is composed of two independent
DNNs. Compared with the existing DNN methods, the CDNN will reduce effectively
the complexity of the algorithm, save the resources of the computer and make the
neural networks easier to train. In the meantime, this model performs remarkably
well and obtains considerable results.

• According to the property of spectral bias or frequency preference for the DNN, we
introduced a Fourier mapping with sine and cosine as the activation function of the
first layer for the DNN model; it can mitigate the pathology of the spectral bias of
the DNN. In the viewpoint of function approximation, the DNN model with Fourier
mapping mimics the Fourier expansion, in which, the first layer with Fourier mapping
can be regarded as a series of Fourier basic functions and the output of the DNN is the
(nonlinear) combination of those basis functions.

• By introducing some compared DRM models with different activation functions to
solve the original form of the biharmonic equation, we show that our CDNN model
performs better when solving (1) in various dimensional space.
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The paper is structured as follows. In Section 2, we briefly introduce the framework of
the deep neural network and the formulation of ResNet. Then, in Section 3, we construct
the CDNN architecture to approximate the solution of the biharmonic equation based
on its coupled scheme and provide the options of the activation function. In Section 4,
some numerical examples are carried out to test the performance of the developed CDNN
model. Section 5 discusses the merits and shortcomings of the CDNN, and provides the
opportunity to address related works. Finally, some brief conclusions are made in Section 6.

2. Deep Neural Network and ResNet Architecture

In this section, the related concepts and mathematical formulation of the DNN are
briefly introduced. At first, a standard neural unit of a DNN with an input x ∈ Rd and an
output y ∈ Rm is in the form of

y = σ ◦ (Wx + b) (2)

where W = (wij) ∈ Rd×m and b ∈ Rm are called a weight matrix and bias vector, respec-
tively. Here and thereafter, σ is a non-linear operator, commonly known as the activation
function, and “ ◦ ” stands for the elementary-wise operation. Generally, the output of (2)
will be transformed by a new weight and a new bias, and the new output will be fed into
another activation function. Hence, (2) is also called the hidden layer of the DNN. In other
word, the DNN is a nested composition of sequential single linear functions and nonlinear
activation functions. Mathematically, the DNN with an input datum x ∈ Rd and an output
y(x; θ) can be formulated as

y[0] = x
y[l] = σ ◦ (W [l]y[l−1] + b[l]), for l = 1, 2, 3, · · · · · · , L
y(x; θ) = y[L]

(3)

where W [l] ∈ Rml+1×ml , b[l] ∈ Rml+1 are the weight matrix and bias vector of the l-th
hidden layer, respectively, m0 = d and mL is the dimension of the output for the DNN. For
convenience, we denote the parameter set

(
W [L], · · ·W [1], W [0], b[L], · · · b[1], b[0]

)
by θ here

and thereafter.
The residual neural network (ResNet) technique [47] has been widely used in deep

neural networks for solving PDEs; it can not onl skilfully overcome the vanishing gradient
problem of DNN in backpropagation, but can also well improve the capacity of the DNN
to approximate the solution and high-order derivatives of PDEs [32,37]. The architecture of
ResNet is depicted in the following Figure 1.

yin

ResNet block

yout

yin

· · · · · ·

⊕

yout

Figure 1. The architecture of ResNet.

Mathematically, a ResNet block with a one-step connection produces a filtered version
y[`+1](x; θ) for the input y[`](x; θ), which is as follows:

y[`+1](x; θ) = y[`](x; θ) + σ ◦ (W [`+1]y[`](x; θ) + b[`+1]).
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In this work, we also employed the strategy of a one-step skip connection for two
consecutive layers in the DNN if they have the same number of neurons. For those
consecutive layers with different neuron numbers, the skip connection step is omitted.

