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Abstract

Artificial Neural networks (ANNs) are often applied to data classification problems. 

However, training ANNs remains a challenging task due to the large and high 

dimensional nature of search space particularly in the process of fine-tuning the 

best set of control parameters in terms of weight and bias. Evolutionary algorithms 

are proved to be a reliable optimization method for training the parameters. While 

a number of conventional training algorithms have been proposed and applied to 

various applications, most of them share the common disadvantages of local optima 

stagnation and slow convergence. In this paper, we propose a new evolutionary 

training algorithm referred to as LPSONS, which combines the velocity operators 

in Particle Swarm Optimization (PSO) with Mantegna Lévy distribution to produce 

more diverse solutions by dividing the population and generation between different 

sections of the algorithm. It further combines Neighborhood Search with Mantegna 

Lévy distribution to mitigate premature convergence and avoid local minima. The 

proposed algorithm can find optimal results and at the same time avoid stagnation 

in local optimum solutions as well as prevent premature convergence in training 

Feedforward Multi-Layer Perceptron (MLP) ANNs. Experiments with fourteen 

standard datasets from UCI machine learning repository confirm that the LPSONS 
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algorithm significantly outperforms a gradient-based approach as well as some well-

known evolutionary algorithms that are also based on enhancing PSO.

Keywords: Computer science

1. Introduction

Artificial Neural Networks (ANNs) are inspired by the human nervous systems and 

often used for pattern recognition and data classification [1] in various application 

domains such as manufacturing and medical diagnostics [2, 3, 4, 5, 6]. One 

type of ANNs is Multi-Layer Perceptron (MLP), which is particularly useful for 

nonlinear modeling through training algorithms that are either gradient-based or 

based on meta-heuristics [7]. One of the well-known gradient-based methods is Back 

Propagation (BP), which however can get trapped into local minima and cannot find 

the appropriate values for the control parameters of weight and bias using training 

algorithms especially when the problem has a large scale [8]. This limitation has 

inspired researchers to harness meta-heuristic approaches to train ANNs as their 

stochastic nature contributes to remarkable performance in finding global optimal 

results [9]. One of the well-known meta-heuristic training algorithms is Particle 

Swarm Optimization (PSO) [10], a swarm intelligence-based algorithm inspired by 

the social behavior of animals such as birds flocking and fishes schooling. Each 

fish or bird is treated as a particle that has position and velocity and particles try 

to follow their local best positions until they reach the global best position. PSO, 

including its extensions such as Ant Colony Optimization (ACO) and Artificial Bee 

Colony (ABC), has been employed in various studies to train their MLP ANNs and 

showed great performance in optimizing the training process [11, 12, 13].

A weak trade-off between exploration and exploitation and limitation of population 

diversity are two major challenges in PSO [14] and work has been done to address 

them in terms of parameter setting, neighborhood topology, learning approaches, and 

hybridized methods [15]. For example, some works tried to fine tune and regulate the 

parameters through memory adaptation [16, 17], Gaussian adaptation [18], or fuzzy-

based methods [19], while other works attempted to avoid premature convergence 

by utilizing a neighborhood strategy like fully informed [20], self-adaptive [21] or 

ring topology [22], or a combination strategy through Lévy distribution such as 

LFPSO [23] and PSOLF [24]. The No Free Lunch (NFL) theorem asserts that no 

optimization methods can defeat all optimizers in solving all problems [25, 26], 

which motivated us to further extend PSO in order to better avoid local minimum 

and create a more balanced trade-off between exploration and exploitation in training 

MLP ANNs.
on.2019.e01275
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The proposed PSO extension is a hybrid algorithm that combines the PSO velocity 

operator with the Mantegna Lévy distribution to escape from local minima by finding 

different search areas, and to promote global search, enhance convergence speed, 

and balance exploration and exploitation by dividing the population and generation 

between different sections of the algorithm. The proposed hybrid algorithm further 

combines the Mantegna Lévy distribution with a new formulation of Global 

Neighborhood search [14] to boost local search, mitigate premature convergence 

and avoid local minima by searching more undiscovered areas in the search space to 

produce more diverse solutions. The new hybrid algorithm is referred to as LPSONS 

(Mantegna Lévy Flight, Particle Swarm Optimization, and Neighborhood Search) 

and has been implemented to optimize training of Feedforward MLP ANNs with 

a single hidden layer for the sake of simplicity yet without losing generality as the 

single layer can be generalized to approximate any continuous function with a finite 

number of neurons [27]. We have also conducted a series of experiments to analyze 

and test the structure schema of the proposed algorithm with fourteen datasets from 

UCI machine learning repository. We have further evaluated the performance of 

LPSONS against those of two well-known PSO extensions – PSOLF and LFPSO – 

and a well-known Gradient-Based algorithm Back Propagation (BP) [28] based on 

the metrics of Classification Accuracy, Mean Squared Error (MSE), Specificity and 

Sensitivity. Statistical results using Friedman test show that the LPSONS algorithm 

significantly outperforms those benchmark algorithms.

The rest of the paper is organized as follows. Section 2 introduces some related work 

on training of ANNs and the fundamental work on which the proposed approach 

is based including MLP networks, Particle Swarm Optimization, and Lévy Flight. 

Section 3 then provides the details of the proposed LPSONS algorithm and after that 

Section 4 presents the evaluation experiments and discusses the results. Section 5

finally concludes the paper with a summary of major contributions and future work.

2. Related work

2.1. Training of artificial neural networks

In recent years, quite a lot of work has been done to optimize the training of 

ANNs using evolutionary algorithms, especially Evolution Strategy, Differential 

Evolution, and swarm-intelligent based approaches [17, 18, 19, 20]. Green II et 

al. proposed a Central Force Optimization (CFO) method for training ANNs and 

found it performed better than PSO in terms of algorithm design, computational 

complexity, and natural basis [29]. Bolaji et al. proposed the fireworks algorithm 

and compared it against other established algorithms using different benchmark 

datasets [30]. Faris et al. proposed the Lightening Search Algorithm (LSA) for 
on.2019.e01275
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finding optimal results and tested it with different measurements [28]. Karaboga et 

al. contributed Artificial Bee Colony (ABC) for optimizing weights in ANNs [31]. 

Aljarah et al. developed the whale optimization algorithm to find optimal connection 

weights in MLP ANNs [32], which showed superior performance to those of other 

benchmark algorithms.

Genetic Algorithm (GA) has been applied to different problems including training 

of MLP ANNs. For instance, in Sexton et al.’s work [33], GA was used to 

optimize an MLP ANN with a single hidden layer. Karegowda et al. proposed a 

hybrid approach combining GA and Back Propagation Network (BPN) to optimize 

connection weights in ANNs and applied their work to medical diagnosis [34]. Khan 

et al. did a comparison study between two gradient descent algorithms and three 

population-based algorithms including GA, PSO, and Bat algorithm and found that 

the Bat algorithm performed the best [35]. Pawelczyk et al. proposed a Genetically-

Trained Deep Neural Networks in order to promote the training process in Deep 

Neural Networks (DNN) by combining genetic algorithm and Gradient-based Back 

Propagation algorithm [36].

