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ABSTRACT 22 

Introduction: This study aimed to 1) identify the impact of external load variables on changes 23 

in wellness and 2) identify the impact of age, training/playing history, strength levels and pre-24 

season loads on changes in wellness in elite Australian footballers. 25 

Methods: Data were collected from one team (45 athletes) during the 2017 season. Self-26 

reported wellness was collected daily (4=best score possible, 28=worst score possible). 27 

External load/session availability variables were calculated using global positioning 28 

systems/session availability data from every training session and match. Additional variables 29 

included demographic data, pre-season external loads and strength/power measures. Linear 30 

mixed models were built and compared using root mean square error (RMSE) to determine the 31 

impact of variables on wellness. 32 

Results: The external load variables explained wellness to a large degree (RMSE=1.55, 95% 33 

confidence intervals=1.52 to 1.57). Modelling athlete ID as a random effect appeared to have 34 

the largest impact on wellness, improving the RMSE by 1.06 points. Aside from athlete ID, the 35 

variable that had the largest (albeit negligible) impact on wellness was sprint distance covered 36 

across pre-season. Every additional 2.1 km covered across pre-season worsened athletes’ in-37 

season wellness scores by 1.2 points (95% confidence intervals=0.0 to 2.3). 38 

Conclusion: The isolated impact of the individual variables on wellness was negligible. 39 

However, after accounting for the individual athlete variability, the external load variables 40 

examined collectively were were able to explain wellness to a large extent. These results 41 

validate the sensitivity of wellness to monitor individual athletes’ responses to the external 42 

loads imposed on them. 43 

Key words: 44 

Australian football, athlete monitoring, wellness, training loads, mixed modelling 45 



3 
 

INTRODUCTION 46 

Australian football is a team sport that requires a variety of skills, as well as large amounts of 47 

running, jumping and contact with opposition athletes (1). The external loads athletes are 48 

exposed to inevitably result in increased levels of fatigue following a match (2). High levels of 49 

fatigue are thought to increase the risk of subsequent injury via factors such as impaired 50 

neuromuscular control and tissue capacity (3). Additionally, greater levels of fatigue have been 51 

shown to negatively influence athletes’ external load and performance during matches (2). As 52 

such, practitioners have a vested interest in monitoring athletes and their response to training 53 

and match demands. 54 

Monitoring external training and match loads via global positioning systems (GPSs) is 55 

commonplace in team sports such as Australian football (4). The information provided to 56 

practitioners by GPS technology is often used to optimise training loads and ensure that athletes 57 

are ready to compete (4). However, it is also important to consider that external loads elicit 58 

different physiological and psychological responses (i.e. internal loads) in individual athletes 59 

(4). It is hypothesised that these individual responses are likely moderated by several other 60 

factors, such as age, playing/training history and fitness levels (3-5). Considering this, simply 61 

monitoring external loads may not inform practitioners as to how athletes are responding to 62 

training/match demands and their competition readiness. Accordingly, it is recommended that 63 

practitioners also implement methods to monitor athletes’ internal responses. 64 

Self-reported wellness questionnaires are a common method of monitoring athlete wellbeing, 65 

with a survey of practitioners working in high-performance sport reporting that 80% of 66 

responders implemented some form of customized questionnaire as part of their monitoring 67 

strategy (6). Additionally, subjective monitoring tools have been shown to respond to stress 68 

induced by training more consistently than objective measures (such as various 69 
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hormonal/physiological markers) (7). Typically, self-reported wellness questionnaires focus on 70 

several different components (e.g. fatigue, sleep, soreness and stress), asking athletes to rate 71 

each component on a scale (7). It is commonplace to consolidate each component, or subscale, 72 

to indicate an athlete’s overall wellness (8-10). Given the widespread application of self-73 

reported wellness questionnaires, a number of studies have investigated the impact of 74 

training/competition on wellness and its various components. Studies in soccer, rugby and 75 

Australian football have reported declines in wellness in the days following matches (9, 11, 76 

12). Additionally, self-reported wellness has been associated with subsequently modified 77 

external loads in elite soccer and Australian football athletes (8, 13) and is also suggested to 78 

influence the risk of future injury (7, 14). 79 

Given the implications that wellness may have in regard to subsequent performance and injury 80 

risk, understanding the variables that impact wellness and the degree to which they do so may 81 

provide insights into the mechanisms responsible for changes in wellness. However, despite 82 

the prevalence of self-reported wellness questionnaires, limited research has investigated the 83 

impact of external loads on wellness in elite Australian footballers. Furthermore, despite 84 

previous research suggesting that responses to external loads may be moderated by individual 85 

athlete characteristics (3-5), no research has investigated the impact that such variables (beyond 86 

training/match loads) have on self-reported wellness. For example, playing experience and 87 

fitness/strength levels have been shown to moderate the impact of training/match loads on 88 

injury risk (15, 16). Whether the impact of training/match loads on wellness is moderated by 89 

individual athlete characteristics, however, is yet to be investigated. 90 

Given the widespread application of wellness questionnaires in team sports (6), it is important 91 

to understand whether factors such as age, training/playing history and fitness/strength levels 92 

moderate the impact of training/match loads on self-reported wellness. This information may 93 

provide practitioners with a better understanding of the mechanisms responsible for observed 94 
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differences in athletes’ expected wellness scores versus their actual wellness scores. In turn, 95 

this may assist practitioners in making more meaningful inferences regarding athletes’ 96 

responses to training/match demands and their competition readiness. Accordingly, the aims 97 

of the current study were to 1) identify the impact of external load variables on changes in self-98 

reported wellness and 2) identify the impact of age, training/playing history, strength levels 99 

and pre-season loads on changes in self-reported wellness in elite Australian footballers. 100 

