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ABSTRACT Contact tracing has become a vital tool for public health officials to effectively combat the
spread of new diseases, such as the novel coronavirus disease COVID-19. Contact tracing is not new to
epidemiologist rather, it used manual or semi-manual approaches that are incredibly time-consuming, costly
and inefficient. It mostly relies on human memory while scalability is a significant challenge in tackling
pandemics. The unprecedented health and socio-economic impacts led researchers and practitioners around
theworld to search for technology-based approaches for providing scalable and timely answers. Smartphones
and associated digital technologies have the potential to provide a better approach due to their high level of
penetration, coupled with mobility. While data-driven solutions are extremely powerful, the fear among
citizens is that information like location or proximity associated with other personal data can be weaponised
by the states to enforce surveillance. Low adoption rate of such apps due to the lack of trust questioned the
efficacy and demanded researchers to find innovative solution for building digital-trust, and appropriately
balancing privacy and accuracy of data. In this paper, we have critically reviewed such protocols and apps to
identify the strength and weakness of each approach. Finally, we have penned down our recommendations
to make the future contact tracing mechanisms more universally inter-operable and privacy-preserving.

INDEX TERMS COVID-19, contact tracing, privacy, proximity technologies.

I. INTRODUCTION
The novel corona virus disease 2019 (COVID-19) pandemic
has created a public health crisis, with epidemiological mod-
els predicting severe consequences, including unprecedented
death rates. Due to its high infectious rate (denoted with R0
and pronounced as ‘‘R-naught’’), health professionals around
the world have advised to maintain hygiene and social dis-
tancing [1].R0 is the expected number of cases directly gener-
ated by one infected case in a population where all individuals
are susceptible to infection [2]. Health departments around
the world use a manual process to track all the people who
came in contact of a COVID-19 affected person within last
14 to 21 days. This process is extremely time consuming,
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inefficient, highly error prone and not scalable. Therefore,
governments are turning to the digital technologies and data
analytics for a better solution [3]. Contact tracing using smart-
phone technology seems to be a powerful tool that may be
employed to collect data and to limit disease transmission
during an epidemic or pandemic [4]. Singapore, Australia,
China and India along with a few other countries are early
adopters of mobile based contacting tracing apps as a mech-
anism for softening the lock down, which creates enormous
economic crisis.

Though these apps automate the proximity tracing quite
efficiently they present significant privacy concerns regarding
the collection of sensitive data such as personal interactions
and locations. Privacy protection laws around the world,
such as GDPR (Global Data Protection Regulation) [5] and
local data protection regulations are still in effect during
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this emergency. This implies that those who create and/or roll
out these tools still have to demonstrate good governance
of the data being collected, transmitted, stored, shared and
analysed.

As more states and organisations are searching for con-
tact tracing or exposure notification tools for a COVID-safe
society/workplace, it is vital to clearly appreciate different
aspects of such mechanisms and understand the dynamics,
particularly security and privacy. These may have serious
implications on individual’s safety, social stigma and soci-
eties civil rights. Towards this aim, there have been a few
attempts to explore and analyse different contact tracing
applications. In [6], the authors have outlined different tech-
nological approaches to mobile-phone based contact-tracing
and highlighted the risks these apps pose to individuals
and societies. They have recommended the security enhanc-
ing approaches that can mitigate these risks and described
trade-offs onemustmakewhen developing and deploying any
mass contact-tracing technology.

The authors in [7] have presented a detailed analysis
of different privacy aspects in contact tracing applications.
The analysis is specifically based on the TraceTogether app,
a contact tracing mobile app facilitated by the Government
of Singapore [8]. In this article, the authors have identi-
fied privacy lapses in TraceTogether and explored differ-
ent approaches to improve these privacy lapses which are
reviewed below. Li and Guo have surveyed different con-
tact tracing applications and protocols deployed around the
world [9]. They have presented a brief discussion about
different technologies or techniques used in contact tracing
app, such as QR (Quick Response) code, big data, Blue-
tooth, GPS (Global Positioning System) and WiFi (Wireless
Fidelity). They have identified the challenges and research
directions for Bluetooth based contact tracing. Ahmed et al.
have conducted a survey on the COVID-19 contact tracing
apps based on few key attributes such as system architecture,
data management, privacy, security, proximity estimation,
and attack vulnerability [10]. They have also presented an
overview of many contract tracing apps. Finally, they have
advocated for the improvement in proximity accuracy, use
of decentralised architecture and artificial intelligence-based
algorithms in aiding the decision making process.

Overall, different authors have touched on different aspects
of the contact tracing application. However, to the best of our
knowledge, none of the existing works has been able to cover
the whole spectrum of different properties corresponding to a
contact-tracing app, such as the proximity technologies, pro-
tocols, application, security, privacy and universal coverage.
In this article we aim to fill in this gap. In particular, we have
made the following contributions in this article:

1) Critically reviewed the proximity measuring
technologies.

2) Analysed the limitations of different contact tracing
protocols.

3) Developed a taxonomy covering the full spectrum of
factors that a contact tracing app should consider.

4) Reviewed and compared various contact tracing appli-
cations.

5) Proposed possible models for unified operations in
future.

The article is structured as follows. Section II has discussed
about different proximity measurement technologies. It is
followed by a thorough analysis of contact tracing protocols
(along with a taxonomy of evaluation matrices) and review
of contract tracing apps, presented in section III and IV
respectively. In section V, we have presented an analysis of
our review and a series of recommendations. Finally, we have
concluded in section VI.

II. PROXIMITY MEASUREMENT TECHNOLOGIES
Detecting accurate human proximity is important for plan-
ning and operation inmany disciplines, such as social science,
architecture and health.Measuring proximitymainly relies on
the phenomenon being observed. In certain cases, only a brief
interaction between two people considered as close proxim-
ity, whereas, in some cases, it requires prolonged interactions
to be treated as meaningful proximity encounter.

In terms of COVID-19, 1.5 meters of proximity with
sufficient exposure to any COVID-19 patient may result in
infection [11]. Therefore, correctly estimating the distance
between two people and the duration of exposure is vital.
Different technologies such as GPS [12], Bluetooth [13] and
WiFi [14] help to estimate the physical distance and the extent
of interactions. In this section, we will briefly discuss these
technologies and compare them against a few properties,
such as granularity, location privacy and range. This will
assist any contact tracing protocol/app designer to choose the
appropriate technologies.

A. GPS-BASED PROXIMITY TRACKING
The GPS is probably the most popular technology that we are
familiar when comes to location information. It is a network
of about 30 satellites orbiting the Earth at an altitude of
20, 000 km. Individuals carrying the GPS receivers capture
GPS signal which is transmitted by the GPS satellites. The
receiver calculates the time delay of each of the received sig-
nal, which is ameasure of the distance to each of the satellites.
Once it has this information from four satellites the receiver
can pinpoint our location using a process called trilateration.
GPS locations are often used to calculate proximity between
two objects [15], [16]. Khoroshevsky and Lerner have also
used GPS to discover human mobility-pattern discovery and
next-place [17]. Mobile applications widely use GPS to pro-
vide localised services [18]. Therefore, it is not surprising to
see a number of the COVID-19 tracing application use GPS
to calculate proximity.

GPS calculates and identifies someone’s location using
longitude and latitude coordinate. Though GPS is one of the
most popular means to find someone’s location or calculate
proximity, it is not the most efficient one. It cannot calcu-
late precise locations in indoors. Typical accuracy in GPS
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calculation is about 5 meters [19]. Due to the signal atten-
uation caused by construction materials, the satellite based
GPS loses significant power indoors affecting the required
coverage. In addition, the multiple reflections at surfaces
cause multi-path propagation issues causing uncontrollable
errors. Moreover, it captures the absolute location of indi-
vidual which is a threat for location privacy and can lead to
surveillance.

B. BLUETOOTH-BASED PROXIMITY TRACKING
Bluetooth is an important candidate for wireless localisa-
tion on consumer smart devices such as smartphone. The
traditional Bluetooth has significantly long scan time (10
s), which limits its value for localisation. However, the new
protocol called, Bluetooth Low Energy (BLE), supported by
most smart devices since 2015, has overcome this limitation.
Bluetooth has many advantages such as small size, light
weight, low cost, power saving and widely supported by
smart devices. Therefore, BLE has become a dominant wire-
less proximity technology. In the BLE protocol definition,
40 channels, each 2 MHz wide at the 2.4 GHz ISM band,
are used to transmit messages [20]. The duration for trans-
mitting messages is extremely short to save battery power.
Among these 40 channels, there are three channels (i.e.,
37, 38, and 39) for broadcasting advertisement messages.
The Received Signal Strength Indicator (RSSI) from these
three channels can be used for estimating the target’s prox-
imity. The BLE advertising rate can be set up to 50 Hz.
The transmission power for BLE beacons are also set from
0 dBm to −75 dBm. To reduce power consumption, BLE
advertising rate and transmission power are usually set to
less than 10 Hz and −16 dBm, respectively [21]. Here, dBm
indicates decibel-milliwatts (dBm) with which the RSSI is
measured, the higher the RSSI number, the stronger the signal
is. The equation (1) shows the relationship between RSSI
measurement and distance. In this formula n is the propaga-
tion constant or path-loss exponent and d is the distance in
meters. A is the received signal strength in dBm at 1 meter
distance [22].

RSSI(dBm) = −10n log10(d) + A (1)

Mobile apps which use bluetooth use the RSSI values to
calculate the distance between two individuals. The reading
for RSSI values also vary between different mobile phone
models and operating systems. The app needs to factor
that variations to get the appropriate distance. In addition,
the app also needs to calculate the amount of time, two indi-
viduals are in close contact. Bluetooth devices do not capture
the absolute location of any individual rather it records if
there is any Bluetooth devices within the radio range. It alone
cannot reveal where that interaction has happened. Therefore,
it provides more safeguard against location privacy.

C. WiFi BASED POSITIONING
A standard WiFi based positioning system, such as the one
offered by Cisco, generally utilises access points installed in

a facility and radio transceivers already present in the user
devices. These standard WiFi based positioning systems can
realise any location-aware application that involves PDAs
(Personal Digital Assistant), laptops, bar code scanners,
voice-over-IP phones and other 802.11 enabled devices [23].
Without the need for additional hardware, institutions or
businesses can install the system much faster and signifi-
cantly reduce the overhead costs. A common infrastructure
supports both data network and positioning system where the
latter works wherever there is WiFi coverage. WiFi location
positioning operates on a grid of WiFi hotspots providing,
in general, with 20− 30 meters of location accuracy [24].