A number of hybrid algorithms have been proposed to improve the performance 

of PSO for training ANNs. Chen et al. suggested a hybrid approach to optimizing 

the training of Feedforward Neural Networks (FNNs) by combining PSO and 

Cuckoo Search (CS) and the comparison results revealed that it outperformed either 

PSO or CS alone as well as other FNN training algorithms [37]. Mirjalili et al. 

proposed a hybrid method using PSO and Gravitational Search Algorithm (GSA) for 

training FNNs and the comparison results showed its superior performance to that 

of the basic PSO and GSA alone in terms of convergence speed and local minima 

avoidance [38]. Ozturk and Karaboga introduced a hybrid approach consisting of 

ABC and the Levenberq-Marquardt (LM) algorithm for training an ANN [39] in 

which the network is first trained by the ABC algorithm and the LM algorithm then 

continues the training by grasping the best weight set of ABC algorithm in order 

to minimize the training error [39]. The proposed approach was tested on XOR, 

Decoder-Encoder, and 3-Bit Parity problems and exhibited remarkable performance.

In summary, evolutionary algorithms are proven useful in training MLP ANNs and 

much work has been done to enhance their performance from different perspectives 

using different measures such as training error and accuracy of classification. Our 

work in this paper extends Particle Swarm Optimization with Mantegna Lévy Flight 

and Neighborhood Search in order to produce more diverse solutions, mitigate 

premature convergence and avoid local minima using a rich set of measurement 

metrics including Classification Accuracy (ACC), Mean Squared Error (MSE), 

Specificity and Sensitivity.
on.2019.e01275
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Figure 1. An MLP network with a single hidden layer.

2.2. Multi-layer perceptron networks

An Multi-Layer Perceptron (MLP) network contains the elements of input layer, 

hidden layer, and output layer [40]. An MLP network can contain multiple different 

hidden layers enabling the network to have computational and processing abilities 

to generate the network outputs [41]. Figure 1 shows an MLP network with a single 

hidden layer, which contains some weights connecting between layers. The output 

values will be calculated through the following steps.

First, the sum of weights is calculated as follows:

𝑆𝑗 =
𝑛∑
𝑖=1

𝑤𝑖𝑗𝑥𝑖 + 𝛽𝑖, (1)

where 𝑥𝑖 is the input variable, 𝑤𝑖𝑗 is the weight between the input variable 𝑥𝑖 and 

neuron 𝑗, and 𝛽𝑖 is the input variable’s bias term.

Second, neurons’ output values in the hidden layers are generated from the received 

values of weighted summation (Equation (1)) by using an activation function. A 

popular choice of such a function is a sigmoid function as follows:

𝑓𝑗(𝑥) =
1

1 + 𝑒−𝑆𝑗
, (2)

where 𝑓𝑗 is the sigmoid function for neuron 𝑗 and 𝑆𝑗 is the sum of weights.

Finally, the output of neuron 𝑗 is calculated as follows:

𝑦𝑗 =
𝑘∑
𝑖=1

𝑤𝑖𝑗𝑓𝑗 + 𝛽𝑗 , (3)

where 𝑦𝑗 is the output of neuron 𝑗, 𝑤𝑖𝑗 is the weight between the output variable 𝑦𝑖
and neuron 𝑗, 𝑓𝑗 is the activation function for neuron 𝑗, and 𝛽𝑖 is the output variable’s 

bias term.
on.2019.e01275
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Algorithm 1 Particle Swarm Optimization (PSO).
1: Initialize all parameters such as 𝑡, 𝑐1, 𝑐2, and 𝑤 {𝑡: counter of iterations}

2: while (t < MaxGeneration || !StoppingCriterion) do

3: Evaluate fitness of particle swarm

4: for ∀𝑖 ∈ Particles do

5: Find 𝑝𝑡𝑖 and 𝑝𝑡𝑖
6: for ∀𝑗 ∈ Dimensions_of _Particle do

7: Update 𝑥𝑡𝑖 using Equation (4)

8: end for

9: end for

10: end while

11: Post-process and visualize the results

After the structure of an MLP ANN is created, a training process is required to fine 

tune the control parameters of weight and bias in order to achieve good results, e.g., 

minimizing the error rate including both classification and approximation errors. 

Both gradient-based approach such as BP and meta-heuristic-based approach such as 

PSO can be used for this purpose. Our proposed training algorithm is based on PSO.

2.3. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO), a swarm intelligence based algorithm proposed 

by Kennedy and Eberhart [10], mimics the social behavior of birds or fishes such 

as flocking or schooling, regrouping, and changing directions suddenly by using 

velocity to model their movements. In PSO, each solution is called a particle, which 

is characterized by four attributes: the current position 𝑥𝑡𝑖, the best historical position 

evaluated by the objective function 𝑝𝑡𝑖, the best historical position discovered in 

all particles 𝑝𝑡𝑖, and the current velocity 𝑣𝑡𝑖. Changes of velocity and position are 

described by the following equation:

⎧⎪⎨⎪⎩
𝑣𝑡+1𝑖 = 𝑤𝑣𝑡𝑖 + 𝑐1𝑟1()(𝑝𝑡𝑖 − 𝑥𝑡𝑖) + 𝑐2𝑟2()(𝑝𝑡𝑖 − 𝑥𝑡𝑖)

𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 + 𝑣𝑡+1𝑖

, (4)

where 𝑐1 and 𝑐2 are acceleration factors, 𝑤 is inertia weight, and 𝑟1() and 𝑟2()
uniformly generate random numbers in the range of [0, 1]. Algorithm 1 lists the 

pseudo code of the PSO algorithm.

2.4. Lévy flight

In nature, animals look for food based on a random walk, that is, the next step in a 

search path is based on the current location and the transition probability to the next 

location. A Lévy flight is a kind of random walk and studies have shown that many 
on.2019.e01275
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animals and insects have their flight styles resemble the features of Lévy flights. 

This behavior has been applied to optimal search and optimization algorithms [42, 

43, 44]. In particular, transition from 𝑥𝑡𝑖 to 𝑥𝑡+1𝑖 in the 𝑖th solution of an optimization 

algorithm can be described as follows:

𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 + (𝜕 ⊕ 𝑙𝑒𝑣𝑦(𝛽)), (5)

where 𝜕 is the step size that is subject to the scale of the problem of interest, ⊕ is the 

product operator for entry wise multiplications [42], and 𝑙𝑒𝑣𝑦(𝛽) provides a random 

walk with their large steps drawn from a Lévy distribution as follows:

𝑙𝑒𝑣𝑦(𝛽) ∼ 𝜇 = 𝑡(−1−𝛽), (6)

which has an infinite variance with an infinite mean and 0 ≤ 𝛽 ≤ 2. Clearly, 

generation of step size samples is not trivial using Lévy flights and below is a simple 

scheme [43]:

𝑙𝑒𝑣𝑦(𝛽) ∼ 0.01 ⋅ 𝜇|𝑣|(1∕𝛽) ⋅ (𝑥𝑡𝑖 − 𝑥𝑡𝑗), (7)

where 𝜇 and 𝑣 are drawn from normal distributions and are defined as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜇 ∼ 𝑁(0, 𝜎2𝜇)

𝑣 ∼ 𝑁(0, 𝜎2𝑣)

𝜎𝜇 =

(
Γ(1+𝛽)⋅𝑠𝑖𝑛(𝜋𝛽∕2)

Γ(1+𝛽∕2)⋅𝛽⋅2(𝛽−1)∕2

)1∕𝛽

𝜎𝑣 = 1

, (8)

where Γ is the standard gamma function.