3. Unified coupled DNNs Architecture to Biharmonic Equation

Skilfully decoupling the biharmonic Equation (1) into two Poisson equations, tradi-
tional numerical methods such as FEM and FDM obtain a favorable performance with a
small number of computing resources and a lower time complexity. By introducing an
auxiliary variable w = −∆u, one can rewrite the fourth-order Equation (1) into a couple of
second-order equations:{

−∆w = f , in Ω
w = h, on ∂Ω

and

{
−∆u = w, in Ω

u = g, on ∂Ω
. (4)

Then, we searched a couple of functions (w, u) instead of finding a solution for the
original problem (1). Generally, the strong solutions of (4) may be non-existent; one can
obtain their weak solutions in the given domain Ω. The weak function pair (w, u) should
satisfy u, w ∈ H1

0(Ω) and∫
Ω
(∇u · ∇v− wv)dx = 0 and

∫
Ω
(∇w · ∇ψ− f ψ)dx = 0 for all v, ψ ∈ H1

0(Ω).

They are equivalent to the weak version of the Euler–Lagrange equation for the
following variational problems:

w = min
ψ∈H1

0(Ω)
J1(ψ) =

1
2

∫
Ω
|∇ψ|2dx−

∫
Ω

f ψdx (5)

and
u = min

v∈H1
0(Ω)
J2(v) =

1
2

∫
Ω
|∇v|2dx−

∫
Ω

wvdx, (6)

respectively.
The Deep Ritz method based on a deep neural network is an efficient approach for

solving variational problems that generally stem from PDEs [32]; it utilizes a parameterized
neural network to replace the trial function and changes the original problems into the
optimization of neural networks. In addition, some works concerning convergence analysis
for DRM are proposed [48,49].

Based on the above results, we then suppose two ansatzes of DNN y1(:, θ1) and
y2(:, θ2) as the functions ψ and v, which minimize the variational problem (5) and (6),
respectively, where θ1 ∈ Θ and θ2 ∈ Θ denote the parameters of underlying DNNs.
Substituting y1(:, θ1) into (5) for ψ, we can firstly obtain the following equation:

w(x) = arg min
y1(x,θ1),θ1∈Θ

[
1
2

∫
Ω
|∇y1(x, θ1)|2dx−

∫
Ω

f (x)y1(x, θ1)dx
]

for x ∈ Ω. (7)

Since the minimization problem (5) is related to w and y1(x, θ1) is an approximation of
w, then we obtain the following equation by replacing v and w with y2(x, θ1) and y1(x, θ2),
respectively, in (6):

u(x) = arg min
y2(x,θ2),θ2∈Θ

[
1
2

∫
Ω
|∇y2(x, θ2)|2dx−

∫
Ω

y1(x, θ1)y2(x, θ2)dx
]

for x ∈ Ω. (8)

Using the Monte Carlo method [50] to calculate the above integration in Ω, we further
have

θ∗1 = arg min
θ1∈Θ

Lin1(SI ; θ1) and θ∗2 = arg min
θ2∈Θ

Lin2(SI ; θ2) (9)
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with

Lin1(SI ; θ1) =
1

nin

nin

∑
i=1

[
1
2

∣∣∇y1(xi
I , θ1)

∣∣2 − f (xi
I)y1(xi

I , θ1)

]
for xi

I ∈ SI (10)

and

Lin2(SI ; θ2) =
1

nin

nin

∑
i=1

[
1
2

∣∣∇y2(xi
I , θ2)

∣∣2 − y1(xi
I , θ1)y2(xi

I , θ2)

]
for xi

I ∈ SI , (11)

respectively; here, and thereafter, SI stands for the samples in Ω with probability density
ρI .