Nowadays, more sophisticated software-based hybrid
approaches can also offer better accuracy [25], [26]. For
example, the use of Kalman Filters can reduce time delays
upon location fingerprinting for point data, collection in the
presence of WiFi network where GPS fails to provide ade-
quate service [27], [28]. Particle filters, on the other hand,
can be used for integrated navigation in aircraft and cars [29].
Several smart systems are also available in the literature
that works in conjunction with WiFi location tracking and
users’ movement to identify their location [30]; for example,
the intelligent fusion algorithm that makes the use of moving
direction information without requiring any user interven-
tion [31], [32].

D. CELLULAR NETWORK BASED LOCATION CALCULATION
We can view a typical cellular network as being composed
of a number of base transceiver stations (BTS) belonging
to a location area code (LAC) and connected to a core net-
work [33]. The central network contains a home location
register (HLR) that keeps track of each mobile station’s last
known location. As a mobile phone moves with its user,
the phone pings nearby cell towers or cell sites. This process
generates location information, about the cell towers to which
the phone has sent a signal, which is stored by the telecommu-
nication operators (‘‘Telcos’’). With proximity information
from multiple cell towers, a technique called triangulation
is used to estimate the location of a cell phone with greater
precision [34]. Governments can compel Telcos to provide
that mobile location information to track someone’s real time
or past movement.

E. OTHER TECHNOLOGIES AND TECHNIQUES
Other than the above mentioned technologies, there are a few
other technologies such as RFID (Radio-Frequency Identi-
fication) II-E1 and NFC (Near Field Communication) II-E2
which may be used in contact tracing in different dimensions.
For instance, QR code based contact tracing is used in Chi-
nese apps [35]. RFID and NFC can be used to replace QR
code based contact tracing scenarios, such as in workplaces
or sporting events.

1) RADIO-FREQUENCY IDENTIFICATION (RFID)
RFID uses electromagnetic fields to automatically identify
and track tags attached to objects. It is widely used in
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TABLE 1. Comparing different proximity technologies.

libraries, supply chain and retail stores. There are passive,
semi-passive, and active RFIDSs equipped with transpon-
ders [36]. The passive system uses simple, battery-free tags
and high-power readers [37]. These are often used for track-
ing assets through a check point and for anti-theft efforts. The
tags are powered by the RF emitted by the base, the range
is usually in inches. Therefore, it is quite unusable for
COVID-19 proximity tracking, because the proximity range
is 1.5 to 2 meters.

2) NEAR FIELD COMMUNICATION (NFC)
NFC is an extremely short range technology, typically 4 to
10cm. NFC is a wireless protocol designed to be a replace-
ment for plugging a cord between two devices [38]. Instead
of taking out a cable, you get the two devices within the
very short range of NFC communication, and let them find
and communicate with each other wirelessly [39]. This tech-
nology is widely used for contactless payments. The typical
range of the NFC chip makes it unusable for contact tracing
applications.

F. DISCUSSION
In this section, we will compare different proximity
measurement technologies to assist contact tracing proto-
col/app developers or policy makers to decide on the tech-
nology. We have evaluated the technologies based on a few
properties relevant for COVID-19 and privacy regulations.
Location accuracy discusses how accurately it can detect the
proximity between two particular devices. Energy consump-
tion provides information about the battery performance of
the used technology. Privacy highlights whether it captures
the absolute location or only proximity information. Many
of these technologies cannot differentiate that two people
are living in two different floors in a building or separated
by a brick wall and thus, can provide false positive of
proximity.

III. CONTACT TRACING PROTOCOLS
In this section, we review the underlying methodologies of
a number of contact tracing protocols. In total, we have
reviewed 12 protocols. In Section III-N, we also com-
pare these protocols against the evaluations matrices of our
taxonomies.

A. TCN
Temporary Contact Numbers (TCN) Protocol [4] is a decen-
tralised privacy-preserving contact tracing protocol initiated

by TCN Coalition, a global community of technologists.
The protocol specification, written and maintained in a
non-formal way on Github, aims to achieve three main goals:
privacy, capacity and integrity. The semantics of these goals
along with a number of sub-goals and other aspects are dis-
cussed below.
• Actors: The protocol assumes three different categories
of users: Server (an authority); Reporters who submit
reports (discussed later) to the server; and Receivers who
receive reports from the server.

• Privacy: the specification considers different levels of
privacy as outlined below:
– Reporter privacy implies that a reporter does not

reveal information to any user other than the con-
tacts and only reveals the time of contact to the
contacts.

– Receiver privacy implies that a receiver should not
reveal any information to others.

– Server privacy implies that an honest-but-curious
server cannot infer any information regarding the
location or the contacts of a reporter.

– No passive tracking indicates the scenario in which
an adversary monitoring Bluetooth connections
cannot deduce the location of a receiver.

• Capacity: It indicates that the system should have low
technical barriers for adoption and the authority should
be able to maintain the system with resilience.

• Integrity: The protocol considers different types of
integrity:
– Report integrity ensures the integrity of the reports.
– Source integrity indicates that a reporter can-

not send reports to non-contacting receivers (with
whom the reporter did not come in contact).

– Broadcast integrity implies that a reporter cannot
submit TCNs that they did not generate.

The TCN protocol is illustrated in Figure 1 and discussed
next. Each mobile device equipped with the app running
the TCN protocol generates and stores temporary numbers
(known as Temporary Contact Numbers or TCN) at dif-
ferent intervals which are then broadcast using Bluetooth.
When two users running the apps come in close contact with
each other, they exchange their corresponding TCN numbers
valid for that time-period and store them in their mobile
devices. A reporter (presumably after being diagnosed with
COVID-19) generates a report consisting of locally generated
TCNs and their corresponding timestamps and submits the
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FIGURE 1. TCN protocol.

FIGURE 2. Epione protocol.

report to a server. Once a new report is uploaded, the server
notifies the apps of all users. Then, the receivers can down-
load the newly uploaded report to their respective mobile
app and compare it with their list of received TCNs from other
contacts. If there is amatch found, it indicates that the receiver
has a positive contact with the reporter.

The authors of the TCN protocol specification argue that
broadcast integrity is hard to address as anyone can include
the TCNs generated by other users in their report. The only
way to mitigate this is by using a hardware level authentica-
tion. Similarly, the protocol cannot provide source integrity
as anyone, not only the contacts, can download the reports.
Other than these two issues, the authors argue that their
protocol satisfies all other goals. However, the proposal also
has a scalability issue as a receiver might need to download a
significant amount of reports during a time period, depending
on the severity of infections. The authors have proposed to
generate TCNs for each report using a seed data which can

reduce the number of TCNs within a report and thus solve
the scalability issues to an extent.

B. EPIONE
In [40], the authors have proposed Epione - a decentralised
contact tracing app supporting a novel protocol (Figure 2)
with a strong guarantee of privacy. To achieve this privacy
guarantee, Epione utilises Private Set Interaction Cardinality
(PSI-CA). Private Set Interaction (PSI) is a cryptographic
mechanism which relies on multi-party computation (MPC).
PSI enables two parties holding two different sets of data to
compare the encrypted versions of these data sets in order
to compute the size of their intersection, without revealing
the contents of their set to the other party [41]. PSI-CA is a
restrictive version of PSI in which even the intersection set
is not revealed, only the cardinality of the intersection set is
computed.
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FIGURE 3. Reichert et al. protocol.

In Epione, there are three parties: users, a healthcare
provider and Epione server. Users need to install a mobile
app, also called Epoine, with which the users participate in
the protocol. The healthcare provider can validate if a user is
diagnosed with COVID-19 whereas the Epione server is the
entity where the required computation for PSI-CA is carried
out.

At the initial stage, the Epione server generates a pub-
lic/private key pair which is supplied to each newly installed
and registered app. Then, it generates a random seed which
is used to generate random tokens at different time periods.
The tokens are generated in such a way that a single token
for a particular time period can be re-generated in the Epione
server once the server knows the random seed. In the protocol,
when a user comes to the close proximity of a contact, their
apps exchange the respective tokens with each other using
Bluetooth, which are stored in two separate lists in each app:
‘‘sent token list’’ and ‘‘received token list’’.

When a user is diagnosed positive for COVID-19 (as
confirmed by the healthcare provider), the user encrypts the
respective random seed with the public key of Epione server,
it is then submitted to the healthcare provider. The provider
collects a number of such encrypted seeds from different
users and shuffles them and transfers the set of seeds to the
Epione server. In this way, the server has no knowledge about
the original source of the encrypted seeds. The server then
re-generates the tokens for each seed at its end, signifying the
list of tokens disseminated by each infected user during a time
period.

When a user would like to query if she has been in contact
with any COVID-19 diagnosed patient, the user sends a query
to the Epione server. The query is accompanied by a list of
encrypted tokens received by the user during a particular time
period. These tokens being encrypted means that the server

has no knowledge of the contents of the tokens. However,
the PSI-CA protocol is enacted to create a private set inter-
section between the set of transmitted encrypted tokens and
the encrypted tokens generated at the server. The protocol
then returns the cardinality (the number of elements) of the
intersection set. A cardinality of greater than 0 implies that
the user has been in contact with a COVID-19 patient and
she should act accordingly.

The authors have formally proven the security of their
protocol and analysed how their protocol mitigates a number
of privacy issues such as linkage attacks by the server, linkage
attacks by other users, user tracking and identification and
malicious user queries. With all these features, Epione is
one of the most robust privacy-preserving contact tracing
protocols proposed. However, its main limitation is the dif-
ficult adoption barrier as the server needs to employ strong
cryptographic mechanisms which cannot be easily deployed
using off-the-shelf tools and hence, would require crypto-
graphic experts to get involved during the adoption process.
Unfortunately, such specialists might not be available in all
situations/regions which could limit any wide-scale adoption.
Another attack vector against Epione is as follows. Since
PSI-CA would require the server to engage in heavy compu-
tations, a DoS (Denial of Service) attack against the server
can be effectively launched by generating a large number
malicious queries by colluding attackers. The authors did not
consider this possibility and therefore, proper countermea-
sures must be considered to mitigate this attack.

C. MPC PROTOCOL
In [42], Reichert et al. have proposed a theoretical
privacy-preserving approach for contact tracing which lever-
ages Multi-party computation (MPC). In their proposal
(Figure 3), there are two actors: users and Health
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FIGURE 4. DP3T protocol.