3. Methodology

This section provides the details of the proposed LPSONS algorithm, including 

the division strategy that splits the population and the generations so that partial 

values of the population and the generations are assigned to different components 

of the proposed algorithm, the Mantegna Lévy distribution and PSO operators, the 

Neighborhood Search method, and the encoding strategy.

3.1. Division strategy in population and generations

The division strategy aims to divide the population and the generations and assign 

them to different components of the algorithm. Some evolutionary algorithms 

benefit from a division strategy in population as well as one in generations. For 
on.2019.e01275
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instance, Zhang et al. introduced a CS algorithm that utilized subgroups of the 

population and experimental results showed that the adopted division strategy not 

only helped improve both exploration and exploitation but also create a balance 

between them [45]. Salgotra et al. proposed an efficient hybrid algorithm based 

on CS and Cauchy Distribution by dividing both the population and generation in 

order to improve exploration and exploitation and tested the algorithm with varying 

population sizes using some benchmark problems [46].

It has been proved that a good balance between exploration and exploitation is a key 

efficiency indicator of an evolutionary algorithm, especially a swarm intelligence-

based algorithm. Good exploration prevents from getting into local minima, while 

good exploitation suggests efficient convergence speed [47]. Therefore, the proposed 

LPSONS algorithm also uses a division strategy for both population and generations 

in order to strike a good balance between exploration and exploitation. In the 

proposed algorithm, both the population size and the generations size (total number 

of generations in proposed algorithm) are divided into two parts: one half is used 

by the Mantegna Lévy distribution along with the PSO operator, while the other 

half is used by both the Mantegna Lévy flight and PSO operator as well as the global 

neighborhood search strategy in order to obtain the fitness value. In addition, in order 

to prevent from premature convergence, if the fitness value of generated solutions 

does not change for a number of iterations, the algorithm switch its approach with 

another one to generate new solutions. These values utilized two variables such as 

Limit value and Trial value. The limit value is the constant number of iterations 

which is defined inside the loop related to the population size and Trial is a counter. 

When the trial values exceed the limit value, the algorithm uses another strategy to 

generate solutions. This strategy is inspired by Haklı et al.’s work in which a limit 

value was set to change the solution generating strategy when there was not enough 

change in producing better solutions [23].

3.2. Mantegna Lévy distribution and PSO operators

The LPSONS algorithm employs Mantegna Lévy distribution along with PSO 

velocity operator in order to improve its accuracy. Based on [48, 49], Mantegna Lévy 

distribution is defined as follows.

𝑆𝑗 = 𝛼 ⋅
1

10𝜑
⋅ (𝑆 − 𝑆), (9)

where 𝑆𝑗 is a generated solution by the Mantegna Lévy flight, 𝛼 indicates the Lévy 

step size, 𝜑 is computed using Equation (8) which equals to 𝜎𝜇, 𝑢𝑗=𝜑⋅𝑟𝑎𝑛𝑑𝑛[𝐷] and 

𝑣 = 𝑟𝑎𝑛𝑑𝑛[𝐷] (𝑅𝑎𝑛𝑑𝑛[𝐷] is a normal distribution of 𝐷 dimension with 𝑚𝑒𝑎𝑛 = 0), 

and 𝑆 is a randomly selected solution, while 𝑆 is the best solution ever found. The 

step size 𝛼 is defined based on the following equation.
on.2019.e01275
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𝛼 ∼ 𝑢|𝑣|( 1
𝛽
)

(10)

In the proposed LPSONS algorithm, a solution will first be generated using 

Mantegna Lévy distribution, which will then be combined with the velocity operator 

in the PSO algorithm as follows.

𝑋𝑡
𝑖 = 𝑆𝑖 + 𝑉 𝑡

𝑖 , (11)

where 𝑋𝑡
𝑖 is the combined solution, 𝑆𝑖 is the solution generated by the Mantegna 

Lévy flight, and 𝑉 𝑡
𝑖 is the velocity operator for solution 𝑖 defined in the original 

PSO algorithm using Equation (4). Compared to the standard CS algorithm that 

only uses Mantegna Lévy distribution, the LPSONS algorithm provides both better 

exploitation and exploration.

3.3. The neighborhood search method

Premature convergence is a major issue with the PSO algorithm and its variants. To 

avoid this issue and at the same time increase the local search, we use Neighborhood 

Search (NS) so that even with a high step size, the proposed algorithm can still find 

most of the good solutions. NS has been adopted in various other algorithms to speed 

up convergence, for instance, Das et al. proposed an efficient algorithm by using both 

local and global NS methods based on the DE/target-to-best/1 scheme to boost its 

convergence [50]. In a similar work, Wang et al. developed the DNSPSO algorithm 

that utilized both local and global NS methods [51]. Zhou et al. introduced an ABC-

based algorithm that used the NS operators to produce a trial solution [52].

The general formula for generating a trial solution is based on the following equation:

𝑇 𝑟𝑖𝑎𝑙(𝑋𝑖) = 𝑟1() ⋅𝑋𝑖 + 𝑟2() ⋅𝑋𝑖 + 𝑟3() ⋅ (𝑋𝑎 −𝑋𝑏), (12)

where 𝑟1(), 𝑟2(), and 𝑟3() are mutually exclusive random number generators in the 

range of [0, 1] that satisfy 𝑟1() + 𝑟2() + 𝑟3() = 1 and will change at the start of 

each generation, 𝑋𝑖 is the best solution for the current generation ever found by the 

algorithm, and 𝑋𝑎 and 𝑋𝑏 are two randomly chosen solutions that must be different 

from 𝑋𝑖. The LPSONS algorithm uses the following equation to generate a trial 

solution using NS:

⎧⎪⎨⎪⎩
𝑇 𝑟𝑖𝑎𝑙(𝑋𝑡

𝑖 ) = 𝑟1 ⋅ 𝛼1 ⋅𝑋
𝑡
𝑖 + 𝑟2 ⋅𝑋

𝑡
𝑖 + 𝑟3 ⋅ 𝛼2 ⋅ (𝑋𝑡

𝑎 −𝑋𝑡
𝑏
)

𝑇 𝑟𝑖𝑎𝑙(𝑋𝑡+1
𝑖 ) = 𝑇 𝑟𝑖𝑎𝑙(𝑋𝑡

𝑖 ) + 𝐹 ⋅ (𝑆𝑗 − 𝑇 𝑟𝑖𝑎𝑙(𝑋𝑡
𝑖 ))

, (13)

where 𝑋𝑡
𝑖 refers to the current solution in generation 𝑡, while 𝛼1, 𝛼2 ∈ [1, 2] are two 

co-efficients derived from experiments for the purpose of diversifying the solutions 

in order to generate better ones, 𝑆𝑗 is a step size generated by the Mantegna Lévy 
on.2019.e01275
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Figure 2. The global NS strategy used in LPSONS.

Figure 3. The general steps of LPSONS.

Distribution which is shown in equation (9), and 𝐹 is a scaling factor in the range of 

[0, 1]. Figure 2 depicts the general NS strategy.

The trial solution will be evaluated against the best solution in terms of fitness value. 