 101 

METHODS 102 

Study design 103 

Data for this cohort study were collected during the 2017 Australian Football League (AFL) 104 

season (November 2016 to September 2017) and were obtained retrospectively by the research 105 

team. These data were collected from one team competing in the AFL. All athletes contracted 106 

to the team (n = 45) had their data included in this study (i.e. no athletes were excluded). This 107 

study was approved by the Australian Catholic University Human Research Ethics Committee 108 

(approval number: 2018-26WN). 109 

 110 

Response variable 111 

Throughout the in-season period (March 2017 to September 2017) athletes were instructed to 112 

complete a customised self-reported wellness questionnaire in private via an online system 113 

using their own device. Whilst the questionnaire used in the current study was customised, a 114 

similar questionnaire (with one additional component: mood) has been implemented in a 115 

number of prior studies (1, 8, 9, 12). The athletes completed the questionnaire on every morning 116 

they were at the football club prior to any training/activities and were not required to complete 117 
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it on their days off or on match days. The questionnaire instructed athletes to rate their current 118 

level of fatigue, soreness, stress and sleep on a scale ranging from 1 (as good as possible) to 7 119 

(as bad as possible). The sum of each subscale was then used to represent overall wellness, 120 

with a minimum score of 4 being the best possible and a maximum score of 28 being the worst 121 

possible. For every wellness measure, the number of days until the next AFL match was also 122 

determined, as this has previously been reported as the best predictor of wellness changes in 123 

elite Australian footballers (1). 124 

 125 

Load variables 126 

Athlete tracking data were collected for every field training session and match using valid (17) 127 

10 Hz GPSs fitted into specially designed pockets on the back between the scapulae (OptimEye 128 

S5 GPS athlete monitoring systems, Catapult Sports, Melbourne, Australia). Using proprietary 129 

software (Openfield, Catapult Sports, Melbourne, Australia), the following data were 130 

extracted: 131 

• Total distance – total distance (m) covered. 132 

• High-speed running (HSR) distance – distance (m) covered above 16 km/h. 133 

• Sprint distance – distance (m) covered above 26 km/h. 134 

For each of these variables, exponentially weighted moving averages (EWMAs) were 135 

calculated for the day prior to each wellness measure being taken, using the following equation 136 

(18): 137 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑) =  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑣𝑣𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑) ×  𝜆𝜆 + �(1 −  𝜆𝜆) ×  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑)� 138 

𝜆𝜆 =
2

𝑁𝑁 + 1
 139 
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Where 𝑁𝑁 is equal to the decay parameter. The decay parameter determines the weighting 140 

assigned to more recent and less recent observations, with a smaller decay parameter 141 

discounting less recent observations to a greater degree. EWMAs, as opposed to rolling 142 

averages, have been shown to provide a more sensitive marker of injury risk and are thought 143 

to better represent external loads (19). Several EWMAs were calculated using a 6-day and a 144 

28-day decay parameter. Previous work has observed that a 6-day acute time window and a 28-145 

day chronic time window best explained the risk of injury and it is suggested that these 146 

windows may be most appropriate for a typical microcycle in elite Australian football (20). 147 

Accordingly, the value of 6 was chosen to represent acute loads and the value of 28 was chosen 148 

to represent chronic loads. Using the EWMAs, a 6:28 day ratio was also calculated for each of 149 

the external load variables, where the chronic window was uncoupled from the acute window, 150 

as per the findings of previous work, which has shown that coupled acute and chronic windows 151 

can result in spurious correlations (21). These ratios were included in the analyses to determine 152 

whether they added any additional value beyond examining the acute and chronic loads as 153 

separate constructs. 154 

In addition to the EWMAs and the ratios, each athlete’s session availability was also 155 

determined using athlete participation data. Previous work has suggested that session 156 

availability may be a surrogate and potentially more accessible marker of load, compared to 157 

GPS/accelerometer derived variables (22). For every response measure, the number of training 158 

sessions and matches that were missed/modified (for any reason) in the prior 6, 28 and 84 days 159 

was determined for each athlete. The number of full training sessions and matches that each 160 

athlete could have conceivably completed was also determined for the same retrospective 161 

windows. Session availability (%) for each window was then determined as the number of 162 

training sessions and matches fully completed relative to the number of training sessions and 163 

matches possible for each athlete. The windows of 6 and 28 days were chosen as they 164 
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correspond to the external load windows. However, the window of 84 days was chosen as 165 

previous work observed a significant interaction between injury risk and acute availability by 166 

availability in the prior 84 days (22). Session availability was examined to determine whether 167 

it could explain the response measures to the same degree as the external load EWMAs/ratios, 168 

as a potentially surrogate (and more easily accessible) marker of load. 169 

 170 

Demographic, training/playing history and strength variables 171 

Demographic data were collected at the beginning of the pre-season period (November 2016). 172 

These included date of birth (used to calculate age), stature (cm), mass (kg), years of AFL 173 

experience and the number of matches played in the prior season. A number of pre-season load 174 

variables were also determined, in addition to the aforementioned external load variables. Each 175 

athlete’s total distance, HSR distance and sprint distance accumulated over pre-season were 176 

determined. Each athlete’s session availability (%) over pre-season was also calculated. End of 177 

pre-season strength and power data were collected in February 2017. All strength and power 178 

data were collected using a 600 Hz force plate and analysed using proprietary software 179 

(Ballistic Measurement Software, Fitness Technologies, South Australia). Maximal isometric 180 

strength relative to mass (N/kg) was recorded using an isometric mid-thigh pull (IMTP) (23) 181 

and peak power relative to mass (W/kg) was recorded using a countermovement jump (CMJ) 182 

(24). 183 

Due to a number of different reasons (such as an athlete being injured, ill or away at the time 184 

of testing) 14% of the strength and power measures were missing. One option to overcome the 185 

challenges of missing data is to exclude observations with missing data from the analyses. 186 