Authority (HA). Users using their mobile devices record
their GPS location data which are stored in their mobile
devices along with the timestamps. Once a user (let us call
the user Alice) is tested positive for COVID-19, the user
shares this data set with the HA. When another user (called
Bob) would like to check if he has ever been in contact
with any COVID-19 patient, Bob interacts with the HA. The
HA constructs a garbled circuit (a cryptographic protocol
for two-party computation for evaluating a computational
function over private data from two users [43]) using the data
from Alice and sends it back to Bob. Bob then can use the
circuit to privately evaluate, using Bob’s geo-location data,
and compute if there is any geo-location point which will
indicate a close contact with a positive patient.

The authors did not implement the protocol and there-
fore, its computational efficiency is unknown. In addition,
the scalability of the proposal is also questionable as the
HA will incur a significant computational complexity when
the numbers of users will increase. This also opens up the
possibility for launching DoS attacks against the HA when
a number of users collude. Another issue is that, in this
protocol, a COVID-19 patient shares her location data with
the HA which can be used for linkage attacks against the
patient.

D. DP3T
Troncoso et al. [44] have proposed the Decentralised
Privacy-Preserving Proximity Tracing (DP3T), a Bluetooth-
based privacy-preserving contact tracing protocol that neces-
sitates the safeguarding of personal and location data of the
users. It ensures data minimisation by only allowing the cen-
tral server to observe anonymous identifiers of infected peo-
ple without any proximity information. This design principle

of the protocol restricts authorities from learning the health
condition of the individuals unless they willingly reach
out, enabling epidemiologists to obtain minimal information
regarding close contacts. In this protocol, no entity, including
the backend server, can track non-infected users based on
broadcast ephemeral identifiers.

The protocol has two versions designed to benefit two
distinct scenarios. The first version is known as the low-cost
decentralised proximity tracing, while the second is called
unlinkable decentralised proximity tracing. The low-cost ver-
sion has satisfying privacy properties and minimal bandwidth
requirements, however, the unlinkable version offers much
better privacy at the cost of high bandwidth consumption.
While using this protocol, devices frequently change the
ephemeral identifier (denoted as EphID) that they broadcast
to other devices to avoid location tracking via broadcast
identifiers. Figure 4 shows the underlying architecture of the
system that works for both versions.

The protocol refers to the duration for which a device
broadcasts the same EphID as an epoch. The length of an
epoch is a configurable system parameter. Smartphones gen-
erate a random initial daily seed for a day and rotate it by
computing the cryptographic hash using the previous seed
that later generates the EphIDs. The length of the epoch can
be between 10 min to 24 hours. The low-cost version dissem-
inates a list containing the seeds of users who have reported
a positive diagnosis. However, the unlinkable version hashes
and stores them in a Cuckoo filter which is then distributed to
other users. The Cuckoo filter is a space-efficient probabilis-
tic data structure used to test whether an element is a member
of a set [45]. The benefit of using this data structure is its
query returns either ‘‘possibly in the set’’ or ‘‘definitely not
in the set’’ meaning potential positives may or may not be
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FIGURE 5. PEPP-PT protocol.

COVID-19 infected, but negatives are certainly not. It helps
to prevent identifying someone with certainty.

A hybrid design combining ideas from both versions is also
available. In this design, phones generate random seeds for
each time window, such as one hour, and use these seeds sim-
ilar to the low-cost design to generate ephemeral identifiers
for all epochs within that time window. Users upload seeds
only if they are relevant to exposure estimation by other users.
Depending on the length of the time window, this design
offers much better protection against linking ephemeral iden-
tifiers of positive COVID-19 users than the low-cost design
and enables a user to redact time windows. The protection
against tracking is weaker than the unlinkable design, but this
scheme has a smaller bandwidth requirement.

The proposed protocol works decentrally but utilises a
backend server that shares anonymous contact information
with the app running on each smartphone. This backend
server is trusted for not adding or removing information
shared by the users; however, remains untrusted with regards
to collecting and processing personal data. The protocol
reveals minimal information to the backend server where
smartphones locally generate frequently changing EphIDs
and broadcast them via Bluetooth Low Energy (BLE) com-
munications. Smartphones within the range observe these
EphIDs and store them together with the observed period.

If patients get diagnosed with COVID-19, healthcare
authorities authorise them to publish information that aids
in proximity tracing. This information contains a compact
representation of their EphIDs for the infectious period that
goes to the backend server. Other smartphones periodically
query the backend for this information and reconstruct the
corresponding EphIDs of infected patients locally. Having a
record of any of these infected EphIDs stored on a smartphone
indicates the corresponding user has been in contact with an
infected person and the smartphone computes the owner’s

risk score. If this score is above a threshold, the smartphone
initiates a notification process. In this protocol, despite hav-
ing a backend server, users’ privacy does not depend on it, and
the privacy remains intact in the event of any compromise.

E. PEPP-PT
Authors in [46] have proposed the Pan-European Privacy-
Preserving Proximity Tracing (PEPP-PT) which is a
privacy-preserving proximity tracing system (Figure 5).
PEPP-PT uses Bluetooth Low Energy (BLE) technology,
allowing to notify people at risk with a 90% true positive
and 10% false-negative rate. The protocol has two actors:
users and healthcare officials with a server. It is assumed that
PEPP-PT protocol will be utilised by a mobile app equipped
with an encryption key and a persistent pseudonym. The
type of encryption key and how the persistent pseudonym
is generated have not been clearly outlined in the proposal.
However, we assume that the key must be a public key of
the server and the persistent pseudonym is generated by
interacting with the server when the app is loaded for the first
time.

Once the app is installed in the mobile device, it will start
generating and transmitting a time-specific pseudo-random
temporary ID. This temporary ID also includes the encrypted
persistent pseudonym which can only be decrypted by the
server. While running in the background, this app captures
the signals of other BLE devices that have the app installed
and exchanges temporary IDs with each other. Each app in a
mobile device then continues to keep a list of their temporary
IDs, each representing a contact. For each contact, the system
determines the duration and the distance between the devices
based on the signal output power sent by the transmitting
device.

The app stores such temporary IDs in the respective device.
However, once a user is tested positive for COVID-19,
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FIGURE 6. CAUDHT protocol.

the healthcare official provides a specific authentication code
which is used to submit the list of temporary IDs by the
app. Once the server obtains data from the app of the infected
person, the server accumulates the risk of contagion for each
temporary ID by calculating the physical proximity and the
duration with the infected users in the past. The server also
decrypts the persistent pseudonym for each temporary ID and
uses the pseudonym to contact the users most at risk.

F. CAUDHT
Brack et al. have proposed CAUDHTwhich is a decentralised
peer-to-peer system for contact tracing [47]. It utilises a dis-
tributed hash table to build a decentralised messaging system
for infected patients and their contacts as shown in Figure 6.
By using blind signatures, the system ensures that messages
about infections are authentic and unchanged. The authors
have argued that systems using ephemeral Bluetooth IDs that
change every few hours for identifications also leak infor-
mation. A malicious HA (Health Authority) or an attacker
gaining access to the HA’s collected data would be capable
of deriving some information from the transmitted contacts
by correlating IDs reported by several infected patients and
will be able to narrow down social or local interconnections.
Therefore, they limit the HA’s responsibility to confirming
the results of positively tested individuals and minimise the
amount of data a centralised actor can derive from the system.

CAUDHT is decentralised by distributing works between
the users of the contact tracing system using peer-to-peer
technology. The system consists of several mechanisms,
including a contact collection mechanism that runs contin-
uously on every end-device and collects IDs of contacts
using BLE. Following a positive test, one can announce the
infection status to the system using a publication mechanism.
In doing so, the user must retrieve signatures for seen IDs

from the HA and publishes messages for the respective user
at the corresponding location in the distributed database.
An infected patient interested in retrieving a signature makes
the ID blinded and sends the value to the HA. The HA signs
it without learning the ID. The signature of the blinded ID
is then returned, which can be unblinded only by the person
who sent it — in this case, the infected patient.

The system monitors the surroundings for other users and
collects IDs using the BLE. These IDs are generated from
an asymmetric key pair. The secret key stays on the device
while the public key pku is used as BLE ID and broadcast
to everyone nearby. Other users close by record the pku and
store it as a contact in their local history. Simultaneously,
the system collects a set of public keys that later uses it
to verify that contact with an infected person has indeed
occurred.

G. QUEST
Gupta et al. have proposed QUEST, a protocol that empowers
organisations to observe individuals and implements policies
for social distancing and contact tracing using WiFi connec-
tivity data in a passive and privacy-preserving manner [48].
It has three different purposes: i) location tracing, ii) user
tracing and iii) social distancing.

The QUEST functionalities in this protocol determine all
places that a person visited in the past 14 days. For securing
the data in a privacy-preserving way, a set of three func-
tionalities form the basis of the QUEST protocol as shown
in Figure 7. The first functionality is the data collector that
collects individuals’ data from the WiFi connectivity when a
device connects to an access point via several network man-
agement protocols, including SNMP (Simple Network Man-
agement Protocol), NETCONF (Network Configuration) and
Syslog (System Logging) protocols. Encrypter is the second
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FIGURE 7. QUEST protocol.

FIGURE 8. PACT protocol.

functionality; it collects data for a fixed interval and imple-
ments a cryptographic technique based on the desired security
level and outputs the secured data outsourced to the servers.
Finally, the third functionality, the trapdoor generator, gener-
ates the secure trapdoor using two algorithms proposed by the
author for query execution on secured data. For contact trac-
ing, it confirms the submitted device-id as the real device-id
of an infected person from the publisher. The trapdoors aide
servers to execute queries and send back encrypted results
followed by decrypting it before producing the final answer.
Once the protocol obtains the results, the organisation may
alert the infected users using emails or phones if they provide
such consents at the time of registration. If it is not for an
infected person, the results still can determine if employees
are maintaining social distancing at workplaces and where
they have been roaming around.

H. PACT
Chan et al. [49] have proposed privacy-sensitive protocols
and mechanisms for mobile contact tracing using Bluetooth
technology. Before presented their protocol, they have dis-
cussed about different types of security attacks related to con-
tact tracing apps. The types of attacks they have identified are

integrity attacks, inferential attacks, reply attack and physical
attack.

In their approach, individuals will exchange user generated
seeds, pseudo-random IDs, and the time (id, t) when they
will come to the proximity of another person and remain
close for a pre-determinedminimum period of time. If anyone
tested positive she will voluntarily upload her user generated
seeds to the public list. Other users can download the seed
to check if they have been in the close proximity of these
seeds. The main limitation of this approach is that they have
not discussed how the public list will be maintained and who
will be responsible for the governance of these public data.
Figure 8 has shown the interactions among different actors in
this protocol.