Boundary conditions are important constraints for numerical methods such as FDM
and FEM to solve PDEs, which ensure the uniqueness and accuracy of the solution for
PDEs. Analogously, imposing boundary conditions is also an important issue in DNN
representation. Under the boundary constraints of (4), the DNNs y1(x, θ1) and y2(x, θ2) on
∂Ω should satisfy

Lbd1(SB; θ1) =
1

nbd

nbd

∑
j=1

[
y1
(
xj

B, θ1
)
− h(xj

B)

]2

→ 0 for xj
B ∈ SB (12)

and

Lbd2(SB; θ1) =
1

nbd

nbd

∑
j=1

[
y2
(
xj

B, θ2
)
− g(xj

B)

]2

→ 0 for xj
B ∈ SB, (13)

here, and thereafter, SB stands for the samples on ∂Ω with probability density ρB.
To this end, two individual parameters of DNNs model are optimized by minimizing

the following loss function:

L(SI , SB; θ1, θ2) = L1(SI , SB; θ1) + L2(SI , SB; θ2) (14)

with

L1(SI , SB; θ1) = Lin1(SI , θ1) + γLbd1(SB; θ1) and L2(SI , SB; θ2) = Lin2(SI , θ2) + γLbd2(SB; θ2)

where SI = {xi
I}

nin
i=1 and SB = {xj

B}
nbd
j=1 represent the training data of Ω and ∂Ω, respectively.

In addition, we introduce a penalty parameter γ to control the contribution of the boundary
for the loss function; it increases gradually as the training process continues.

Our goal is to find two sets of parameters θ1 and θ2 such that the approximate
functions y1(·, θ1) and y2(·, θ2) minimize the functions L1(SI , SB; θ1), L2(SI , SB; θ2) and
L(SI , SB; θ1, θ2). If these loss functions are small enough, then y1(x, θ1) and y2(x, θ2) will
be very close to the solution of (4), i.e.,

θ∗1, θ∗2 =



arg min
θ1∈Θ

L1(SI , SB; θ1)

arg min
θ2∈Θ

L2(SI , SB; θ2)

arg min
θ1,θ2∈Θ

L(SI , SB; θ1, θ2)

⇐⇒ w(x) = y1(x, θ∗1) and u(x) = y2(x, θ∗2). (15)

Remark 1. In practical implementation, we bundled L1(SI , SB; θ1), L2(SI , SB; θ2) and L(SI , SB; θ1,
θ2) together and trained them by means of a neural network optimizer. These functions in form are
related, but they can be trained in parallel.
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Remark 2. By directly transforming the biharmonic Equation (1) into a variational problem, one
can easily employ DRM to solve it. The corresponding loss is given by

L(SI , SB; θ) = Lin(SI ; θ) + γLbd(SB; θ)

with

Lin(SI ; θ) =
1

nin

nin

∑
i=1

[
1
2

∣∣∣∣∆y(xi
I ; θ)

∣∣∣∣2 − f (xi
I)y(xi

I ; θ)

]
for xi

I ∈ SI ,

and

L(SB; θ) =
1

nbd

nbd

∑
j=1

[
y
(

xj
B; θ
)
− g(xj

B)

]2

+
1

nbd

nbd

∑
j=1

[
∆y
(

xj
B; θ
)
− h(xj

B)

]2

→ 0 for xj
B ∈ SB,

where y(·; θ) stands for the output of DRM.

In order to obtain the θ∗1 and θ∗2, one can update the parameters θ1 and θ2 by means of
gradient descent (GD) or stochastic gradient descent (SGD) techniques over the training
samples at each iteration. Regarding implementation, SGD is the common optimization
method used for deep learning; it only requires the gradient information of a DNN over
one or a few samples. In this context, the SGD is given by:

θk+1 = θk − αk∇θk L(x; θk), x ∈ SI or SB,

where the “learning rate” αk decreases with k increasing and θ = {θ1, θ2}. Based on the
above discussions, Figure 2 describes the schematic of the CDNN for solving biharmonic
Equation (1).

xI

xB

x

y1(x; θ1)
∇y1(x; θ1)

f (x)