If it wins the competition, it will survive and be used for the next generation. Figure 3

illustrates the general steps of the LPSONS algorithm.
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Algorithm 2 LPSONS.
1: Initialize 𝐺𝑚𝑎𝑥, 𝑃𝑚𝑎𝑥, 𝑡, 𝑐1, 𝑐2, and 𝑤 {𝐺𝑚𝑎𝑥∕𝑃𝑚𝑎𝑥: max generation/population size}

2: Initialize 𝛼1, 𝛼2, 𝐺1∕𝐺2, 𝑃1∕𝑃2, and 𝑙𝑖𝑚𝑖𝑡 {𝐺𝑖∕𝑃𝑖: generation/population size in phase 𝑖 = 1, 2}

3: /* Phase 1 */

4: 𝑋1 ← 𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛(1, 𝐺1 , 𝑃1, 𝑃𝑎𝑟𝑎𝑚𝑠)
5: /* Phase 2 */

6: 𝑋2 ← 𝐶𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛(2, 𝐺2 , 𝑃2, 𝑃𝑎𝑟𝑎𝑚𝑠)
7: /* Choose the best solution */

8: if 𝐹 𝑖𝑡(𝑋1) < 𝐹𝑖𝑡(𝑋2) then

9: 𝑋 ← 𝑋1{𝑋: the best solution}

10: 𝐹 𝑖𝑡(𝑋) ← 𝐹 𝑖𝑡(𝑋1)

11: else

12: 𝑋 ← 𝑋2

13: 𝐹 𝑖𝑡(𝑋) ← 𝐹 𝑖𝑡(𝑋2)

14: end if

Algorithm 2 lists the proposed LPSONS algorithm, which comprises two main 

phases. The main phases of the proposed algorithm will perform the classification 

based on the instructions described in Algorithm 3.

The first phase consists of two nested loops. The outer loop runs for a determined 

generation size set by the user, while the inner loop runs for a determined population 

size. If the trial set values are less than the limit value, LPSONS will generate 

new solutions based on the standard PSO algorithm using Equation (4); otherwise, 

it will use the Mantegna Lévy distribution enhanced PSO algorithm to generate 

new solutions using Equation (9) and Equation (11). After that, it will compare 

the fitness value of the generated solution with that of the local best solution to 

update the trial set accordingly. The second phase also consists of two nested loops 

with the outer loop for the generation size determined by the user and the inner 

loop for a determined population size. If the trial set values are less than the limit 

value, LPSONS will use the Mantegna Lévy distribution enhanced PSO algorithm 

to generate new solutions using Equation (9) and Equation (11); otherwise, it will 

further use NS to generate new solutions using Equation (13). After that, the fitness 

value of the generated solution is compared against that of the local best solution to 

update the trial set value. Finally, the ever best solution is chosen from those returned 

in both phases and its fitness value is derived accordingly.

3.4. Encoding strategy

The LPSONS adopts a vector encoding strategy in which particles are represented as 

randomly generated one-dimensional arrays with values in the range of [-1, 1]. Each 

generated solution contains connection weights and biases linking the input layer 
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Algorithm 3 Classification(Ph,G,P,Params) ∶ 𝑋𝑃ℎ.
1: for ∀𝑖 < 𝐺 do

2: for ∀𝑗 < 𝑃 {population size loop} do

3: if 𝑇 𝑟𝑖𝑎𝑙(𝑋𝑖) < 𝑙𝑖𝑚𝑖𝑡 then

4: if 𝑃ℎ == 1 then

5: 𝑋𝑖 ← 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4)

6: else

7: 𝑋𝑖 ← 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (9), (11)

8: end if

9: else

10: if 𝑃ℎ == 2 then

11: 𝑋𝑖 ← 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (9), (11)

12: else

13: 𝑋𝑖 ← 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (13)

14: end if

15: end if

16: if 𝐹 𝑖𝑡(𝑋𝑖) < 𝐹𝑖𝑡(𝑋𝑖) then

17: 𝑋𝑖 ← 𝑋𝑖 {𝑋𝑖: local best solution}

18: 𝐹 𝑖𝑡(𝑋𝑖) ← 𝐹 𝑖𝑡(𝑋𝑖)

19: 𝑇 𝑟𝑖𝑎𝑙(𝑋𝑖) ← 0

20: else

21: 𝑇 𝑟𝑖𝑎𝑙(𝑋𝑖) ← 𝑇 𝑟𝑖𝑎𝑙(𝑋𝑖) + 1

22: end if

23: end for

24: if 𝐹 𝑖𝑡(𝑋𝑃ℎ) < 𝐹𝑖𝑡(𝑋𝑖) then

25: 𝑋𝑃ℎ ← 𝑋𝑖{𝑋𝑃ℎ: best solution for Phase 𝑃ℎ}

26: 𝐹 𝑖𝑡(𝑋𝑃ℎ) ← 𝐹 𝑖𝑡(𝑋𝑖)

27: end if

28: 𝐹𝐸𝑠 ← 𝐹𝐸𝑠 + 1

29: if 𝐹𝐸𝑠 ≥ 13000 then

30: return

31: end if

32: end for

33: return 𝑋𝑃ℎ

to the hidden layer as well as linking the hidden layer to the output layer. Figure 4

shows a sample solution generated by the proposed algorithm.

4. Results & discussion

4.1. Datasets

Fourteen standard datasets from the UCI machine learning repository are used 

to evaluate the LPSONS algorithm in terms of accuracy and efficiency against 

the benchmark algorithms of LFPSO [23], PSOLF [24], and gradient-based Back 
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Figure 4. Sample solution generated by LPSONS.

Table 1. Experimental datasets.

Dataset Number of 
Attributes

Number of 
Classes

Number of 
data objects

Breast Cancer 10 2 683
Liver 7 2 345
Pima 8 2 768
Wine 13 3 178
Australian 14 2 690
Hepatitis 19 2 155
Heart 13 2 297
Blood 5 2 748
Iris 4 3 150
Credit 15 2 690
Seeds 7 3 210
Haberman 3 2 306
Balance 4 3 625
Diabetes (Diabetic Debrecen) 20 2 1151

Propagation algorithm (BP) [28]. These datasets are Wisconsin breast cancer 

(denoted as Breast Cancer), Liver, Pima, Wine, Australian, Hepatitis, Heart, Blood, 

Iris, Credit, Seeds, Haberman, Balance, and Diabetes. Table 1 lists these datasets, 

including the number of their attributes, classes, and data objects.

4.2. Experiment settings

Every algorithm used in the experiments runs for 30 times with random initial 

solutions on every dataset. The population size of all algorithms is 100, the number 

of perceptron in the hidden layer is set to 5, the value of constant variable limit 

which is indicated in line 2 of Algorithm 2 initialized to 10 for each particle. 

The datasets are divided into three parts: 70% used for training, 10% used for 

validation data, and 20% used for testing purpose. For the benchmark purpose, 

we have implemented the LFPSO and PSOLF algorithms based on their original 
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Table 2. Parameters and Values.

Algorithm Parameters Values

MLF 𝛽 1.9

LFPSO 𝑐1, 𝑐2, 𝑙𝑖𝑚𝑖𝑡 2, 2, 10
𝑤 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

PSOLF 𝑐1, 𝑐2, 𝑙𝑖𝑚𝑖𝑡 2, 2, 10
𝑤 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

LPSONS 𝑐1, 𝑐2, 𝑙𝑖𝑚𝑖𝑡 2, 2, 10
𝛼1, 𝛼2, 𝐹 1.49, 1.49, 0.5
𝑤 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Table 3. Confusion Matrix.