I. BLUETRACE
The authors in [50] have proposed a privacy preserving cen-
tralised protocol for community driven contact tracing, Blue-
Trace, which is widely adopted or adapted bymany countries.
In BlueTrace protocol, two participating devices log their
Bluetooth encounter information without revealing the users’
personal data. First, the user registers with a centralised server
(normally the Health Authority) by providing their phone
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FIGURE 9. BlueTrace protocol.

number, and then the server generates a unique, randomised
UserID and binds this ID with the user’s phone number as
shown in Figure 9. Then, the user receives temporary IDs
(TempIDs) from the server that comprise of both encrypted
(USerID, created time, and expiry time) and unencrypted
(Initial Vector, Authentication Tag) fields. These TempIDS
have a short lifetime of 15 minutes and the user devices are
supplied with batches of forward dated TempIDs to avoid
unstable Internet connection issues. When two BlueTrace
devices come in close proximity, they exchange TempIDs
with each other over the BLE protocol. This information
includes TempID, device Model, RSSI value, organisation
code, and version number of the BlueTrace protocol and is
stored locally in the devices for a certain period of time
(21 days in case of OpenTrace [51], an open source imple-
mentation of BlueTrace) before automatic deletion. Once
a patient is confirmed to be affected and if the patient is
using the app, health authorities ask the patient to upload her
encounter history on the centralised server. Then the server
retrieves the encounter history by decrypting the contact
records. It verifies the timestamp for each TempID to find
the close contacts based on the duration of exposure, distance
and associated risk. After that, the health department contacts
individuals who have a high likelihood of exposure to the
infected person and provides appropriate guidance.

BlueTrace is vulnerable to replay and relay attacks since
the protocol relies on the exchange of messages through the
BLE technology. However, the authors claim that the attack
vector is minimised as the TempIDs become invalid after
every 15 minutes. It should be noted that the protocol stores a
big pool of TempIDs in the local storage in plain text to make
the IDs available when Internet connection is unstable. If a
mobile device is compromised, the attackers can access and
use these IDs for malicious purposes. Furthermore, the use of
a centralised server in BlueTrace may also lead to a number

of security risks such as identifying a targeted infected indi-
vidual, tracing a target user through access to a central server
and risk of data breaches, data leaks and DoS attacks.

J. WHISPER
Similar to BlueTrace, the Whisper tracing protocol also uses
BLE to exchange locally generated anonymous and Tem-
porary secure Identities (TIDs) [52]. One key difference is
that the Whisper protocol uses session keys to generate TIDs
and identifies individuals who have been in close contact
of a confirmed patient. The protocol periodically generates
pseudo-random temporary IDs using a hash function with the
following input parameters: secret key S, and a counter C.
A new session key is generated every week and this key is
used to create TIDs on an hourly basis. When two devices
make a pair, the protocol stores all encounter information
in the device storage. The information is organised in a
database which consists of a number of tables: i) PeerTID
table (TID, timestamp), ii) Ping table (hash of peripheral
address), iii) Contact table (TID, timestamp, authentication
MAC), iv) SessionKey table (session keys of all peers and
own), v) Join table, to map the relationship between Peer-
TID and SessionKey tables, vi) Scan table, to track the scan
start/stop events. If a user is tested positive and has agreed to
upload her contact history, she needs to share the last session
key with a centralised server. Upon receiving the session key,
the central server adds a description to the corresponding
session key and makes it available for download. In this
protocol, every Whisper node has to periodically connect to
the central server for new session keys. Once new keys are
available, the nodes can locally generate all TIDs and check
whether the local device has been in close proximity of an
infected user. Figure 10 presents an overview of the activity
sequences in whisper protocol.
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FIGURE 10. Whisper protocol.

The whisper protocol uses a challenge-response mech-
anism to defend against replay and relay attacks. In this
mechanism, a message authentication code is generated using
a hash function and the current session key. However, if the
session key is revealed, an attacker can generate the TIDs and
authenticate herself as a legitimate user and also can share
the session key with the server as an infected user. This could
have severe impact, for an example, if the victim is a health
worker, a large number of people have to be asked to go for
testing or self-quarantine.

K. THE EPIC PROTOCOL
The efficient privacy-preserving contact tracing for infection
detection (EPIC) uses a weight-based matching method to
determine and represent the result of the contact tracing [53].
The protocol uses wireless signals like WiFi and Bluetooth
to collect the required data such as Basic Service Set Iden-
tifiers (BSSID) of wireless devices, RSSI, and wireless sig-
nal type. A smartphone regularly collects raw data about
nearby WiFi and Bluetooth signals and then encrypts the
data before uploading to a server. The encrypted data is
uploaded to the server once a day including the timestamp
of each network scan in plain text. Once a user is identified
as an infected user, she has to disclose her information to
the server in order to enable the server to calculate matching
scores with other users. When the users are notified about
the incident by the server, each regular user sends a contact
tracing request including her public key. The server first
matches the timestamps, then the interval, and finally com-
mon wireless devices using a privacy-preserving mechanism.
The privacy-preserving mechanism implements homomor-
phic encryption to generate a matrix that includes encrypted
subtraction results for all records between the infected user
and the regular users. When a user receives the matrix,
she decrypts all results and returns a binary array including

0 and 1, where 0 indicates a match for two wireless devices
and vice-versa. For matched wireless devices, the user also
sends RSSI values in plain text. Using the matrix and RSSI
values, the server calculates matching scores for different
timestamps the regular user came in contact with the infected
user and sends back the encrypted scores to the users as
illustrated in Figure 11.

The major issue with the EPIC protocol is that it uploads
the timestamps of each network scan to the server in plain
text. In addition, the RSSI values are also sent in plain text
for all matched wireless devices. Thus it is vulnerable to data
manipulation attack that can happen during data transmission
as well as storage in the central server.

L. RECOVER PROTOCOL
The Recover protocol implements a centralised model where
all devices running the protocol need to authenticate them-
selves on the network [54]. In this authentication process,
the devices first generate a 128 bit random ID (UUID) at reg-
ular intervals and transmit it to the environment through BLE
technology. Then, a remote claim procedure takes place to
check whether the atomicity and non-repeatability properties
are satisfied. If the ID is unique, a temporary authentication
token is sent to the corresponding device to allow access to
other services on the network for a certain period of time.
During the contact tracing phase, mobile devices perform
two operations, namely advertising and tracking. When a
device detects a beacon from another Bluetooth enabled
device, it starts calculating the distance and the exposure time.
At regular intervals, this information (UUID-D1, UUID-D2,
Contact duration, instantaneous and average distance of the
contact) is sent to the Recover server to make them available
for health authorities.

The Recover protocol periodically sends information to
the central server. However, it is not clear whether the
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FIGURE 11. EPIC protocol.

FIGURE 12. Taxonomy of general evaluation matrices.

information is encrypted. If not, the protocol is subjected
to data manipulation attack. Since the protocol implements
an authentication process, it is not susceptible to replay and
relay attacks. However, the security issues related to Blue-
tooth technology and central server are also key concerns in
Recover as the protocol uses BLE technology and a central
server to exchange and store information respectively.

M. EVALUATION TAXONOMY
In order to review and evaluate different existing proposals
and applications for COVID-19 contact tracing, we propose
taxonomies of properties. The taxonomies and their proper-
ties have been compiled based on our discussion of the prox-
imity technologies and analysis of different protocols. Indeed,
these properties will be used as evaluation matrices to

compare and contrast the selected applications and propos-
als. The evaluation matrices presented in two different tax-
onomies: general taxonomy (presented in Figure 12) and
security and privacy taxonomy (proposed in Figure 13).
We explore different aspects of these two taxonomies next.

As illustrated in Figure 12, the taxonomy begins with the
type of technologies which can be used by a protocol to detect
proximity as well as to exchange data with different entities.
A protocol can useGPS, Bluetooth, RFID, NFC,WiFi or even
GSM mobile towers as their proximity detection technology.
Each of these technologies have different properties such
as granularity, accuracy, coverage, geo-location and altitude.
These network technologies along with their properties are
explored in Section II. Each protocol deals with different type
of actors. In general, there are two types of actors: users and
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FIGURE 13. Taxonomy of security and privacy evaluation matrices.

the authority. However, many systems differentiate between
different users: a COVID-19 patient and her contacts. It is to
be noted that some protocols also introduce additional actors.

Data storage category in the taxonomy signifies where the
data for the system following the protocol will be stored.
The system can store the data in the cloud, or a central
DB (database), in the respective smart device or even in a
fitness tracker. On the other hand, the computation taxon-
omy indicates if the required computation will be carried
out in the corresponding mobile device (the decentralised
approach) or in a remote machine controlled by the authority
or a third party (a private entity) working collaboratively
with the authority (the centralised approach). Interestingly,
there is another notion of a decentralised approach in which
the computation is carried out in a remote machine in a

privacy-preserving manner so that the remote machine has
no way of inferring any knowledge from the data [40]. Once
a user is diagnosed as a COVID-19 patient, they can update
their status either by themselves or it is done, on their behalf,
by an authority.

Every contact tracing protocol is practically distributed
using a respective mobile app running within amobile device.
Therefore, it is important to analyse the battery consumption
of these protocols. Some of these apps are open-source while
others are proprietary.

The successful adoption of these mobile apps will largely
depend on a number of factors. Our proposed taxonomy
considers a few important factors which are discussed next.
In most countries, which have released contact tracing apps,
the installation of such apps are voluntary in nature, whereas,
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it is mandatory in some countries. These mobile apps have
been targeted for two major mobile platforms: Android and
iOS – which account for over 99% of users.

In Figure 13, we have presented different security and
privacy characteristics involving contact tracing. These issues
are investigated next. There are several threat models in
practice. Of them, we consider three models: honest/trusted,
semi-honest and dishonest. An honest actor is trusted to
hold sensitive data, to follow the protocol and carry out
required computation over the data and not to exploit such
data intentionally. On the other hand, a semi-honest (also
known as honest-but-curious) actor is assumed to follow
the protocol rules, however, many seek to gain additional
information during the protocol execution. This means that
even the actor follows the protocol, such an actor should
not be trusted to hold sensitive data as he/she can exploit
such data to infer additional information. Finally, a dishon-
est actor can deviate from the protocol rules and is not
trusted to hold sensitive data as they can exploit such data
intentionally.

Contact tracing is a rather-privacy invasive procedure as it
collects sensitive personal information. Without ensuring the
security and privacy of the collected data, the privacy of users
can be seriously undermined. Therefore, there should be a
detailed examination of the security and privacy implications
of any contact tracing protocol. Towards this aim, we have
created a category of threat vectors outlining different secu-
rity and privacy threats.