However, due to the limitations imposed on sports science/medicine researchers by small 187 

datasets (25), this option is undesirable. An alternative (and more pertinent) option is to replace 188 
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the missing data via a process known as imputation (26). In the current study, multiple 189 

imputation by chained equations was implemented to replace the missing end of pre-season 190 

strength and power measures. Further details regarding the strength and power data collection 191 

methods and the imputation methods implemented in the current study can be found in 192 

Supplemental Digital Content 1. 193 

 194 

STATISTICAL ANALYSIS 195 

Prior to modelling the data, a correlation analysis was performed to identify redundant input 196 

variables. Reducing the number of input variables whilst retaining as much explanatory 197 

information as possible can improve the interpretation of a model and its coefficients (26). The 198 

correlation coefficient between each input variable was calculated. A Pearson’s correlation 199 

coefficient threshold of > 0.80 was applied (26). If the pairwise correlation between two 200 

variables was > 0.80, the variable with the larger mean pairwise correlation (across all 201 

variables) was discarded, with the mean pairwise correlations being re-evaluated after the 202 

removal of every variable. A list of all the input variables prior to the correlation analysis can 203 

be found in Supplemental Digital Content 2. 204 

Following the correlation analysis, models were constructed with the remaining input 205 

variables. These models have been detailed in Figure 1 and the R code corresponding to each 206 

of the models can be found in Supplemental Digital Content 3. The Akaike information 207 

criterion (AIC) of each model (constructed using the original data) was determined. AIC is a 208 

measure of the quality of a model that accounts for the trade-off between the complexity of the 209 

model (i.e. the number of input variables) and the fit of that model (i.e. how well the model can 210 

predict the response variable). A lower AIC indicates a better balance between model 211 

complexity and fit. Additionally, the average root mean square error (RSME) of each model 212 



10 
 

was determined using 10-fold cross validation, repeated 10 times. The RMSE is equal to the 213 

standard deviation of the residuals (i.e. prediction errors) and is expressed on the same scale as 214 

the response variable. A lower RMSE indicates better predictive ability. The AICs were 215 

compared to determine which model provided the best balance between complexity and 216 

predictive ability, whilst the RMSEs were used to determine the absolute predictive ability of 217 

each model. The reader is directed to the following resource for further information regarding 218 

cross validation (25). 219 

Following these comparisons, the coefficient and 95% confidence intervals (95% CIs) for each 220 

input variable were extracted from the model with the best predictive ability (i.e. lowest mean 221 

RMSE value) and interpreted. A coefficient was considered significant if the 95% CIs did not 222 

contain 0. All data/statistical analyses were performed using the R programming language (27) 223 

and the following packages: dplyr, caret, lme4 and ggplot2. 224 

 225 

RESULTS 226 

Cohort and descriptive details 227 

Forty-five elite Australian footballers (age 24.0 ± 3.3 years, stature 188.0 ± 7.8 cm, mass 88.7 228 

± 7.9 kg and years of playing experience 4.3 ± 3.3) from one team competing in the AFL 229 

provided data for this study throughout the 2017 AFL season. Throughout the in-season period, 230 

a total of 3,267 wellness measures were collected, with each individual athlete providing, on 231 

average, 72.6 ± 15.7 measures. The mean self-reported wellness score was 15.7 points (Table 232 

1). However, the within-individual mean self-reported wellness score ranged from 5.9 to 18.4 233 

points, with the within-individual standard deviation ranging from 0.3 to 3.4 points. Descriptive 234 

statistics for each of the variables used to construct the models can be found in Table 1. 235 

 236 
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Correlation analysis 237 

A full list of the input variables prior to the correlation analysis can be found in Supplemental 238 

Digital Content 2. A list of the remaining input variables following the correlation analysis can 239 

be found in Table 1. In total, 22 variables were reduced to 17 following the correlation analyses. 240 

The correlation matrix for all variables can be found in Supplemental Digital Content 4. 241 

 242 

Model comparisons 243 

The AIC and mean RMSE and 95% CIs of each model (calculated using repeated 10-fold cross 244 

validation) can be found in Table 2. Naïve Model 1 (NM1) had the best (i.e. lowest) AIC, 245 

suggesting that this model offered the best balance between complexity and predictive ability. 246 

However, the small AIC (relative to the other models) is likely due to NM1 only having one 247 

input variable (number of days until the next match). Whilst the introduction of athlete ID as 248 

random effect appeared to significantly increase the complexity of the remaining models (and 249 

subsequently the AIC), accounting for the individual athlete variability also reduced the RMSE 250 

and improved the predictive ability of the other models. The AICs for the remaining models 251 

were comparable. 252 

In terms of absolute predictive ability, FM performed better than all other models, although the 253 

improvements in the RMSE were marginal, with FM improving on the performance of Load 254 

Model 3 (LM3) and Availability Model 3 (AM3) by 0.01 and 0.08 respectively. Load Model 2 255 

(LM2) outperformed Availability Model 2 (AM2) by 0.07, suggesting that the session 256 

availability variables were not able to explain wellness to the same degree as the external load 257 

EWMAs/ratios. The inclusion of the demographic, training/playing history and strength 258 

variables did not improve the RMSE of LM3 and AM3 compared to LM2 and AM2 259 

respectively. With the addition of athlete ID as a random effect, however, Naïve Model 2 260 
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(NM2) improved on the performance on Naïve Model 1 (NM1) by 1.06. Additionally, Load 261 

Model 1 (LM1) and Availability Model 1 (AM1), with the number of days until the next match 262 

excluded, were also compared to LM2 and AM2 respectively. LM2 (RMSE = 1.55) performed 263 

no better than LM1 (RMSE = 1.55). However, AM2 (RMSE = 1.62) outperformed AM1 by 264 