Positive Negative
Positive TP FP

Negative FN TN

source codes and utilized BP algorithm according to its standard algorithm. As 

each algorithm takes a long time to process classification of the given dataset, we 

have utilized Function Evaluations (FEs = 13000) as the threshold to terminate the 

process. Table 2 lists all the parameters and their values used by the algorithms. All 

algorithms have been implemented in Matlab 2016a and executed on a computer 

with Intel Core i3, 2.5 GHz, 4 GB RAM running Windows 7.

4.3. Evaluation measures

We have used Mean Square Error (MSE) as the fitness function for all the training 

algorithms to be evaluated. The aim of each algorithm is to minimize MSE in order 

to achieve an optimal network. MSE is defined as follows:

𝑀𝑆𝐸 = 1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2, (14)

where 𝑛 is the number of samples, while 𝑦𝑖/𝑦𝑖 are the actual and predicted output 

respectively.

We have also adopted a confusion matrix as a basis for a number of evaluation metrics 

used to evaluate the performance of each classifier. In a classification problem, each 

element 𝐼 is mapped to a negative label 𝑁 and a positive label 𝑃 and accordingly 

Table 3 lists a confusion matrix for binary classification of instances [28, 53]:

• True Positive (TP): positive instance and positively classified,

• False Negative (FN): positive instance and negatively classified,

• True Negative (TN): negative instance and negatively classified, or

• False Positive (FP): negative instance and positively classified.
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Based on the confusion matrix, the following evaluation metrics are used to measure 

the performance of each classification algorithm:

1. Accuracy: the rate of correctly classified positive and negative instances to all 

instances.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

2. Sensitivity (also known as Recall): the rate of classified true positive instances 

to actual positive instances.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝐹𝑁 + 𝑇𝑃

3. Specificity: the rate of classified true negative instances to actual negative 

instances.

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃

4. Precision: the rate of classified positive instances to all positive instances that 

should be classified positive.

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

5. F-Score (also known as F-measure): a harmonic average of Precision and Recall.

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙

4.4. Results and discussions

Tables 4 and 5 show the accuracy measures of the four algorithms for both training 

and testing respectively involving the 14 datasets. These values are arranged in the 

order of Best, Mean, and Standard Deviation (Std). Best and Mean respectively 

indicate the best value and the average value of the accuracy measure for the 30 

individual runs, while Std indicates the standard deviation of the achieved values.

For the training accuracy, the proposed LPSONS algorithm outperforms LFPSO, 

PSOLF, and BP for most of the datasets. In terms of Best, LPSONS exhibits 

superiority for 10/14 datasets: Breast Cancer, Liver, Pima, Australian, Blood, Iris, 

Credit, Seeds, Balance, and Diabetes, while for Wine and Hepatitis datasets, its 

performance is exactly the same as those of the benchmark algorithms. In terms 

of Mean, LPSONS performs better than LFPSO, PSOLF, and BP for 11/14 datasets: 

Breast Cancer, Liver, Pima, Wine, Hepatitis, Blood, Iris, Credit, Seeds, Haberman, 

and Balance. LPSONS also displays better Std for 8/14 of the datasets (Breast 

Cancer, Liver, Pima, Wine, Hepatitis, Blood, Iris, and Haberman), indicating that 

it is more stable than the benchmark algorithms.
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Table 4. Classification Training Accuracy.

Dataset/Algorithm BP PSOLF LFPSO LPSONS

Breast Cancer Best 0.9760 0.9790 0.9806 0.9811
Mean 0.9721 0.9721 0.9753 0.9759
Std 0.0041 0.0043 0.0046 0.0041

Liver Best 0.7837 0.7824 0.7740 0.7866
Mean 0.7393 0.7297 0.7535 0.7652
Std 0.0193 0.0248 0.0183 0.0177

Pima Best 0.7778 0.7955 0.7744 0.7993
Mean 0.7445 0.7825 0.7704 0.7890
Std 0.0137 0.0131 0.0129 0.0076

Wine Best 0.9908 1.0000 1.0000 1.0000
Mean 0.9872 0.9832 0.9968 1.0000
Std 0.0047 0.0096 0.0056 0.0000

Australian Best 0.8929 0.8902 0.8944 0.9586
Mean 0.8791 0.8712 0.8819 0.8818
Std 0.0110 0.0090 0.0091 0.0279

Hepatitis Best 0.9853 1.0000 1.0000 1.0000
Mean 0.9721 0.9619 0.9768 0.9885
Std 0.0162 0.0305 0.0147 0.0128

Heart Best 0.9392 0.8956 0.9086 0.9183
Mean 0.9116 0.8719 0.8764 0.8894
Std 0.0175 0.0113 0.0170 0.0147

Blood Best 0.7934 0.7881 0.7977 0.8015
Mean 0.7512 0.7674 0.7807 0.7904
Std 0.0182 0.0134 0.0145 0.0077

Iris Best 0.9921 0.9809 0.9904 1.0000
Mean 0.9635 0.9519 0.9647 0.9752
Std 0.0323 0.0495 0.0175 0.0163

Credit Best 0.9046 0.8905 0.8993 0.9059
Mean 0.8825 0.8822 0.8840 0.8877
Std 0.0178 0.0065 0.0084 0.0114

Seeds Best 0.9775 0.9640 0.9640 0.9784
Mean 0.9587 0.9489 0.9566 0.9647
Std 0.0123 0.0115 0.0106 0.0110

Haberman Best 0.7810 0.7803 0.7850 0.7803
Mean 0.7635 0.7616 0.7612 0.7654
Std 0.0215 0.0136 0.0186 0.0134

Balance Best 0.8921 0.8949 0.9640 0.8995
Mean 0.8705 0.8741 0.8849 0.8853
Std 0.0189 0.0097 0.0104 0.0090

Diabetes Best 0.7163 0.7099 0.7229 0.7345
Mean 0.7082 0.70.93 0.7191 0.7109
Std 0.0147 0.0093 0.0084 0.0109

For the testing accuracy, LPSONS also outperforms LFPSO, PSOLF, and BP 

for most of the datasets. For Best accuracy, it performs better for 7/14 datasets: 

Pima, Wine, Iris, Credit, Haberman, and Balance and has a similar accuracy for 

the breast cancer and seeds datasets in comparison to the PSOLF algorithm. For 
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Table 5. Classification Testing Accuracy.