To model the security threat vectors, we have chosen a well
established threat model called STRIDE [55] developed by
Microsoft. The STRIDE model with the first five threats is
briefly presented below.

• T1-Spoofing Identity: The act of spoofing refers to
a malicious user using the identity of another user
(e.g. contacts). In this article, we have considered iden-
tity theft as a security threat where an attacker can spoof
the identity of a device to present herself as a legitimate
user to the server.

• T2-Tampering with Data: This threat enables a user to
maliciously tamper recorded or exchanged data. There
could bemany such data, for example, timestamps, RSSI
values, GPS location and tokens with respect to contact
tracing.

• T3-Repudiation: This threat implies a user can repudi-
ate certain actions, e.g. tamper certain data or exchange
false data and then deny doing so.

• T4-Information Disclosure: This threat signifies the
scenariowhere private or sensitive data stored in a device
or central storage may be leaked to another user.

• T5-Denial of Service: The system that is used for
computation or storage in the protocol can be the target
of a denial of service attack.

The last threat of the STRIDE model is Elevation of Priv-
ilege which has been excluded from our consideration for
this paper. This is because such a threat is more relevant for

enterprise systems and has less implications in the contact
tracing protocol itself. In addition to these security threats,
we consider two additional threats:

• T6-Replay attack: This threat enables a malicious user
to submit the same data more than once with the aim to
maliciously impact the protocol execution.

• T7-False-positive (FP) claim: A user may claim of
being diagnosed with COVID-19 even though they are
not.

Finally, we consider the following privacy threats:

• T8-Explicit consent:Data regarding a user is submitted
to the authority without their explicit consent.

• T9-Lack of control: A user has no or little control
regarding how their data is shared with other entities.

• T10-Data longevity: If the data is stored for a longer
period, it increases the chance of data abuse and
decreases its security. The suggested isolation period for
anyone after getting in contact with a COVID-19 patient
is 21 days [56]. In line with this, we assume a data
longevity period of 21 days to be privacy-friendly for
any contact tracing protocol.

• T11-Identification: Identification is the threat of iden-
tifying an entity from a set of collected data, e.g. in our
case, contact tracing data.

• T12-Linkage: Linkage is the most treacherous pri-
vacy threat in a contact tracing protocol in which it is
attempted to match different data sets in such a way
that the privacy of a certain user is undermined. Such
an attack can be of two types [40]:

– Linkage by the authority: The authority might try
to correlate different data sets as received by differ-
ent users and then re-identify the contact history of
the respective users. Onemight argue that the whole
idea of contact tracing is to enable the authorities
identify the close contacts of a COVID-19 patient
effectively so that the contacts can be identified, iso-
lated and other appropriate measures can be taken.
However, there are reports of COVID-19 patients
being stigmatised, particularly in a few developing
countries [57]–[59]. If there are malicious actors
within the authority, this linkage of a COVID-
19 patient with their contacts might facilitate differ-
ent exploitation such as extortion by those actors.
Therefore, a privacy-friendly approach would be
to let the contacts know that they have been in
contact with a COVID-19 patient so that they can
take appropriate actions.

– Linkage by a user: Contact tracing inherently
enables a user to link their contacts, at least who
they know and/or have been in contact for a cer-
tain amount of time. Let us consider a hypothetical
scenario when a user named Alice went out of her
house once in 14 days and met just one another
unknown user Bob. If a contact tracing application
confirms Alice that she has been in contact with a
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TABLE 2. Comparison of protocols for different properties with key symbols.

COVID-19 patient within a week, she can deduce
that the patient might be Bob. The implication of
this correlation would be aggravated if Alice is
equipped with a life-logging device. Life-logging
devices equip users to take photos automatically as
they roam around. Therefore, Alice can just down-
load the respective life-log containing Bob’s image
and try re-identify him using image search online
services [60] which would seriously undermine the
privacy of Bob. Other practical threats might arise if
a user somehow can find about other user’s contacts
and/or their infection status.

To mitigate these security threats, a protocol might employ
different encryption mechanisms: which can be either sym-
metric or public-key encryption. Similarly, there are many
privacy-preservingmethods which leverageMulti-party com-
putation (MPC) [61], Homomorphic encryption [62] and
other data anonymisation methods [63], [64]. A general
approach to tackle the identification threat is to employ
pseudo-identifiers in the collected data in such a way that
other entities cannot identify the respective entity. Similarly,
the collected data can be destructed after a certain period to
mitigate the data longevity threat.

We would like to highlight an aspect related to the scope
of this paper here. The taxonomies and the corresponding
evaluation matrices that we have compiled are primarily tech-
nical in nature, focusing on the technology, process, secu-
rity and privacy protection aspects. One might argue that
contact tracing is a complex solution having a number of
other non-technical aspects such as management, feasibility,
effectiveness, accuracy and timeliness. We would like to
emphasise that these other aspects, albeit very important, are
dependant on some other external factors such as protocol
adoption, privacy attitude, technical capability, the adoption
rate of the contact tracing application and data management
policies of a particular country. That is why they have not
been considered as part of the taxonomies.

N. SUMMARY
The summary of our protocol analysis for general matrices
and security and privacy matrices is presented in Section III-
N1 (in Table 2) and Section III-N2 (Table 3) respectively.
In those tables, we have used the symbol ‘‘•’’ to denote a cer-
tain property is satisfied by the respective protocol whereas
the symbol ‘‘©’’ is used to denote that the respective prop-
erty is not fulfilled by the protocol. Besides, the symbol ‘‘ ’’
is used to signify that a certain property is partially fulfilled
or that the property is casually mentioned in the protocol
without any further details. Finally, we use the symbol ‘‘�’’
to indicate that a certain property is not applicable for the
respective protocol.

1) EVALUATION OF GENERAL MATRICES
Following Table 2, the values in columns for a particular
protocol have been taken from our analysis of the respective
protocol. However, some values require additional explana-
tion which is provided next. For example, the battery con-
sumption (the last column in Table 2) is considered low for
Epione as the computation is carried out in the Epione
server in a privacy-preserving decentralised fashion which
requires no heavy computation in the mobile phone of a user.
For the TCN protocol, the data is stored in devices as well
in the server. The computation is carried out in respective
mobile devices in a decentralised fashion and hence, requiring
high battery consumption. The battery consumption of the
proposal of Reichert et al. [42] is considered high as the
users need to carry out the computation, using the garbled
circuit, in their own mobile device. Similarly, the battery con-
sumption in DP3T, CAUDHT, PACT and Whisper protocols
is high since all computations are performed in the local
devices to identify exposed users. In contrast, QUEST, PEEP-
PT, BlueTrace and Recover protocols consume low battery
power since all computational tasks are carried out by the
server system. Although EPIC implements a central server
that performs most of the computations for contact tracing,
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TABLE 3. Comparison of protocols for security and privacy properties with key symbols and terms.

mobile devices also need to execute certain operations on
encrypted data and send the outputs to the server system
in this process. Therefore, the protocol results in moderate
battery consumption.

2) EVALUATION AND PRIVACY MATRICES
Similarly, Table 3 analyses the security and privacy issues
for different protocols. Following the table, Epione has a
semi-honest threat model for the Epione server. Threat T1 can
be mitigated with a proper registration process which can
distinguish between different users. The details of the reg-
istration process in Epione has not been provided in the
proposal. However, we can assume such a registration process
would be essential to identify a particular user and their app,
so that the healthcare provider can positively identify the
app when app data is submitted. There has been no discussion
regarding threats T2 and T3 in Epione. The token seeds are
encrypted with the public key of the Epione server and then
exchanged, thus mitigating threat T4. The server itself can
act as a single point of failure and can be the target of a
DoS attack (T5). Even though, Epione did not consider this,
we argue that Epione implicitly satisfies T6. This is because
only seeds are shared with the server and tokens are restored
at the server’s end and hence there is nothing to gain for an
attacker to launch a replay attack. Therefore, we argue that
Epione implicitly satisfies T6. Epione requires a healthcare
provider to authorise if a user has been positively diagnosed,
this mitigates T7 threat.

Epione requires users’ consent to share data with the server
and the users have full control over their data. These ensure
that threats T8 and T9 are mitigated. There is no discussion of
data deletion, implying T10 not being handled. The tokens are
generated using pseudo-identifiers, hence, there is no way of
identifying a user from the exchanged tokens, signifying the
fulfilment of T11. The usage of a strong privacy-preserving
PSI-CA mechanism and pseudo-identifier tokens ensure that
other contacts cannot link tokens of different users. This is
true for the Epione server. However, Epione has a provider
entity (modelled as part of the authority) which can link a

user when they submit a token. Because of this, we have used
the ‘‘ ’’ symbol in the authority cell.

TCN with a semi-honest model has no registration process
and hence cannot mitigate T1 threat. It has a mechanism
to ensure integrity and therefore can mitigate T2. However,
it did not consider any encryption mechanism to mitigate
T3 and T4 threats. Utilising a server in their protocol makes
it vulnerable against a DoS attack which has not been con-
sidered, implying T5 not being handled. TCN has a defence
mechanism against T6 along with T8 and T9. TCN did not
explicitly consider how a patient will update her status of
being diagnosed, signifying T7 not being handled. The usage
of pseudo-identifiers as a privacymechanism enables it to sat-
isfy T11, however, the data longevity was not addressed, indi-
cating T10 not being handled. The protocol defends against
linkage attacks by the authority and other contacts.

The MPC proposal of Reichert et al. [42] also assumes a
semi-honest server without any registration process (T1 not
being fulfilled). Unfortunately, their proposal lacks of any
encryption and other required mechanisms to mitigate T2,
T3, T4, T5 and T6. However it ensures a defence against
T7 by using the authority to update the status of a user. With
respect to privacy threats, this proposal does not satisfy T8,
T9 and T10. However, T11 is satisfied as the token does not
contain any identifying data. The usage of MPC ensures a
safeguard against the linkage attack by other contacts, how-
ever, the authority has full access to GPS location data of the
two patients which can be used to link these two users.

DP3T belongs to the semi-honest model and it does not
employ a registration process. Thus, the protocol is unable
to mitigate threat T1. Since no encryption mechanism (e.g.
symmetric encryption or digital signature) are used in DP3T,
it cannot resist T2, T3 and T4. Similarly, there is no protection
mechanism available to safeguard the system against DoS
attacks (implying subject to T5). However, the short lifetime
of TIDs partially mitigates the threat of replay attacks (T6) in
DP3Twhereas it employs a preventivemechanism tomitigate
T7 threat. Regarding privacy threats, the protocol is resistant
against T8, T9, T11 and T12. However, data retention time is
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not specified in the protocol and therefore, we assume DP3T
is vulnerable to T10.