0.02. Generally, the tight CIs suggest that the dataset is relatively homogenous, with variations 265 

in every iteration of the cross validated data having little effect on the RMSEs (Table 2). 266 

 267 

Model coefficients 268 

Athlete ID was modelled as a random effect and as such, its impact on wellness cannot be 269 

interpreted in the same manner as the fixed effects (i.e. other input variables). However, the 270 

largest improvement in RMSE was seen between NM1 and NM2 with the addition of athlete 271 

ID as a random effect. The conditional modes of the athletes are displayed in Figure 2. These 272 

conditional modes indicate the difference between the average (population-level) predicted 273 

wellness score and the predicted wellness score for the individual, for a given set of fixed input 274 

variables. Aside from athlete ID, the variable that had the largest individual impact on wellness 275 

was sprint distance covered across pre-season (km). An increase in sprint distance covered 276 

across pre-season equal to the interquartile range (2.1 km) increased (i.e. worsened) athletes’ 277 

in-season wellness scores by 1.2 points (95% CIs = 0.0 to 2.3). The individual impact of all 278 

significant input variables on wellness has been illustrated in Figure 3. A full list of the 279 

coefficients can be found in Supplemental Digital Content 5. 280 

 281 

DISCUSSION 282 

Three of the major findings of the current study were 1) accounting for individual athlete 283 

variability had the largest impact on explaining changes in wellness, 2) the inclusion of the 284 
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external load variables significantly improved the explanation of wellness and 3) the isolated 285 

impact of the individual external load variables on changes in wellness was negligible. It is 286 

important to consider that external loads will elicit different psychophysiological responses in 287 

individual athletes and that simply monitoring external loads may not inform practitioners as 288 

to how athletes are feeling and their competition readiness. Accordingly, self-reported wellness 289 

questionnaires are commonly implemented to monitor athlete wellbeing (6). However, despite 290 

the widespread application of self-reported wellness questionnaires, limited research has 291 

investigated the ability of wellness to capture the different psychophysiological responses 292 

elicited by external loads. In the current study, the within-individual mean wellness scores 293 

ranged from 5.9 to 18.4 points. Modelling athlete ID as a random effect, however, appeared to 294 

account for the different responses between athletes and had a large impact on the performance 295 

of the models. 296 

The impact of modelling athlete ID as a random effect is further highlighted by the conditional 297 

modes illustrated in Figure 2. These conditional modes indicate the difference between the 298 

average (i.e. population-level) predicted wellness score and the predicted wellness score for 299 

the individual, for a given set of fixed input variables. For example, Athlete 45 can be expected 300 

to rate their wellness 8.9 points lower (i.e. better) than the average athlete, given the same fixed 301 

input variables, irrespective of their values. Athlete 1, however, can be expected to rate their 302 

wellness 3.2 points higher (i.e. worse) than the average athlete. The present findings highlight 303 

the importance of accounting for the variability amongst individual athletes when analysing 304 

and interpreting self-reported wellness data. A mixed modelling approach is an appropriate 305 

solution that accounts for individual variability and does not require the response variable (i.e. 306 

wellness) to be rescaled, which is important when determining the isolated impact of individual 307 

variables (as illustrated in Figure 3). 308 
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The RMSE of LM1 and LM2 was 1.55 (Table 1). Whilst there are no formal guidelines for 309 

interpreting RMSEs, given that the range of wellness in the current study is equal to 24, an 310 

RMSE of 1.55 suggests that the external load variables were able to explain wellness to a large 311 

extent. These findings are supported by the results of previous research, which attempted to 312 

predict the future wellness scores of elite soccer players using external load data and internal 313 

load (i.e. session ratings of perceived exertion [sRPE]) data (14). External load data improved 314 

the prediction of future fatigue, muscle soreness, mood and stress scores compared to a baseline 315 

model, which simply predicted each athlete’s future score as their observed average (14). It 316 

was reported, however, that cumulative loads (i.e. loads in the prior 2, 3, 4 and 7 days), in 317 

addition to the previous day’s training/match load, did not improve the prediction of future 318 

wellness scores (14). The authors of this study (14) suggest that external loads beyond those of 319 

the previous day are not meaningfully related to self-reported wellness. In contrast, the current 320 

study observed that the 28-day EWMA of HSR distance, in addition to the corresponding 6-321 

day EWMA, significantly impacted wellness. It may be that the cumulative loads examined in 322 

previous work (14) (i.e. loads in the prior 2-7 days) were highly correlated with the previous 323 

day’s load and that examining loads beyond the prior 7 days may have yielded different results. 324 

Previous research has reported the number of days until the next match as the best predictor of 325 

self-reported wellness (1). In the current study, the number of days until the next match 326 

significantly impacted wellness, albeit to a small degree. Previous work has suggested that the 327 

association between the number of days until the next match and wellness may be the result of 328 

changes in external load due to the training/match schedule (9). Accordingly, LM1 was 329 

compared to LM2 to determine whether the inclusion of the number of days until the next 330 

match, beyond the external load variables, improved the explanation of wellness. Given that 331 

LM2 did not improve on the performance of LM1, it is possible that the number of days until 332 

the next match is simply a surrogate marker of external load. It is also important to consider 333 



15 
 

that self-reported wellness is a perceptual tool and that athletes may actually ‘feel’ better in the 334 

lead up to the next match, without necessarily experiencing any improvements in a 335 

physiological sense (9). Alternatively, it may also be the case that athletes simply report better 336 

wellness in the lead up to the next match in order to improve their chances of selection, 337 

regardless of how they feel. 338 

In addition to the number of days until the next match, HSR distances (defined as distances 339 

covered above 16 km/h) also significantly impacted wellness in the current study. Previous 340 

work in elite soccer has reported similar findings, with an association between distances 341 

covered above 14 km/h and self-reported fatigue being observed (28, 29). Presently, an increase 342 

in athletes’ 6-day EWMA of HSR distance resulted in a higher (i.e. worse) wellness score 343 