1
2

∫
|∇y1(x; θ1)|2 − f (x)y1(x; θ1)dx

|y1(x; θ1)− g(x)|2

DNN

y2(x; θ2) ∇y2(x; θ2)
1
2

∫
|∇y2(x; θ2)|2 − y1(x; θ1)y2(x; θ2)dx

|y2(x; θ2)− h(x)|2

loss

θ∗1, θ∗2

m
inim

ize

Figure 2. Schematic of a CDNN for solving the biharmonic equation. The left two DNNs with the
same framework(dotted line box) share the input x ∈ Rd (including xI and xB), and the upper and
lower branches output y1(x; θ1) ∈ R and y2(x; θ1) ∈ R, which are used to approximate the function
w and u, respectively. The right part handles the outputs of DNN and forms the total loss according
to PDEs constraints and boundary conditions.

Many experiments have shown that choosing a suitable activation function is crucial
for DNNs in various fields. As we have learned, nonlinear activation functions such as
ReLU(z) = max{0, z}, Sigmoid(z) and tanh(z) are the common choice for the DNN model;
they will improve the capacity of DNN to deal with various nonlinear problems, such
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as nonlinear PDEs and classification. Due to the biharmonic equation in this work being
a class of high-order PDEs, an activation function with a low-order derivative possibly
has an unfavourable effect for DNN when it is used to solve (1). We then consider the
activation function with a good regularity, such as tanh. Figure 3 depicts the curves of the
tanh function with first-order and second-order derivatives, which shows that the range of
derivatives for tanh is small and stable.

Figure 3. The curves for tanh function and its derivatives, respectively.

In the viewpoint of function approximation, the first layer with activation functions
for the DNN can be regarded as a series of basic functions, and the output of the DNN
is the (nonlinear) combination of those basis functions. Recently, the works [51,52] found
the phenomenon of spectral bias or frequency preference for DNNs and show that the
DNN will firstly capture the low-frequency component, and then some corresponding
explanations are made by means of a neural tangent kernel (NTK) [45,53] and Fourier
analysis [54,55]. Within this sense of spectral bias and Fourier approximation, a given real
function F (x) can be expressed by the following sine and cosine expansions:

F (x) =
Ñ

∑
n=1

(
S(cos(ωnx); θ̃) + T(sin(ωnx); θ̄)

)
,

where S(x, θ̃), T(x, θ̄) are fully connected DNNs or sub-modules of the DNN, respectively,
{ω0, ω1, ω2, · · · } are the frequencies of interest in the target function and ω = 0 will always
be included. Obviously, it mimics the Fourier expansion, and the remaining blocks of the
DNN (except for the first layer) are used to learn the coefficients of Fourier basis functions.

Choosing a Fourier feature mapping with sine and cosine as the activation function
for the DNN model is reasonable; it can mitigate the pathology of spectral bias and enable
networks to learn the target function well [45,46]. It is

σ(z) =
[

cos(2κπz)
sin(2κπz)

]
, (16)

where κ is a user-specified vector (it is not trainable) and is consistent with the number
of neural units in the first hidden layer for the DNN. By performing the Fourier feature
mapping for input points, the input points in Ω may be mapped to [−1, 1]; then, the
subsequent modules of the DNN with different activation functions can easily deal with
the feature information, such as sigmoid, tanh and ReLU, etc.

4. Numerical Experiments
4.1. Training Setup

In this section, we tested the performance of the CDNN model with the aforementioned
activation functions (tanh and Fourier mapping) for solving the biharmonic equation in
varying-dimensional spaces. In addition, two types of Deep Ritz methods with tanh and
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Fourier mapping were introduced to serve as the baseline. These compared methods and
their setups are as follows:

• DRM: A normal DNN model with tanh being its activation function for all hidden
layers and its output layer being linear.

• FDRM: A normal DNN model with Fourier mapping as the activation function for
its first hidden layer, where its activation functions for the remainder hidden layers
are chosen as tanh and its output layer is linear. The vector κ as in (16) is set as
(0.25, 0.5, 0.75, 1, · · · , 9.75, 10), and we will repeat it when the length of κ is less than
the number of neural units for the first hidden layer.