In PACT, users do not store any personal information
(e.g., name, phone number) in the server, thus users do
not need to trust the server with their information and can
be termed as a semi-honest server. There is no registration
procedure in the protocol and therefore, it is vulnerable to
T1 threat. Furthermore, the protocol is also exposed to T2,
T3, and T4 threats due to lack of any authentication and
encryption mechanisms [65]. The users do not encrypt the
pseudo-anonymous IDs and timestamp values are stored in
plain text. It should be noted that the server can be a target of
DoS attacks (T5) that may have severe impact on the system.
We assume that threats T6 and T7 are not considered in this
protocol since there is no information regarding these two
threats. However, users have full consent while uploading the
data to the server (which mitigates T8 threat). All information
is stored locally and the matching computation is also
computed in user’s mobile device, therefore it defends T9.
Regarding data longevity, there is no indication of the lifetime
of stored information (i.e., subject to T10 threat). Since there
is no registration information stored in the server, the pro-
tocol is resilient against identification threat (T11). Finally,
the use of mobile devices for data storage and computations
ensure that PACT can successfully mitigate linkage attack by
authority and users (T12). The contact tracing mechanism
in QUEST is based on a central server and belongs to the
honest threat model. It mitigates T1 threat by implementing
a registration process. However, there is no indication of
integrity and authenticity checking mechanisms in QUEST
and therefore, we assume the protocol is subject to T2 and
T3 threats. The use of encryption mechanism ensures that
information disclosure (T4) threat is eradicated in QUEST.
Nonetheless, DoS attacks (T5) can be launched against the
central server to make it unavailable for a certain period of
time. Like DP3T, the short lifetime of TIDs ensures partial
mitigation of T6 threat in QUEST, however, no attempts
have been made to eliminate T7 threat. Apart from these
security threats, the protocol successfully defends against T8,
and T9 privacy threats through the use of user consents and
providing some sort of user control on data whereas T10 and
T11 are not addressed as per protocol specification. Simi-
larly, there is no protection against linkage attack (T12) in
QUEST.

The threat model of CAUDHT is identified as semi-honest
where the contact tracing procedure is decentralised and is
run by mobile devices. According to the protocol description,
it does not have any registration process, integrity and authen-
ticity checking mechanisms and therefore, is vulnerable to
T1, T2 and T3 threats. Nonetheless, the usage of encryption
mechanism ensures mitigation of T4 threat whereas, like
other protocols, T5 is not addressed in this protocol. Similar
to QUEST, CAUDHT partially mitigates T6 and fully pre-
vents T7 threat. In terms of privacy threats, the protocol is
not susceptible to T8, T9, T11 and T12 (linkage by authority)
threats. However, it is subject to T10 due to lack of a data

retention policy and T12 (linkage by contact) threats due to
underlying contact tracing mechanism.

BlueTrace implements a central server which is assumed
an honest server. The registration process in BlueTrace mit-
igates T1 threat whereas the use of authentication tag and
encryption mechanism safeguards the system against T2,
T3, and T4 security threats. However, like other protocols,
BlueTrace is also subject to DoS attacks (T5) for using a
central server to generate TIDs and identify exposed users.
Regarding T6, the threat of replay attack is minimal in this
protocol since the TIDs have a short lifetime of 15 minutes
only. One key feature of BlueTrace is that only authenticated
users can send the contact history to the server and thus suc-
cessfully mitigates T7. Similarly, the requirements of explicit
consents of users, deletion of collected information after 21-
days ensure that the protocol defends against T8, T9 and
T10 privacy threats. However, it is susceptible to T11 threat
as the server/authority has full access to uploaded information
and the user IDs are combined with the corresponding phone
number. For the same reason, there is a potential threat of
linkage by authority in BlueTrace. In contrast, linkage by
contact is not possible except in special situations mentioned
in Section III-M.

The threat model of Whisper is identified as semi-honest
since its central server only holds and shares the last session
key of the infected users with others for computing the risk
of exposure. The protocol does not implement any registra-
tion mechanism, indicating T1 is not addressed. However,
the use of authentication MAC reduces the chance of both
T2 and T3 threats. However, it is assumed that Whisper is
vulnerable to T4 threat since there is no indication of using
any encryption mechanisms. Thus, if a mobile device is com-
promised, the attacker may disclose all sensitive information.
The decentralised architecture of Whisper makes it less sus-
ceptible to DoS attack (T5). However, attackers may launch a
DoS attack against the server and thus prevent the users from
downloading session keys of the infected users. The protocol
successfully mitigates T6 threat using a challenge-response
mechanism whereas it is prone to T7 threat (false-positive).
Since the users need to share the last session key with the
server, compromisation or manipulation of this key can trig-
ger false-positives. T8 and T9 privacy threats are mitigated in
Whisper as it requires explicit consent of users and the users
have full control of their data. However, there is no informa-
tion about data retention policy and therefore, we assume it is
subject to T10 threat. Due to very minimal involvement of the
server in tracing exposed users, the possibility of T11 threat
is negligible. Similarly, it is not possible to lodge a linkage
attack by the authority as they do not have any access to user
data. However, like BlueTrace, the linkage by contact is only
possible for special situations.

The EPIC protocol stores encrypted information and also
performs contact tracing computations on encrypted data.
Since the server is unable to make the linkage between
a patient and contact, we classify it as a semi-honest
server. There is no indication of using a registration process in
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EPIC and therefore, we assume that the protocol is unable to
defend against T1 threat. Similarly, the protocol is vulnerable
to T2, and T3 threats since no authentication mechanism is
used in EPIC. Although, the protocol sends timestamps and
RSSI values in plain text, sensitive and private information is
encrypted and thus it partially eliminates T4 threat. Regard-
ing T5 threat, we assume that the server can be a target of
DoS attacks and it will have severe impacts on the system.
We also assume that threats T6 and T7 are not considered in
EPIC as per protocol specifications. However, it is clear that
infectious users must be agreed to disclose their information
with the server (mitigating T8) and they have some level
of control on their own data (T9). There is no indication
about the lifetime of stored information and therefore, EPIC
is subject to T10 threat. However, the use of homomorphic
encryption ensures that threat T11 is successfully mitigated
in this protocol. For the same reason, the protocol is secure
against linkage attack by authority and the user (T12).

In Recover, the server has full control over the users and
contact information, and thus belongs to the honest threat
model. From the specification, it can be assumed that the
protocol implements a registration process and thus mitigates
T1 threat. However, there is no explicit information to identify
whether the protocolmitigates T2, T3, and T4 threats. The use
of the central server also makes the protocol vulnerable to T5.
Recover mitigates T6 threat by employing an authentication
mechanism for device to device communication. In addi-
tion, the protocol defends against T7 threat since the health
authority identifies both infected users and exposed users
using the contact records stored in the server. Regarding
privacy threats, the protocol is susceptible to T8, T9, T10,
T11 and T12 (linkage by authority) threats. This is because
the authority can identify any users and access their informa-
tion without permission. There is no information available
regarding data retention policy (i.e., subject to T10 threat).
However, the linkage attack by contact is not possible since
all information is handled by the server.

IV. REVIEW OF EXISTING CONTACT TRACING APPS
In this section, we review a number of contact tracing appli-
cations adopted in different countries.

A. AUSTRALIA - COVIDSafe
The Australian government has launched the COVIDSafe
app [66], which enables the exchange of a series of dig-
ital handshakes to identify whether two people using the
app come within 1.5m proximity for at least 15 minutes.

Individuals are required to download and install the
COVIDSafe app from either Apple App store or Google Play.
This app needs user registration including their name (or
pseudonym), age range, postcode and phone number. The
collected information is encrypted and stored in the national
COVIDSafe data store. However, the information can only
be decrypted in the event of an app user tested positive
or exposed to an infected person. The app continuously
generates Bluetooth beacons (anonymised IDs) and exchanges

the IDs with nearby individuals who also use the COVIDSafe
app. The anonymised IDs change every two hours and are
stored in encrypted forms on phones for 21 days. If some-
one is tested positive for COVID-19, she uses the app to
provide her consents and uploads her contact records on the
server. The received signal strength, phone model and other
data are used to determine who needs to be contacted by
health authorities. The app is voluntary in Australia and has
6 million+ downloads, over 25% of the total Australian pop-
ulation. It has been reported in the media that the COVIDSafe
app has been successfully used by health officials to access
data of a COVID-19 patient in Victoria in May, 2020 [67].

1) CRITICAL REVIEW
One of the main critics of this app is that the data are stored by
an international cloud service provider AWS (Amazon Web
Service). There is an on-going legal discussion within the
civil society whether the US government has subpoena power
over this data. Secondly, as this is a centralised approach
and the contact list of infected app users are uploaded to the
server, there may be a potential risk of de-anonymisation.
Apart from these, initially the iOS app failed to capture all
Bluetooth handshakes from the nearby devices when it was
running in the background. In addition, it was potentially
interfering with another app designed for diabetic monitoring
[68]. However, the Digital Transformation Authority (DTA),
who is responsible for the app, released the source code to the
public, and rolled out four updates within 6 weeks to enhance
the security and stability of the app.

B. CHINA - CHINESE HEALTH CODE SYSTEM
The National Health Commission (NHC) of China utilises
automated platforms to transmit and obtain details on the type
and severity of diseases, advises people about how to avoid
outbreaks and warns what to do if infected. The government
uses high-speed telecommunications services to provide safe
travel information to their citizens. In addition to the use of
drones for surveillance, Chinese authorities have released a
mobile app that tracks people and alerts them if they have
been in ‘‘close contact with someone infected’’ using the
application [35].

To measure the risk level of any particular person, China
also has introduced a color-code app that uses three col-
ors, namely, green, yellow and red. Signs displaying Quick
Response (QR) codes are displayed at public checkpoints,
including office buildings, shopping centres, bus and train
stations, and airports. Users are required to scan the QR codes
with their phones and wait for their devices to display a
colour-coded signal to determine whether they can proceed.
A green code allows the users unrestricted movements, while
a yellow code requires seven days of quarantine. If the code
returned is red, the user is determined to be either a confirmed
case of COVID-19 or a close contact, and must be placed in
isolation. For controlling people’smovement, the app also has
contact-tracing mechanisms in place to notify users if they
have come in contact with infected people. For this purpose,
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China uses mobile cell data to determine the close contact and
stores personal information such as name, national identity
card number, phone number, and home address. In addition,
the app also asks questions which are relatively more inva-
sive, querying users on health status and travel history, and
requesting them to identify any close contacts diagnosed with
the COVID-19 during registration.