(Figure 3C). However, it should be noted that a higher 28-day EWMA of HSR distance actually 344 

improved athletes’ wellness scores (Figure 3D). Previous work suggests that accumulating 345 

higher chronic loads results in increased fitness levels and an increased tolerance of higher 346 

acute loads, which may explain the present findings (3). Despite these suggestions, however, 347 

the isolated impact of the individual external load variables on wellness was negligible. 348 

Decreasing an athlete’s 6-day EWMA of HSR distance by 388.9 m (equal to the interquartile 349 

range) only improved their wellness score by 1.1 points (95% CIs = 1.0 to 1.2) (Figure 3C). 350 

During the in-season period, the mean number of training sessions/matches per week was 3 ± 351 

1 and the mean weekly HSR distance covered by each individual athlete was 3957 ± 2197 m. 352 

Considering this, for an athlete that covers 3957 m of HSR across 3 training sessions/matches 353 

per week, reducing their 6-day EWMA of HSR distance by 388.9 m would require a decrease 354 

in HSR distance of approximately 878 m per session. Put simply, improving an athlete’s 355 

wellness score by as little as 1 point would require large decreases in HSR distances. As per 356 

previous research (14), the current results suggest that changes in wellness are likely a function 357 
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of complex, non-linear interactions amongst multiple variables and that targeting and 358 

modifying one specific variable (e.g. HSR distance) is unlikely to have any substantial impact. 359 

There are a number of potential limitations in the current study. Firstly, internal load (i.e. sRPE) 360 

data were not available. However, the evidence regarding the impact of internal load on self-361 

reported wellness is conflicting. One study, conducted in elite Australian football, observed an 362 

association between changes in sRPE-derived training load and changes in self-reported 363 

wellness (30). In contrast, other research has reported that self-reported wellness was not 364 

sensitive to changes in sRPE-derived training load (9, 14). Given the conflicting evidence, it is 365 

difficult to determine whether the inclusion of internal load data in the current analyses would 366 

have impacted the results. Secondly, the self-reported wellness questionnaire implemented in 367 

the current study was customised and has not been previously investigated. However, a similar 368 

questionnaire (with one additional component: mood) has been implemented in a number of 369 

prior studies (1, 8, 9, 12). Lastly, the sum of each subscale was used to represent overall 370 

wellness in the current study. Whilst consolidating the subscales is a common approach in 371 

practice and has been investigated in several prior studies (8-10), a systematic review has 372 

suggested that the consolidation of subscales into an overall score reduces the sensitivity of the 373 

measures (7). Despite this, all four of the subscales utilised in the current study have been 374 

previously investigated and reported as responsive to training/match demands (7). 375 

Additionally, subscales are typically measure on a Likert scale and should be treated as an 376 

ordinal response when examined individually. Previous research, however, has treated these 377 

ordinal responses as continuous data, which can have methodical implications (1, 14). Given 378 

this, future research should carefully consider the methods implemented to analyse and 379 

interpret self-reported wellness data. 380 

Despite the aforementioned limitations, external loads appear to have a large impact on self-381 

reported wellness. Given this, the results of the current study validate the sensitivity of wellness 382 
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(as determined in this study) to monitor individual athletes’ responses to the external loads 383 

imposed on them. However, the current results also highlight the importance of accounting for 384 

the variability amongst individual athletes when analysing and interpreting wellness data. The 385 

present findings also support existing evidence that suggests HSR distances significantly 386 

impact wellness (and its components) (28, 29). Despite this, the isolated, individual impact of 387 

the external load variables on wellness was negligible and modifying one specific variable (e.g. 388 

HSR distance) is unlikely to have any substantial effect. However, it should be noted that there 389 

may exist other individual variables, beyond those examined in the current study, that provide 390 

a more global indication of external load and impact wellness to a larger degree. Nonetheless, 391 

as per previous work (14), changes in wellness appear to be a function of complex, non-linear 392 

interactions amongst multiple variables and the current results support the need for an 393 

individualised, multifaceted approach to athlete monitoring. Previous research has suggested 394 

that implementing such an approach to monitor and compare athletes’ expected wellness scores 395 

versus their actual wellness scores may assist practitioners in their load management strategies 396 

(14). Further research is needed, however, to determine the impact that this information may 397 

have on subsequent performance and injury risk. 398 

In conclusion, the current study observed that accounting for individual athlete variability had 399 

the largest impact on self-reported wellness. Additionally, despite the negligible impact of the 400 

individual variables, the external load variables examined collectively were able to explain 401 

wellness to a large extent. The present findings validate the sensitivity of wellness to monitor 402 

individual athletes’ responses to the external loads they are exposed to. Implementing such an 403 

approach may provide further insights into the mechanisms responsible for changes in wellness 404 

and may assist practitioners in using wellness data to make meaningful inferences regarding 405 

athletes’ responses to training/match demands and their competition readiness. 406 

 407 
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Figure captions: 408 

Figure 1. The variables used to construct each of the mixed models. The Akaike information 409 

criterion and the average root mean square error of each model was determined. Following this, 410 

a number of comparisons between the models were made to determine whether the 411 

inclusion/exclusion of different input variables explained wellness to differing degrees. 412 

EWMA, exponentially weighted moving average. 413 

Figure 2. The conditional modes of the athletes, as a result of modelling athlete ID as a random 414 

effect. The conditional modes indicate the difference between the average (i.e. population-415 

level) predicted wellness score, represented by the vertical dashed line, and the predicted 416 

wellness score for the individual, for a given set of fixed input variables. For example, Athlete 417 