• CDNN: A coupled DNN model with tanh being its activation function for all hidden
layers and its output layer being linear.

• FCDNN: A coupled DNN model with Fourier mapping as the activation function for
its first hidden layer, where its activation functions for the remainder hidden layers
are chosen as tanh and its output layer is linear. The vector κ as in (16) is set as
(0.25, 0.5, 0.75, 1, · · · , 9.75, 10), and we will repeat it when the length of κ is less than
the number of neural units for the first hidden layer.

We provide the following criteria to evaluate the above models:

REL =
N′

∑
i=1

|ũ(xi)− u∗(xi)|2
|u∗(xi)|2

where ũ(xi) and u∗(xi) are the approximate solution of the DNN and exact solution,
respectively, for testing points {xi}(i = 1, 2, · · · , N′), and N′ represents the number of
testing points.

In our numerical experiments, all training and test data were generated with uniform
distribution in Euclidean space Rd, and all networks were trained by an Adam optimizer.
The initial learning rate was set as 2× 10−4 with a decay rate of 5× 10−5 for each training
epoch.

For the sake of viewing the training process, we tested our models for every 1000 epochs
in the training process and recorded the result at the end. In our codes, the γ was set as

γ =



γ0, if iepoch < 0.1Tmax,

10γ0, if 0.1Tmax <= iepoch < 0.2Tmax,

50γ0, if 0.2Tmax <= iepoch < 0.25Tmax,

100γ0, if 0.25Tmax <= iepoch < 0.5Tmax,

200γ0, if 0.5Tmax <= iepoch < 0.75Tmax,

500γ0, otherwise,

(17)

where the γ0 = 5 in all our tests, and Tmax represents the total number of epoch and was
set as 100000 in our all experiments. We performed all neural network training and testing
in TensorFlow (version 1.14.0) on a workstation (256-GB RAM, single NVIDIA GeForce
GTX 2080Ti 12-GB).

4.2. Numerical Examples

Example 1. We solved the biharmonic Equation (1) on the unit square domain Ω = [0, 1]× [0, 1].
The exact solution and force-side are

u(x1, x2) = sin(πx1) sin(πx2)

and
f (x1, x2) = 4π4 sin(πx1) sin(πx2),

respectively. The boundary conditions g(x1, x2) = h(x1, x2) = 0 on ∂Ω.
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In the following tests, we obtained the solution of (1) by means of DRM, FDRM, CDNN
and FCDNN, respectively. Their network size is (120, 60, 50, 50, 40), (60, 60, 50, 50, 40), (100,
50, 30, 30, 20) and (50, 50, 30, 30, 20), respectively. It is easy to know that the number of
parameters for the methods is 14100, 10800, 14000 and 10000, respectively. At each training
epoch, the training dataset was generated from Ω and ∂Ω, which include 3000 interior
points and 500 boundary points in Ω, respectively. The testing dataset was uniformly
sampled from Ω of mesh-size h = 1/129. We plot the numerical results in Figure 4 and list
the final error results in Table 1.

(a) Exact–solution (b)Point–wise error for DRM

(c) Point–wise error for FDRM (d) Point–wise error for CDNN

(e) Point–wise error for FCDNN

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

10
2

DRM FDRM CDNN FCDNN
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Figure 4. Testing results for Example 2.

Table 1. REL and running time of the aforementioned four models for Example 2.

DRM FDRM CDNN FCDNN

REL 1.64× 10−4 1.45× 10−4 1.12× 10−4 4.06× 10−6

Time 1.05 h 1.37 h 0.42 h 0.55 h

Based on the above results, we can see that the DRM, FDRM, CDNN and FCDNN
are all able to approximate the solution of (1), in which, the FCDNN model performs best,
and the performances of CDNN, DRM and FDRM are competitive. In terms of the overall
errors, the CDNN is stable in all training processes, but the FCDNN is still descending with
small oscillations. This means that the Fourier mapping activation function will improve
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the capability of the CDNN model. Table 1 shows that the CDNNs only cost approximately
0.5 h to solve Equation (1), but the DRMs cost more than 1.05 h. In summary, our CDNN
methods not only have a high accuracy, but are also efficient.