1) CRITICAL REVIEW
China’s city of Wuhan reported the first cluster of COVID-19
outbreak. The country used extensive measures to rapidly
control the virus while it was learning about the severity,
the infection mechanism and how to manage this situation.
It was more or less unknown to the humanity how to contain
the spread of such virus as it is a novel virus. It has used
a variety of digital technologies, not just apps, to tackle the
situation. In western standards, the app and technologies used
by the Chinese government are privacy invasive in nature. The
accuracy is also in question as estimating close contact using
GSM cell location is not always precise.

C. INDIA - AarogyaSetu
India has rolled out its mobile contact tracing app called
AarogyaSetu [69] in April. It is a multi-lingual app which
is useful for users to know whether they are at the risk of
getting infected with COVID-19. The app can help a user to
identify possible COVID-19 ‘hotspot’ around her area. It can
also help people stay safe and adopt necessary precautions in
some areas where there are positive cases and accordingly,
help stop or prevent community transmission to some extent.

Using geo-tagging (enabled by GSM technology), it can
also alert a specific user about their proximity to a
nearby infection case or hotspot. The app also helps users
self-identify their risk and monitor their health conditions,
considering the difficult situation where it is not particularly
safe to step out and visit health clinics. If someone met a
person within the last two weeks who has later tested positive,
the app calculates the risk of infection based on how recent it
was and level of proximity, and provides guidelines. In terms
of registration information, it collects name, phone number,
gender, travel history and whether someone is a smoker. The
government made this app mandatory for citizens living in
containment zones and for all government and private sector
employees.

1) CRITICAL REVIEW
The main critic of this app is that it collects absolute location
information (e.g., geo-location using GPS). According to the
developers of the app, the application fetches a user’s location
during the time of registration, at the time of self-assessment,
and when a user submits her contact tracing data voluntarily
through the app or when it retrieves the contact tracing data
of a user after confirmed as a COVID-19 patient. Though
it has been claimed that the app stores encrypted location
information, but there are potential risks of cyber hacking or
state surveillance on the citizens. In addition, there is no clear

information about who can access the information stored in
data centers and how long the data will be kept.

D. SINGAPORE - TRACE TOGETHER
Singapore’s TraceTogether [8] app is a Bluetooth-based con-
tact tracing mechanism which uses a range of cryptographic
identity protections. For instance, the app employs rotat-
ing encrypted IDs that are generated by the server. This
enables the server to decrypt users’ IDs and identify exposed
individuals. The app logs users’ pseudonymised IDs and
contact records via the BlueTrace protocol [50] discussed
in Section III. These IDs are rotated periodically, with the
central service being able to map back to the corresponding
phone number in case of a positive diagnosis. It should be
noted that diagnoses are authenticated by a QR code to pre-
vent false-positives. Recently, Singapore has started to use
bluetooth token to incorporate senior citizen in the contact
tracing regime who do not carry smartphones or do not have
access to mobile phones [70].

1) CRITICAL REVIEW
The approach followed in the TraceTogether app is more pri-
vacy aware compared to the approach used in AarogyaSetu as
the app does not collect geo-location of the individuals. How-
ever, the app is mostly centralised, therefore more susceptible
for certain types of cyber attacks. Government has released
the source code and this has made the application well studied
and replicated elsewhere. TheAustralian government has also
used BlueTrace to develop their COVIDSafe app.

E. SOUTH KOREA - CORONA 100m
South Korea has used mobile phone location data, along
with the country’s prolific CCTV and credit card transaction
records [71]. Authorities retrospectively track the movements
of people who later test positive. Because the technology
uses GPS location data, and phone companies in South Korea
require all customers to provide their real names and national
government registration numbers, it is nearly impossible to
avoid being tracked if someone owns a smartphone. The
routes taken by infected people are often published online,
while an alert message is sent to the people who had visited
the same locations. However, some users subject to quar-
antine requirements reportedly flouted tracking systems by
simply leaving their phones at home. Therefore, the govern-
ment asked the repeat offenders to begin wearing tracking
wristbands.

1) CRITICAL REVIEW
The South Korean app was one of the first set of apps that
almost completely discounted privacy issues. It definitely
violates the privacy of the individuals which is a big concern.
However, it was the early days of COVID-19 and people
and authorities were searching for anything that could help
to save human lives. Many of these early applications were
influenced by the practices and effectiveness of those in China
as described in Section IV-B.
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F. UK - NHS COVID-19 APP
The NHS (National Health Service) COVID-19 app [72]
uses Bluetooth handshakes to register proximity events or
contacts between smartphone users including factors such as
duration of the ‘contact event’ and the distance between the
devices. This information is fed to an NHS clinical algorithm
that is being designed to estimate the level of infection risk
and trigger notifications if a user subsequently experiences
COVID-19 symptoms. The government is promoting the
app as an essential component of its response to fight against
COVID-19. Upon startup, the app requests Bluetooth and
push notification permissions and reaches out to api.svc-
covid19.nhs.uk with an activation code, a push notification
token, and a portion of the user-entered postal code. Then the
server replies with a linking-ID that gets stored in the user’s
app settings.

One major component of the UK’s approach is that it has
opted to create a so-called ‘centralised’ system for COVID-19
contact tracing — which leads to a number of specific chal-
lenges. While the NHS COVID-19 app stores contact events
on the user’s device initially, at the point when (or if) a user
chooses to report themselves having COVID-19 symptoms,
then all their contact events data are uploaded to a central
server. This means it is not just a user’s own identifier but a
list of identifiers encountered over the past 28 days, therefore,
essentially, a graph of their recent social interactions. The
server then runs an algorithm to compute a risk score that is
used to determine whether people who came in contact with
the infected person should be notified. It has been claimed
that the Android version requests location permissions (due to
Android’s permission granularity, ACCESS_ FINE_ LOCA-
TION in the Android app is necessary for using Bluetooth).
However, regarding the iOS version, it does not request loca-
tion permissions. The UK government has recently aban-
doned the centralised coronavirus contact tracing app. They
have decided to switch to an alternative application designed
by Apple and Google [73].

1) CRITICAL REVIEW
The UK app follows a similar approach as the Australian
app and uses a ‘background refresh’ feature to keep reacti-
vating the app, plus push notifications that ask the users to
manually restart it. Researchers have found that the iPhone
app seems to regularly reactivate the phones provided there
are other devices (including Android phones) nearby running
the app.

The other major concern is that the appmay violate privacy
by giving the authorities data on users’ locations, which could
then be stored and misused. However, it is worth noting that
the UK app does not trace contacts using a phone’s location.
Users are asked for the first half of their postcode as a way of
helping the NHS to understand howmany people are infected
within a relatively wide area and plan resources accordingly.

The centralised model implies that health authorities have
access to a list of devices a user has recently been in

contact with. But it also avoids the necessity to broadcast
an anonymised list of people who have reported symptoms.
Re-identifying people from anonymised data is a valid con-
cern. But this still needs several pieces of information about
an individual to work – and at present the server does not
store or see any contextual information that would be useful
for re-identification.

As with all complex systems, there is a series of trade-offs
to be made. But the privacy protections built into the UK’s
app are somewhat robust, and the barriers to breaking them
or misusing the data are high. Problems may still emerge and
the app’s current version may not be as effective as expected,
however, the authorities are trying to overcome the issues in
future updates.

G. OTHER POPULAR SMARTPHONE APPS
TO TRACK COVID-19
In addition to governments, different universities (e.g., Stan-
ford University) and commercial companies (e.g., Apple and
Google) have joined in app based initiatives. Apple and
Google published APIs to use the Bluetooth functionality
in their respective mobile operating system [74]. It lets iOS
and Android phones to communicate with each other over
Bluetooth, allowing developers to build a contact tracing
app that will work for both. Some countries have started using
these APIs such as Austria and Estonia [75], while some
others have rejected the use of this API such as France and
USA [76].

Similarly, a contact tracing app, CovidWatch is developed
by a pair of researchers from Stanford University and the Uni-
versity of Waterloo [77]. It uses Bluetooth signals to detect
users when they are in close proximity to each other and alerts
them anonymously if they were in contact with someone who
has been tested positive. A distinguishing feature of this app is
that any third party, including the government will not be able
to track who was exposed to whom. It has been among the
early apps to release an open-source protocol for privacy-
preserving, decentralised Bluetooth based contact tracing.
Table 4 shows the summary of our findings.

V. DISCUSSION
It is evident from the above reviews in sections II, III and IV
that a handful of protocols and mobile apps have been avail-
able as the pandemic enters its tenthmonth since the first case.
These protocols and apps, however, demonstrate significant
differences in underlying technologies and approaches for
managing various security and privacy traits. In this section,
we highlight the key differences (SectionV-A) accompanying
with the security and privacy considerations followed by a
series of recommendations (Section V-C) for an improved
privacy-preserving COVID-19 contact tracing application.

A. ANALYSIS
In Section II, we discussed various types of technolo-
gies to detect proximity among two different persons, such
as GPS, Bluetooth and Wi-Fi. Among these technologies,
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TABLE 4. Comparison of contact tracing apps.

FIGURE 14. Technology used by different apps.

GPS captures the absolute location of a person, making it
more privacy-invasive in comparison to say Bluetooth which
only estimates if two people come in close contact with-
out recording the absolute location of the encounter. This
privacy-friendly feature has made the majority of the pro-
posed app developers to adapt Bluetooth as the underlying
proximity detection network [78] (Figure 14). Furthermore,
we have analysed 12 different protocols against a set of
security and privacy threat vectors.

Figure 15 plots the number of alleviated threats by the
selected protocols. In our analysis, we found BlueTrace is
mitigating the highest number of threats (9), followed by
Epione and DP3T with 8.5 each, where the fraction implies
that the respective protocol does not adequately mitigate at
least one threat. Among others, theMPC proposal by Reichert
et al. has the lowest number of alleviated threats with only 3.

To understand which protocols have been utilised more
in different apps, we collected the number of adoptions for
each protocol (illustrated in Figure 16) [79]. According to our
analysis, the number of protocols adopted so far is just 5 out
of 12. With six apps utilising TCN, it is the most widely used
protocol in the current setting of contact tracing applications.
On the other hand, DP3T has been utilised by 4 apps. Other
three protocols, BlueTrace, PEEP-PT and PACT, have been
used by 3, 2 and 2 apps respectively.