45 can be expected to rate their wellness 8.9 points lower (i.e. better) than the average athlete, 418 

given the same fixed input variables, irrespective of their values. Athlete 1, however, can be 419 

expected to rate their wellness 3.2 points higher (i.e. worse) than the average athlete. 420 

Figure 3.  The individual impact of the significant input variables on wellness (whilst all other 421 

input variables are held at their observed means). The y-axis indicates the change in wellness 422 

(after accounting for the conditional modes illustrated in Figure 2). The horizontal dashed line 423 

represents no change in wellness. The 95% confidence intervals are indicated by the grey 424 

shaded areas. The reader should note that a negative change indicates a better wellness score, 425 

whereas a positive change indicates a worse wellness score. EWMA, exponentially weighted 426 

moving average. 427 
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Table 1. Descriptive statistics for the variables remaining following the correlation analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EWMA, exponentially weighted moving average 

Variable Mean Median Standard 
deviation 

25th 
percentile 

75th 
percentile 

Interquartile 
range 

Wellness score 15.7 16 2.7 15 17 2 

Number of days until the next match 4.0 4.0 2.8 2.0 5.0 3.0 

Age (years) 24.0 23.2 3.3 21.4 26.0 4.6 

Number of matches played in the prior season 15.8 19.0 7.5 14.0 21.0 7.0 

Isometric mid-thigh pull peak force (N/kg) 39.8 38.8 5.4 37.6 42.3 4.7 

Countermovement jump peak power (W/kg) 53.2 52.5 5.9 49.8 55.9 6.1 

Total distance across pre-season (km) 350.0 351.3 41.5 324.8 378.6 53.8 

Sprint distance across pre-season (km) 4.0 3.7 1.5 3.0 5.1 2.1 

Session availability across pre-season (%) 76.1 80.4 17.7 61.7 89.1 27.4 

6-day EWMA of high-speed running distance (m) 597.0 566.0 319.7 396.2 785.1 388.9 

6-day EWMA of sprint distance (m) 24.3 19.1 22.3 8.2 35.0 26.8 

28-day EWMA of high-speed running distance (m) 607.7 635.2 195.7 529.0 729.8 200.8 

6:28 day ratio of total distance 1.1 0.9 3.3 0.7 1.2 0.5 

6:28 day ratio of high-speed running distance 1.1 0.9 2.7 0.7 1.3 0.6 

6:28 day ratio of sprint distance 2.8 0.7 42.2 0.4 1.3 0.9 

Session availability in the prior 6 days (%) 72.6 100.0 38.5 50.0 100.0 50.0 

Session availability in the prior 84 days (%) 72.3 82.4 25.4 60.0 91.4 31.4 



Table 2. The Akaike information criterion (AIC) for each model and the average root mean 
square error (RMSE) and 95% confidence intervals (95% CIs) for each model. The RMSE and 
the 95% CIs were calculated using repeated 10-fold cross validation. The input variables used 
to construct each of the models are illustrated in Figure 1. 

 

 

 

  RMSE 

Model AIC Mean 95% CIs 

Naïve Model 1 (NM1) 5873 2.70 2.67 to 2.74 

Naïve Model 2 (NM2) 11443 1.64 1.62 to 1.65 

Load Model 1 (LM1) 11102 1.55 1.53 to 1.57 

Load Model 2 (LM2) 11088 1.55 1.52 to 1.57 

Load Model 3 (LM3) 11094 1.55 1.52 to 1.57 

Availability Model 1 (AM1) 11457 1.64 1.62 to 1.66 

Availability Model 2 (AM2) 11397 1.62 1.60 to 1.64 

Availability Model 3 (AM3) 11403 1.62 1.60 to 1.64 

Full Model (FM) 11074 1.54 1.52 to 1.56 



Supplemental Digital Content 1. Extended methodology for the strength and power data 

collection and imputation. 

 

Start and end of pre-season strength and power data were collected in November 2016 and 

February 2017 respectively. All strength and power data were collected using a 600 Hz force 

plate and analysed using proprietary software (Ballistic Measurement Software, Fitness 

Technologies, South Australia). 

Maximal isometric strength relative to mass (N/kg) was recorded using an isometric mid-thigh 

pull (IMTP) [1]. Athletes stood on the force plate and held an immovable bar, using wrist straps 

to assist their grip [1]. The bar was fixed at an individualised height for each athlete that allowed 

for a hip angle of approximately 155-165 degrees and a knee angle of approximately 125-135 

degrees [1]. Athletes were instructed to pull up as hard and as fast as possible for approximately 

five seconds [1]. Following a warm-up (self-perceived 75% of each athlete’s maximum), only 

one maximum IMTP trial was performed. 

Peak power relative to mass (W/kg) was recorded using a countermovement jump (CMJ) [2]. 

Athletes stood on the force plate and were instructed to maintain their hands on their hips 

throughout the jump and jump as high as possible [2]. Following warm-up (self-perceived 75% 

of each athlete’s maximum), only one maximum CMJ trial was performed. 

Due to a number of different reasons (such as an athlete being injured, ill or away at the time 

of testing) 14% of the end of pre-season strength and power measures were missing. One option 

to overcome the challenges of missing data is to exclude observations with missing data from 

the analyses. However, due to the limitations imposed on sports science/medicine researchers 

by small datasets [3], this option is undesirable. An alternative (and more pertinent) option is 



to replace the missing data via a process known as imputation [4]. In the current study, multiple 

imputation by chained equations was implemented. 