Dataset/Algorithm BP PSOLF LFPSO LPSONS

Breast Cancer Best 0.9748 0.9756 0.9707 0.9756
Mean 0.9529 0.9590 0.9590 0.9648
Std 0.0920 0.0116 0.0076 0.0072

Liver Best 0.8427 0.7323 0.7058 0.7353
Mean 0.6558 0.6469 0.6539 0.6638
Std 0.0495 0.0448 0.0647 0.0450

Pima Best 0.7700 0.7823 0.7695 0.7826
Mean 0.7235 0.7369 0.6733 0.7426
Std 0.0522 0.0412 0.0751 0.0390

Wine Best 0.9259 0.9811 0.9811 1.0000
Mean 0.8667 0.9377 0.9413 0.9509
Std 0.0531 0.0427 0.0346 0.0328

Australian Best 0.8985 0.8985 0.8888 0.8985
Mean 0.8629 0.8604 0.8623 0.8635
Std 0.0325 0.0263 0.0184 0.0223

Hepatitis Best 0.9655 0.9117 0.8529 0.9118
Mean 0.9211 0.7913 0.7911 0.7941
Std 0.0462 0.0801 0.0426 0.0399

Heart Best 0.9870 0.8314 0.8764 0.8539
Mean 0.8293 0.8024 0.8258 0.8112
Std 0.0265 0.0183 0.0348 0.0264

Blood Best 0.8154 0.7991 0.8214 0.8125
Mean 0.7739 0.7713 0.7746 0.7799
Std 0.0425 0.0248 0.0339 0.0244

Iris Best 0.9565 0.9777 1.0000 1.0000
Mean 0.9230 0.9155 0.9711 0.9755
Std 0.0553 0.0701 0.0298 0.0286

Credit Best 0.9529 0.8775 0.8775 0.8826
Mean 0.9329 0.8418 0.8250 0.8290
Std 0.220 0.0259 0.0587 0.0621

Seeds Best 0.9808 1.0000 0.9833 1.0000
Mean 0.9215 0.9416 0.9250 0.9250
Std 0.0393 0.0345 0.0326 0.0479

Haberman Best 0.7872 0.7826 0.7826 0.8043
Mean 0.7416 0.7347 0.7360 0.7500
Std 0.0361 0.0370 0.0455 0.0251

Balance Best 0.8635 0.9090 0.9037 0.9144
Mean 0.8239 0.8883 0.8716 0.8883
Std 0.0424 0.0173 0.0232 0.0200

Diabetes Best 0.6800 0.7043 0.6795 0.7092
Mean 0.7315 0.6392 0.6078 0.6383
Std 0.0369 0.0233 0.0402 0.0221

Mean accuracy, it performs better for 8/14 datasets: Breast Cancer, Liver, Pima, 

Wine, Australian, Blood, Iris, and Haberman. For Std, it shows better stability and 

robustness for 8/14 datasets: Breast Cancer, Pima, Wine, Hepatitis, Blood, Iris, 

Haberman, and Diabetes.
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Table 6. Training Specificity, Sensitivity, and F-Measurere.

Dataset/Algorithm BP PSOLF LFPSO LPSONS

Breast Cancer Spec 0.9495 0.9587 0.9605 0.9615
Sens 0.9549 0.9703 0.9735 0.9749
F-Measure 0.9560 0.9696 0.9729 0.9738

Liver Spec 0.7331 0.7309 0.7549 0.769
Sens 0.7089 0.7029 0.7372 0.7423
F-Measure 0.7327 0.7160 0.7452 0.7526

Pima Spec 0.6633 0.7495 0.7559 0.7506
Sens 0.6283 0.7276 0.7373 0.7402
F-Measure 0.6588 0.7495 0.7511 0.7581

Wine Spec 0.9777 0.9904 0.9962 1.0000
Sens 0.9713 0.9852 0.9968 0.9980
F-Measure 0.9692 0.9837 0.9967 0.9977

Australian Spec 0.8222 0.8407 0.8598 0.8629
Sens 0.8604 0.8719 0.8804 0.8807
F-Measure 0.8691 0.8709 0.8799 0.8805

Hepatitis Spec 0.9275 0.9694 0.9819 0.9892
Sens 0.7995 0.9189 0.9465 0.9735
F-Measure 0.8312 0.9322 0.9556 0.9805

Heart Spec 0.8778 0.8926 0.8848 0.8970
Sens 0.8655 0.8676 0.8734 0.8870
F-Measure 0.8675 0.8715 0.8755 0.8889

Blood Spec 0.6120 0.6750 0.6726 0.6898
Sens 0.5363 0.5625 0.5761 0.5944
F-Measure 0.6205 0.6361 0.6444 0.6609

Iris Spec 0.9762 0.9392 0.9737 0.9854
Sens 0.9661 0.9520 0.9665 0.9747
F-Measure 0.9667 0.9528 0.9670 0.9757

Credit Spec 0.9147 0.9177 0.9215 0.9236
Sens 0.8850 0.8840 0.8862 0.8561
F-Measure 0.8837 0.8827 0.8848 0.8713

Seeds Spec 0.8670 0.9605 0.9737 0.9728
Sens 0.9360 0.9475 0.9557 0.9641
F-Measure 0.9395 0.9484 0.9567 0.9643

Haberman Spec 0.6138 0.6296 0.6483 0.6245
Sens 0.5717 0.5854 0.5959 0.5845
F-Measure 0.6325 0.6373 0.6491 0.6377

Balance Spec 0.7922 0.8325 0.8884 0.9018
Sens 0.6307 0.6372 0.6417 0.6448
F-Measure 0.6769 0.6801 0.6981 0.7013

Diabetes Spec 0.6436 0.6925 0.6711 0.6675
Sens 0.6835 0.7096 0.7230 0.7137
F-Measure 0.6908 0.7071 0.7217 0.7135

Tables 6 and 7 show the mean value of Specificity, Sensitivity, and F-Measure of the 

four algorithms for both training and testing respectively involving the 14 datasets. 

The results are organized in the order of Specificity, Sensitivity, and F-measure, all 

using mean values.
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Table 7. Testing Specificity, Sensitivity, and F-Measure.

Dataset/Algorithm BP PSOLF LFPSO LPSONS

Breast Cancer Spec 0.9469 0.9410 0.9474 0.9478
Sens 0.9549 0.9532 0.9551 0.9617
F-Measure 0.9565 0.9538 0.9556 0.9613

Liver Spec 0.7321 0.6492 0.7090 0.6753
Sens 0.7054 0.6104 0.6330 0.6437
F-Measure 0.7987 0.6500 0.6473 0.6704

Pima Spec 0.6632 0.6730 0.6562 0.6803
Sens 0.6271 0.7124 0.6209 0.7164
F-Measure 0.6579 0.7104 0.6487 0.7164

Wine Spec 0.9680 0.9689 0.9540 0.9690
Sens 0.9549 0.9435 0.9533 0.9580
F-Measure 0.9548 0.9447 0.9541 0.9553

Australian Spec 0.8217 0.8151 0.8186 0.8588
Sens 0.8558 0.8647 0.8648 0.8617
F-Measure 0.8589 0.8621 0.8635 0.8632

Hepatitis Spec 0.9254 0.8947 0.8782 0.8961
Sens 0.7805 0.6468 0.6418 0.6509
F-Measure 0.8260 0.6425 0.6314 0.6479

Heart Spec 0.8772 0.8097 0.8325 0.8002
Sens 0.8629 0.8012 0.8221 0.8093
F-Measure 0.8651 0.8027 0.8221 0.8101

Blood Spec 0.6271 0.6578 0.6359 0.6600
Sens 0.5334 0.5627 0.5646 0.5724
F-Measure 0.6319 0.6316 0.6345 0.6400

Iris Spec 0.9635 0.9373 0.9638 0.9684
Sens 0.9602 0.9150 0.9543 0.9609
F-Measure 0.9626 0.9195 0.9571 0.9637

Credit Spec 0.9148 0.8805 0.8491 0.8792
Sens 0.8844 0.8436 0.8194 0.8310
F-Measure 0.8830 0.8437 0.8310 0.8359