Example 2. We solved the biharmonic Equation (1) on the hexagram domain Ω derived from
[0, 1]× [0, 1]. The exact solution and force-side are

u(x1, x2) = 10x(1− 2x2
1 + x3

1)y(1− 2x2
2 + x3

2)

and

f (x1, x2) = 240x2(1− 2x2
2 + x3

2) + 2880x1(x1 − 1)x2(x2 − 1) + 240x(1− 2x2
1 + x3

1),

respectively. The functions g(x1, x2) and h(x1, x2) on ∂Ω are easy to obtain according to the exact
solution; here, we omit it.

In this example, the setups for DRM, FDRM, CDNN and FCDNN are the same as
Example 4. At each training epoch, the training dataset was sampled from Ω and ∂Ω, which
include 3000 interior points and 500 boundary points, respectively. The testing dataset was
randomly sampled from the hexagon domain in [0, 1]× [0, 1]. We plot the numerical results
in Figure 5 and list the final error results in Table 2.
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Figure 5. Testing results for Example 2.
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Table 2. REL and running time of the aforementioned four models for Example 2.

DRM FDRM CDNN FCDNN

REL 1.65× 10−4 1.0310−4 5.7310−5 1.15× 10−5

Time 1.10 h 1.26 h 0.44 h 0.55 h

On the irregular domain, the CDNN and FCDNN are still able to obtain the solution of
(1), and the performance of FCDNN is superior to that of DRM, FDRM and CDNN. In the
meantime, the runtime of CDNNs is also approximately half of DRMs and the performance
of FCDNN is still decreasing, with small oscillations when the other three methods become
stable.

Example 3. We solved the biharmonic Equation (1) on a unit cubic domain Ω = [0, 1]× [0, 1]×
[0, 1] with some holes. The exact solution is given by

u(x1, x2, x3) = 10x1(1− 2x2
1 + x3

1)x2(1− 2x2
2 + x3

2)x3(1− 2x2
3 + x3

3).

It will naturally induce the boundary conditions g(x1, x2) and h(x1, x2) on ∂Ω. By careful
calculations, one can obtain the force side; here, we omit it.

When the DRM, FDRM, CDNN and FCDNN are used to solve (1) in the three-
dimension space, their network size is set as (200, 100, 80, 80, 60), (100, 100, 80, 80, 60), (100,
80, 60, 60, 40) and (50, 80, 60, 60, 40). The training data set, including 6000 interior points
and 1000 boundary points, was randomly sampled from Ω and ∂Ω. A testing dataset was
given that includes 1600 random points distributed in Ω. The testing results are plotted in
Figure 6 and the final error results are listed in Table 3. For showing these results visually,
we projected the point-wise error for the DRM, FDRM, CDNN and FCDNN evaluated on
1600 sample points into a rectangular region with mesh size 40× 40, respectively. Note
that the mapping is only for the purpose of visualization and is independent of the actual
coordinates of those points.

Table 3. REL and running time of the aforementioned four models for Example 3.

DRM FDRM CDNN FCDNN

REL 0.192 2.11× 10−4 1.99× 10−3 1.49× 10−5

Time 2.97 h 4.16 h 0.50 h 0.54 h

Based on the above results, we can see that the FCDNN still outperforms other
models when solving the biharmonic problem (1) in a three-dimensional space, and that
the performance of the CDNN becomes a bit weaker than the FDRM. In addition, the
point-wise square error of the four models in Figure 6b,c, as well as the overall errors in
Figure 6f, show that the performance of FCDNN is much better than that of the other three
models. Compared with the case of 2D, the data in Table 3 show the run-time of CDNNs is
almost kept unchanged, but the DRMs will cost more time.
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Figure 6. Testing results for Example 3.