Prior to imputing the missing data, a stepwise approach was implemented to determine which 

variables were best suited to impute the missing data. Out of observations with known strength 

and power values, 15% were withheld as a testing set. The withheld strength and power values 

of the testing set were imputed using the remaining 85% of observations. The imputed (i.e. 

predicted) strength and power values were then compared to the actual strength and power 

values and the root mean square error (RMSE) was calculated. This process was repeated, with 

a different variable being removed each iteration until no further variables could be removed 

without an increase in the RMSE. The variables that best predicted the strength and power 

values of the withheld testing set were mass (kg), all remaining IMTP peak force (N/kg) values 

and all remaining CMJ peak power (W/kg) values. One thousand iterations of this process were 

performed, resulting in a mean RMSE of 4.5 (95% confidence intervals = 4.4 to 4.6). 

Following this process, the original missing end of pre-season strength and power measures 

were imputed using mass (kg) and all remaining start and end of pre-season strength and power 

measures. Fifteen imputations were performed over 50 iterations. For each missing data point, 

the mean of all its imputed value was used as the final prediction. The final predicted value 

was then used for the analyses outline in the methods section of the paper. 
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Supplemental Digital Content 3. The R code used to construct each of the models. 

 

library(lme4) 

 

nm1 <- lm(wellness ~ days_until_next_match, 

          data = train_data) 

 

nm2 <- lmer(wellness ~ days_until_next_match + (1|id), 

            data = train_data, REML = F) 

 

lm1 <- lmer(wellness ~ (1|id) +  

              HSR_distance_6_day_EWMA +  

              HSR_distance_28_day_EWMA +  

              sprint_distance_6_day_EWMA +  

              total_distance_6to28_ratio +  

              HSR_distance_6to28_ratio +  

              sprint_distance_6to28_ratio, 

            data = train_data, REML = F) 

 

lm2 <- lmer(wellness ~ days_until_next_match + (1|id) +  

              HSR_distance_6_day_EWMA +  

              HSR_distance_28_day_EWMA +  

              sprint_distance_6_day_EWMA +  

              total_distance_6to28_ratio +  

              HSR_distance_6to28_ratio +  

              sprint_distance_6to28_ratio, 

            data = train_data, REML = F)



lm3 <- lmer(wellness ~ days_until_next_match + (1|id) +  

              HSR_distance_6_day_EWMA +  

              HSR_distance_28_day_EWMA +  

              sprint_distance_6_day_EWMA +  

              total_distance_6to28_ratio +  

              HSR_distance_6to28_ratio +  

              sprint_distance_6to28_ratio +  

              age +  

              matches_played_prior_season +  

              preseason_availability +  

              preseason_total_distance +  

              preseason_sprint_distance +  

              imtp +  

              cmj, 

            data = train_data, REML = F) 

 

am1 <- lmer(wellness ~ (1|id) +  

              availability_6_day +  

              availability_84_day, 

            data = train_data, REML = F) 

 

am2 <- lmer(wellness ~ days_until_next_match + (1|id) +  

              availability_6_day +  

              availability_84_day, 

            data = train_data, REML = F)



am3 <- lmer(wellness ~ days_until_next_match + (1|id) +  

              availability_6_day +  

              availability_84_day +  

              age +  

              matches_played_prior_season +  

              preseason_availability +  

              preseason_total_distance +  

              preseason_sprint_distance +  

              imtp +  

              cmj, 

            data = train_data, REML = F) 

 

fm <- lmer(wellness ~ days_until_next_match + (1|id) +  

             HSR_distance_6_day_EWMA +  

             HSR_distance_28_day_EWMA +  

             sprint_distance_6_day_EWMA +  

             total_distance_6to28_ratio +  

             HSR_distance_6to28_ratio +  

             sprint_distance_6to28_ratio +  

             age +  

             matches_played_prior_season +  

             preseason_availability +  

             preseason_total_distance +  

             preseason_sprint_distance +  

             imtp +  

             cmj +  

             availability_6_day +  

             availability_84_day, 

           data = train_data, REML = F) 



Supplemental Digital Content 4. The pairwise correlation coefficient between all input variables. 

  

Variable 1, wellness score 

Variable 2, number of days until the next match 

Variable 3, age (years) 