Seeds Spec 0.8625 0.9395 0.9197 0.9562
Sens 0.9227 0.9302 0.9290 0.9274
F-Measure 0.9162 0.9294 0.9263 0.9274

Haberman Spec 0.6535 0.5933 0.5183 0.6792
Sens 0.5654 0.5813 0.6091 0.6142
F-Measure 0.6348 0.6312 0.6298 0.6651

Balance Spec 0.7913 0.8523 0.8781 0.8930
Sens 0.6306 0.6366 0.6309 0.6427
F-Measure 0.6511 0.6625 0.6541 0.6961

Diabetes Spec 0.6232 0.6482 0.6465 0.6532
Sens 0.6031 0.6377 0.6207 0.6347
F-Measure 0.6204 0.6567 0.6244 0.6502

For all the three measures on training networks, LPSONS displays better performance 

than the three benchmark algorithms do. Particularly in terms of Specificity, 

LPSONS does better for 10/14 datasets: Breast Cancer, Liver, Wine, Australian, 

Hepatitis, Heart, Blood, Iris, Credit, and Balance. In terms of Sensitivity, it yields 
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Table 8. Training MSE.

Dataset/Algorithm BP PSOLF LFPSO LPSONS

Breast Cancer MSE 0.0311 0.0242 0.0417 0.0210
Std 0.0041 0.0034 0.0635 0.0033

Liver MSE 0.1914 0.1977 0.1889 0.1818
Std 0.0145 0.0091 0.0047 0.0070

Pima MSE 0.1903 0.1536 0.1711 0.1472
Std 0.0051 0.0048 0.0171 0.0041

Wine MSE 0.0418 0.0306 0.0200 0.0146
Std 0.0063 0.0056 0.0048 0.0029

Australian MSE 0.1089 0.0994 0.0949 0.0910
Std 0.0070 0.0054 0.0054 0.0044

Hepatitis MSE 0.0749 0.0452 0.0314 0.0247
Std 0.0185 0.0160 0.0094 0.0091

Heart MSE 0.1006 0.0945 0.0995 0.1508
Std 0.0127 0.0049 0.0075 0.0055

Blood MSE 0.1607 0.1518 0.1527 0.1428
Std 0.0070 0.0041 0.0037 0.0050

Iris MSE 0.0383 0.0427 0.0281 0.0258
Std 0.0265 0.0230 0.0048 0.0044

Credit MSE 0.0934 0.0943 0.0916 0.0884
Std 0.0074 0.0035 0.0044 0.0034

Seeds MSE 0.0680 0.0408 0.0309 0.0281
Std 0.0259 0.0061 0.0037 0.0033

Haberman MSE 0.1777 0.1676 0.1665 0.1654
Std 0.0106 0.0087 0.0077 0.0063

Balance MSE 0.1449 0.0703 0.0676 0.0534
Std 0.0253 0.0081 0.0095 0.0054

Diabetes MSE 0.1748 0.1556 0.1515 0.1477
Std 0.0059 0.0027 0.0035 0.0049

better results for 11/14 datasets: Breast Cancer, Liver, Pima, Wine, Australian, 

Hepatitis, Heart, Blood, Iris, Seeds, and Balance. In terms of F-Measure, it excels 

for 11/14 datasets: Breast Cancer, Liver, Pima, Wine, Australian, Hepatitis, Heart, 

Blood, Iris, Seeds, and Balance. LPSONS also performs better in testing ANNs. 

For example, in terms of Specificity, LPSONS does better for 10/14 datasets: 

Breast Cancer, Pima, Wine, Australian, Blood, Iris, Seeds, Haberman, Balance, 

and Diabetes. In terms of Sensitivity, it reveals superiority for 7/14 datasets: Breast 

Cancer, Pima, Wine, Blood, Iris, Haberman, and Balance. In terms of F-Measure, 

it produces better results in 7/14 datasets: Breast Cancer, Pima, Australian, Blood, 

Iris, Haberman, and Balance.

Tables 8 and 9 show the mean MSE and its mean Std of the four algorithms for both 

training and testing respectively involving the 14 datasets. For training, LPSONS 

outperforms the benchmark algorithms in 13/14 datasets: Breast Cancer, Liver, 
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Table 9. Testing MSE.

Dataset/Algorithm BP PSOLF LFPSO LPSONS

Breast Cancer MSE 0.0310 0.0340 0.0333 0.0299
Std 0.0079 0.0100 0.0052 0.0067

Liver MSE 0.1928 0.2003 0.2265 0.2577
Std 0.0201 0.0343 0.0199 0.0329

Pima MSE 0.1907 0.1875 0.2446 0.1863
Std 0.0101 0.0275 0.0536 0.0267

Wine MSE 0.0417 0.0585 0.0467 0.0396
Std 0.0313 0.0228 0.0131 0.0146

Australian MSE 0.1087 0.1113 0.1168 0.1087
Std 0.0141 0.0146 0.0128 0.0125

Hepatitis MSE 0.0784 0.1959 0.2082 0.1927
Std 0.0879 0.0617 0.0577 0.0506

Heart MSE 0.1024 0.1514 0.1375 0.1570
Std 0.0217 0.0149 0.0196 0.0207

Blood MSE 0.1606 0.1609 0.1603 0.1579
Std 0.0229 0.0177 0.0162 0.0159

Iris MSE 0.0399 0.0629 0.0392 0.0363
Std 0.0152 0.0409 0.0157 0.0129

Credit MSE 0.0938 0.1284 0.1378 0.1587
Std 0.0346 0.0146 0.0271 0.0540

Seeds MSE 0.0757 0.0509 0.0511 0.0455
Std 0.0423 0.0148 0.0126 0.0115

Haberman MSE 0.1792 0.1901 0.1910 0.1790
Std 0.0213 0.0182 0.0234 0.0137

Balance MSE 0.1462 0.0660 0.0717 0.0565
Std 0.0337 0.0090 0.0117 0.0081

Diabetes MSE 0.1751 0.1740 0.1806 0.1737
Std 0.0111 0.0109 0.0198 0.0027

Pima, Wine, Australian, Hepatitis, Blood, Iris, Credit, Seeds, Haberman, Balance, 

and Diabetes in terms of MSE and in 9/14 datasets: Breast Cancer, Pima, Wine, 

Australian, Hepatitis, Iris, Credit, Seeds, and Balance in terms of Std respectively. 

For testing, LPSONS outperforms the benchmark algorithms in 10/14 datasets: 

Breast Cancer (denoted as breast cancer), Pima, Wine, Australian, Blood, Iris, Seeds, 

Haberman, Balance, and Diabetes in terms of MSE and in 9/14 datasets: Pima, 

Australian, Hepatitis, Blood, Iris, Seeds, Haberman, Balance, and Diabetes in terms 

of Std respectively.

In terms of average computational time, all algorithms have been executed for 13,000 

function evaluations (FEs) as a fair measure criterion. As shown in Table 10, the BP 

algorithm takes the longest time, while the LFPSO algorithm is the fastest one. The 

proposed LPSONS algorithm is the second fastest algorithm, slightly slower than 
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Table 10. Average Computational Time (Seconds).