It is to be noted that even with a moderate threat coverage
of 7, TCN is the most widely used protocol as of now.

Although the underlying rationale behind this adaptation rate
is puzzling to assume, there are a number of other factors,
such as ease of deployment, political will, the credibility
of the researchers and so on. To wrap up, there is still no
app utilising the other seven protocols.

B. SECURITY AND PRIVACY CONSIDERATIONS
Our analysis identified some security and privacy considera-
tions for contact tracing scenarios and are summarised below:
• Access Control: Access to individuals’ private infor-
mation is sensitive; therefore, accessing such data needs
controlling. The access should only be granted to limited
health professionals. To avoid misuse the law enforce-
ment and federal government, should never get access
to such data. Sometimes legal protection is essential
to build trust between the government and the citizen.
Otherwise, technologies can quickly become a surveil-
lance tool for the government. In addition to the legal
framework, the technical implementation is also crucial.
The need for proper authentication and authorisation is
vital and must be audited from time to time.

• Data Storage: Design patterns should consider storing
the user data in the local device as much as possible.
The data should not leave the users’ device until that
is absolutely necessary. For example, the tracing data
(pseudo-anonymous ID) should not be uploaded to the
server until someone becomes infected. Similarly, the
contact tracing application must implement a data dis-
posal mechanism to ensure that data will be automati-
cally deleted after a certain period of time.

• Data Management: Contact tracing applications
require a robust and interoperable data management
system for linking users with confirmed and probable
COVID-19 to their contacts. In some cases, the systems
may also require to seamlessly integrate with other
modules to facilitate more complicated epidemiological
analyses. Although it is important to incorporate data
security and confidentiality mechanisms into all phases
related to contact tracing activities, most of the applica-
tions overlook this.
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FIGURE 15. Number of threats mitigated by each protocol.

FIGURE 16. Protocol used by number of apps.

• Data Transmission: Most of the contact tracing
applications require data transmission between mobile
devices and a central server to register new users, upload
encounter information, notify exposed users and so
on. It has been noticed that most of the applications
implement cryptographic schemes to secure only those
steps that involve transmission of sensitive informa-
tion whereas some are not using transport layer secu-
rity (TLS) at all. For example, a recent investigation
by International Digital Accountability Council reported
that many apps are sending unencrypted transmissions
which is completely contrary to best practices [80].
Therefore, it is essential to encrypt all communications
from the mobile device to the destination.

• Encryption: Although the proximity information usu-
ally consists of pseudo-anonymous IDs, the registration
information can be susceptible. Users typically have
to provide name, address and phone number during
the registration. Such information requires encryption
before storing in the server. Furthermore, some of
the protocols use absolute location (e.g., GPS data)
to track users’ location and proximity. Such informa-
tion is highly privacy sensitive and should be treated
accordingly.

• False-positive: The reporting of the COVID-19 posi-
tive follows two main approaches: i) voluntary, where
individuals update their status as COVID positive, and
ii) authority-triggered, meaning government officials
(often health professionals) update the status of the indi-
viduals. The first approach is particularly vulnerable to
exploitation. If a group of ill-motivated people update
their status as COVID positive, there could be public
chaos, making the app ineffective.

• Privacy: The contract tracing process cannot be com-
pletely anonymous. In our review, we have found that
large number of protocols have used pseudo-identifier
to protect the privacy of the individuals. The personally
identifiable information (PII) is stored in a database
which can only be accessed by health professionals.
However, in some distributed architecture-based proto-
cols, end users have the capability to check their contract
proximity data without registration. It provides partial
privacy. In these practices, individuals with COVID
positive results need to upload their contract tracing
information (e.g., Bluetooth beacon) whereas others will
only verify their proximity against that data.

C. RECOMMENDATIONS
With all the efforts put by the researchers, practitioners, and
governments around the world, the general sentiment among
the ordinary citizens (in USA) is still negative as illustrated
in Figure 17 [81]. The success of any contact tracing app will
be heavily dependent on the trust of the citizens. Therefore,
efforts must be in place to increase the trust level, and thus
the adoption rate of the society. In the following, we put
down a few recommendations that can help to build users’
confidence and the level of trust, which in turn would make
contact tracing more universal and effective.
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FIGURE 17. Percentage of US adults who are likely/unlikely to use
COVID-19 app.

• Challenge ofWide-Scale Adoption: Themain obstacle
with the current app-based contact tracing mechanism is
smartphone penetration level, specifically in developing
counties. Counties like India and Bangladesh, where
smartphone penetration is quite low (25.3% and 18.5%
respectively [82]), smartphone app-based approach will
not be very effective. High coverage of contact tracing
apps is vital for effectiveness. There have been few
mobile phone network based initiatives; however, they
are not very beneficial in terms of identification of the
contacts. Low-cost wristband based proximity detec-
tion could be used in low-socioeconomic areas with the
cooperation of community health workers.
In addition, the vulnerable seniors who are not digitally
connected but are at higher risk from COVID-19 needs
special consideration. For example, Singapore govern-
ment has introduced TraceTogether Tokens, which sends
Bluetooth signals to other tokens, or smartphones with
the app, and each one uses a personalised QR code [70].

• Limitation of Bluetooth Technology: It has been
observed that due to the privacy concern and granularity
issues, Bluetooth has been the most used technology for
the contact tracing app [83]. However, it has issues with
proximity measurement. It cannot differentiate if there is
any physical object between two phones. For example,
if two people live in two apartments separated by a brick
wall, the app will still detect it as being nearby. This phe-
nomenon is disquieting for highly congested apartments
in cities. Researchers have recommended computing
the intersection of the user’s trajectories to have more
robust contact tracing apps [84]. However, the effective-
ness of this approach is still doubtful. Moreover, since
it is designed based on RSSI only and the expected
range of Bluetooth is significantly higher than the dis-
tance recommended for social distancing, this approach
potentially collects lot more contacts than required,
making apps to generally produce a higher false positive.
More refined calibrations around RSSI and the inclusion
of transmitted signal strength in Apple-Google API may
overcome this problem, but further studies investigating
this area would be necessary [85].

• Build Trust between Government and Citizen:Build-
ing trust between citizen and state is vital for such apps
to be successful. These apps can be easily turned into
a surveillance tool unless the citizen’s privacy is legally
protected. Mission creeping is another major concern to
civil societies. Although some countries such as India
and South Korea have made contact tracing apps manda-
tory for their citizens, the majority of the countries with
contact tracing apps have opted for voluntary partic-
ipation. Different countries, including Australia, have
passed laws to control the exposure to the data to various
parties, specifically to the law enforcement authorities.
However, this pandemic is evolving and legal experts
should continuously explore better protection for the
ordinary people to help build trust between the state and
its citizens.

• Transparency: Many users expressed concerns regard-
ing the nature of the permission apps are using [86].
Governments should make the whole initiative more
transparent in terms of the legal framework and the
app. One of the approaches government or other
app provider can take is to open source the entire code,
including the server side, of the respective apps. Addi-
tionally, app providers can invite independent security
auditors or penetration testers to independently review
the security and privacy measures of the app in protect-
ing the privacy and security of the users.

• Implementation Details: It has been observed that con-
tact tracking apps often do not work properly due to
implementation glitches [87]. For example, the COVID-
Safe app has been widely criticised for not delivering
the results as expected [87]. The problems are mainly in
software implementation, e.g., difficulties in detecting
nearby devices by locked iPhones, an interoperability
issue when sharing data between iPhone and Android
phones.

• Distributed Ledger Technology: Many protocols and
app studied in this paper are centralised, and the
health authority/government controls the access. Cen-
tralised approaches also suffer more from denial of
service attacks. Distributed ledger technology such as
blockchainmay help tomitigate such attacks [88]. It also
helps to build trust in the system due to its transparency
and immutability properties [89].

• Data Inter-operability Among Different Apps: In
near future, when the restriction will be lifted and the
people can travel from one country to another country,
different apps will need to be inter-operable so that
different apps can talk to each other and health authority
can retrieve the data.

• Balance Between Privacy and Data Usability: Keep-
ing a good balance between the privacy of the indi-
viduals and the usability of the data is very vital to
successfully track COVID patients and their contracts.
It is always a trade off. If the system allows to register
without PII, it would be too difficult (if not impossible)
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for the health professionals to track new contact. On the
other hand, if PII of all citizens is stored in a sin-
gle database, their is a high risk of compromise or
misuse.

At any given time, contact tracing may become a serious
act against individual’s privacy. During a pandemic if it is
necessary to use a contact tracing app to save lives and
reduce fatality, a ‘good app’ must have a privacy-preserving
architecture beneath as we have seen in some discussions
earlier in the protocol and app reviews. Despite Bluetooth
being less accurate, it seems to be more privacy-friendly
than any other existing technologies. Its performance can
be improved using Kalman filters and artificial intelligence
techniques to more accurately identify the potential presence
of humans in the vicinity. A good app must grant the users the
ability not to disclose their condition after testing positive for
any reason. The decision to use the app and disclosing one’s
information should always come from the users, the app must
not allow third parties to dictate over users’ decisions. It is
also important that a good app works decentrally and stores
information locally. Users should be allowed to delete their
data and stop using the app at any time. If they decide
to disclose their condition by submitting their data to any
central server, the architecture of the app must ensure that
users cannot be traced back, the data transferred between
users’ phone and the server over a secured medium and
the submitted data is removed without keeping any backup
after a certain period preferably within two to four weeks of
submission.

VI. CONCLUSION
The COVID-19 pandemic is a public health crisis that re-
minds us of the importance of being prepared for such an
emergency. Ever since the novel coronavirus began to spread
in China, researchers around the globe proposed contact
tracing methods in the form of protocols and smartphone
apps. Contact tracing, however, is not something invented
recently instead has been practised for years in various ways
to combat pandemics. Themost recent approach, the COVID-
19 contact tracing, utilises smartphone-based and wireless
network-assisted applications. In this paper, we critically
analysed the underlying technologies, protocols and those
apps proposed for this pandemic. The objective of the assess-
ment was to identify their shortcomings against a set of
threats and other matrices derived from our investigation and
possible ideal functionalities that protocols could potentially
offer, together presented as a taxonomy at the beginning of
the article.We then provided three comprehensive reviews for
the underlying technology, protocols and the contact tracing
apps. These reviews formed the basis for the critical stud-
ies, presenting two summary tables demonstrating the cor-
responding protocols and the threats that they mitigate. This
review finally explicated the existing gaps in the proposed
protocols and how they can be improved to combat future
pandemics.
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