Variable 4, number of matches played in the prior season 

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
1 - 0.09 0.12 0.00 0.03 0.04 0.06 0.28 0.20 0.12 0.18 0.05 0.19 0.08 0.24 0.25 0.04 0.06 0.02 0.02 0.01 0.01 
2 0.09 - 0.02 0.03 0.00 0.01 0.01 0.01 0.02 0.00 0.12 0.06 0.18 0.09 0.05 0.04 0.00 0.00 0.01 0.02 0.01 0.01 
3 0.12 0.02 - 0.21 0.01 0.15 0.24 0.16 0.00 0.15 0.01 0.00 0.05 0.05 0.01 0.03 0.04 0.04 0.03 0.02 0.03 0.05 
4 0.00 0.03 0.21 - 0.31 0.37 0.31 0.26 0.09 0.21 0.07 0.10 0.03 0.04 0.01 0.02 0.02 0.02 0.02 0.08 0.10 0.13 
5 0.03 0.00 0.01 0.31 - 0.48 0.35 0.11 0.01 0.04 0.03 0.05 0.02 0.03 0.07 0.09 0.00 0.01 0.03 0.03 0.00 0.12 
6 0.04 0.01 0.15 0.37 0.48 - 0.86 0.43 0.00 0.27 0.14 0.24 0.12 0.19 0.03 0.06 0.01 0.01 0.01 0.11 0.15 0.21 
7 0.06 0.01 0.24 0.31 0.35 0.86 - 0.66 0.20 0.14 0.10 0.18 0.14 0.22 0.12 0.20 0.00 0.00 0.00 0.08 0.10 0.13 
8 0.28 0.01 0.16 0.26 0.11 0.43 0.66 - 0.42 0.21 0.04 0.06 0.12 0.19 0.35 0.51 0.02 0.02 0.01 0.05 0.06 0.08 
9 0.20 0.02 0.00 0.09 0.01 0.00 0.20 0.42 - 0.27 0.07 0.11 0.04 0.06 0.04 0.08 0.02 0.03 0.04 0.09 0.10 0.08 
10 0.12 0.00 0.15 0.21 0.04 0.27 0.14 0.21 0.27 - 0.17 0.28 0.15 0.23 0.09 0.14 0.01 0.02 0.00 0.20 0.23 0.23 
11 0.18 0.12 0.01 0.07 0.03 0.14 0.10 0.04 0.07 0.17 - 0.79 0.90 0.68 0.56 0.43 0.06 0.09 0.02 0.58 0.46 0.39 
12 0.05 0.06 0.00 0.10 0.05 0.24 0.18 0.06 0.11 0.28 0.79 - 0.70 0.87 0.47 0.55 0.06 0.06 0.05 0.76 0.76 0.65 
13 0.19 0.18 0.05 0.03 0.02 0.12 0.14 0.12 0.04 0.15 0.90 0.70 - 0.78 0.61 0.48 0.06 0.12 0.01 0.43 0.33 0.31 
14 0.08 0.09 0.05 0.04 0.03 0.19 0.22 0.19 0.06 0.23 0.68 0.87 0.78 - 0.53 0.63 0.05 0.04 0.02 0.57 0.55 0.48 
15 0.24 0.05 0.01 0.01 0.07 0.03 0.12 0.35 0.04 0.09 0.56 0.47 0.61 0.53 - 0.83 0.01 0.02 0.01 0.36 0.31 0.25 
16 0.25 0.04 0.03 0.02 0.09 0.06 0.20 0.51 0.08 0.14 0.43 0.55 0.48 0.63 0.83 - 0.03 0.04 0.05 0.45 0.47 0.39 
17 0.04 0.00 0.04 0.02 0.00 0.01 0.00 0.02 0.02 0.01 0.06 0.06 0.06 0.05 0.01 0.03 - 0.79 0.01 0.03 0.08 0.09 
18 0.06 0.00 0.04 0.02 0.01 0.01 0.00 0.02 0.03 0.02 0.09 0.06 0.12 0.04 0.02 0.04 0.79 - 0.00 0.06 0.10 0.10 
19 0.02 0.01 0.03 0.02 0.03 0.01 0.00 0.01 0.04 0.00 0.02 0.05 0.01 0.02 0.01 0.05 0.01 0.00 - 0.06 0.09 0.11 
20 0.02 0.02 0.02 0.08 0.03 0.11 0.08 0.05 0.09 0.20 0.58 0.76 0.43 0.57 0.36 0.45 0.03 0.06 0.06 - 0.79 0.60 
21 0.01 0.01 0.03 0.10 0.00 0.15 0.10 0.06 0.10 0.23 0.46 0.76 0.33 0.55 0.31 0.47 0.08 0.10 0.09 0.79 - 0.80 
22 0.01 0.01 0.05 0.13 0.12 0.21 0.13 0.08 0.08 0.23 0.39 0.65 0.31 0.48 0.25 0.39 0.09 0.10 0.11 0.60 0.80 - 



Variable 5, session availability across pre-season (%) 

Variable 6, total distance across pre-season (km) 

Variable 7, high-speed running distance across pre-season (km) 

Variable 8, sprint distance across pre-season (km) 

Variable 9, isometric mid-thigh pull peak force (N/kg) 

Variable 10, countermovement jump peak power (W/kg) 

Variable 11, 6-day EWMA of total distance (m) 

Variable 12, 28-day EWMA of total distance (m) 

Variable 13, 6-day EWMA of HSR distance (m) 

Variable 14, 28-day EWMA of HSR distance (m) 

Variable 15, 6-day EWMA of sprint distance (m) 

Variable 16, 28-day EWMA of sprint distance (m) 

Variable 17, 6:28 day ratio of total distance 

Variable 18, 6:28 day ratio of HSR distance 

Variable 19, 6:28 day ratio of sprint distance 

Variable 20, session availability in the prior 6 days (%) 

Variable 21, session availability in the prior 28 days (%) 

Variable 22, session availability in the prior 84 days (%) 

EWMA, exponentially weighted moving average 

HSR, high-speed running 



Supplemental Digital Content 5. The coefficient and 95% confidence intervals (95% CIs) for all input variables, extracted from Full Model. 

 

Variable Coefficient 95% CIs 

28-day EWMA of HSR distance (m) -0.00298 -0.0037 to -0.00227 
6-day EWMA of HSR distance (m) 0.00281 0.00247 to 0.00315 
6-day EWMA of sprint distance (m) -0.00255 -0.00651 to 0.00141 

6:28 day ratio of HSR distance -0.00354 -0.03787 to 0.0308 
6:28 day ratio of sprint distance 0.00001 -0.00131 to 0.00134 
6:28 day ratio of total distance 0.00966 -0.0177 to 0.03702 
Age (years) -0.07809 -0.25646 to 0.10028 
Countermovement jump peak power (W/kg) -0.01752 -0.13803 to 0.10299 
Isometric mid-thigh pull peak force (N/kg) 0.03356 -0.09579 to 0.16292 
Number of days until the next match 0.04231 0.0222 to 0.06242 
Number of matches played in the prior season 0.01142 -0.07766 to 0.1005 

Session availability across pre-season (%) 0.00832 -0.02989 to 0.04653 

Session availability in the prior 6 days (%) 0.00401 0.00193 to 0.00608 
Session availability in the prior 84 days (%) 0.00383 -0.00014 to 0.0078 
Sprint distance across pre-season (km) 0.55167 0.01612 to 1.08722 

Total distance across pre-season (km) -0.01470 -0.03445 to 0.00505 
 

EWMA, exponentially weighted moving average 

HSR, high-speed running 