Datasets Average Computational Time
BP PSOLF LFPSO LPSONS

Breast Cancer 839.3459 281.9295 196.0042 236.9956
Liver 413.4199 249.6352 234.4620 246.4468
Pima 413.0324 281.5354 210.7203 236.5657
Wine 473.9051 301.5204 211.9306 241.1945
Australian 414.1895 219.8676 202.8870 244.5231
Hepatitis 445.3621 304.756 298.6928 302.2047
Heart 401.0953 255.58015 223.6950 226.888
Blood 509.6808 263.2071 219.4589 249.3311
Iris 717.8826 261.5717 239.9011 241.0838
Credit 373.1287 259.7465 222.1118 249.8160
Seeds 540.9844 261.55765 232.1413 246.2889
Haberman 499.205 252.1027 239.4086 255.6158
Balance 411.0724 260.3498 218.8188 247.0611
Diabetes 410.0023 264.14185 255.9756 257.2963

Figure 5. Convergence Curves on Mean MSE for LPSONS, LFPSO, and PSOLF on Breast Cancer (A), 
Liver (B), Pima (C), and Wine (D) Datasets to train MLP Neural Network.

LFPSO but performing significantly better than LFPSO in terms of most evaluation 

measures.

Figures 5 and 6 graphically depict the convergence curves on the best MSE achieved 

for the three PSO-based algorithms to train the network on the 14 datasets. It is clear 

that the proposed LPSONS algorithm exhibits a better convergence rate for 11/14 of 
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the datasets: Breast Cancer (A), Pima (C), Wine (D), Australian (E), Hepatitis (F), 

Blood (H), Iris (I), Seeds (K), Haberman (L), Balance (M), and Diabetes (N).

One class of optimization algorithms, such as GA and Differential Evaluation (DE), 

pertains to evolutionary algorithms that utilize abrupt random changes in generated 

solutions. Another class, such as PSO and ABC, is related to swarm-intelligence 

based algorithms. Due to the fact that these algorithms need to move in a search 

space and there is no abrupt change to leap from one side of the search space to 

another side, they generally cannot perform better than evolutionary algorithms do 

in terms of exploration. This class of algorithms is guided by the best solution 

achieved at each stage and hence its performance benefits from exploitation and a 

good convergence rate. However, the performance of a generated solution is subject 

to the initial position; if the best solution is located in a local solution, there is a 

danger of stagnation into the local minimum. Therefore, keeping a good tradeoff 

between exploration and exploitation is a key factor that enables LPSONS to be more 

efficient and more robust than both PSOLF and LFPSO for most of the datasets.

A sensitivity analysis has been done to find out the impact of each component and 

the effects of Mantegna Lévy flight and the Neighborhood search in the LPSONS 

algorithm. After conducting the experiments involving different components, it is 

clear that combining PSO operators with Mantegna Lévy flight has a great impact 

on the global search and it contributes to the convergence speed too, while the NS 

strategy contributes to the local search. The original PSO algorithm (PSO) can be 

trapped into local minimum in some cases, leading to lower accuracy; however, 

running the algorithm with the MLF strategy (MLF) yields better results, confirming 

that the algorithm can converge to the global optimum due to searching new areas 

in the search space and good convergence rate. The MLF tries different step sizes 

resulting in exploring different areas in the search space and avoiding local minima.

As an example, Figures 7 and 8 show the results of some experiments on different 

components of the algorithm in terms of error rate and convergence speed; however, 

the conducted experiments have been done on different angles. The results are mean 

values of error rate in both train and test samples using the Iris dataset as well 

as of the convergence rate in train samples for thirty independent runs involving 

PSO (the original PSO algorithm), MLF (the algorithm using only MLF and PSO 

operators to generate the solutions (Equation (11))), and NS (the algorithm using 

Neighborhood Search to generate solutions (Equation (13))). It is clear that NS 

alone does not achieve a good convergence rate as it only contributes to local search 

in the algorithm, while MLF has the most significant impact on the algorithm’s 

convergence rate. However, using both NS and MLF in the algorithm helps achieve 

the best results as compared to using them alone. In fact, running the algorithm 

using only PSO helps shed a light on the fact that the original PSO can be trapped 

into local minimum, while running the algorithm with both NS and MLF proves the 
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Figure 7. Error rate of both Train and Test data for original PSO operators (PSO) (a1-a2), Mantegna Lévy 
Flight (MLF) (b1-b2), and Neighborhood Search (NS) (c1-c2).

Figure 8. Convergence rate for original PSO operators (PSO), Mantegna Lévy Flight (MLF), and 
Neighborhood Search (NS).

fact that the algorithm is more capable of avoiding local minimum thanks to its good 

convergence speed as well as suitable global and local search. Thus, due to the good 

global search, convergence speed, and local search, it can be concluded that MLF 

and NS can contribute to both good exploration and exploitation. A good exploration 

prevents from getting into local minima, while a good exploitation suggests efficient 

convergence speed. Another key point is the division strategy used by the algorithm 

to help create a good balance between exploration and exploitation, a point that has 

been proved important in other studies such as [46].
on.2019.e01275

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e01275
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article No~e01275

26 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub

(http://creativecommons.org/licenses/
Table 11. Friedman test.

Measures Statistical Value P-Value Null Hypothesis

Training Accuracy 25.06 1.50185e-05 Rejected
Testing Accuracy 10.25 0.0166 Rejected
Training MSE 26.31 8.19622e-06 Rejected
Testing MSE 9.86 0.0198 Rejected

To statistically test whether there are significant differences between the results 

produced by LPSONS and those produced by LFPSO, PSOLF, and BP across 

multiple test attempts, we have conducted Friedman test [54] on the results of 

training and testing accuracy as well as of training and testing MSE with the 

significance level of 5%. If the p-value of a test is not greater than 0.05, the null 

hypothesis is rejected, in other words, the difference is significant. Table 11 lists the 

statistical test results from which it is clear that the results produced by LPSONS 

are statistically significant, which confirms that they are deterministic rather than 

achieved stochastically or by chance.

5. Conclusions

Motivated by the identified gaps of premature convergence and local optima 

stagnation in the family of swarm-intelligence based algorithms from the literature 

and inspired by the NFL theorem, this paper has presented a robust and efficient 

hybrid approach to optimizing the training of feedforward MLP neural networks 

by utilizing Mantegna Lévy Flight, PSO operators, and the global neighborhood 

search strategy. The proposed LPSONS algorithm has been evaluated against two 

well-known swarm-intelligence based algorithms LFPSO and PSOLF, as well 

as a gradient-based Back Propagation (BP) algorithm. PSOLF and LFPSO both 

enhanced the original PSO algorithm using Lévy flight.

With fourteen standard datasets from UCI machine learning repository, LPSONS 

has significantly outperformed the employed benchmark algorithms in terms of 

the measurement metrics of Accuracy, Specificity, Recall, and F-measure for the 

classification of data. Furthermore, it reveals less error rate and better convergence 

speed in terms of mean MSE. It can be concluded that the proposed approach is a 

good trainer for MLP neural networks as it can avoid from local minima through a 

good balance between exploration and exploitation and at the same time is fast and 

flexible enough to handle a diversity of real-world classification problems.

In future work, we will apply and extend LPSONS to other ANN structures. We 

will also explore using the proposed approach to solve function approximation 

problems and other problems such as text clustering and feature subset selection. 

Furthermore, it is important to investigate how LPSONS works when solving 

complex classification problems.
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