Example 4. We solved the biharmonic Equation (1) on the unit higher-dimensional domain Ω =
[0, 1]8. The exact solution and force-side are

u(x1, x2, . . . , x8) = sin(πx1) sin(πx2) · · · sin(πx8)

and
f (x1, x2, . . . , x8) = 64π4 sin(πx1) sin(πx2) · · · sin(πx5),

respectively. The boundaries of this problem satisfy g(x1, x2, . . . , x8) = h(x1, x2, . . . , x8) = 0.

Since the DRM and FDRM needed a large amount of computing resources for this
example, our station could not satisfy their requirements; as a result, we only employed
the CDNN and FCDNN to solve the biharmonic Equation (1) in eight-dimensional space,
where the sizes for the CDNN and FCDNN were set as (300, 200, 200, 100, 100) and (150,
200, 200, 100, 100), respectively. The training data set included 20000 interior points and
5000 boundary points randomly sampled from Ω and ∂Ω. A testing dataset was given that
included 1600 random points distributed in Ω. The testing results are plotted in Figure 7
and the final error results are listed in Table 4. Additionally, the point-wise error for CDNN
and FCDNN evaluated on 1600 sample points was projected into a rectangular region with
mesh size 40× 40, respectively.
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Figure 7. Testing results for Example 4.

The results in Figure 7 show that the FCDNN still maintains its good performance
to approximate the exact solution of (1) in eight-dimensional space; however, the CDNN
model will become slightly degenerated. In addition, the relative error of the FCDNN is
much smaller than that of the CDNN based on Table 4.

Table 4. REL and running time of the CDNN and FCDNN for Example 4.

CDNN FCDNN

REL 0.0793 0.00042

Time 3.57 h 4.03 h

5. Discussion

Compared with the DRM algorithms, the proposed CDNN method can solve the
fourth-order biharmonic equation well based on its coupled scheme. It not only effectively
reduces the complexity of the DNN algorithm, but also save the resources of the computer.
In the meantime, a novel activation function composed of sine and cosine is introduced; it
will obviously improve the performance of DNNs in solving a complex target. In a lower
dimensional space, the CDNN method costs the least time, and attains the best accuracy.
Regarding a high dimensional space, the CDNN can still keep its favorable performance;
however, the DRM method cannot work because of the tremendous computational burden.
In addition, the idea of a coupled scheme can be extended to the PINN method; then, a
coupled PINN method may be developed to solve the PDEs without a variational form or
other high-order problems. In this paper, we considered the biharmonic equation with a
Neumann boundary; it is suitable for our CDNN method. Thus, more complex boundary
conditions, such as the Dirichlet boundary and Robin boundary or other mixed boundaries,
may be considered. Different from the case of Neumann, the other boundaries will not
naturally induce the boundaries for two networks; thus, it is necessary to carefully design
the coupled framework and boundary constraints of the DNN. Further, the performance
of the CDNN will be degenerated or even not convergent if all of the networks lack the
appropriate boundary conditions. Finally, the first-order optimization methods of the
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DNN and the sampling technique of training points may have an unfavorable effect on the
accuracy and efficiency of DNN; this is an important issue to be solved.

6. Conclusions

By means of a coupled scheme of the biharmonic equation, we proposed a coupled
DNN framework to solve this high-order problem in the work. As a class of a meshless
method, the CDNN method does not rely on the initial guess and can approximate the
solution of the biharmonic equation with a low complexity well. Additionally, a mixed
loss function was designed that will enhance the stability and robustness for our model.
Furthermore, a novel activation function based on Fourier approximation was introduced
for the input layer, and the subsequent hidden layers were chosen as a good regularity
function, such as tanh; this strategy can improve the accuracy and convergence rate for
the CDNN method. Computational results show that the proposed method is feasible and
efficient in solving the (1) in a complex domain and various dimension space. In the future,
work is in progress to extend the neural network models to solve other high-order partial
differential equations.
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